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Abstract
The goal of recommender systems is to identify the items appealing to a target user 
by analyzing her/his past preferences. Collaborative filtering is one of the most 
popular recommendation methods that use the similarity between users’ past behav-
iors such as explicit user ratings (i.e., multi-class setting) or implicit click logs (i.e., 
one-class setting). Graph-theoretic one-class collaborative filtering (gOCCF) has 
been successful in dealing with sparse datasets in one-class settings (e.g., clicked 
or bookmarked). In this paper, we point out the problem that gOCCF requires long 
processing time compared to existing OCCF methods. To overcome the limitation 
of the original gOCCF, we propose a new gOCCF approach based on signed ran-
dom walk with restart (SRWR). Using SRWR, the proposed approach accurately 
and efficiently captures users’ preferences by analyzing not only the positive prefer-
ences from rated items but also the negative preferences from uninteresting items. 
We also perform an in-depth analysis to further understand the effect of employing 
uninteresting items in OCCF. Toward this end, we employ the following well-known 
graph properties: (1) effective diameter, (2) number of reachable pairs, (3) number 
of nodes in the largest connected component, (4) clustering coefficient, (5) singular 
values, and (6) signed butterfly. From this comprehensive analysis, we demonstrate 
that signed graphs with uninteresting items have properties similar to real-life signed 
graphs. Lastly, through extensive experiments using real-life datasets, we verify that 
the proposed approach improves the accuracy and decreases the processing time of 
the original gOCCF.
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1  Introduction

The goal of recommender systems is to identify items appealing to a target user 
by analyzing their past preferences [33]. Typical examples of items to be recom-
mended are movies [22, 24], music [38, 39], and TV shows [7]. The collaborative 
filtering (CF) [35] is one of the most popular techniques in recommender systems. 
CF exploits the past behavior of a user such as explicit feedback represented by their 
ratings (i.e., a multi-class setting) and implicit feedback represented by his/her clicks 
(i.e., a one-class setting) to recommend the most appealing top-N items to them [35]. 
Compared to the multi-class setting, the one-class setting has greater availability, 
thus facing wider applications. To support this type of one-class setting, one-class 
collaborative filtering (OCCF) methods have been proposed [30, 32, 40].

In our recent work [23], we pointed out the problem that existing OCCF meth-
ods tend to become less effective when dealing with sparse datasets. To address this 
challenge, we proposed a graph-theoretic OCCF approach named as gOCCF that 
exploits not only the rated items but also the uninteresting items [15, 21] inferred 
from unrated items. To determine a right number of uninteresting items, it consid-
ers the degree of interestingness on unrated items, the graph shattering theory [1], 
and the property of information propagation. gOCCF has two options that can repre-
sent the positive/negative relationships between users and rated/uninteresting items: 
a single signed graph and two separate graphs having positive and negative links, 
respectively. It comes up with top-N recommendations based on two well-known 
graph analysis techniques: random walk with restart (RWR) [9] and belief propaga-
tion (BP) [16].

Despite the success of the original gOCCF in the sparse one-class setting, we 
observe that the following two challenges in gOCCF. First, the original gOCCF 
finds the uninteresting items of all users and also analyzes the relationships between 
users and uninteresting items along with those between users and rated items. This 
requires longer processing times than other OCCF methods [5, 30, 32, 40] that 
exploit only the rated items. Second, SignedBP [16], which is the best performer 
among the three variants of the original gOCCF, employs an extension of BP to 
analyze a signed graph. We note that BP has higher model complexity than that of 
RWR.

In this paper, we propose a graph-theoretic OCCF approach that aims to improve 
the accuracy and the processing time of the original gOCCF.1 Toward the two goals, 
we employ signed random walk with restart (SRWR) [19]. SRWR is a technique that 
was proposed recently to solve a node ranking problem in a signed graph: It extends 
the original RWR [9] to account for link signs (i.e., positive and negative), employ-
ing a signed surfer to provide more accurate node rankings [19]. In this sense, 
SRWR is suitable to analyze both positive preferences from rated items and negative 

1  The initial idea of this paper was introduced with some preliminary results of evaluation at IEEE Big-
Comp 2020 as a short paper of four pages (i.e., conference version) [25]. This paper is its extended ver-
sion written for the archival purpose in a journal.
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preferences from uninteresting items. In addition, RWR-based models are known to 
have lower model complexity than BP-based models.

