
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:8593–8621
https://doi.org/10.1007/s11227-021-03623-9

1 3

GPU‑based embedded edge server configuration
and offloading for a neural network service

JooHwan Kim1 · Shan Ullah1 · Deok‑Hwan Kim1

Accepted: 5 January 2021 / Published online: 25 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Recently, emerging edge computing technology has been proposed as a new para-
digm that compensates for the disadvantages of the current cloud computing. In par-
ticular, edge computing is used for service applications with low latency while using
local data. For this emerging technology, a neural network approach is required to
run large-scale machine learning on edge servers. In this paper, we propose a pod
allocation method by adding various graphics processing unit (GPU) resources to
increase the efficiency of a Kubernetes-based edge server configuration using a
GPU-based embedded board and a TensorFlow-based neural network service appli-
cation. As a result of experiments performed on the proposed edge server, the fol-
lowing are inferred: 1) The bandwidth, according to the time and data size, changes
in local (20.4–42.4 Mbps) and Internet environments (6.31–25.5 Mbps) for service
applications. 2) When two neural network applications are run on an edge server
consisted with Xavier, TX2 and Nano, the network times of the object detection
application are from 112.2 ms (Xavier) to 515.8 ms (Nano); the network times of the
driver profiling application are from 321.8 ms (Xavier) to 495.7 ms (Nano). 3) The
proposed pod allocation method demonstrates better performance than the default
pod allocation method. We observe that the number of allocatable pods on three
worker nodes increases from five to seven, and compared to other papers, the pro-
posed offloading shows similar or better response times in environments where mul-
tiple deep learning applications are implemented.

Keywords Edge server · Kubernetes · Neural network service · GPU-based
container · Pod allocation

 * Deok-Hwan Kim
 deokhwan@inha.ac.kr

 JooHwan Kim
 22191434@inha.edu

 Shan Ullah
 shan.ullah@iesl.inha.ac.kr

1 Department of Electronic Engineering, Inha University, Incheon, South Korea

http://orcid.org/0000-0002-6048-9392
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03623-9&domain=pdf

8594 J. Kim et al.

1 3

1 Introduction

Recently, interest in artificial intelligence (AI) has been increasing in various fields.
Among these, the Internet of Things (IoT) is a domain where the need for AI is
becoming more important as the variety and size of data available to users and the
environment increases. Currently, AI services in IoT devices are provided via a
central cloud over the Internet; therefore, these AI services are affected by factors
that influence the performance and management of cloud services, including low
latency, ease of development, database queries, and scaling for resource utilization
[1]. Cloud companies are now considering new cloud models that work in a variety
of ways to handle the massive amounts of data needed for AI models. Among these
cloud models, edge computing is discussed as a new processing method that can
compensate for the disadvantages of the central cloud structure [2]. The research
firm Gartner in the USA reported autonomous edges as one of the top 10 strategic
technologies announced in 2020, whereas IBM selected edge computing and lev-
eraging Kubernetes as methodologies to use for network evolution in 2020 [3, 4].
Edge computing, considered the core of the next-generation cloud, refers to a para-
digm that uses real-time data based on the needs of the surrounding environment
and users rather than using a traditional central server to process all data. This tech-
nology is based on computing devices in edge-located areas called micro-data cent-
ers, cloudlets, and fog that are adjacent to the user plane. Its advantages compared to
traditional clouds are low latency, traffic distribution, and protection of data privacy
[5, 6].

Research related to edge computing has been conducted from various perspec-
tives. Figure 1 shows the structure of an edge computing environment. A three-
layer (user plane, edge computing plane, and cloud computing plane) structure that

Fig. 1 Edge Server Environment

8595

1 3

GPU‑based embedded edge server configuration and offloading…

includes cloud, mobile edge computing (MEC), and IoT has been proposed [7]. In
addition, studies have been conducted on the proposed use of an edge computing
solution to configure services, contents, and functions in an area close to the end
user [8] including a hierarchical MEC structure composed of components termed
field, shallow, and deep cloudlets to increase service efficiency [9]. Regarding
the edge computing configuration problem in using transparent computing, a new
approach [10], Nebula, which is an edge computing platform configuration with
computation and storage interaction that supports grid and peer-to-peer systems, has
been proposed [11].

The planning management of edge computing, capacity planning that allows
resources for CPUs and GPUs to meet quality of service (QoS) requirements [12],
average server utilization, and latency of application deployment to MEC, has been
the subject of research. In addition, the relationship [13] and the efficacy of dynamic
computing web content provision for edge computing [14] have been studied.

Regarding resource management and the provisioning of edge computing, the
dynamic service provisioning of edge clouds via the computation of new service
load costs, limited node capacity, and the delivery process request costs on nodes
with limited resources has been reported on in terms of resource management [15].
Migration using the Markov decision process (MDP) is based on responses such as
user movement and network performance [16].

Furthermore, several studies have been conducted on various testbed types based
on previous research. These studies include an evaluation of edge-hosted contain-
ers [17] and three edge-cloud implementations of the containerized Platform as a
Service (PaaS) structure in a cluster utilizing Raspberry Pi, which is a single-board
computer [18–20]. A comparative study was conducted of the performance of
machine learning packages, including TensorFlow, Caffe2, MXNet, PyTorch, and
TensorFlow Lite, on an edge device [21]. However, because single boards, such as
the Raspberry Pi, have limitations in terms of hardware specifications for neural
network implementation, edge computing must be implemented on a single-board
computer (ARM core-based CPU) that includes a GPU (Nvidia GPU). Moreover,
to use the GPU resources of the cluster for containers, the specifications required by
the neural network service to monitor the GPU resources must be checked at each
edge node., The container environment for edge devices was not considered by these
techniques.

In this study, we propose an embedded edge server on a single board to process
simultaneously multiple deep learning models composed of a Kubernetes-based
container environment.

The contributions of this study are as follows: First, it enables independent envi-
ronment configuration and resource sharing for each neural network service. Con-
tainer-based deep learning applications support an independent operating environ-
ment at a high level; this solves the dependency problem of rapidly changing deep
learning libraries. At the lower level, the application can be easily deployed to and
managed for various users by sharing resources at the kernel level. Second, it sup-
ports scheduling to increase resource utilization for deep learning services. When a
deep learning service executes, it does so multiple times on the nodes in the cluster,
and the efficiency of resources is increased by optimizing their utilization using the

8596 J. Kim et al.

1 3

scheduling of the cluster system. Finally, an offloading method between the edge
and the central cloud is proposed according to the difference in the amount of com-
putation on the neural network. Depending on the state of the edge server, the com-
puting location where additional deep learning services are executed is offloaded
to the central cloud. Accordingly, it is possible to change the computing resources
used for additional requests dynamically and to determine the computing location of
the deep learning service by reconfirming the different delay times according to the
varying amounts of computation.

The remainder of this paper is organized as follows. In Sect. 2, the network for
the edge server and the container-based environment of the board, including the
GPU task, are described. Section 3 includes the structure of the implemented edge
server, the setting of GPU support in the container environment, the neural network
model used in the edge server, the offloading, and the scheduling method with nodes
in the cluster for deep learning. In Sect. 4, the detailed experimental results of the
proposed scheduling and offloading method on a single-board edge server with a
GPU are described. Finally, Sect. 5 presents the conclusion.

