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Abstract
Sequence-aware next-item recommendation has recently been studied because of the 
noteworthy usefulness of the sequential information integrated into recommendation 
algorithms. Following the development thread of sequential recommendation meth-
ods, especially the factored Markov chains segment, and based on a well-designed 
fusing similarity model with factored high-order Markov chains (i.e., Fossil), we 
propose a novel and generic similarity learning framework for next-item recommen-
dation called sequence-aware factored mixed similarity model (S-FMSM), which 
contains two variants with pairwise preference learning and pointwise preference 
learning. Unlike the baseline methods that model the general representation and the 
sequential representation in two divided factorization components, we use a factored 
mixed similarity model that unites the general similarity and the sequential rela-
tionship between two successive items for their sequential representation learning. 
Experiments on six datasets show that our newly introduced general similarity can 
notably improve the results of the recommended ranking lists. Furthermore, a study 
on tuning the prior trade-off parameter indicates the importance of the general simi-
larity on different datasets. We adjust the number of latent dimensions and try dif-
ferent similarity measurements, which showcases that our S-FMSM is universal and 
gives us more insight on it.

Keywords Sequential recommendation · Factored Markov chains · Factored mixed 
similarity model

This work is an extension of our previous work [32]. Compared with our previous work, we have 
added the following new contents in this paper, (i) we have developed an extension of S-FMSM, 
i.e., a pointwise preference learning method S-FMSM(poi), in Sect. 6; (ii) we have included more 
empirical results, i.e., an additional baseline method TransRec in Table 3, Fig. 5, and Table 5, results 
of methods with different numbers of latent dimensions in Fig. 7, and results with different similarity 
measurements in Table 6, as well as the corresponding descriptions and discussions; (iii) we have 
included more related works in Sect. 2; and (iv) we have made many improvements throughout the 
whole paper, including figure illustrations, and more discussions and analysis.
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1 Introduction

Under the trend of information sharing and goods globalization, finding the items 
that really interest users becomes challenging because of the information overload 
effect, for which recommender systems have emerged in various scenarios such as 
online entertainment and commercial platforms [12]. A typical recommender sys-
tem is generally composed of three components, i.e., input data collected from 
users’ behavior information, recommendation algorithms for users’ preference 
learning, and systems for user–item interactions. Among the above three compo-
nents, recommendation algorithms are the hard core of recommender systems and 
are extensively studied. While for different applications, the goals of recommen-
dation are generally different. In early times, straightforward recommendation can 
be abstracted as a one-class collaborative filtering (OCCF) problem, in which only 
the user- and item-IDs of positive feedback are considered. Methods for the OCCF 
problem can be roughly divided into neighborhood-based methods [1] and model-
based methods [15, 22]. With the explosive increase of the item and user amount, 
neighborhood-based methods become more and more complexity unaffordable on 
both time and memory. Model-based models address this issue well and therefore 
become research hotspots in academia and industry. Factored item similarity models 
(FISM) [9] firstly introduces an item-to-item similarity matrix on the basis of matrix 
factorization (MF) and obtain much better recommendation performance compared 
with other MF-based models. Lately, it is found that sequential information can be 
included to specify the problem into next-item recommendation [21] (see Fig. 1).

Although sequential recommendation can be achieved by general recommenda-
tion methods [9, 19, 23, 25], the shortcomings of these algorithms lie in insufficient 
use of the available information, unawareness of the users’ preference dynamics, and 
neglect of the structural relationship among items. To manage the sequential infor-
mation in recommender systems, there are some works that model users’ sequential 
feedback as Markov chains (MC). As shown in Fig. 2, Markov chains make use of 
the information of users’ preceding interacted items and thus address the sequential 
recommendation problem.

Methods for sequential recommendation can be divided into purely MC-based 
models [33], factored MC models with users’ global preferences [3, 24], other rising 
methods such as translation-based models [5, 18], and deep learning-based models 
[8, 11, 27–29]. [24] firstly combines matrix factorization and (first-order) Markov 

Fig. 1  Illustration of the studied next-item recommendation problem, where we exploit interaction 
sequences of users to items so as to provide a personalized recommendation list for each user
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chains together to address the sequential recommendation problem. [3] improves the 
MF and first-order MC to the similarity-based method FISM and high-order MC. It 
introduces more item–item and user–item interactions, and therefore, successfully 
addresses the sparsity issues and further improves the recommendation performance.

