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Abstract
Recently, emerging edge computing technology has been proposed as a new para-
digm that compensates for the disadvantages of the current cloud computing. In par-
ticular, edge computing is used for service applications with low latency while using 
local data. For this emerging technology, a neural network approach is required to 
run large-scale machine learning on edge servers. In this paper, we propose a pod 
allocation method by adding various graphics processing unit (GPU) resources to 
increase the efficiency of a Kubernetes-based edge server configuration using a 
GPU-based embedded board and a TensorFlow-based neural network service appli-
cation. As a result of experiments performed on the proposed edge server, the fol-
lowing are inferred: 1) The bandwidth, according to the time and data size, changes 
in local (20.4–42.4 Mbps) and Internet environments (6.31–25.5 Mbps) for service 
applications. 2) When two neural network applications are run on an edge server 
consisted with Xavier, TX2 and Nano, the network times of the object detection 
application are from 112.2 ms (Xavier) to 515.8 ms (Nano); the network times of the 
driver profiling application are from 321.8 ms (Xavier) to 495.7 ms (Nano). 3) The 
proposed pod allocation method demonstrates better performance than the default 
pod allocation method. We observe that the number of allocatable pods on three 
worker nodes increases from five to seven, and compared to other papers, the pro-
posed offloading shows similar or better response times in environments where mul-
tiple deep learning applications are implemented.
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1 Introduction

Recently, interest in artificial intelligence (AI) has been increasing in various fields. 
Among these, the Internet of Things (IoT) is a domain where the need for AI is 
becoming more important as the variety and size of data available to users and the 
environment increases. Currently, AI services in IoT devices are provided via a 
central cloud over the Internet; therefore, these AI services are affected by factors 
that influence the performance and management of cloud services, including low 
latency, ease of development, database queries, and scaling for resource utilization 
[1]. Cloud companies are now considering new cloud models that work in a variety 
of ways to handle the massive amounts of data needed for AI models. Among these 
cloud models, edge computing is discussed as a new processing method that can 
compensate for the disadvantages of the central cloud structure [2]. The research 
firm Gartner in the USA reported autonomous edges as one of the top 10 strategic 
technologies announced in 2020, whereas IBM selected edge computing and lev-
eraging Kubernetes as methodologies to use for network evolution in 2020 [3, 4]. 
Edge computing, considered the core of the next-generation cloud, refers to a para-
digm that uses real-time data based on the needs of the surrounding environment 
and users rather than using a traditional central server to process all data. This tech-
nology is based on computing devices in edge-located areas called micro-data cent-
ers, cloudlets, and fog that are adjacent to the user plane. Its advantages compared to 
traditional clouds are low latency, traffic distribution, and protection of data privacy 
[5, 6].

Research related to edge computing has been conducted from various perspec-
tives. Figure  1 shows the structure of an edge computing environment. A three-
layer (user plane, edge computing plane, and cloud computing plane) structure that 

Fig. 1  Edge Server Environment
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includes cloud, mobile edge computing (MEC), and IoT has been proposed [7]. In 
addition, studies have been conducted on the proposed use of an edge computing 
solution to configure services, contents, and functions in an area close to the end 
user [8] including a hierarchical MEC structure composed of components termed 
field, shallow, and deep cloudlets to increase service efficiency [9]. Regarding 
the edge computing configuration problem in using transparent computing, a new 
approach [10], Nebula, which is an edge computing platform configuration with 
computation and storage interaction that supports grid and peer-to-peer systems, has 
been proposed [11].

The planning management of edge computing, capacity planning that allows 
resources for CPUs and GPUs to meet quality of service (QoS) requirements [12], 
average server utilization, and latency of application deployment to MEC, has been 
the subject of research. In addition, the relationship [13] and the efficacy of dynamic 
computing web content provision for edge computing [14] have been studied.

Regarding resource management and the provisioning of edge computing, the 
dynamic service provisioning of edge clouds via the computation of new service 
load costs, limited node capacity, and the delivery process request costs on nodes 
with limited resources has been reported on in terms of resource management [15]. 
Migration using the Markov decision process (MDP) is based on responses such as 
user movement and network performance [16].

Furthermore, several studies have been conducted on various testbed types based 
on previous research. These studies include an evaluation of edge-hosted contain-
ers [17] and three edge-cloud implementations of the containerized Platform as a 
Service (PaaS) structure in a cluster utilizing Raspberry Pi, which is a single-board 
computer [18–20]. A comparative study was conducted of the performance of 
machine learning packages, including TensorFlow, Caffe2, MXNet, PyTorch, and 
TensorFlow Lite, on an edge device [21]. However, because single boards, such as 
the Raspberry Pi, have limitations in terms of hardware specifications for neural 
network implementation, edge computing must be implemented on a single-board 
computer (ARM core-based CPU) that includes a GPU (Nvidia GPU). Moreover, 
to use the GPU resources of the cluster for containers, the specifications required by 
the neural network service to monitor the GPU resources must be checked at each 
edge node., The container environment for edge devices was not considered by these 
techniques.