2 Background and motivation

2.1 Network environment change

In emerging 5G networks, software networking is a programmable approach that
makes extensive use of IT virtualization technologies, such as communication infra-
structure, functions, and applications. Therefore, edge computing is a core technol-
ogy and architecture concept that enables the evolution of 5G [22]. Changes in the
network are directly related to the performance of edge computing in terms of low
latency, speed, and structure. This emerging technology supports the stability of a
service; however, the stability is affected by networking problems at each node in a
cluster-type edge server. In a previous study, we implemented edge servers on vari-
ous boards to check for stability problems and latency at the user plane [23].

2.2 Container

A container is a virtualization method for running a separate virtual Linux system
(container) on Linux [24]. In the container, layers composed of independent file sys-
tems are connected as a single image; the layers use the union file system to store
the environment. Hardware resources are used separately for each container. Using
the saved image, we can run a containerized application. Figure 2 shows the steps
for building an image and the process of running a containerized application. In this
process, Linux container technology easily sets changes to the environment accord-
ing to the container runtime and is a method for implementing micro-services com-
posed of small units.

The advantages of using containers in edge servers are as follows: First, because
of server hardware limitations, a hypervisor program has a considerable size

8597

1 3

GPU‑based embedded edge server configuration and offloading…

constraint, whereas a container environment allows easy basic configuration of pro-
grams, such as light memory usage and quick starting. Second, flexible scaling is
efficient because resource management is handled at the OS kernel. Figure 3 shows
the container runtime interfaces (CRIs) based on the open container initiative (OCI),
which standardizes the runtime that supports the container environment.

There are a number of CRIs including CRI-O, Docker, and gVisor. Among these,
Docker is most widely used because it is the most mature. However, a CRI focuses
on managing the container configuration in a host environment. In a large-scale
cluster server configuration, efficient work management in terms of functionality is
lacking in CRIs. Therefore, a platform that provides additional container manage-
ment is required.

Fig. 2 Image Building and Containerization

Fig. 3 CRI Comparison [25]

8598 J. Kim et al.

1 3

2.3 Container orchestration

Containers are gradually becoming a base environment for DevOps, a way to unify
software development and operations [26]. Concurrently, container orchestration
contributes to managing hardware resources between each terminal by stably updat-
ing and distributing work in a large-scale distributed computing context, such as the
cloud. Therefore, the need for a container orchestration platform has increased.

Figure 4 shows the types of container orchestration. Container orchestration types
include the Docker swarm, Kubernetes, and Apache Mesos, with Kubernetes cur-
rently being the most used and systematically mature [27–29]. This is because of the
following reasons. First, Kubernetes can be constructed in a variety of environments,
unlike other platforms. Second, it has advantages regarding scheduling, deployment,
and managing containers based on user options. Third, it also has advantages regard-
ing scheduling service tasks in various ways and utilizing the resources applied to
these tasks [30]. Kubernetes is an application that runs on a node. It uses a set of
pods for deployment, and a job- and daemon-set for the update operation. In addi-
tion, Kubernetes can use separate virtual networks internally to support container-
specific environments and uses an API server that supports external access from the
master node to operate separate service applications according to client requests. At
this time, the internal network checks the pod connection according to each request

Fig. 4 Container Orchestration

8599

1 3

GPU‑based embedded edge server configuration and offloading…

through the operation of Kube-proxy and processes the connection of the pod using
a distribution algorithm.

2.4 GPU resource availability in containers

Edge computing is mainly used for preprocessing tasks in nearby computing areas
because of the difficulty of integrating each computing resource to the center cloud.
Furthermore, with the emergence of boards with GPU resources available in the IoT
area, such as Nvidia’s Jetson Board, the utilization of GPU resources in edge com-
puting is increasingly being considered. For example, Nvidia provides an inference
framework, such as the DeepStream SDK, that simplifies the development of video
analytics applications on Nvidia platforms by providing TensorRT [31].

Thus, because of GPU resources being utilized on edge servers, this framework
has an advantage over central processing units (CPUs) in artificial neural network
processing that mainly process via parallel computation and handle media data, such
as videos and photos, rather than raw data from sensors. While reducing traffic to
the central cloud, concurrently we must achieve rapid response and fast processing.
NVIDIA, a leading GPU developer, is releasing a runtime called Nvidia-docker to
GitHub to help manage Docker-based GPU resources and cope with the changes in
the container environment [32]. Development tools and neural network models for
AI on various platforms are being supported as container images through Nvidia-
GPU Cloud (NGC) [33].

3 Proposed work

In this study, we addressed research questions dealing with the configuration of an
edge cluster to enhance GPU resource utilization and allocate pods to proper nodes
for deep learning services. We configured a native clustering edge server in a wire-
less environment using Kubernetes, which supports container applications. We also
confirmed the implementation of the edge server for utilizing GPU resources, pod
scheduling, and offloading methods. First, we propose an embedded edge server
structure in a container environment for target applications.

3.1 Edge server structure

IoT data sources in each area of the edge server environment require improved hard-
ware performance to preprocess relatively large media data (pictures, voices, etc.),
and reliable transmission methods and data formats. In a previous study, we imple-
mented a transport stream socket using stored photograph data. This paper proposes
a structure that collects photograph data from a camera connected to an IoT device
and implements a format using GStreamer. It puts the data in a basic transmission
queue, connects to a stream socket, and transmits it.

The proposed edge server area includes high-performance processing using a
neural network rather than simple data preprocessing. It is responsible for storing

8600 J. Kim et al.

1 3

the resulting data and transmitting it to the cloud computing plane. Furthermore,
to determine the usefulness and usability of scaling, the operation is confirmed by
implementing a workload in which multiple containers are operated according to
additional client transmissions. Figure 5 shows the structure for realizing the pro-
posed edge server. It uses Docker as the CRI of all nodes and adds Kubernetes
to cluster and orchestrate each node for operating the GPU-enabled application
requested from the edge server.

3.2 Proposed new setting for neural network

3.2.1 New extended resource for GPU board

We proposed a new edge server for the implementation of a neural network service
in the edge server to utilize the GPU. For neural networks with higher computa-
tional requirements, computations are usually performed faster at the central cloud
computing layer. However, if the neural network is lightweight with no significant
accuracy difference in the user’s perception, the small edge server provides a latency
benefit by servicing the corresponding processes in a region closer to it. These edge
servers require GPU resources to ensure fast inference times. However, to utilize the
GPU in a typical container environment, it must be recognizable by mounting the
graphics driver using the Nvidia-Docker runtime [32]. However, the existing Kuber-
netes scheduler distributes to pods by monitoring only the edge server’s CPU and
RAM resources. An application running a neural network model requires a method
for identifying GPU resources and assigning a pod to an appropriate node. The desk-
top environment (× 86 chipset) uses a k8s device plug-in; however, it does not work
on the Jetson board (ARM64 chipset,) because support is lacking from the Nvidia

Fig. 5 Proposed Edge Network

8601

1 3

GPU‑based embedded edge server configuration and offloading…

Management Library (NVML). In addition, this plug-in is for virtualized GPU, and
it is difficult to determine the optimal resource efficiency when the actual GPU is
allocated to each node.

Therefore, we propose a new scheduling method to consider the maximum GPU
clock and add it as an extended resource together with CPU and RAM capacity. This
method will allocate pods to the appropriate nodes (Jetson board) and share GPU
resources between containers for deep learning applications. The process was imple-
mented using a device query, as shown in Fig. 6. In addition, on Jetson series boards
with different hardware specifications configured inside an edge server, the neural
network applications’ scalability can be increased while increasing work efficiency.