Through a deep investigation of the factored MC models, we focus on the 
improvement of Fossil [3]; a well-rounded model not only takes an item similar-
ity matrix for users’ general representation learning, but also assigns some person-
alized and order-sensitive weights for sequential representation learning. Different 
from the methods mentioned above, our proposed model, sequence-aware factored 
mixed similarity model (or S-FMSM for short) integrates items’ general similar-
ity and items’ learnable sequential representations in a unified component through 
a factored mixed similarity model [13]. Fossil is a representative work in the area 
of sequential recommendation. We introduce an important concept in collaborative 
recommendation, i.e., mixed similarity, into the modeling of sequential feedback, 
which is a significant extension of Fossil. Specifically, we apply the general sim-
ilarity (i.e., cosine similarity and Jaccard index) between two successive items as 
a prior coefficient of the corresponding factored sequential interaction. Following 
two preference learning paradigms, we then design two variants of S-FMSM, i.e., 
S-FMSM(pai) and S-FMSM(poi).

Extensive empirical studies on six public datasets show that our S-FMSM outper-
forms all the factorization-based baselines on almost all the evaluation metrics. We 
also conduct some studies of the trade-off parameter to verify the importance of our 
newly introduced similarity prior on different datasets.

Our main contributions are as follows: (i) we firstly introduce a mixed similarity 
into the studied sequential recommendation problem, which can be seamlessly com-
bined with a factorization-based sequential recommendation method to obtain effec-
tive and consistent improvement; (ii) we design a novel algorithm termed S-FMSM 
with two variants, by combining the mixed similarity with a well-rounded model 
(i.e., Fossil); (iii) we conduct extensive experiments on six datasets, which showcase 
that our proposed S-FMSM outperforms the state-of-the-art methods; and (iv) we 
study the effect of the trade-off parameter in the mixed similarity, the number of 
latent dimensions and different similarity measurements, which give us more insight 
on the proposed model.

The rest of the paper is organized as follows. We first discuss the related work in 
Sect. 2. Then we discuss the background and our preliminaries in Sect. 3. After that, 
we propose our model in Sect. 4, and further design two variants, i.e., S-FMSM(pai) 

Fig. 2  Illustration of first- and 
high-order Markov chains
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and S-FMSM(poi), in Sects. 5 and 6, respectively. We conduct extensive experi-
ments and analyze the results in Sect. 7. Finally, we conclude our work in Sect. 8.

2  Related work

2.1  General recommendation

The widespread use of recommender systems has confirmed the successful devel-
opment of recommendation algorithms. The most conventional and state-of-the-art 
algorithms model users’ preferences by utilizing the simplest form of users’ histori-
cal feedback only. Specifically, with implicit feedback (i.e., non-scoring actions such 
as clicks, likes and purchases), each record in the dataset can be denoted as a (user, 
item) pair, in which only user IDs and item IDs are left. In this case, to serve a spe-
cific user, it is proper to consider all his/her interacted items equally, which is there-
fore called general recommendation.

There are many branches of general recommendation methods. For example, 
neighborhood-based methods [25] directly calculate the similarity between two 
users/items through a similarity measurement such as cosine similarity and then 
obtain the preference score with a weighted function. To be specific, the cosine sim-
ilarity between item i and item j is computed by the following formula:

where Ui and Uj are sets of users that have interacted with item i and item j, respec-
tively. After that, the preference score of user u to item i is obtained by:

where Ni is the nearest neighbors of item i and Iu is the set of interacted items by 
user u. The neighborhood-based methods make use of users’ interaction informa-
tion on items to calculate the item-to-item similarities, so as to make recommenda-
tions based on the assumption “a user will like some similar items to those he liked 
before”.

Matrix factorization-based methods like RSVD [19] and its extensions [10, 17] 
learn a latent representation vector for each user and each item and then obtain the 
prediction score by the corresponding inner product. The prediction score of user u 
to item i by RSVD is as follows:

where Uu⋅ and Vi⋅ are the latent representation vectors of user u and item i, respec-
tively. And �, bu, and bi represent the global average score, user bias, and item bias, 

(1)sij =
�Ui ∩ Uj�

√�Ui�
�

�Uj�
,

(2)r̂ui =
∑

k∈Iu∩Ni

ski,

(3)r̂ui = 𝜇 + bu + bi + Uu⋅V
T
i⋅
,
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respectively. MF-based methods well address some limitations of memory-based 
methods such as non-transitivity and inefficiency.