We perform an in-depth analysis to better understand the effect of employing the 
uninteresting items in OCCF. First, we compare the topological properties of posi-
tive graphs (i.e., relationships between users and their rated items) with those of 
negative graphs (i.e., relationships between users and their uninteresting items). To 
do this, we employ five well-known graph properties [1, 18, 20]: (1) effective diam-
eter, (2) number of reachable pairs, (3) number of nodes in the largest connected 
component, (4) clustering coefficient, and (5) singular values. Through the compari-
sons, we confirm that positive and negative graphs are similar to each other for most 
of these properties.

Second, we employ the signed butterfly [8] to analyze the structure of a signed 
graph modeled with positive/negative relationships. The signed butterfly [8] is a 
concept proposed to utilize the balance theory [4, 14, 26], which was originally used 
to explain the social phenomena of a link structure in a signed unipartite graph, in 
a signed bipartite graph. With this concept, we show that the structure of signed 
graphs modeled by our approach is similar to that of real-life signed graphs.

Finally, we conduct extensive experiments using real-life datasets to verify the 
effectiveness and efficiency of our proposed approach. The experimental results 
show that the proposed approach successfully achieves the above two goals, thereby 
improving the original gOCCF. Specifically, in the MovieLens 100K dataset, the 
proposed approach improves the accuracy (in terms of NDCG [17]) of gOCCF by 
up to 26.87% and reduces the processing time of gOCCF by up to 8.5 times.

Our contributions are summarized as follows:

–	 We point out the limitations in the performance aspect of the original gOCCF 
that utilizes the users’ rated and uninteresting items together.

–	 We propose a novel SRWR-based gOCCF that can analyze the rated and uninter-
esting items of users efficiently.

–	 We perform an in-depth analysis on the relationships between users and rated/
uninteresting items based on the graph theory.

–	 Via extensive experiments using five real-life datasets, we demonstrate that our 
proposed approach significantly improves both the accuracy and performance of 
the original gOCCF.

The rest of this paper is organized as follows: Section 2 reviews the existing OCCF 
methods. Section 3 presents the proposed approach in detail. Section 4 shows the 
results of in-depth analysis on signed graphs having uninteresting items. Section 5 
validates the effectiveness of the proposed approach through extensive experiments. 
Finally, Section 6 summarizes and concludes the paper.
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2 � Related work

In this section, we briefly review the existing OCCF methods. The traditional OCCF 
methods have mainly focused on matrix factorization (MF) techniques. They can be 
classified into the following two categories, according to the way how they learn users’ 
preferences [31]: the point-wise and pair-wise approaches. The point-wise approach 
aims at minimizing the errors (e.g., root mean square errors) between the real and pre-
dicted ratings in predicting the absolute ratings of items given by each user. Typical 
examples are WRMF [30], eALS [13], and NeuMF [12]. The pair-wise approach aims 
to maximize the relative preference difference between pairs of the rated and unrated 
items for each user. Typical examples are BPRMF [32], GBPR [31], and NPR [28].

Recently, various graph-based OCCF methods have been proposed to directly learn 
collaborative signals of user–item interactions [3, 37]. Among them, neural graph col-
laborative filtering (NGCF) [37] provides recommendations by analyzing a bipartite 
graph modeled on the relationship between users and rated items based on graph con-
volutional network (GCN) [10]. Encouraged by the success of NGCF, many research-
ers have attempted to exploit GCN for OCCF in recommendation [6, 11, 36].

However, the existing OCCF methods tend to become less effective in dealing 
with sparse datasets, which are typical in practice. To overcome this problem, our 
prior work [23] proposed a graph-based OCCF method, named as gOCCF, that 
utilizes the relationships between users and uninteresting items as well as those 
between users and rated items. As mentioned in Section  1, however, the original 
gOCCF requires a long processing time compared to existing OCCF methods.

Fig. 1   Overview of the proposed approach
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3 � Proposed approach

In this section, we aim at designing a new graph-based OCCF approach that requires 
a smaller processing time without sacrificing the accuracy of the original gOCCF. 
As shown in Fig. 1, the proposed approach is composed of the following four steps: 
(1) predicting the degree of interestingness on unrated items; (2) determining the 
number of uninteresting items; (3) modeling the relationships between users and 
rated/uninteresting items; and (4) performing top-N recommendation by employing 
SRWR.

3.1 � Problem definition

We first formulate the top-N recommendation problem as follows. Let u ∈ U and 
i ∈ I  denote a user and an item, respectively, where U and I  denote the sets of all 
users and all items, respectively. Additionally, Iu denotes a set of items rated by user 
u. For each user u, the goal is to recommend the top-N items that are most likely to 
be preferred by u among her unrated items (i.e., I ⧵ Iu).