3.2.2 Neural network models for proposed edge server

To evaluate and verify the proposed edge server configuration for deep learning ser-
vices, we deployed a diverse range of neural networks for entirely different applica-
tions as follows:

1. Object detection using SSD-MobileNetv2 [34, 35]

• Based on 2D images

2. Driver behavior profiling using DeepConvRNN [36]

• Based on 1D scalar data (driver data, i.e., acceleration, braking, etc.)

The reason behind selecting an algorithm for the proposed work was to generate
a real-time environment scenario, where an image from the client’s camera would
require deep learning services (object detection, in this case) from worker nodes
under the proposed research configuration. Similarly, in the case of 1D scalar data,
we assume a connected car environment, where the sensor data from an in-vehicle
controller area network (CAN) bus would require services from the proposed edge
server configuration. In this regard, through deep learning services, the edge server
would detect the identity of the driver via driver behavior profiling.

Fig. 6 Device Query

8602 J. Kim et al.

1 3

Before deploying the selected deep learning algorithms in our proposed con-
figuration, all worker nodes (embedded hardware) were benchmarked to evaluate
resource utilization [44]. In addition, the computational complexity of several driver
profiling models in a container environment (without Kubernetes) was studied in
[45], wherein a lightweight model was proposed using a sparse learning technique
for a container environment. However, this study focuses on offloading deep learn-
ing services using the proposed configuration (pod allocation) in the Kubernetes
environment (edge computing). In this regard, the selected deep learning models are
explained briefly to describe the levels of complexity of the algorithms used in the
proposed work.

For object detection, a well-known deep learning algorithm named SSD-Mobile-
netv2, which consists of two models, a single-shot multi-box detector (SSD) [34]
and MobilNetv2 [35], is deployed. MobileNetv2 is used as a feature extractor and
achieves competitive accuracy with significantly fewer parameters (4.3 million). It
requires lower computational complexity when combined with an optimized version
of SSD [35], together named SSD-MobileNetv2. Recently, SSD-MobileNetv2 has
become available for the Jetson series (Xavier, TX1, TX2, and Nano) in the Jet-
son inference library, where it is highly optimized using TensorRT. However, in our
case, we deployed the frozen model available on the official TensorFlow GitHub
page. This model is pretrained on the COCO [37] dataset and can be modified eas-
ily using TensorFlow for development, as compared to that available in the Jetson
inference library. Further details of execution under the proposed configuration are
explained in Sect. 4.3.1.

Moreover, we implemented the algorithm proposed in [36] and modified it based
on the proposed configuration to a lightweight deep learning model for the container
environment under the umbrella of edge computing. It is based on a famous multi-
model network that comprises a convolutional layer followed by a recurrent neural
network. According to the container environment, we require a compact network
with fewer parameters and a memory image. In this regard, we further optimized
the network [36] by tuning parameters such as kernel size, kernel depth, the window
stride, batch size, and the number of hidden layers for LSTM; we also dropped the
last attention unit. We successfully reduced the size of the network by compromis-
ing a degree of accuracy. The final configuration contains the kernel size (1, 20) of
the first depthwise convolution layer with a depth multiplier of 20, followed by a
maxpool layer with a kernel size of (1, 53) with a stride value of (1, 2). The second
depthwise convolution layer has a kernel size of (10, 1) with a depth multiplier of
10. The architecture [36], explained in Fig. 7 exploits the Ocslab [38] driving dataset
for driver profiling and identification. In the Ocslab driving dataset, 51 driving fea-
tures were acquired using the in-vehicle CAN data bus. However, for driver identi-
fication, 15 shortlisted features that significantly corresponded to the personal skills
of a driver were used. The selected features were related to the engine (engine cool-
ant temperature, engine torque, friction torque, etc.), fuel (intake air pressure, fuel
consumption, etc.), and transmission (transmission oil temperature, wheel velocity,
torque convertor speed, etc.). These 15 properties were processed further with statis-
tical (mean, median, and standard deviation) features, creating 45-dimensional fea-
tures (15 × 3). We implemented the algorithm using TensorFlow 1.15, in a container

8603

1 3

GPU‑based embedded edge server configuration and offloading…

environment using a Docker image. Further details on the execution are provided in
Sect. 4.3.1. The reason for explaining Fig. 7 is that, unlike SSD-MobileNetv2, driver
profiling is not part of the Jetson inference library. For our scenario, we evaluated
different algorithms, selected this tool for driver profiling, and further modified it
according to the proposed configuration of the edge server deep learning services.

Figure 7 shows the operation of the application according to the data flow pro-
cess. In addition, the assumed neural network model that performs object detection
in the application uses a pretrained model that can obtain the SSD-MobileNetv2
model trained with the COCO dataset in the TensorFlow object detection API [39].

3.3 Scheduling and offloading for GPU resources

The structure is based on a container environment using Kubernetes, and the entire
process for the edge server to run the neural network as follows is illustrated in
Fig. 8.

Step 1 First, the device query application is executed with the preset settings of
all edge servers and the update of the extended resource for the GPU specification is
sent to the API server as an HTTP patch request and registered to all nodes.

Step 2 The client near the edge server requests the desired service from the API
server in a small local edge. The program that communicates each request of the cli-
ent uses the Kubernetes API that supports libraries for authentication to access the
cluster and internal cloud operation.

Step 3 After confirming the request, the edge server operates a data-receiving
server connected to the IoT data source. The transmitted data include a large media
file (e.g., picture, video formatting file, etc.) and scalar data (e.g., sensor data, single
value data, etc.) and are transmitted to an edge server using a stream socket from a
data source.

Step 4. The Kube-scheduler included in Kubernetes is then used for scheduling
the node assignment of the neural network-driven pod. Then, the newly added GPU

Fig. 7 DeepConvRNN Used in [36]

8604 J. Kim et al.

1 3

resource is set as a new filtering condition in the configuration file of the neural
network-driven pod and the pod is allocated.

Step 5. The assigned pod processes the external data through the neural network.
As the same communication is used, given that data retransmission affects the per-
formance of neural network pods that are processed, the edge server uses a separate
retransmission pod or monitoring pod inside the edge server via authentication from
the outside.

In Kubernetes, basic scheduling is divided into two stages: predicate scheduling
and priority scheduling. Predicate scheduling divides the executable and pending
pods by comparing the computing resources required for the pod with the computing
resources of all nodes. The priority scheduling process changes the priority accord-
ing to the pod task conditions and the resource limit, affinity, and user factor. The
proposed method is implemented by adding a user factor and affinity to intervene in
the priority scheduling process and setting a factor for the GPU’s performance:

CPUnodetotal = 80% ∗

N∑

i=1

CPUnoi
> CPUreq =

M∑

g=1

CPUpodg

MEMnodetotal = 80% ∗

N∑

i=1

MEMnoi
> MEMreq =

M∑

g=1

MEMpodg

S1
(
podg, Cluster

)
=

{
noi|

(
CPUnoi

∗ 80% − CPUpodg

)
≥ 0

}

S2
(
podg, Cluster

)
=

{
noi|

(
MEMnoi

∗ 80% −MEMpodg

)
≥ 0

}

Fig. 8 Application progress

8605

1 3

GPU‑based embedded edge server configuration and offloading…

We assume that the total amount of CPU and memory is CPUnodetotal and
MEMnodetotal , the node’s CPU usage and memory usage are CPUnoi

 and MEMnoi
, and

the CPU and memory requests to the pod for execution are CPUpodg
 and

MEMpodg
respectively . In addition, the total number of nodes is N, and the total num-

ber of pods is M. Equations (1) and (2) are conditional expressions that compare the
total resources required by all podg running against the entire cluster’s CPU/RAM.
The total available resources should be limited to the host’s required resources,
which is limited to 80%. Equations (3) and (4) define the predicate functions S1 and
 S2 to place podg on the noi node that provides sufficient CPU and memory resources.
Subsets S1 and S2 are the sets of nodes that can be obtained for each node resource
as a result; we select the collection of nodes S1 and S2 with sufficient resources for
pending pods requesting different resources from the CPU and MEM. Before the
utilization of various resources of the system reaches full load, the system through-
put increases concurrently with resource usage.