In this study, we propose an embedded edge server on a single board to process 
simultaneously multiple deep learning models composed of a Kubernetes-based 
container environment.

The contributions of this study are as follows: First, it enables independent envi-
ronment configuration and resource sharing for each neural network service. Con-
tainer-based deep learning applications support an independent operating environ-
ment at a high level; this solves the dependency problem of rapidly changing deep 
learning libraries. At the lower level, the application can be easily deployed to and 
managed for various users by sharing resources at the kernel level. Second, it sup-
ports scheduling to increase resource utilization for deep learning services. When a 
deep learning service executes, it does so multiple times on the nodes in the cluster, 
and the efficiency of resources is increased by optimizing their utilization using the 
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scheduling of the cluster system. Finally, an offloading method between the edge 
and the central cloud is proposed according to the difference in the amount of com-
putation on the neural network. Depending on the state of the edge server, the com-
puting location where additional deep learning services are executed is offloaded 
to the central cloud. Accordingly, it is possible to change the computing resources 
used for additional requests dynamically and to determine the computing location of 
the deep learning service by reconfirming the different delay times according to the 
varying amounts of computation.

The remainder of this paper is organized as follows. In Sect. 2, the network for 
the edge server and the container-based environment of the board, including the 
GPU task, are described. Section 3 includes the structure of the implemented edge 
server, the setting of GPU support in the container environment, the neural network 
model used in the edge server, the offloading, and the scheduling method with nodes 
in the cluster for deep learning. In Sect. 4, the detailed experimental results of the 
proposed scheduling and offloading method on a single-board edge server with a 
GPU are described. Finally, Sect. 5 presents the conclusion. 

2  Background and motivation

2.1  Network environment change

In emerging 5G networks, software networking is a programmable approach that 
makes extensive use of IT virtualization technologies, such as communication infra-
structure, functions, and applications. Therefore, edge computing is a core technol-
ogy and architecture concept that enables the evolution of 5G [22]. Changes in the 
network are directly related to the performance of edge computing in terms of low 
latency, speed, and structure. This emerging technology supports the stability of a 
service; however, the stability is affected by networking problems at each node in a 
cluster-type edge server. In a previous study, we implemented edge servers on vari-
ous boards to check for stability problems and latency at the user plane [23].

2.2  Container

A container is a virtualization method for running a separate virtual Linux system 
(container) on Linux [24]. In the container, layers composed of independent file sys-
tems are connected as a single image; the layers use the union file system to store 
the environment. Hardware resources are used separately for each container. Using 
the saved image, we can run a containerized application. Figure 2 shows the steps 
for building an image and the process of running a containerized application. In this 
process, Linux container technology easily sets changes to the environment accord-
ing to the container runtime and is a method for implementing micro-services com-
posed of small units.

The advantages of using containers in edge servers are as follows: First, because 
of server hardware limitations, a hypervisor program has a considerable size 
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constraint, whereas a container environment allows easy basic configuration of pro-
grams, such as light memory usage and quick starting. Second, flexible scaling is 
efficient because resource management is handled at the OS kernel. Figure 3 shows 
the container runtime interfaces (CRIs) based on the open container initiative (OCI), 
which standardizes the runtime that supports the container environment.

There are a number of CRIs including CRI-O, Docker, and gVisor. Among these, 
Docker is most widely used because it is the most mature. However, a CRI focuses 
on managing the container configuration in a host environment. In a large-scale 
cluster server configuration, efficient work management in terms of functionality is 
lacking in CRIs. Therefore, a platform that provides additional container manage-
ment is required.

Fig. 2  Image Building and Containerization

Fig. 3  CRI Comparison [25]
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2.3  Container orchestration

Containers are gradually becoming a base environment for DevOps, a way to unify 
software development and operations [26]. Concurrently, container orchestration 
contributes to managing hardware resources between each terminal by stably updat-
ing and distributing work in a large-scale distributed computing context, such as the 
cloud. Therefore, the need for a container orchestration platform has increased.

Figure 4 shows the types of container orchestration. Container orchestration types 
include the Docker swarm, Kubernetes, and Apache Mesos, with Kubernetes cur-
rently being the most used and systematically mature [27–29]. This is because of the 
following reasons. First, Kubernetes can be constructed in a variety of environments, 
unlike other platforms. Second, it has advantages regarding scheduling, deployment, 
and managing containers based on user options. Third, it also has advantages regard-
ing scheduling service tasks in various ways and utilizing the resources applied to 
these tasks [30]. Kubernetes is an application that runs on a node. It uses a set of 
pods for deployment, and a job- and daemon-set for the update operation. In addi-
tion, Kubernetes can use separate virtual networks internally to support container-
specific environments and uses an API server that supports external access from the 
master node to operate separate service applications according to client requests. At 
this time, the internal network checks the pod connection according to each request 

Fig. 4  Container Orchestration
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through the operation of Kube-proxy and processes the connection of the pod using 
a distribution algorithm.