3.2 � Overall procedure

Step 1: Predicting the degree of interestingness. We first predict the degree of 
interestingness on every unrated item for a user by referring to his/her rated items 
only. Toward this end, we can exploit any existing OCCF methods [5, 30, 32, 40]; 
in this paper, we employ a popular OCCF method, weighted regularized matrix fac-
torization (WRMF) [30], by following [15, 23]. WRMF represents rated and unrated 
items as positive (i.e., 1) and negative (i.e., 0) preferences, respectively, in a rating 
matrix E. It assigns different weights to those preferences for matrix factorization by 
quantifying their relative confidence. Then, it factorizes E into two low-rank matri-
ces X and Y, each of which represents the features of users or items as latent fac-
tors. This matrix factorization employs the weight alternating least square(wALS) 
technique [34], which reflects the weights assigned to preferences as their relative 
contributions.

Specifically, wALS first assigns random values to elements in the features of the 
features of items Y and updates elements in the features of users X as in (Eq. 1) by 
optimizing the loss function:

where u indicates a user, C̃u(⋅) is a diagonal matrix with the elements of Cu(⋅) on the 
diagonal, and I is an identity matrix. After that, wALS updates elements in Y while 
fixing X as in (Eq. 2):

(1)Xu(⋅) = Eu(⋅)C̃u(⋅)Y

{
YTC̃u(⋅)Y + �

(
∑

s

cu,s

)
I

}−1

,
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where s indicates a item. Finally, it predicts a user’s preference on an unrated item of 
hers by taking the inner product of two latent factors of the user and the item.

Step 2: Determining the number of uninteresting items. The goal of STEP 2 
is to determine a right number of uninteresting items based on graph properties 
without a parameter � , unlike zero injection [15] that depends on � . Based on the 
degree of interestingness computed by WRMF, we can consider unrated items 
that have a low degree of interestingness as uninteresting items. Note, however, 
that it is a very time-consuming task to find a right number of uninteresting items 
that provides the best accuracy in recommendation. For example, in the Mov-
ieLens 100K, we need to determine uninteresting items from 1.5M unrated items 
of users (i.e., user–item pairs).

Following [23], we decide this number by employing the following two 
graph-theoretic tools: (1) graph shattering theory [1], which introduces a shat-
tering point at which the connectivity of a graph becomes seriously collapsed 
when links are continuously removed in a random way; and (2) PageRank [29] 
that is known to best characterize the aspect of information propagation. By ana-
lyzing datasets with the above tools, as described in [23], we demonstrated that 
setting the number of uninteresting items as equal to that of rated items helps to 
get topological properties most similar to those of a given dataset. Furthermore, 
we showed that this setting provides the highest accuracy in terms of recommen-
dation. Therefore, we determine that there is the same number of uninteresting 
items as rated items in a rating matrix.

Step 3: Modeling the relationships between users and items. The goal of STEP 
3 is to analyze both the positive and negative preferences of users, unlike existing 
OCCF methods [12, 13, 28, 30–32] that only analyze the positive preferences. Note 
that we can convert the original dataset in one-class setting to one in the binary-class 
setting, which has both positive preferences from rated items and negative prefer-
ences from uninteresting items. In order to model such binary-class information in 
graphs, we can consider the following two candidates [23]: (1) two separate graphs 
modeled by independently considering positive and negative links and (2) a sin-
gle signed graph modeled by taking both positive and negative links together into 
account.

We can capture more accurate users’ preferences by combining two kinds of rela-
tionships: one with users and his/her rated items (i.e., positive links) and the other 
with users and his/her uninteresting items (i.e., negative links). The first candidate 
above exploits the information provided by two separate graphs independently. In 
this paper, we model the binary-class information in a single signed graph. In the 
signed graph, the nodes represent users and items, the positive links represent the 
relationships between users and their rated items, and the negative links represent 
those between users and their uninteresting items.