Next, the priority-scheduling process determines the priority between the
adjusted nodes by applying the user factor and resource limit that are additional pri-
ority factors. Through adjustment during this process, the scheduling of the cluster
server can be determined to suit the purpose. Equation (5) is a formula that deter-
mines the final priority value of a pod executed for a node. The priority function (Pi)
is a function determined for affinity, the resource limit, and user factor; it is calcu-
lated by multiplying the additional weights for each node and priority function. In
the equation, u denotes the number of priority functions to operate and noi denotes a
node for which the priority is set:

The method proposed for factoring uses the value of the GPU clocks and graphic
memory obtained from the device query; it does not depend on the presence/absence
of GPUs or the number of GPUs. This factor allows differences in performance to
be shown. Because the proposed factor can be used to represent the relative GPU
performance difference for all individual board nodes, basic scheduling based on the
distribution of pods can be operated appropriately for neural networks. Therefore,
the proposed factor is set to have a priority value of 0, indicating the most preferred
state for a node that is faster in inference. This factor affects the priority function of
the BalancedResourceAllocation method according to differences in the GPU graph-
ics memory allowances and operates in the priority function of the NodeAffinityPri-
ority method according to differences in GPU performance.

P
(
podg, nok

)
=

u∑

i=1

{
weight(i,k) ∗ Pi

(
nok

)}

8606 J. Kim et al.

1 3

One of the contributions of the proposed scheme is to introduce integral off-
loading to the central data center if the edge is not adaptable to a given neural
network service. The point to be considered for offloading is the total latency,
including the network latency and neural network processing time for each of
the central cloud and edge servers. Initially, in the existing “end–edge” structure,
offloading is determined between the computing device located in the IoT data
source area containing the data and the surrounding edge server’s devices. How-
ever, in the request for a neural network service, a comparison of offloading times
in the “edge–cloud” area is required when there are insufficient local computing
resources. The sum of the time (Tcenterup , Tedgeup) required for total data transmis-
sion in each area and the execution time (Tcenterup , Tedgeup) represented by comput-
ing device performance can be viewed as the total time required for processing in
each area. It is expressed by Eq. (6) and (7), respectively:

8607

1 3

GPU‑based embedded edge server configuration and offloading…

In this case, assuming that the neural network inference time at the edge includ-
ing the GPU does not occupy much of the total delay time compared to the network
delay time caused by the data transmission condition, the condition that requires off-
loading is as shown in Eq. 8:

As the difference due to the physical distance of the network is the main cause
of the delay time in the edge computing system, it can be confirmed that offload-
ing is necessary only when Tcenterup > Tedgeup is always satisfied and the edge server
accepts the neural network service at its maximum. Conversely, to satisfy the off-
loading condition under the assumption that the neural network inference time is
greater than the network delay time, the time for the neural network operation must
first be checked and reflected in offloading.

In the first case, if the edge server does not have enough computing resources
to perform the requested service, the requested service is kept on hold, resulting in
working time loss. Therefore, with a structure using integral offloading, the comput-
ing work is entrusted directly to the central cloud. This has the advantage of service
availability regardless of the neural network operating time. For the second case, the
trade-off must be found between the neural network execution time and the network
delay time that can be verified by the experimental results of integral offloading.

4 Experimental results

4.1 Experimental environment

The purpose of this experiment was to check the efficiency of the proposed provi-
sioning of edge server bandwidth and resources, such as CPU, memory, and GPU
for deep learning services. The experiments were conducted in the following order.

In the network performance experiment, we measured the bandwidth and server
delay of the client-edge server according to the network environment and data size.
In the GPU job allocation and scaling experiments, we measured each neural net-
work model’s inference time in the GPU container environment and confirmed the
number of operated pods and response times using the proposed pod allocations.

4.1.1 Hardware specification

Experiments were conducted to implement and check the scalability of GPU opera-
tions based on the previously proposed small-scale edge server. The specifications of
the hardware equipment as well as the clear formats for data used in the edge servers
are described. Each cluster node of the edge server at the center of implementation

Toffloading = Tcenterup + Tcenterexe

Tedge = Tedgeup + Tedgeexe

Tcenterup ≫ Tcenterexxe ∧ Tedgeup ≫ Tedgeexe

8608 J. Kim et al.

1 3

used Jetson boards from Nvidia with different hardware specifications to determine
the possibility of utilization according to the GPU’s specifications. Table 1 lists the
specifications. Minimization of the network overhead through wireless communi-
cation was effected via the AC9560 driver used as a back-ported communication
adapter for the board. The local network of the edge server was a local wireless net-
work; it was connected through an edge router that was used for environment setting
and managing the local network.

4.1.2 Software specification

Table 2 lists the versions of the software used for configuring the edge server.
During the experiment, the data used in the GPU work were transmitted from the
camera of the device mimicking an IoT data source, and the transmission data for-
mat was adjusted for operational reliability in object detection. To implement the
neural network within the edge server, graphics hardware and a model implemen-
tation IDE were required to utilize the GPU resources, but because the chipset
specifications of the Jetson Series are different from the general PC specifications
(Jetson series: ARM, Desktop: AMD64), some of the official container images

Table 1 Hardware specifications

Jetson series Hardware specifications

Device Jetson Nano Jetson TX2 Jetson Xavier

CPU 4-core ARM cortex-57 4-core ARM A57 8-core ARMv8.2
8 MB L2 + 4 MB L32 MB L2 +

HMP Dual Denver 2/2
 MB L2

RAM 4 GB LPDDR4 8 GB LPDDR4 16 GB LPDDR4
GPU 128-core Maxell 256-core Pascal 512-core Volta with

Tensor Core
Network module Intel AC9560 Intel AC9560 Intel AC9560, AGW

200

Table 2 Software and network
environment

Software specifications

OS/Kernel Linux Ubuntu 18.04, Tegra 4.9

Kubernetes Kubernetes ver 1.16 (kubeadm, kubectl kubelet)
Docker 18.09.7
Router 802.11ax Dual Band Wi-Fi 5 GHz

AX: 2 × 2 (Tx/Rx) 1024 QAM
160/80/40/20 MHz, Maximum 2400 Mbps

TensorFlow 1.15.0
OpenCV 3.4.6

8609

1 3

GPU‑based embedded edge server configuration and offloading…

supported by Nvidia-GPU Cloud (NGC) [32] may not work properly. For com-
patibility, therefore, an individual container environment was implemented as an
image file and used as a base image for the application running in the experiment.