2.4  GPU resource availability in containers

Edge computing is mainly used for preprocessing tasks in nearby computing areas 
because of the difficulty of integrating each computing resource to the center cloud. 
Furthermore, with the emergence of boards with GPU resources available in the IoT 
area, such as Nvidia’s Jetson Board, the utilization of GPU resources in edge com-
puting is increasingly being considered. For example, Nvidia provides an inference 
framework, such as the DeepStream SDK, that simplifies the development of video 
analytics applications on Nvidia platforms by providing TensorRT [31].

Thus, because of GPU resources being utilized on edge servers, this framework 
has an advantage over central processing units (CPUs) in artificial neural network 
processing that mainly process via parallel computation and handle media data, such 
as videos and photos, rather than raw data from sensors. While reducing traffic to 
the central cloud, concurrently we must achieve rapid response and fast processing. 
NVIDIA, a leading GPU developer, is releasing a runtime called Nvidia-docker to 
GitHub to help manage Docker-based GPU resources and cope with the changes in 
the container environment [32]. Development tools and neural network models for 
AI on various platforms are being supported as container images through Nvidia-
GPU Cloud (NGC) [33].

3  Proposed work

In this study, we addressed research questions dealing with the configuration of an 
edge cluster to enhance GPU resource utilization and allocate pods to proper nodes 
for deep learning services. We configured a native clustering edge server in a wire-
less environment using Kubernetes, which supports container applications. We also 
confirmed the implementation of the edge server for utilizing GPU resources, pod 
scheduling, and offloading methods. First, we propose an embedded edge server 
structure in a container environment for target applications.

3.1  Edge server structure

IoT data sources in each area of the edge server environment require improved hard-
ware performance to preprocess relatively large media data (pictures, voices, etc.), 
and reliable transmission methods and data formats. In a previous study, we imple-
mented a transport stream socket using stored photograph data. This paper proposes 
a structure that collects photograph data from a camera connected to an IoT device 
and implements a format using GStreamer. It puts the data in a basic transmission 
queue, connects to a stream socket, and transmits it.

The proposed edge server area includes high-performance processing using a 
neural network rather than simple data preprocessing. It is responsible for storing 
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the resulting data and transmitting it to the cloud computing plane. Furthermore, 
to determine the usefulness and usability of scaling, the operation is confirmed by 
implementing a workload in which multiple containers are operated according to 
additional client transmissions. Figure 5 shows the structure for realizing the pro-
posed edge server. It uses Docker as the CRI of all nodes and adds Kubernetes 
to cluster and orchestrate each node for operating the GPU-enabled application 
requested from the edge server.

3.2  Proposed new setting for neural network

3.2.1  New extended resource for GPU board

We proposed a new edge server for the implementation of a neural network service 
in the edge server to utilize the GPU. For neural networks with higher computa-
tional requirements, computations are usually performed faster at the central cloud 
computing layer. However, if the neural network is lightweight with no significant 
accuracy difference in the user’s perception, the small edge server provides a latency 
benefit by servicing the corresponding processes in a region closer to it. These edge 
servers require GPU resources to ensure fast inference times. However, to utilize the 
GPU in a typical container environment, it must be recognizable by mounting the 
graphics driver using the Nvidia-Docker runtime [32]. However, the existing Kuber-
netes scheduler distributes to pods by monitoring only the edge server’s CPU and 
RAM resources. An application running a neural network model requires a method 
for identifying GPU resources and assigning a pod to an appropriate node. The desk-
top environment (× 86 chipset) uses a k8s device plug-in; however, it does not work 
on the Jetson board (ARM64 chipset,) because support is lacking from the Nvidia 

Fig. 5  Proposed Edge Network
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Management Library (NVML). In addition, this plug-in is for virtualized GPU, and 
it is difficult to determine the optimal resource efficiency when the actual GPU is 
allocated to each node.

Therefore, we propose a new scheduling method to consider the maximum GPU 
clock and add it as an extended resource together with CPU and RAM capacity. This 
method will allocate pods to the appropriate nodes (Jetson board) and share GPU 
resources between containers for deep learning applications. The process was imple-
mented using a device query, as shown in Fig. 6. In addition, on Jetson series boards 
with different hardware specifications configured inside an edge server, the neural 
network applications’ scalability can be increased while increasing work efficiency.

3.2.2  Neural network models for proposed edge server

To evaluate and verify the proposed edge server configuration for deep learning ser-
vices, we deployed a diverse range of neural networks for entirely different applica-
tions as follows:

1. Object detection using SSD-MobileNetv2 [34, 35]

• Based on 2D images

2. Driver behavior profiling using DeepConvRNN [36]

• Based on 1D scalar data (driver data, i.e., acceleration, braking, etc.)