(2)Ys(⋅) = ET
(⋅)s
C̃(⋅)sX

{
XTC̃(⋅)sX + �

(
∑

u

cu,s

)
I

}−1

.
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Step 4: Performing top-N  recommendation. The goal of STEP 4 is to provide 
high accuracy with a small processing time, unlike the original gOCCF [23] that 
requires a large processing time. To provide an efficient and effective recommenda-
tion, we employ the signed random walk with restart (SRWR) technique [19]. To do 
this, we first define the following two probabilities: (1) r+

u
= Prt(u,+) is the probabil-

ity that the positive surfer arrives at node (i.e., user or item) u after SRWR from the 
target user t and (2) r−

u
= Prt(u,−) is the probability that the negative surfer arrives 

at node (i.e., user or item) u after SRWR from the target user t. r+ indicates a posi-
tive SRWR score vector and r− is a negative SRWR score vector for all nodes. Both 
vectors are used for predicting the preferences on all unrated items of a target user t.

To update two vectors r+ and r− , we formulate the following recursive equations 
[19]:

where c is a restarting probability, � is a parameter for controlling the uncertainty 
of “the enemy of my enemy is my friend,” and � is a parameter for controlling the 
uncertainty of “the friend of my enemy is my enemy”; q is a vector whose tth ele-
ment (i.e., target user) is set as 1 and all other elements are set as 0; Ã+ and Ã− are 
the positive and negative semi-row normalized matrixes, respectively. 

The iteration steps of SRWR are summarized as follows. First, we compute r+ 
and r− via (Eq. 3) and concatenate r+ and r− into r. Then, we compute the error 
between r and r′ where r′ is the result obtained in the previous iteration. We set r 
as r′ for the next iteration. The iteration is repeated in the same way until the error 

(3)
r+ = (1 − c)(Ã⊤

+
r+ + 𝛽Ã⊤

−
r− + (1 − 𝛾)Ã⊤

+
r−) + cq,

r− = (1 − c)(Ã⊤
−
r+ + 𝛾Ã⊤

+
r− + (1 − 𝛽)Ã⊤

−
r−),
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becomes smaller than a threshold predefined. Finally, we recommend the top-N 
items that are most preferred by the target user based on the final SRWR scores 
computed by r+ − r− , both contained in r.

Algorithm  1 sketches the overall process of our proposed approach. We first 
predict the degree of interestingness for unrated items of all users (line 1). For 
each user u, we divide Iu into Irt

u
 and Iuni

u
 and fill the values of A based on them 

(lines 2–6). Next, we compute D and Ã , and then splitÃ into Ã+ and Ã− . (lines 
7–8). Now, we are ready to perform SRWR per user u (line 9). First, we set q to 
uth unit vector and initialize r+ and r− (lines 10–11). Then, we compute the r+ 
and r− for u and concatenate r+ and r− vertically (lines 13–14). Finally, we update 
r into r′ for the next iteration (line 15). The time complexity of our approach is 
O(T ∗ (|U| + |I| + r)) , where T indicates the number of iterations in SRWR, |U| 
and |I| do the numbers of users and items, respectively, and r indicates the num-
ber of ratings.

4 � Analysis on uninteresting items

In this section, we present an in-depth analysis on the relationships between users 
and uninteresting items inferred by the proposed approach. Toward this end, we 
employ the graph shattering theory [1] that introduces a “shattering point” at which 
the connectivity of a graph becomes seriously collapsed as links are continuously 
removed in a random way. ShatterPlot is a tool for visualizing the process of gener-
ating the shattering point as a plot. By removing links of a graph continuously, this 
plot helps identify the changes in the topological properties of a graph.
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Fig. 2   Topological properties for a real positive graph and its negative graphs modeled by our approach
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In the same way as in [1], we analyze the generation process of the relationships 
between users and uninteresting items. To do this, we consider k unrated user–item 
pairs with the lowest degree of interestingness and model them to have negative 
links in a single negative graph. In this case, starting from 10, we double k until 
the negative links reach 90% of the unrated user–item pairs. Then, we compare the 
topological properties [1, 20] of a real positive graph with those of negative graphs 
modeled by our approach. Analyzed properties include the following: (1) effective 
diameter (ED), (2) number of reachable pairs (REACH), (3) number of nodes in the 
largest connected component (LCC), and (4) clustering coefficient (CC).

Figure 2 shows the changes in topological properties of our negative graphs in 
MovieLens 1M dataset.2 The x-axis represents the number of links in a graph, and 
the y-axis represents the value of each topological property in the graph. The mark 
“x” indicates the topological property in the real positive graph. We see that, for all 
the topological properties, when the negative graph has the same number of links 
as the real positive graph, it shows values most similar to those of its real positive 
graph. This trend coincides with those reported in [23].