4.2 Evaluation of network performance

As a preliminary experiment to check the configuration of the edge server, the
network speed was measured between the edge computing plane and the user
plane. To show the differences in the network environment, we tested two network
types as a control group. Network type 1 had a connection environment through
an Internet network, assuming a cloud computing connection. Network type 2 had
a connection environment through the user plane (local wireless network) on the
same router as an edge server. To check the speed and bandwidth, iPerf3 [40] was
used as the network measurement program. For all nodes in the proposed edge
server, Kubernetes service configuration, deployment and NodePort types of ser-
vice were added. This was done for iPerf3 to run as a server mode pod while the
pod was configured to be accessible to the internal cluster from the outside. The
test period for each device was 30 s, and throughout the test period, the maximum
bandwidth was measured at 1 s intervals for comparative evaluation. In addition,
in the same environment, we set the transmitted data to 5, 10, and 15 MB to check
the traffic usage according to the size difference.

As shown in Fig. 9 and Table 3, the response of the client connecting the origi-
nal complex network was obviously slower. These experimental results also show

Fig. 9 Bandwidth According to Two Different Network Types

8610 J. Kim et al.

1 3

that an object detection model at an edge server can be more efficient in terms of
bandwidth than a central cloud model serviced in the Internet environment.

4.3 Efficiency evaluation for GPU task‑based scheduling

The purpose of the second experiment was to demonstrate the efficiency of the pro-
posed scheduling of the GPU task application, using the extended resources of the
edge server and the offloading method, compared with the basic scheduling method.

The experiment was divided into two cases: 1) when the basic scheduling method
was used, and 2) when the scheduling method used the extended resource and addi-
tional affinity. The GPU job application was executed using two neural networks
(object detection and driver profiling) with different utilization data. The first was
the SSD-MobileNetv2 [35], a pretrained object detection neural network found on
the TensorFlow GitHub, where images are used. The second is a lightweight neural
network that uses the binary classifier DeepConvRNN, using small sensor values as
inputs.

As the setting for the external connection of the edge server, requests were dis-
tributed to each of the pods using the load balancer, a service component of Kuber-
netes. The load balancer is changed from the round-robin algorithm to the never-
queue algorithm; this increases the number of connected clients as much as possible
and was set to increase the number of connection pods. Furthermore, all boards used
in the experiment were released and verified using the jetson_clocks script imple-
mented inside the Jetson Board, for performance comparison.

4.3.1 Experimental result of basic scheduling method

First, in a basic pod allocation method, we check the availability of a neural network
service application that utilizes image data. As listed in Table 4, object detection
neural network-based pods can operate in standby mode on Nano, which is a board
with low specifications. However, the memory requirements for input data and out-
put data for driving a neural network are large; thus, the connection may be discon-
nected during the session operation for service.

To solve this discrepancy, the session option to limit the memory in a neu-
ral network application was added to the TensorFlow code, and the results are
summarized in Table 5. However, Table 5 shows that the connection was lost
because of the long wait caused by the Nano board using network time. Tables 4

Table 3 Bandwidth changes according to various data sizes

Network Network type2 (local) Network type1 (Internet)

Transmitted data size 5 MB 10 MB 15 MB 5 MB 10 MB 15 MB

Average bandwidth (Mbps) 30.25 34.29 37.43 11.94 12.21 13.46
Max 35.9 41.2 42.4 25.5 23.5 18.1
Min 23.2 20.4 29.6 5.74 6.31 10.1

8611

1 3

GPU‑based embedded edge server configuration and offloading…

Ta
bl

e
4

 E
xe

cu
tio

n
re

su
lts

 o
f t

he
 o

bj
ec

t d
et

ec
tio

n
ne

ur
al

 n
et

w
or

k

N
um

be
r o

f e
xe

cu
tin

g
ne

ur
al

 n
et

w
or

k(
po

d)
N

um
be

r o
f

re
qu

es
t c

lie
nt

s
X

av
ie

r
TX

2
N

an
o

N
eu

ra
l n

et
w

or
k

tim
e

(s
)

To
ta

l r
un

ni
ng

tim
e

(s
)

N
eu

ra
l n

et
w

or
k

tim
e

(s
)

To
ta

l r
un

ni
ng

tim
e

(s
)

N
eu

ra
l n

et
w

or
k

tim
e

(s
)

To
ta

l r
un

ni
ng

tim
e

(s
)

1
1

0.
11

41
0.

31
30

N
ot

 c
on

ne
ct

in
g

N
ot

 c
on

ne
ct

in
g

2
1

N
ot

 c
on

ne
ct

in
g

0.
30

48
0.

49
07

N
ot

 c
on

ne
ct

in
g

2
0.

11
42

0.
28

56
0.

29
95

0.
44

32
N

ot
 c

on
ne

ct
in

g
3

1
N

ot
 c

on
ne

ct
in

g
0.

30
36

0.
49

78
N

ot
 c

on
ne

ct
in

g
2

0.
26

00
0.

40
16

0.
30

07
0.

51
58

N
ot

 c
on

ne
ct

in
g

3
0.

11
22

0.
25

84
0.

29
97

0.
37

68
O

ut
 o

f m
em

or
y

/ P
od

 is
 o

n
TX

2

8612 J. Kim et al.

1 3

Ta
bl

e
5

 R
es

ul
ts

 o
f o

bj
ec

t d
et

ec
tio

n
ne

ur
al

 n
et

w
or

k
w

ith
 m

em
or

y
lim

it

N
um

be
r o

f e
xe

cu
t-

in
g

ne
ur

al
 n

et
w

or
k

(p
od

)

N
um

be
r o

f
re

qu
es

t c
lie

nt
s

X
av

ie
r

TX
2

N
an

o

N
eu

ra
l n

et
w

or
k

tim
e

(s
)

To
ta

l r
un

-
ni

ng
 ti

m
e

(s
)

N
eu

ra
l n

et
w

or
k

tim
e

(s
)

To
ta

l r
un

-
ni

ng
 ti

m
e

(s
)

N
eu

ra
l n

et
w

or
k

tim
e

(s
)

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

1
1

0.
11

29
0.

34
98

N
ot

 c
on

ne
ct

in
g

N
ot

 c
on

ne
ct

in
g

2
1

0.
11

47
0.

26
44

N
ot

 c
on

ne
ct

in
g

N
ot

 c
on

ne
ct

in
g

2
0.

11
20

0.
33

28
0.

30
02

0.
45

55
N

ot
 c

on
ne

ct
in

g
3

1
N

ot
 c

on
ne

ct
in

g
N

ot
 c

on
ne

ct
in

g
TL

S
ha

nd
sh

ak
in

g
fa

ile
d

2
N

ot
 c

on
ne

ct
in

g
0.

30
50

0.
66

62
TL

S
ha

nd
sh

ak
in

g
Fa

ile
d

3
0.

11
46

0.
27

15
0.

30
23

0.
44

92
Fr

ee
zi

ng

8613

1 3

GPU‑based embedded edge server configuration and offloading…

and 5 show the configuration problems of the neural network service appli-
cations that deal with media data (image and video). First, according to node
performance, a difference occurs in the processing time of the neural network.
Second, improper node allocation with nodes scheduled without considering the
GPU resources does not satisfy the pod’s operational performance.

The second experiment for the driver profiling model was to select the num-
ber of samples used for inference randomly and run the model, followed by a
continuous inference test for at least five minutes. Table 6 summarizes the
results of a driver profiling model in the general allocation method. Figure 10
shows the results of allocation according to pod scaling.