The reason behind selecting an algorithm for the proposed work was to generate 
a real-time environment scenario, where an image from the client’s camera would 
require deep learning services (object detection, in this case) from worker nodes 
under the proposed research configuration. Similarly, in the case of 1D scalar data, 
we assume a connected car environment, where the sensor data from an in-vehicle 
controller area network (CAN) bus would require services from the proposed edge 
server configuration. In this regard, through deep learning services, the edge server 
would detect the identity of the driver via driver behavior profiling.

Fig. 6  Device Query
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Before deploying the selected deep learning algorithms in our proposed con-
figuration, all worker nodes (embedded hardware) were benchmarked to evaluate 
resource utilization [44]. In addition, the computational complexity of several driver 
profiling models in a container environment (without Kubernetes) was studied in 
[45], wherein a lightweight model was proposed using a sparse learning technique 
for a container environment. However, this study focuses on offloading deep learn-
ing services using the proposed configuration (pod allocation) in the Kubernetes 
environment (edge computing). In this regard, the selected deep learning models are 
explained briefly to describe the levels of complexity of the algorithms used in the 
proposed work.

For object detection, a well-known deep learning algorithm named SSD-Mobile-
netv2, which consists of two models, a single-shot multi-box detector (SSD) [34] 
and MobilNetv2 [35], is deployed. MobileNetv2 is used as a feature extractor and 
achieves competitive accuracy with significantly fewer parameters (4.3 million). It 
requires lower computational complexity when combined with an optimized version 
of SSD [35], together named SSD-MobileNetv2. Recently, SSD-MobileNetv2 has 
become available for the Jetson series (Xavier, TX1, TX2, and Nano) in the Jet-
son inference library, where it is highly optimized using TensorRT. However, in our 
case, we deployed the frozen model available on the official TensorFlow GitHub 
page. This model is pretrained on the COCO [37] dataset and can be modified eas-
ily using TensorFlow for development, as compared to that available in the Jetson 
inference library. Further details of execution under the proposed configuration are 
explained in Sect. 4.3.1.

Moreover, we implemented the algorithm proposed in [36] and modified it based 
on the proposed configuration to a lightweight deep learning model for the container 
environment under the umbrella of edge computing. It is based on a famous multi-
model network that comprises a convolutional layer followed by a recurrent neural 
network. According to the container environment, we require a compact network 
with fewer parameters and a memory image. In this regard, we further optimized 
the network [36] by tuning parameters such as kernel size, kernel depth, the window 
stride, batch size, and the number of hidden layers for LSTM; we also dropped the 
last attention unit. We successfully reduced the size of the network by compromis-
ing a degree of accuracy. The final configuration contains the kernel size (1, 20) of 
the first depthwise convolution layer with a depth multiplier of 20, followed by a 
maxpool layer with a kernel size of (1, 53) with a stride value of (1, 2). The second 
depthwise convolution layer has a kernel size of (10, 1) with a depth multiplier of 
10. The architecture [36], explained in Fig. 7 exploits the Ocslab [38] driving dataset 
for driver profiling and identification. In the Ocslab driving dataset, 51 driving fea-
tures were acquired using the in-vehicle CAN data bus. However, for driver identi-
fication, 15 shortlisted features that significantly corresponded to the personal skills 
of a driver were used. The selected features were related to the engine (engine cool-
ant temperature, engine torque, friction torque, etc.), fuel (intake air pressure, fuel 
consumption, etc.), and transmission (transmission oil temperature, wheel velocity, 
torque convertor speed, etc.). These 15 properties were processed further with statis-
tical (mean, median, and standard deviation) features, creating 45-dimensional fea-
tures (15 × 3). We implemented the algorithm using TensorFlow 1.15, in a container 
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environment using a Docker image. Further details on the execution are provided in 
Sect. 4.3.1. The reason for explaining Fig. 7 is that, unlike SSD-MobileNetv2, driver 
profiling is not part of the Jetson inference library. For our scenario, we evaluated 
different algorithms, selected this tool for driver profiling, and further modified it 
according to the proposed configuration of the edge server deep learning services.

Figure 7 shows the operation of the application according to the data flow pro-
cess. In addition, the assumed neural network model that performs object detection 
in the application uses a pretrained model that can obtain the SSD-MobileNetv2 
model trained with the COCO dataset in the TensorFlow object detection API [39].

3.3  Scheduling and offloading for GPU resources

The structure is based on a container environment using Kubernetes, and the entire 
process for the edge server to run the neural network as follows is illustrated in 
Fig. 8.

Step 1 First, the device query application is executed with the preset settings of 
all edge servers and the update of the extended resource for the GPU specification is 
sent to the API server as an HTTP patch request and registered to all nodes.