Now, we examine the negative graph that has the same number of links as that 
of the positive graph in more detail. To this end, we compare the negative graph 
with the positive graph based on the singular values of adjacency matrix (SV) [20]. 
Figure 3 shows the SV distributions of the positive and negative graphs in the Mov-
ieLens 1M dataset.3 The x-axis represents top-k ranks, and y-axis represents an SV 
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Fig. 3   SV distributions for a real positive graph and its negative graph modeled by our approach

Fig. 4   Seven types of signed butterflies in a signed bipartite graph

2  Note that the same trend was observed as well in other datasets (i.e., MovieLens 100K, Watcha, CiteU-
Like, and Lastfm).
3  The same trend was also observed in other datasets (i.e., MovieLens 100K, Watcha, CiteULike, and 
Lastfm).
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score for each rank. From Fig. 3, we confirm that the negative graph whose number 
of links is the same as that of the positive graph follows the power-law distribution 
as in the positive graph.

Finally, we model the positive and negative graphs as a single signed graph and 
analyze the structure of the signed graph. To this end, we employ the signed but-
terfly [8]. This concept was proposed to utilize the balance theory [4, 14, 26], which 
was originally used to explain the social phenomena of a link structure in a signed 
unipartite graph, in a signed bipartite graph. As shown in Fig.  4, Derr et  al. [8] 
defined seven types of signed butterflies to represent the relationships among two 
users and two items in a signed bipartite graph. Figure  4a–e represents balanced 
signed butterflies, while Fig. 4f and g shows unbalanced signed butterflies. In [8], 

Table 1   Statistics on signed 
butterflies on the signed graph 
modeled by our approach

(a) MovieLens 100K

Types Balanced Unbalanced

(a) (b) (c) (d) (e) (f) (g)

Ratio 43% 12% 11% 7% 6% 15% 6%
79% 21%

(b) MovieLens 1M

Types Balanced Unbalanced

(a) (b) (c) (d) (e) (f) (g)

Ratio 51% 10% 11% 4% 6% 14% 4%
82% 18%

(c) Watcha

Types Balanced Unbalanced

(a) (b) (c) (d) (e) (f) (g)

Ratio 26% 14% 13% 12% 10% 15% 10%
75% 25%

(d) CiteULike

Types Balanced Unbalanced

(a) (b) (c) (d) (e) (f) (g)

Ratio 19% 10% 7% 9% 43% 2% 10%
88% 12%

(e) Lastfm

Types Balanced Unbalanced

(a) (b) (c) (d) (e) (f) (g)

Ratio 27% 9% 15% 7% 26% 6% 10%
84% 16%
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the authors showed that, similar to signed unipartite graphs, most real-life signed 
bipartite graphs have many more balanced signed butterflies than unbalanced signed 
butterflies. For example, in the US Senate dataset, the proportions of balanced and 
unbalanced signed butterflies were 79% and 21%, respectively [8].

Now, we analyze the signed butterfly of a signed graph modeled by our approach. 
Table 1 shows the results for our five datasets, i.e., MovieLens 100K, MovieLens 
1M, Watcha, CiteULike, and Lastfm. In all datasets, we see that the ratio for bal-
anced signed butterflies is significantly higher than that for unbalanced signed but-
terflies. Specifically, in the MovieLens 1M dataset, the ratios of balanced and unbal-
anced signed butterflies are 82% and 18%, respectively. The results also indicate that 
the signed graph modeled by our approach has a structure very similar to that of 
real-life signed graphs.

5 � Evaluation

In this section, we show empirical evidences on the effectiveness of the proposed 
approach via extensive experiments. We attempt to answer the following six research 
questions (RQs):

–	 RQ1: Which methods perform the best at inferring the degree of interestingness 
on unrated items to find uninteresting items?

–	 RQ2: Do the uninteresting items selected by our decision lead to a more accurate 
recommendation?

–	 RQ3: Is it useful to exploit additional uninteresting items with existing graph-
based recommendations?

–	 RQ4: How are the accuracy and performance of our approach in very sparse 
datasets, compared to existing OCCF methods?

–	 RQ5: How are the scalability of our approach?
–	 RQ6: How does the accuracy of our approach change with different values of 

parameters?