The results in Table 6 were obtained using the driver profiling model and
show that the edge server can be operated stably by running a lightweight neural
network for small-sized data. At this time, in the general method of allocation,
the generated and scheduled pods do not show a significant difference in prior-
ity; therefore, the balanced pod distribution results can be checked, as shown in
Fig. 10. However, when the number of pods is more than five, the pods assigned
to the Nano board are automatically pending within Kubernetes because of
insufficient memory for running the neural networks. To solve this problem, it
is necessary to determine the level of weighting and the actual degree of GPU
workload and allocate it to the node.

4.3.2 Experimental results of new scheduling

The proposed allocation method adds a GPU clock as an extended resource that
can be recognized by the Kubernetes system and executes the device query job
performed in each node before the pod allocation process. The device query
job uses the internal jetson_stats library that confirms the specifications. In the
experiment, values of 1377 (Xavier), 1300 (TX2), and 612 (Nano) were obtained
as the GPU specifications for each node. A stable driver profiling neural network
was used because more than one pod should be executed in one node. In addi-
tion, given the availability of each board identified in the previous experimental
results, the available GPU clock required in one pod setting was limited to 400.
As shown in Fig. 11, the results ensure pod scaling. Table 7 summarizes the per-
formance of the neural network on each node, and a standard deviation of 2.0 to
2.4% is confirmed. This means that the performance of each neural network was
not affected even if the number of pods in one node increased.

The weight of each node was set to a value of 70 in Xavier and 40 in TX,
which changed the priority. Subsequently, the new pod allocation order accord-
ing to the increase in the number of pods produced the result shown in Fig. 11.
As shown in Fig. 11, the pod preemption between TX2 and Xavier can be
checked under similar conditions and confirms that up to seven pods can be ser-
viced during the same processing period.

8614 J. Kim et al.

1 3

Ta
bl

e
6

 R
es

ul
ts

 o
f d

riv
er

 p
ro

fil
in

g
ne

ur
al

 n
et

w
or

k
w

ith
 b

as
ic

 sc
he

du
lin

g

N
um

be
r o

f p
od

s
X

av
ie

r
TX

2
N

an
o

Te
sti

ng
 a

cc
ur

ac
y

(%
)

Ru
nn

in
g

tim
e

(s
)

Te
sti

ng
 a

cc
ur

ac
y

(%
)

Ru
nn

in
g

tim
e

(s
)

Te
sti

ng
 a

cc
ur

ac
y

(%
)

Ru
nn

in
g

tim
e

(s
)

1
N

ot
 c

on
ne

ct
in

g
85

.9
6

0.
32

46
N

ot
 c

on
ne

ct
in

g
2

86
.4

3
0.

36
61

85
.8

8
0.

41
14

N
ot

 c
on

ne
ct

in
g

3
84

.3
3

0.
34

12
84

.4
7

0.
42

96
86

.9
3

0.
49

57

8615

1 3

GPU‑based embedded edge server configuration and offloading…

4.3.3 Experimental result of Integral offloading

The purpose of the experiment was to measure the delay between the edge server
and the central cloud when using integral offloading and compare it with previous

Fig. 10 Result of Pod Scaling Using Driver Profiling Neural Network

Fig. 11 Result of Scheduling using Driver Profiling with Extended Resource

8616 J. Kim et al.

1 3

Ta
bl

e
7

 N
eu

ra
l n

et
w

or
k

pe
rfo

rm
an

ce
 in

 P
od

s r
un

ni
ng

 o
n

ea
ch

 b
oa

rd

N
um

be
r o

f p
od

s f
or

ea

ch
 n

od
e

N
um

be
r o

f a
ll

po
ds

X
av

ie
r

TX
2

N
an

o
A

ve
ra

ge
(w

he
n

no
de

 h
yb

rid
)

Te
sti

ng
ac

cu
ra

cy
 (%

)
Ru

nn
in

g
tim

e
(s

)
Te

sti
ng

 a
cc

u-
ra

cy
 (%

)
Ru

nn
in

g
tim

e
(s

)
Te

sti
ng

ac
cu

ra
cy

 (%
)

Ru
nn

in
g

tim
e

(s
)

Ru
nn

in
g

tim
e

(s
)

1
3

88
.6

9
0.

37
44

81
.7

6
0.

43
33

86
.3

8
0.

53
45

0.
44

74
2

4
86

.5
9

0.
40

16
83

.8
5

0.
37

09
O

ut
 o

f m
em

or
y

0.
34

16
85

.4
6

0.
28

45
82

.8
5

0.
30

92
3

6
88

.0
3

0.
28

71
86

.3
3

0.
37

09
O

ut
 o

f m
em

or
y

0.
34

66
81

.3
0

0.
31

78
87

.2
6

0.
34

54
87

.1
2

0.
34

13
86

.1
9

0.
41

73
A

ve
ra

ge
(o

ne
 ty

pe
 n

od
es

)
86

.2
0

0.
33

45
84

.7
1

0.
37

45
86

.3
8

0.
53

45

8617

1 3

GPU‑based embedded edge server configuration and offloading…

studies [42–43] dealing with other deep learning services that applied edge com-
puting structures. In the experiment, before the implemented WebSocket receiving
server responded to the requested deep learning service, nodes added or excluded
from the entire edge server’s cluster configuration were checked, and the total capac-
ity was calculated by monitoring the hardware performance of the nodes. Subse-
quently, the offloading condition was determined according to the neural network
service and the edge server’s availability. Then, deep learning was performed by
selecting a computational domain. As a deep learning model, we used an image rec-
ognition model [35] to confirm the application of other deep learning models in the
edge server. The results of this experiment are shown in Table 8, along with the
image detection neural network [39] results used in the previous experiment. We
measured the end-to-end time and the inference time and averaged them when mul-
tiple container applications were executed in the edge server.

In Table 8, the end-to-end time is the time until a response is received from the
client and represents the performance of the proposed structure. In addition, infer-
ence time is added to check the difference in network delay separately from the per-
formance of each model because the calculation area executed through offloading
is different. First, in the paper on Deep Decision [41], the resulting final time in
each computational domain is shown through the YOLO model using image data.
This study uses the same offloading as the proposed server, but because the tested
center cloud covers a larger network distance than the local server, constructing an
extended structure of the proposed server can be seen as the result of the experiment.
The paper referenced for the comparison of neural network inference time was Edg-
eEye [42]. This paper presented API framework in the edge area and implemented
a deployable deep-learning application. The model to be compared was DetectNet
and a direct comparison with the image recognition model is difficult because the
optimization through tensor RT is in progress. However, compared to the driver
profiling model, which requires less computation, it has a similar inference time.
Finally, in paper [43], the method was implemented on a cloudlet-based VM rather
than a container-based environment, and the deep learning model was run on mobile
devices and cloudlets using snapshot data of the Virtual Machine (VM) for partial
offloading. This method is numerically similar to that of the proposed server. How-
ever, the method in this paper is implemented with partial offloading, which has dis-
advantages in terms of the configuration of multiple deep learning applications com-
pared to the proposed edge server.