Step 2 The client near the edge server requests the desired service from the API 
server in a small local edge. The program that communicates each request of the cli-
ent uses the Kubernetes API that supports libraries for authentication to access the 
cluster and internal cloud operation.

Step 3 After confirming the request, the edge server operates a data-receiving 
server connected to the IoT data source. The transmitted data include a large media 
file (e.g., picture, video formatting file, etc.) and scalar data (e.g., sensor data, single 
value data, etc.) and are transmitted to an edge server using a stream socket from a 
data source.

Step 4. The Kube-scheduler included in Kubernetes is then used for scheduling 
the node assignment of the neural network-driven pod. Then, the newly added GPU 

Fig. 7  DeepConvRNN Used in [36]
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resource is set as a new filtering condition in the configuration file of the neural 
network-driven pod and the pod is allocated.

Step 5. The assigned pod processes the external data through the neural network. 
As the same communication is used, given that data retransmission affects the per-
formance of neural network pods that are processed, the edge server uses a separate 
retransmission pod or monitoring pod inside the edge server via authentication from 
the outside.

In Kubernetes, basic scheduling is divided into two stages: predicate scheduling 
and priority scheduling. Predicate scheduling divides the executable and pending 
pods by comparing the computing resources required for the pod with the computing 
resources of all nodes. The priority scheduling process changes the priority accord-
ing to the pod task conditions and the resource limit, affinity, and user factor. The 
proposed method is implemented by adding a user factor and affinity to intervene in 
the priority scheduling process and setting a factor for the GPU’s performance:

CPUnodetotal = 80% ∗

N∑

i=1

CPUnoi
> CPUreq =

M∑

g=1

CPUpodg

MEMnodetotal = 80% ∗

N∑

i=1

MEMnoi
> MEMreq =

M∑

g=1

MEMpodg

S1
(
podg, Cluster

)
=

{
noi|

(
CPUnoi

∗ 80% − CPUpodg

)
≥ 0

}

S2
(
podg, Cluster

)
=

{
noi|

(
MEMnoi

∗ 80% −MEMpodg

)
≥ 0

}

Fig. 8  Application progress
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We assume that the total amount of CPU and memory is CPUnodetotal and 
MEMnodetotal , the node’s CPU usage and memory usage are CPUnoi

 and MEMnoi
, and 

the CPU and memory requests to the pod for execution are CPUpodg
 and 

MEMpodg
respectively . In addition, the total number of nodes is N, and the total num-

ber of pods is M. Equations (1) and (2) are conditional expressions that compare the 
total resources required by all podg running against the entire cluster’s CPU/RAM. 
The total available resources should be limited to the host’s required resources, 
which is limited to 80%. Equations (3) and (4) define the predicate functions  S1 and 
 S2 to place podg on the noi node that provides sufficient CPU and memory resources. 
Subsets  S1 and  S2 are the sets of nodes that can be obtained for each node resource 
as a result; we select the collection of nodes  S1 and  S2 with sufficient resources for 
pending pods requesting different resources from the CPU and MEM. Before the 
utilization of various resources of the system reaches full load, the system through-
put increases concurrently with resource usage.

Next, the priority-scheduling process determines the priority between the 
adjusted nodes by applying the user factor and resource limit that are additional pri-
ority factors. Through adjustment during this process, the scheduling of the cluster 
server can be determined to suit the purpose. Equation (5) is a formula that deter-
mines the final priority value of a pod executed for a node. The priority function ( Pi ) 
is a function determined for affinity, the resource limit, and user factor; it is calcu-
lated by multiplying the additional weights for each node and priority function. In 
the equation, u denotes the number of priority functions to operate and noi denotes a 
node for which the priority is set:

The method proposed for factoring uses the value of the GPU clocks and graphic 
memory obtained from the device query; it does not depend on the presence/absence 
of GPUs or the number of GPUs. This factor allows differences in performance to 
be shown. Because the proposed factor can be used to represent the relative GPU 
performance difference for all individual board nodes, basic scheduling based on the 
distribution of pods can be operated appropriately for neural networks. Therefore, 
the proposed factor is set to have a priority value of 0, indicating the most preferred 
state for a node that is faster in inference. This factor affects the priority function of 
the BalancedResourceAllocation method according to differences in the GPU graph-
ics memory allowances and operates in the priority function of the NodeAffinityPri-
ority method according to differences in GPU performance.