Table 2   Statistics of datasets Datasets # Users # Items # Feedback Sparsity (%)

Last. fm 1862 17,631 92,834 99.8
ML100K 943 1682 100,000 93.7
Watcha 1391 1927 100,000 96.9
CiteULike 5551 16,980 210,504 99.8
ML1M 6040 3,900 1,000,209 95.7
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5.1 � Experimental settings

For evaluation, we used five real-life datasets, MovieLens 100K (ML100K, 
in short), MovieLens 1M (ML1M, in short), Watcha, CiteULike, and Lastfm. 
ML100K, ML1M, and Watcha contain ratings ranging from 1 to 5, which are 
explicitly given by users (i.e., a multi-class setting). Since our goal is to address 
the OCCF problem, we convert their 1–5 ratings into 1 (i.e., a one-class setting), 
as popularly done in other OCCF researches [23, 30, 32]. CiteULike and Lastfm 
contain only implicit feedback and originally use a one-class setting. Table  2 
shows the detailed statistics of the datasets.

To evaluate the recommendation accuracy, we performed top-N (=10, 20, 50) 
recommendation and measured its accuracy in terms of the following three meas-
ures, which are popularly used in a recommendation research. First, we use the 
F1 score that considers precision and recall together:

where Nu denotes a set of N items that each method recommends to u, and Relu 
denotes a set of items that are considered relevant to u (i.e., ground truth). Pu@N 
and Ru@N denote precision and recall at N, respectively.

Second, we employ the normalized discounted cumulative gain (NDCG) [17] 
to reflect the importance of ranked positions of items in Nu . Let yk represent a 
binary variable for the kth item ik in Nu , i.e., yk ∈ {0, 1} . If ik ∈ Relu , yk is set to 1. 
Otherwise, yk is set to 0. In this case, NDCGu@N  is computed by:

where IDCGu@N is the ideal DCG at N, i.e., for every item ik in Nu , yk is set to 1.
Lastly, we employ the half-life utility (HLU) [2] that assumes a user will prefer 

each consecutive item in the list with an exponential decay of possibility. HLUu is 
computed by:

(4)Pu@N =
||Relu ∩ Nu

||
||Nu

||
,Ru@N =

||Relu ∩ Nu
||

||Relu||
,

(5)F1u@N = 2 ⋅
Pu@N ⋅ Ru@N

Pu@N + Ru@N
,

(6)NDCGu@N =
DCGu@N

IDCGu@N
, DCGu@N =

N∑

k=1

2yk − 1

log2 (k + 1)
,

Fig. 5   Error rates according 
to the number of uninteresting 
items
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where �(k) equals 1 if ik ∈ Relu and 0 otherwise, � is the half-life parameter, which 
is set to 5 in this paper.

The final accuracy for each measures was determined by averaging the five accu-
racies obtained from five-fold cross-validation. All experiments were conducted on 
a PC with Intel Core i7 processor (3.70 GHZ) and 64GB RAM.

5.2 � Experimental results

RQ1. Comparisons of methods for inferring the degree of interestingness. We 
first perform a comparative experiment to find the best method that can be used to 
infer the degree of interestingness of items in Step 1 of our approach. We employ a 
measure called the error rate [15] that captures how many interesting items are mis-
classified as uninteresting items per user by an inference method. A user’s overall 
error rate is thus calculated as: err =

∑
i

�IU−items
i

∩Itest
i �

�Itesti �  where Itest
i

 is a set of items rated 

by user i in a test set and IU−items
i

 is a set of items determined as uninteresting items 
of the user i by a particular inference method. The lower the user’s error rate, the 
better the accuracy of the inference method.

(7)HLUu =
∑

k=1

�(k)

2(k−1)(�−1)
,
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Fig. 6   Accuracy of the proposed approach according to the number of uninteresting items

Table 3   Error rate and accuracy 
of the proposed approach with 
different selection methods for 
uninteresting items

Methods Error rate (%) F@10 NDCG@10 HLU

Top U-items 0.86 0.272 0.447 55.10
Top I-items 5.06 0.114 0.285 37.214
Random 55.20 0.166 0.376 45.328
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Figure 5 shows the changes in the error rates of three OCCF methods, i.e., WRMF 
[30], BPRMF [32], and SLIM [27], on ML100K. The x-axis represents the num-
ber of uninteresting items, and the y-axis represents the error rate measured by each 
method. In general, as the number of uninteresting items increases, the error rates 
of all methods increase as well. In addition, the error rates of WRMF are always the 
lowest, regardless of the number of uninteresting items. Thus, we employed WRMF 
in the following experiments.