5 Conclusion

In this paper, we propose the configuration of a Kubernetes-based edge server: 1.
the configuration of a Kubernetes-based edge server, 2. the identification of the
network environment, 3. the implementation of a neural network model that can
be configured for neural network applications, 4. pod allocation using affinity, and
5. a new extended resource method for improving the efficiency of GPU nodes.
The proposed embedded edge server is the basis for providing services with low

8618 J. Kim et al.

1 3

Ta
bl

e
8

 O
ffl

oa
di

ng
 re

su
lts

 a
nd

 c
om

pa
ris

on
 w

ith
 o

th
er

 p
ap

er
s

St
ru

ct
ur

e
O

ffl
oa

di
ng

N
eu

ra
l n

et
w

or
k

ty
pe

C
om

pu
tin

g
la

ye
r

En
d-

to
-e

nd
 ti

m
e

(s
ec

)
In

fe
re

nc
e

tim
e

(s
ec

)

Pr
op

os
ed

 c
on

ta
in

er
-b

as
ed

 e
dg

e
se

rv
er

N
on

e
(o

nl
y

ed
ge

 se
rv

er
)

Im
ag

e
de

te
ct

io
n

(s
sd

-m
ob

ile
ne

t-v
2

[3
9]

)
Ed

ge
(X

av
ie

r)

0.
30

5
(T

X
2)

 0
.5

24

(X
av

ie
r)

0.

11
3

(T
X

2)
 0

.3
02

5
In

te
gr

al
 o

ffl
oa

di
ng

D
riv

er
 p

ro
fil

in
g

Ed
ge

0.
28

9
0.

02
07

C
en

te
r C

lo
ud

0.
43

5
0.

02
29

Im
ag

e
re

co
gn

iti
on

 (m
ob

ile
ne

t-v
2

[3
5]

)
Ed

ge
0.

32
3

0.
11

3
C

en
te

r C
lo

ud
0.

45
3

0.
05

54
D

ee
p

de
ci

si
on

 [4
1]

In
te

gr
al

 o
ffl

oa
di

ng
Y

O
LO

Fr
on

t-e
nd

 d
ev

ic
e

2.
0

N
/A

Se
rv

er
0.

25
 ~

 0.
3

N
/A

Ed
ge

Ey
e

[4
2]

In
te

gr
al

 o
ffl

oa
di

ng
D

et
ec

tN
et

(o
pt

im
iz

ed
)

Se
rv

er
N

/A
0.

01
8

Sn
ap

sh
ot

-b
as

ed
 o

ffl
oa

di
ng

 [4
3]

Pa
rti

al
 o

ffl
oa

di
ng

G
oo

gl
eN

et
M

ob
ile

 +
 cl

ou
dl

et
0.

6
N

/A
A

ge
N

et
0.

34
G

en
de

rN
et

0.
34

8619

1 3

GPU‑based embedded edge server configuration and offloading…

latency to nearby clients and is composed of Kubernetes cluster servers using
containers to compose complex applications.

As a result of our first experiment, the service advantage of the edge server
was confirmed because of the three times difference in transmission bandwidth
between the edge local area and the Internet network.

The second set of experiments was conducted on two service applications
using a newly constructed neural network model on an edge network. By compar-
ing the two neural networks, the edge server operation for object detection con-
firmed a memory limitation problem, which is a limitation of the embedded edge
server model, and showed that the lightweight neural network model—the driver
profiling model—is suitable for operation on the edge server.

Third, when scaling a pod, we experimented by increasing the number of pods
that can be operated, and with the efficient allocation of nodes using the proposed
method to solve the problem of resource allocation imbalances caused by using
embedded board GPUs. The proposed method sets the number of internal pods
available on each board, which is confirmed through additional extended resource
and affinity settings for the GPU inside the node.

Finally, it was possible to reduce the overhead of moving the node because
of the additional impossibility of running the pod. Moreover, by adding offload-
ing, we checked the end-to-end time and the inference time of the neural network
model being executed, compared the structure with those in other papers, and
comparatively analyzed the merits.

Acknowledgments This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(2018R1D1A1B07042602) and in part by the Institute for Information & Communications Technology
Promotion (IITP) grant funded by the Korean government (MSIT) (No. 2019-0-00064, Intelligent Mobile
Edge Cloud Solution for Connected Car, No. 2019-0-00240, Deep Partition-and-Merge: Merging and
Splitting Deep Neural Networks on Smart Embedded Devices for Real Time Inference).

References

 1. Duan Q (2017) Cloud service performance evaluation: status, challenges, and opportunities—a
survey from the system modeling perspective. Digital Commun Networks 3(2):101–111

 2. Shirazi SN, Gouglidis A, Farshad A, Hutchison D (2017) The extended cloud: Review and analy-
sis of mobile edge computing and fog from a security and resilience perspective. IEEE J Sel
Areas Commun 35(11):2586–2595

 3. Burke B, Cearley D, Jones N, Smith D, Chandrasekaran A, Lu CK, Panetta K (2019) Gartner top
10 strategic technology trends for 2020-Smarter with Gartner

 4. Contributor IBM (2019, December 13) IBM BrandVoice: IBM Tech Trends To Watch In 2020 ...
And Beyond. Retrieved from https ://www.forbe s.com/sites /ibm/2019/12/09/ibm-tech-trend s-to-
watch -in-2020--and-beyon d/#280a1 1974c 1c

 5. Shi W, Pallis G, Xu Z (2019) Edge computing [Scanning the Issue]. Proc IEEE 107(8):1474–1481
 6. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Jue JP (2019) All one

needs to know about fog computing and related edge computing paradigms: a complete survey. J
Syst Architec 98:289–330

 7. Lyu X, Tian H, Jiang L, Vinel A, Maharjan S, Gjessing S, Zhang Y (2018) Selective offloading
in mobile edge computing for the green internet of things. IEEE Network 32(1):54–60

https://www.forbes.com/sites/ibm/2019/12/09/ibm-tech-trends-to-watch-in-2020--and-beyond/#280a11974c1c
https://www.forbes.com/sites/ibm/2019/12/09/ibm-tech-trends-to-watch-in-2020--and-beyond/#280a11974c1c

8620 J. Kim et al.

1 3

 8. Markakis EK, Karras K, Sideris A, Alexiou G, & Pallis E (2017) Computing, caching, and commu-
nication at the edge: The cornerstone for building a versatile 5G ecosystem. In: IEEE Communica-
tions Magazine, 55(11), 152–157.]

 9. Kiani A, Ansari N (2017) Toward hierarchical mobile edge computing: an auction-based profit max-
imization approach. IEEE Internet Things J 4(6):2082–2091

 10. Ren J, Guo H, Xu C, Zhang Y (2017) Serving at the edge: a scalable IoT architecture based on trans-
parent computing. IEEE Network 31(5):96–105

 11. Ryden M, Oh K, Chandra A & Weissman J (2014, March) Nebula: Distributed edge cloud for data
intensive computing. In: 2014 IEEE International Conference on Cloud Engineering (pp. 57–66).
IEEE

 12. Noreikis, M., Xiao, Y., & Ylä-Jaäiski, A. (2017, May). QoS-oriented capacity planning for edge
computing. In: 2017 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE

 13. Malandrino F, Kirkpatrick S & Chiasserini CF (2016, December) How close to the edge? delay/uti-
lization trends in mec. In: Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking
(pp. 37–42)

 14. Kamiyama N, Nakano Y, Shiomoto K, Hasegawa G, Murata M & Miyahara H (2016, December)
Analyzing effect of edge computing on reduction of web response time. In: 2016 IEEE Global Com-
munications Conference (GLOBECOM) (pp. 1–6). IEEE

 15. Hou IH, Zhao T, Wang S & Chan K (2016, July) Asymptotically optimal algorithm for online recon-
figuration of edge-clouds. In: Proceedings of the 17th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (pp. 291–300)

 16. Zhang W, Hu Y, Zhang Y & Raychaudhuri D (2016, December) Segue: Quality of service aware
edge cloud service migration. In: 2016 IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom) (pp. 344–351). IEEE