Instead of learning the explicit user representations, a modified work of MF-
based methods (i.e., FISM [9]) represents each user as a weighted sum of the repre-
sentations of his/her interacted items, which are learned from another item-to-item 
similarity matrix. FISM represents the latent vector of user u w.r.t. item i as follows:

where Wi′⋅ is the auxiliary item-specific latent feature vector of item i′ used to cap-
ture the item-to-item similarity. By applying the item-to-item similarity, FISM is 
able to cope with sparser data with fewer records from each user.

For more details of the implementation of MF methods, there are pointwise loss 
and pairwise loss [23], among which the pairwise one is often deemed more reason-
able since it maximizes the prediction gap between positive records and negative 
ones. Recently, there are some deep learning-based methods such as NeuMF [7], 
which explores the nonlinearity of the latent representations. Furthermore, content-
based recommendation [20] with more predefined features is also widely studied.

2.2  Sequential recommendation

To incorporate the sequential information of users’ feedback into recommenda-
tion, Markov chains models are adopted [33]. Treating a user’s interaction sequence 
as a sentence in a statistical language model, the probability of a sentence can be 
obtained based on the Bayesian formula, in which for a first-order Markov chain, the 
probability of the current item depends only on the probability of the former item.

Rendle et al. [24] propose FPMC to model Markov chains in a factorization way 
and combine it with the traditional MF for general representations of the users and 
items. According to FPMC, the predicted preference of user u to item it

u
 is as follows:

where Uu⋅ and Vi⋅ is the latent representation vector of user u and item i, respectively. 
Pit−1

u
⋅
 and Qit

u
⋅
 is the auxiliary latent representation vector of item it−1

u
 and item it

u
 , 

respectively. FPMC captures both user’s long-term and short-term preference via the 
first term and second term of the prediction rule in Eq. (5), respectively, so as to 
address the problem of sequential recommendation.

Similar to FISM, He et  al. [3] propose Fossil to fuse similarity models into 
sequential recommendation and further elaborate more user- and order-sensitive 
parameters to handle personalized high-order Markov chains. The preference of user 
u to item i is estimated by:

where

(4)Ū−i
u⋅

=
1√�Iu�{i}�

�
i�∈Iu�{i}

Wi�⋅,

(5)r̂uit
u
= Uu⋅V

T
it
u
⋅
+ Pit−1

u
⋅
QT

it
u
⋅
,

(6)r̂uit
u
= bit

u
+ Ū

−it
u

u⋅ VT
it
u
⋅
,
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and �u
�
 controls the weight of user u’s preference and sequential dynamics, while �

�
 

is a global parameter shared by all the users. By fusing similarity models and apply-
ing high-order Markov chains, Fossil is able to better address the sparsity issues and 
make more accurate personalized recommendation for users.

With longer subsequences to be considered, the research hot spot of sequential 
recommendation gradually shifts to the sequence modeling side. He et al. [5] model 
(user, item) interactions from a new perspective of translation and propose Tran-
sRec, whose prediction rule is as follows:

where ||Vit−1
u

⋅
|| ≤ 1 , ||Vit

u
⋅
|| ≤ 1 , d(Vit−1

u
⋅
+ Uu⋅ + R

⋅
,Vit

u
⋅
) = ||Vit−1

u
⋅
+ Uu⋅ + R

⋅
− Vit

u
⋅
|| 

is the Euclidean distance, and R
⋅
 is the global translation vector shared by all users.

However, our proposed model, which is based on the well-rounded Fossil, takes 
in a kind of more direct similarity prior knowledge (i.e., cosine similarity) to com-
bine the general similarity and the sequential representations. This idea is expected 
to be helpful in other sequence modeling methods including deep learning-based 
approaches [8, 11, 27, 29] that we omit in this paper. Notice that we also omit those 
content-aware sequential recommendation methods [4, 26, 31] in this paper.