RQ2. Effectiveness of our decision method for uninteresting items. Note that we 
decided to select the same number of uninteresting items (having the lowest degree 
of interestingness) as the number of rated items in the given dataset. We first con-
ducted an experiment to verify whether our decision really helps improve the recom-
mendation accuracy. Figure 6 shows top-10 recommendation accuracies of our pro-
posed approach according to different numbers of uninteresting items in ML100K.4 

Table 4   Accuracy of the 
origianl gOCCF and the 
proposed approach

The bold value indicates the best accuracy in each row

Methods gOCCF Ours

SeparateRWR​ SeparateBP SignedBP

(a) ML100K
F1@10 0.216 0.212 0.263 0.272
F1@20 0.260 0.252 0.302 0.314
F1@50 0.261 0.259 0.292 0.306
NDCG@10 0.352 0.365 0.438 0.447
NDCG@20 0.354 0.356 0.426 0.437
NDCG@50 0.387 0.385 0.451 0.466
HLU 43.89 47.19 55.98 55.10
(b) Watcha
F1@10 0.109 0.117 0.146 0.146
F1@20 0.128 0.137 0.164 0.164
F1@50 0.126 0.128 0.147 0.150
NDCG@10 0.135 0.151 0.187 0.188
NDCG@20 0.158 0.173 0.212 0.212
NDCG@50 0.217 0.227 0.272 0.275
HLU 14.28 17.44 21.96 22.62
(c) Lastfm
F1@10 0.160 0.138 0.155 0.167
F1@20 0.158 0.132 0.144 0.161
F1@50 0.119 0.102 0.111 0.121
NDCG@10 0.192 0.179 0.203 0.214
NDCG@20 0.216 0.201 0.223 0.242
NDCG@50 0.267 0.248 0.274 0.295
HLU 33.13 29.14 33.77 33.72

4  We omit the results for other top-Ns (=20, 50), because they showed tendency very similar to that in 
Fig. 6.
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The x-axis represents the number of uninteresting items, and the y-axis represents 
the recommendation accuracy measured. The vertical line shows the number of 
rated items, and the horizontal line shows the accuracy of the original RWR without 
using the concept of uninteresting items.

The results show that the proposed approach always provides the highest accu-
racy when the number of uninteresting items is the same as the number of rated 
items. This trend coincides with those reported in [23]. Also, we found that exploit-
ing uninteresting items is quite effective in improving the accuracy of the original 
RWR. Figure 6 shows that our approach, where the number of uninteresting items 
is the same as that of rated items, consistently and significantly outperforms the 
original RWR. More specifically, our approach improves NDCG@10 of the original 
RWR by 31.17%. As a result, in subsequent experiments, we set the number of unin-
teresting items equal to the number of rated items.

Furthermore, in order to verify whether it is appropriate to select negative links 
based on the degree of interestingness, we compared the links selected by the fol-
lowing three methods: (1) ascending order of the degree of interestingness (i.e., top 
U-items), (2) descending order of the degree of interestingness (i.e., top I-items), 
and (3) random. Table  3 shows the error rates of uninteresting items selected by 

ML100K Watcha Lastfm CiteULike ML1M
100

103

106

P
ro
ce
ss
in
g
ti
m
e

(s
ec
.
in

lo
g
sc
al
e)

Ours SeparateRWR SeparateBP SignedBP

Fig. 7   Processing time of the original gOCCF and the proposed approach
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Fig. 8   Accuracy of our approach and competing methods

Table 5   Processing times of 
our approach and competing 
methods

Methods WRMF BPRMF Our approach

Processing  times (sec.) 603.95 944.10 1539.54
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these methods and the recommended accuracies of our approach equipped with 
them in ML100K. The result shows the case with the top U-items always provides 
the lowest error rate and the highest accuracy, followed by the random and the top 
I-items. We observe that it is the most useful to use the low degree of interestingness 
as a criterion for selecting links.

RQ3. Accuracy of graph-based recommendation exploiting uninteresting items. 
We performed an experiment to compare the recommendation accuracies of the 
original gOCCF with those of our approach. Table 4 shows the accuracies for three 
variants of the original gOCCF (i.e., SeparateRWR, SeparateBP, and SignedBP) and 
our approach. The value in boldface indicates the best accuracy in each row. The 
results show that our approach not only achieves significantly higher accuracy than 
those of SeparateRWR and SeparateBP, but it also provides accuracy values that are 
higher than or comparable to that of SignedBP. Specifically, our approach improves 
NDCG@10 of the original gOCCF (i.e., SeparateBP) by up to 26.87%, 39.60%, and 
19.55% for ML100K, Watcha, and Lastfm, respectively.