P
(
podg, nok

)
=

u∑

i=1

{
weight(i,k) ∗ Pi

(
nok

)}
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One of the contributions of the proposed scheme is to introduce integral off-
loading to the central data center if the edge is not adaptable to a given neural 
network service. The point to be considered for offloading is the total latency, 
including the network latency and neural network processing time for each of 
the central cloud and edge servers. Initially, in the existing “end–edge” structure, 
offloading is determined between the computing device located in the IoT data 
source area containing the data and the surrounding edge server’s devices. How-
ever, in the request for a neural network service, a comparison of offloading times 
in the “edge–cloud” area is required when there are insufficient local computing 
resources. The sum of the time ( Tcenterup , Tedgeup ) required for total data transmis-
sion in each area and the execution time ( Tcenterup , Tedgeup ) represented by comput-
ing device performance can be viewed as the total time required for processing in 
each area. It is expressed by Eq. (6) and (7), respectively:
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In this case, assuming that the neural network inference time at the edge includ-
ing the GPU does not occupy much of the total delay time compared to the network 
delay time caused by the data transmission condition, the condition that requires off-
loading is as shown in Eq. 8:

As the difference due to the physical distance of the network is the main cause 
of the delay time in the edge computing system, it can be confirmed that offload-
ing is necessary only when Tcenterup > Tedgeup is always satisfied and the edge server 
accepts the neural network service at its maximum. Conversely, to satisfy the off-
loading condition under the assumption that the neural network inference time is 
greater than the network delay time, the time for the neural network operation must 
first be checked and reflected in offloading.

In the first case, if the edge server does not have enough computing resources 
to perform the requested service, the requested service is kept on hold, resulting in 
working time loss. Therefore, with a structure using integral offloading, the comput-
ing work is entrusted directly to the central cloud. This has the advantage of service 
availability regardless of the neural network operating time. For the second case, the 
trade-off must be found between the neural network execution time and the network 
delay time that can be verified by the experimental results of integral offloading.

4  Experimental results

4.1  Experimental environment

The purpose of this experiment was to check the efficiency of the proposed provi-
sioning of edge server bandwidth and resources, such as CPU, memory, and GPU 
for deep learning services. The experiments were conducted in the following order.

In the network performance experiment, we measured the bandwidth and server 
delay of the client-edge server according to the network environment and data size. 
In the GPU job allocation and scaling experiments, we measured each neural net-
work model’s inference time in the GPU container environment and confirmed the 
number of operated pods and response times using the proposed pod allocations.

4.1.1  Hardware specification

Experiments were conducted to implement and check the scalability of GPU opera-
tions based on the previously proposed small-scale edge server. The specifications of 
the hardware equipment as well as the clear formats for data used in the edge servers 
are described. Each cluster node of the edge server at the center of implementation 

Toffloading = Tcenterup + Tcenterexe

Tedge = Tedgeup + Tedgeexe

Tcenterup ≫ Tcenterexxe ∧ Tedgeup ≫ Tedgeexe



8608 J. Kim et al.

1 3

used Jetson boards from Nvidia with different hardware specifications to determine 
the possibility of utilization according to the GPU’s specifications. Table 1 lists the 
specifications. Minimization of the network overhead through wireless communi-
cation was effected via the AC9560 driver used as a back-ported communication 
adapter for the board. The local network of the edge server was a local wireless net-
work; it was connected through an edge router that was used for environment setting 
and managing the local network.

4.1.2  Software specification

Table  2 lists the versions of the software used for configuring the edge server. 
During the experiment, the data used in the GPU work were transmitted from the 
camera of the device mimicking an IoT data source, and the transmission data for-
mat was adjusted for operational reliability in object detection. To implement the 
neural network within the edge server, graphics hardware and a model implemen-
tation IDE were required to utilize the GPU resources, but because the chipset 
specifications of the Jetson Series are different from the general PC specifications 
(Jetson series: ARM, Desktop: AMD64), some of the official container images 

Table 1  Hardware specifications

Jetson series Hardware specifications

Device Jetson Nano Jetson TX2 Jetson Xavier

CPU 4-core ARM cortex-57 4-core ARM A57 8-core ARMv8.2
8 MB L2 + 4 MB L32 MB L2 + 

HMP Dual Denver 2/2
 MB L2

RAM 4 GB LPDDR4 8 GB LPDDR4 16 GB LPDDR4
GPU 128-core Maxell 256-core Pascal 512-core Volta with

Tensor Core
Network module Intel AC9560 Intel AC9560 Intel AC9560, AGW 

200

Table 2  Software and network 
environment

Software specifications

OS/Kernel Linux Ubuntu 18.04, Tegra 4.9

Kubernetes Kubernetes ver 1.16 (kubeadm, kubectl kubelet)
Docker 18.09.7
Router 802.11ax Dual Band Wi-Fi 5 GHz

AX: 2 × 2 (Tx/Rx) 1024 QAM 
160/80/40/20 MHz, Maximum 2400 Mbps

TensorFlow 1.15.0
OpenCV 3.4.6
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supported by Nvidia-GPU Cloud (NGC) [32] may not work properly. For com-
patibility, therefore, an individual container environment was implemented as an 
image file and used as a base image for the application running in the experiment.