3  Background and preliminaries

3.1  Problem formulation

In one-class collaborative filtering with only positive feedback such as browses 
or clicks, given n users and m items, each user u is associated with a sequence of 
actions Su = {i1

u
, i2
u
,… , it

u
,… , i

|Su|
u } , where it

u
 denotes the tth engaged item by user u. 

In this paper, we aim to present each user with a personalized ranking list of items at 
their next step. That is to say, our model takes a user’s sequence as input (u,Su) and 
ranks the unobserved items at the (t + 1) th step by estimating the score r̂uj, j ∈ I�Iu 
to form the recommendation list (see Fig. 1). Some notations used in this paper and 
their explanations are shown in Table 1.

3.2  Challenges and overall of our solution

Our goal is to recommend a candidate list of items to each user u by exploiting the 
interaction data (u,Su) , for which we have to address the following challenges. 

(1) The sparsity challenge. Due to the large amount of items in real-world datasets, 
the density of datasets is usually extremely low, which brings a lot of difficulties 
to our studied problem.

(7)Ū
−it

u

u⋅ =
1√�Iu�{itu}�

�
i�∈Iu�{i

t
u
}

Wi�⋅ +

L�
𝓁=1

(𝜂
𝓁
+ 𝜂u

𝓁
)Wii−𝓁

u
⋅
,

(8)r̂uit
u
= bit

u
− d(Vit−1

u
⋅
+ Uu⋅ + R

⋅
,Vit

u
⋅
),
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(2) The correlation challenge. The learned similarity’s weight of Fossil only con-
siders the relative positions between the predicted item and its prior items, but 
neglects the correlations among them. Thus, one single type of learned similarity 
adopted in Fossil may not capture the correlations among the items well.

As a response to the challenges mentioned above, we combine a state-of-the-art 
model named Fossil with mixed similarity and design a novel and effective model 
called sequence-aware factored mixed similarity model (S-FMSM). 

(1) For the sparsity challenge. Following Fossil, we adopt similarity models and 
high-order Markov chains to further utilize the item-item and user–item interac-
tions. Because S-FMSM makes fuller use of the information, it can provide more 
accurate recommendations, which helps alleviate the sparsity issue.

Table 1  Some notations and 
explanations commonly used in 
the paper

n Number of users
m Number of items
u User ID, u ∈ {1, 2,… , n}

i Item ID, i ∈ {1, 2,… ,m}

U The whole set of users
I The whole set of items
P The whole set of observed (u, i) pairs
A A sampled set of unobserved (u, i) pairs
Iu A set of items that have been interacted by user u
I
te
u

A set of preferred items by user u in test data
U
te A set of users in test data

Su A sequence of items, Su = {i1
u
, i2
u
,… , i

|Su|
u }

it
u

The tth item in Su

r̂uit
u

Predicted preference of user u to item it
u

L The order of Markov chains
� The � th order of Markov chains, � ∈ {1, 2,… ,L}

it- �
u

The (t- �) th item in Su

� ∈ ℝ
1×L Global weighting vector

�u ∈ ℝ
1×L Personalized weighting vector w.r.t. user u

sij Predefined similarity between item i and item j
� Trade-off parameter in mixed similarity
d ∈ ℝ Number of latent dimensions
Vi⋅,Wi⋅ ∈ ℝ

1×d Item-specific latent feature vector w.r.t. item i
bu ∈ ℝ User bias
bi ∈ ℝ Item bias
r̂ui Predicted preference of user u to item i
� Learning rate
�w, �v, �� , �v Trade-off parameters of regularization terms
T Iteration number
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(2) For the correlation challenge. Inspired by P-FMSM  [13], we use mixed similar-
ity to integrate items’ predefined similarity and the items’ learned similarity in 
a unified way.

4  Sequence‑aware factored mixed similarity model (S‑FMSM)

In this section, we present the proposed sequential recommendation model, named 
S-FMSM, which is a sequence-aware factored mixed similarity model to integrate 
an item-to-item cosine similarity into the factored Markov chains model [3].