Moreover, we evaluated the performance of our approach by comparing it 
with the original gOCCF. Figure 7 shows the processing time of SeparateRWR, 
SeparateBP, SignedBP, and our approach. The x-axis represents the methods in 
each dataset, and the y-axis does the processing time. We summarize the results 
shown in Fig. 7 as follows. First, both the proposed approach and SeparateRWR 
require low processing times in all datasets. However, we note that our proposed 
approach significantly outperforms SeparateRWR in terms of recommendation 

Fig. 9   Processing times with 
increasing number of ratings
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accuracy (see Table  4). Second, the proposed approach always provides higher 
performance than SeparateBP and SignedBP. Specifically, for ML100K, the pro-
posed approach reduces the processing time of SeparateBP and SignedBP by 7.5 
times and 8.5 times, respectively.

RQ4. Comparison with the existing OCCF methods. We conducted a series 
of experiments that evaluate and compare the accuracy and performance of our 
approach and two existing OCCF methods: WRMF and BPRMF. For accuracy 
comparison, we evaluated the accuracies of the proposed approach, WRMF [30] 
and BPRMF [32] in the CiteULike, a real-life one-class setting dataset, the most 
sparse one among the five datasets used in evaluation. The results in Fig. 8 show 
that our approach consistently outperforms the two competing methods in all 
metrics and in all top-Ns. Specifically, it dramatically improves NDCG@10 of 
WRMF and BPRMF by 110.43% and 196.02%, respectively.

For performance comparison, we measured the processing times of our approach, 
WRMF and BPRMF. Table 5 shows the processing times of our approach and com-
peting methods in CiteULike. We observe that our approach requires the process-
ing time longer than those of other competing methods. However, considering its 
significant improvement in recommendation accuracy over competing methods (see 
Fig. 8), this longer execution time can be considered still worth.

RQ5. Scalability of the proposed approach. We examine the change of the pro-
cessing times of our approach as the number of ratings increases. Toward this end, 
we measured the processing time of our approach by increasing the ratio of ratings 
used in execution to all the original ratings in ML1M, the largest dataset, from 10% 
to 100%. Figure 9 shows the result where the x-axis represents the ratio of ratings 
and the y-axis represents the processing time. The results demonstrate that our 
approach has almost a linear scalability with the increasing number of ratings, which 
indicates our approach is scalable in training with regard to the number of ratings in 
a dataset.

RQ6. Parameter analysis for our approach. We carefully analyzed the changes of 
recommendation accuracy of our approach according to different values of param-
eters: (1) � is a parameter for controlling the uncertainty of “the enemy of my enemy 
is my friend” and (2) � is a parameter for controlling the uncertainty of “the friend 
of my enemy is my enemy.”

Figure 10 shows the changes of accuracy in terms of NDCG@10 by our proposed 
approach with different values of � and � in ML100K.5 The x-axis, y-axis, and z-axis 
in both figures represent the value of � , the value of � , and the accuracy, respec-
tively. Figure 10 shows that the larger values of � and � help achieve high accuracy 
in all datasets. In particular, the results show that the accuracy is always the high-
est when � and � are set as 0.9. These results coincide with those reported in [19], 

5  We omit the results for other top-Ns (=20, 50) because they showed tendency similar to that in Fig. 10.
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indicating that considering the uncertainty of the friendship of an enemy is benefi-
cial to improving the recommendation accuracy.

6 � Conclusions

In this paper, we proposed a new graph-theoretic OCCF approach based on SRWR. 
The proposed approach is composed of the following four steps: (1) predicting the 
degree of interestingness on unrated items; (2) determining uninteresting items 
based on users’ interestingness, the graph shattering theory, and information propa-
gation; (3) modeling the relationships between users and rated/uninteresting items 
in a signed graph; and (4) performing top-N recommendation by employing SRWR 
on the graph. We performed an in-depth analysis on the relationships between users 
and uninteresting items inferred by the proposed approach, in terms of the following 
well-known graph properties: (1) effective diameter, (2) number of reachable pairs, 
(3) number of nodes in the largest connected component, (4) clustering coefficient, 
(5) singular values, and (6) signed butterfly. From this comprehensive analysis, we 
confirmed that the signed graph modeled by our approach has the properties similar 
to the real-life signed graphs. Through extensive experiments, we also showed that 
our approach significantly improves the accuracy of gOCCF (i.e., a graph-theoretic 
state-of-the-art OCCF) and requires less processing time than gOCCF. Specifi-
cally, for ML 100K, our approach improves NDCG of gOCCF by up to 26.87% and 
reduces the processing time of gOCCF by up to 8.5 time.
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