 17. Ismail BI, Goortani EM, Ab Karim MB, Tat WM, Setapa S, Luke JY & Hoe OH 2015, August)
Evaluation of docker as edge computing platform. In: 2015 IEEE Conference on Open Systems
(ICOS) (pp. 130–135). IEEE

 18. Pahl C, Helmer S, Miori L, Sanin J & Lee B (2016, August) A container-based edge cloud paas
architecture based on raspberry pi clusters. In: 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW) (pp. 117–124). IEEE

 19. Helmer S, Pahl C, Sanin J, Miori L, Brocanelli S, Cardano F & Sharear AM (2016, November)
Bringing the cloud to rural and remote areas via cloudlets. In: Proceedings of the 7th Annual Sym-
posium on Computing for Development (pp. 1–10)

 20. Elkhatib Y, Porter B, Ribeiro HB, Zhani MF, Qadir J, Rivière E (2017) On using micro-clouds to
deliver the fog. IEEE Internet Comput 21(2):8–15

 21. Zhang X, Wang Y & Shi W (2018) pcamp: Performance comparison of machine learning packages
on the edges. In: {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18)

 22. Pahl C & Lee B (2015, August) Containers and clusters for edge cloud architectures—a technology
review. In: 2015 3rd international conference on future internet of things and cloud (pp. 379–386).
IEEE

 23. Kim JH, Tulkinbekov K, Kim DH (2019) Benchmarking Kubernetes based Edge Server in Embed-
ded Environment (pp. 49–52). In: The 5th International Conference on Next Generation Computing
2019 Proceeding

 24. Kubernetes Runtimes (2018, November 18) Retrieved April 20, 2020, from https ://docs.googl
e.com/sprea dshee ts/d/17ak_fVtWN UwMMJ Npo7d NkoR8 KK1ez TZVvh 6v_tBcP7 Y/edit#gid=0

 25. Bernstein D (2014) Containers and cloud: from lxc to docker to kubernetes. IEEE Cloud Comp
1(3):81–84

 26. Kang H, Le M & Tao S (2016, April) Container and microservice driven design for cloud infra-
structure devops. In: 2016 IEEE International Conference on Cloud Engineering (IC2E) (pp. 202–
211). IEEE

 27. Docker (2020, March 31) docker/classicswarm. Retrieved from https ://githu b.com/docke r/swarm /
 28. Production-Grade Container Orchestration (n.d.). Retrieved from https ://kuber netes .io/
 29. Hindman B, Konwinski A., Zaharia M, Ghodsi A., Joseph AD, Katz RH & Stoica I (2011, March)

Mesos: A platform for fine-grained resource sharing in the data center. In: NSDI (Vol. 11, No. 2011,
pp. 22–22)

 30. Hoque S, de Brito MS, Willner A, Keil O & Magedanz T (2017, July) Towards container orchestra-
tion in fog computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applica-
tions Conference (COMPSAC) (Vol. 2, pp. 294–299). IEEE

https://docs.google.com/spreadsheets/d/17ak_fVtWNUwMMJNpo7dNkoR8KK1ezTZVvh6v_tBcP7Y/edit#gid=0
https://docs.google.com/spreadsheets/d/17ak_fVtWNUwMMJNpo7dNkoR8KK1ezTZVvh6v_tBcP7Y/edit#gid=0
https://github.com/docker/swarm/
https://kubernetes.io/

8621

1 3

GPU‑based embedded edge server configuration and offloading…

 31. NVIDIA DeepStream SDK (2020, April 25) Retrieved April 27, 2020, from https ://devel oper.nvidi
a.com/deeps tream -sdkNv idia. (2020, February 26). NVIDIA/nvidia-docker. Retrieved from https ://
githu b.com/NVIDI A/nvidi a-docke r

 32. Nvidia (2020, February 26) NVIDIA/nvidia-docker. Retrieved from https ://githu b.com/NVIDI A/
nvidi a-docke r

 33. GPU-Accelerated Innovation with NGC (n.d.). Retrieved from https ://www.nvidi a.com/en-us/gpu-
cloud /

 34. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, Octo-
ber). Ssd: Single shot multibox detector. In: European conference on computer vision (pp. 21–37).
Springer, Cham

 35. Sandler M, Howard A., Zhu M, Zhmoginov A & Chen LC (2018) Mobilenetv2: Inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern rec-
ognition (pp. 4510–4520)

 36. Zhang J, Wu Z, Li F, Xie C, Ren T, Chen J, Liu L (2019) A deep learning framework for driving
behavior identification on in-vehicle CAN-BUS sensor data. Sensors 19(6):1356

 37. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D & Zitnick CL (2014, September)
Microsoft coco: Common objects in context. In: European conference on computer vision (pp. 740–
755). Springer, Cham

 38. Kwak BI, Woo J & Kim HK (2016, December) Know your master: Driver profiling-based anti-theft
method. In: 2016 14th Annual Conference on Privacy, Security and Trust (PST) (pp. 211–218).
IEEE

 39. Tensorflow (2020, April 13). tensorflow/models. Retrieved from https ://githu b.com/tenso rflow /
model s/tree/maste r/resea rch/objec t_detec tion

 40. Mortimer M. (2018) iperf3 documentation
 41. Ran X, Chen H, Zhu X, Liu Z & Chen J (2018, April) Deepdecision: A mobile deep learning frame-

work for edge video analytics. In: IEEE INFOCOM 2018-IEEE Conference on Computer Commu-
nications (pp. 1421–1429). IEEE

 42. Liu P, Qi B & Banerjee S (2018, June) Edgeeye: An edge service framework for real-time intelligent
video analytics. In: Proceedings of the 1st International Workshop on Edge Systems, Analytics and
Networking (pp. 1–6)

 43. Jeong HJ, Jeong I, Lee HJ & Moon SM (2018, July) Computation offloading for machine learning
web apps in the edge server environment. In: 2018 IEEE 38th International Conference on Distrib-
uted Computing Systems (ICDCS) (pp. 1492–1499). IEEE

 44. Ullah S and Kim DH 2020 Benchmarking Jetson Platform for 3D Point-Cloud and Hyper-Spectral
Image Classification. In: 2020 IEEE International Conference on Big Data and Smart Computing
(BigComp), pp. 477–482. IEEE

 45. Ullah S, Kim D-H (2020) Lightweight driver behavior identification model with sparse learning on
In-Vehicle CAN-BUS sensor data. Sensors 20(18):5030

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://developer.nvidia.com/deepstream-sdkNvidia
https://developer.nvidia.com/deepstream-sdkNvidia
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://www.nvidia.com/en-us/gpu-cloud/
https://www.nvidia.com/en-us/gpu-cloud/
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection

	GPU-based embedded edge server configuration and offloading for a neural network service
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Network environment change
	2.2 Container
	2.3 Container orchestration
	2.4 GPU resource availability in containers

	3 Proposed work
	3.1 Edge server structure
	3.2 Proposed new setting for neural network
	3.2.1 New extended resource for GPU board
	3.2.2 Neural network models for proposed edge server

	3.3 Scheduling and offloading for GPU resources

	4 Experimental results
	4.1 Experimental environment
	4.1.1 Hardware specification
	4.1.2 Software specification

	4.2 Evaluation of network performance
	4.3 Efficiency evaluation for GPU task-based scheduling
	4.3.1 Experimental result of basic scheduling method
	4.3.2 Experimental results of new scheduling
	4.3.3 Experimental result of Integral offloading

	5 Conclusion
	Acknowledgments
	References