4.2  Evaluation of network performance

As a preliminary experiment to check the configuration of the edge server, the 
network speed was measured between the edge computing plane and the user 
plane. To show the differences in the network environment, we tested two network 
types as a control group. Network type 1 had a connection environment through 
an Internet network, assuming a cloud computing connection. Network type 2 had 
a connection environment through the user plane (local wireless network) on the 
same router as an edge server. To check the speed and bandwidth, iPerf3 [40] was 
used as the network measurement program. For all nodes in the proposed edge 
server, Kubernetes service configuration, deployment and NodePort types of ser-
vice were added. This was done for iPerf3 to run as a server mode pod while the 
pod was configured to be accessible to the internal cluster from the outside. The 
test period for each device was 30 s, and throughout the test period, the maximum 
bandwidth was measured at 1 s intervals for comparative evaluation. In addition, 
in the same environment, we set the transmitted data to 5, 10, and 15 MB to check 
the traffic usage according to the size difference.

As shown in Fig. 9 and Table 3, the response of the client connecting the origi-
nal complex network was obviously slower. These experimental results also show 

Fig. 9  Bandwidth According to Two Different Network Types



8610 J. Kim et al.

1 3

that an object detection model at an edge server can be more efficient in terms of 
bandwidth than a central cloud model serviced in the Internet environment.

4.3  Efficiency evaluation for GPU task‑based scheduling

The purpose of the second experiment was to demonstrate the efficiency of the pro-
posed scheduling of the GPU task application, using the extended resources of the 
edge server and the offloading method, compared with the basic scheduling method.

The experiment was divided into two cases: 1) when the basic scheduling method 
was used, and 2) when the scheduling method used the extended resource and addi-
tional affinity. The GPU job application was executed using two neural networks 
(object detection and driver profiling) with different utilization data. The first was 
the SSD-MobileNetv2 [35], a pretrained object detection neural network found on 
the TensorFlow GitHub, where images are used. The second is a lightweight neural 
network that uses the binary classifier DeepConvRNN, using small sensor values as 
inputs.

As the setting for the external connection of the edge server, requests were dis-
tributed to each of the pods using the load balancer, a service component of Kuber-
netes. The load balancer is changed from the round-robin algorithm to the never-
queue algorithm; this increases the number of connected clients as much as possible 
and was set to increase the number of connection pods. Furthermore, all boards used 
in the experiment were released and verified using the jetson_clocks script imple-
mented inside the Jetson Board, for performance comparison.

4.3.1  Experimental result of basic scheduling method

First, in a basic pod allocation method, we check the availability of a neural network 
service application that utilizes image data. As listed in Table  4, object detection 
neural network-based pods can operate in standby mode on Nano, which is a board 
with low specifications. However, the memory requirements for input data and out-
put data for driving a neural network are large; thus, the connection may be discon-
nected during the session operation for service.

To solve this discrepancy, the session option to limit the memory in a neu-
ral network application was added to the TensorFlow code, and the results are 
summarized in Table  5. However, Table  5 shows that the connection was lost 
because of the long wait caused by the Nano board using network time. Tables 4 

Table 3  Bandwidth changes according to various data sizes

Network Network type2 (local) Network type1 (Internet)

Transmitted data size 5 MB 10 MB 15 MB 5 MB 10 MB 15 MB

Average bandwidth (Mbps) 30.25 34.29 37.43 11.94 12.21 13.46
Max 35.9 41.2 42.4 25.5 23.5 18.1
Min 23.2 20.4 29.6 5.74 6.31 10.1
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and 5 show the configuration problems of the neural network service appli-
cations that deal with media data (image and video). First, according to node 
performance, a difference occurs in the processing time of the neural network. 
Second, improper node allocation with nodes scheduled without considering the 
GPU resources does not satisfy the pod’s operational performance.

The second experiment for the driver profiling model was to select the num-
ber of samples used for inference randomly and run the model, followed by a 
continuous inference test for at least five minutes. Table  6 summarizes the 
results of a driver profiling model in the general allocation method. Figure  10 
shows the results of allocation according to pod scaling.

The results in Table  6 were obtained using the driver profiling model and 
show that the edge server can be operated stably by running a lightweight neural 
network for small-sized data. At this time, in the general method of allocation, 
the generated and scheduled pods do not show a significant difference in prior-
ity; therefore, the balanced pod distribution results can be checked, as shown in 
Fig. 10. However, when the number of pods is more than five, the pods assigned 
to the Nano board are automatically pending within Kubernetes because of 
insufficient memory for running the neural networks. To solve this problem, it 
is necessary to determine the level of weighting and the actual degree of GPU 
workload and allocate it to the node.