The remarkable contribution of Fossil is to consider short-term sequential infor-
mation via high-order Markov chains. The rationale behind the specific term �

�
+ �u

�
 

is that each of the previous L locations should contribute with different weights to 
the high-order smoothness, lacking the weight contribution from the latest specific 
items. On the basis of Fossil, we introduce a mixed similarity to improve the recom-
mendation effectiveness (see Fig. 3), which is defined as:

where (1 − �) + �sit
u
it- �
u

 is our focus in this paper inspired by the mixed similarity 
[13]. It is a combination of a predefined similarity (i.e., cosine similarity) and a 
learned similarity (i.e., the inner production of two latent feature vectors). Here sit

u
it- �
u

 
is the cosine similarity between item it

u
 and item it- �

u
 . In fact, what it captures is the 

weight of the history item it- �
u

 in contributing to the target item it
u
 . The trade-off 

parameter � tuned among {0,0.2,0.4,0.6,0.8,1} adjusts the influence of sit
u
it- �
u

 in pref-
erence prediction. Notice that when � = 0 , it reduces to Fossil, and when 0 < 𝜆 ≤ 1 , 
the predefined similarity is capable of capturing the local relations among items.

From Fig. 3, we can see that (i) our S-FMSM makes fuller use of the information 
such as the item–item and user–item interactions, so as to provide more accurate 
recommendation, which helps alleviate the sparsity challenge; and (ii) by introduc-
ing the mixed similarity, our S-FMSM not only exploits the relative position correla-
tions but also the similarity correlations, which effectively addresses the correlation 
challenge.

(9)Ū
−it

u

u⋅ =
1√�Iu�{itu}�

�
i�∈Iu�{i

t
u
}

Wi�⋅ +

L�
𝓁=1

(𝜂
𝓁
+ 𝜂u

𝓁
)((1 − 𝜆) + 𝜆sit

u
it- 𝓁
u
)Wit- 𝓁

u
⋅
,

Fig. 3  Illustration of the relative positions in Fossil [3] and both the relative positions and the mixed sim-
ilarity modeled in our S-FMSM. Notice that Fossil only utilizes the relative position correlations between 
the target item (i.e., it

u
 ) and its preceding items, while our S-FMSM not only exploits the relative position 

correlations but also the similarity correlations as captured in the mixed similarity
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We keep the basic formula of Fossil and replace its user latent vector Ū−it
u

u⋅  with 
Eq. (9) and derive the prediction rule of our S-FMSM:

Notice that we firstly introduce a mixed similarity to a sequential recommendation 
method. Considering the universality of the mixed similarity, we may combine it 
with other sequential recommendation methods such as those based on matrix fac-
torization or even deep learning techniques.

On the basis of the prediction rule of S-FMSM in Eq. (10), we design two vari-
ants of S-FMSM, i.e., S-FMSM with pairwise preference learning (S-FMSM(pai) 
for short) and S-FMSM with pointwise preference learning (S-FMSM(poi) for 
short), and present them in detail in the two following sections.

5  S‑FMSM with pairwise preference learning

5.1  Objective function

Our primary goal is to rank the engaged items as high as possible. Since the pair-
wise preference over two items [23] is an explainable and natural assumption, we 
use the relationship r̂ui > r̂uj , which means that a user u is likely to prefer an item 
i ∈ Iu to an item j ∈ I�Iu . We adopt a personalized pairwise ranking to keep the 
loss at a minimum. Then we reach the objective function,

where fuit
u
j = − ln 𝜎(r̂uit

u
− r̂uj) +

𝛼v

2

���
���Vit

u
⋅

���
���
2

+
𝛼v

2

���
���Vj⋅

���
���
2

+
𝛼w

2

∑
i
�
∈Iu

����Wi
�
⋅
����2 + 𝛼w

2

∑L

𝓁=1

���
���Wit- 𝓁

u
⋅

���
���
2

+
�v

2
b2
it
u

+
�v

2
b2
j
+

��

2

||||��||||2 + ��

2

|||
|||�u�

|||
|||
2

 is a tentative objective function for a randomly sam-
pled triple (u, it

u
, j) via “first (u, it

u
) then j”, and � = {V

i⋅
,W

i⋅
, b

i
, �

𝓁
, �u

𝓁
, i = 1, 2,… ,

m;u = 1, 2,… , n;� = 1, 2,… , L} are the model parameters to be learned.

5.2  Gradients and update rules

The minimization of the objective function in Eq. (11) can be solved by the com-
monly used stochastic gradient descent (SGD) algorithm.