4.3.2  Experimental results of new scheduling

The proposed allocation method adds a GPU clock as an extended resource that 
can be recognized by the Kubernetes system and executes the device query job 
performed in each node before the pod allocation process. The device query 
job uses the internal jetson_stats library that confirms the specifications. In the 
experiment, values of 1377 (Xavier), 1300 (TX2), and 612 (Nano) were obtained 
as the GPU specifications for each node. A stable driver profiling neural network 
was used because more than one pod should be executed in one node. In addi-
tion, given the availability of each board identified in the previous experimental 
results, the available GPU clock required in one pod setting was limited to 400. 
As shown in Fig. 11, the results ensure pod scaling. Table 7 summarizes the per-
formance of the neural network on each node, and a standard deviation of 2.0 to 
2.4% is confirmed. This means that the performance of each neural network was 
not affected even if the number of pods in one node increased.

The weight of each node was set to a value of 70 in Xavier and 40 in TX, 
which changed the priority. Subsequently, the new pod allocation order accord-
ing to the increase in the number of pods produced the result shown in Fig. 11. 
As shown in Fig.  11, the pod preemption between TX2 and Xavier can be 
checked under similar conditions and confirms that up to seven pods can be ser-
viced during the same processing period.
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4.3.3  Experimental result of Integral offloading

The purpose of the experiment was to measure the delay between the edge server 
and the central cloud when using integral offloading and compare it with previous 

Fig. 10  Result of Pod Scaling Using Driver Profiling Neural Network

Fig. 11  Result of Scheduling using Driver Profiling with Extended Resource
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studies [42–43] dealing with other deep learning services that applied edge com-
puting structures. In the experiment, before the implemented WebSocket receiving 
server responded to the requested deep learning service, nodes added or excluded 
from the entire edge server’s cluster configuration were checked, and the total capac-
ity was calculated by monitoring the hardware performance of the nodes. Subse-
quently, the offloading condition was determined according to the neural network 
service and the edge server’s availability. Then, deep learning was performed by 
selecting a computational domain. As a deep learning model, we used an image rec-
ognition model [35] to confirm the application of other deep learning models in the 
edge server. The results of this experiment are shown in Table  8, along with the 
image detection neural network [39] results used in the previous experiment. We 
measured the end-to-end time and the inference time and averaged them when mul-
tiple container applications were executed in the edge server.

In Table 8, the end-to-end time is the time until a response is received from the 
client and represents the performance of the proposed structure. In addition, infer-
ence time is added to check the difference in network delay separately from the per-
formance of each model because the calculation area executed through offloading 
is different. First, in the paper on Deep Decision [41], the resulting final time in 
each computational domain is shown through the YOLO model using image data. 
This study uses the same offloading as the proposed server, but because the tested 
center cloud covers a larger network distance than the local server, constructing an 
extended structure of the proposed server can be seen as the result of the experiment. 
The paper referenced for the comparison of neural network inference time was Edg-
eEye [42]. This paper presented API framework in the edge area and implemented 
a deployable deep-learning application. The model to be compared was DetectNet 
and a direct comparison with the image recognition model is difficult because the 
optimization through tensor RT is in progress. However, compared to the driver 
profiling model, which requires less computation, it has a similar inference time. 
Finally, in paper [43], the method was implemented on a cloudlet-based VM rather 
than a container-based environment, and the deep learning model was run on mobile 
devices and cloudlets using snapshot data of the Virtual Machine (VM) for partial 
offloading. This method is numerically similar to that of the proposed server. How-
ever, the method in this paper is implemented with partial offloading, which has dis-
advantages in terms of the configuration of multiple deep learning applications com-
pared to the proposed edge server.

5  Conclusion

In this paper, we propose the configuration of a Kubernetes-based edge server: 1. 
the configuration of a Kubernetes-based edge server, 2. the identification of the 
network environment, 3. the implementation of a neural network model that can 
be configured for neural network applications, 4. pod allocation using affinity, and 
5. a new extended resource method for improving the efficiency of GPU nodes. 
The proposed embedded edge server is the basis for providing services with low 
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latency to nearby clients and is composed of Kubernetes cluster servers using 
containers to compose complex applications.

As a result of our first experiment, the service advantage of the edge server 
was confirmed because of the three times difference in transmission bandwidth 
between the edge local area and the Internet network.

The second set of experiments was conducted on two service applications 
using a newly constructed neural network model on an edge network. By compar-
ing the two neural networks, the edge server operation for object detection con-
firmed a memory limitation problem, which is a limitation of the embedded edge 
server model, and showed that the lightweight neural network model—the driver 
profiling model—is suitable for operation on the edge server.

Third, when scaling a pod, we experimented by increasing the number of pods 
that can be operated, and with the efficient allocation of nodes using the proposed 
method to solve the problem of resource allocation imbalances caused by using 
embedded board GPUs. The proposed method sets the number of internal pods 
available on each board, which is confirmed through additional extended resource 
and affinity settings for the GPU inside the node.

Finally, it was possible to reduce the overhead of moving the node because 
of the additional impossibility of running the pod. Moreover, by adding offload-
ing, we checked the end-to-end time and the inference time of the neural network 
model being executed, compared the structure with those in other papers, and 
comparatively analyzed the merits.
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