The gradient of each parameter � ∈ � , i.e., ∇� =
�(fuituj

)

��
 , is computed as follows:

(10)

r̂uit
u
= bit

u
+ Ū

−it
u

u⋅ VT
it
u
⋅

= bit
u
+

⎡
⎢⎢⎣

1√�Iu�{itu}�
�

i�∈Iu�{i
t
u
}

Wi�⋅

+

L�
𝓁=1

(𝜂
𝓁
+ 𝜂u

𝓁
)((1 − 𝜆) + 𝜆sit

u
it- 𝓁
u
)Wit- 𝓁

u
⋅

�
VT
it
u
⋅

(11)min
�

∑
u∈U

∑
it
u
∈Su,t≠1

∑
j∉Iu

fuit
u
j,
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For each sampled triple (u, it
u
, j) , we have the update rule for each parameter, i.e., 

� = � − �∇� , where 𝛾 > 0 is the learning rate.

(12)∇bit
u
= 𝛽vbit

u
+ (−1)𝜎(r̂uj − r̂uit

u
),

(13)∇bj = 𝛽vbj + 𝜎(r̂uj − r̂uit
u
),

(14)

∇Vit
u
⋅
= 𝛼vVit

u
⋅
+ (−1)𝜎(r̂uj − r̂uit

u
)

�
1√�Iu�{itu}�

�
i
�
∈Iu�{i

t
u
}

Wi
�
⋅
+

L�
𝓁=1

(𝜂
𝓁
+ 𝜂u

𝓁
)((1 − 𝜆) + 𝜆sit

u
it- 𝓁
u
)Wit- 𝓁

u
⋅

⎤
⎥⎥⎦
,

(15)

∇Vj⋅ = 𝛼vVj⋅ + 𝜎(r̂uj − r̂uit
u
)

⎡
⎢⎢⎣

1√�Iu�
�
i
�
∈Iu

Wi
�
⋅

+

L�
𝓁=1

(𝜂
𝓁
+ 𝜂u

𝓁
)((1 − 𝜆) + 𝜆sjit- 𝓁

u
)Wit- 𝓁

u
⋅

�
,

(16)
∇𝜂

𝓁
= 𝛽𝜂𝜂𝓁 + (−1)𝜎(r̂uj − r̂uit

u
)Wit- 𝓁

u
⋅

[VT
it
u
⋅
((1 − 𝜆) + 𝜆sit

u
it- 𝓁
u
) − VT

j⋅
((1 − 𝜆) + 𝜆sjit- 𝓁

u
)],𝓁 = 1,… , L,

(17)
∇𝜂u

𝓁
= 𝛽𝜂𝜂

u
𝓁
+ (−1)𝜎(r̂uj − r̂uit

u
)Wit- 𝓁

u
⋅

[VT
it
u
⋅
((1 − 𝜆) + 𝜆sit

u
it- 𝓁
u
) − VT

j⋅
((1 − 𝜆) + 𝜆sjit- 𝓁

u
)],𝓁 = 1,… , L,

(18)

∇Wi
�
⋅
= 𝛼wWi

�
⋅
+ (−1)𝜎(r̂uj − r̂uit

u
)

�
1√�Iu�{itu}�

Vit
u
⋅
−

1√�Iu�
Vj⋅

�
, i� ∈ Iu�{i
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5.3  The algorithm of S‑FMSM(pai)

The often adopted SGD algorithm utilized for solving the objective function in Eq. 
(11) is shown in Algorithm 1. We first initialize the model parameters (line 1) and 
calculate the similarity among the items (line 2). We have an outer loop ranges from 
1 to T (line 3), and |P| inner iterations (line 4). In each inner iteration, we sample a 
(u, it

u
) pair (line 4) and a negative item j ∈ I�Iu (line 5), calculate the gradients (line 

6), and then update the corresponding model parameters (line 7).

6  S‑FMSM with pointwise preference learning

6.1  Objective function

In recommender systems, to obtain the optimal parameters of models, pairwise pref-
erence learning and pointwise preference learning are generally adopted. As shown 
in Fig. 4, pairwise preference assumes that a user prefers an interacted item to an un-
interacted item, while pointwise preference assumes that a user likes his/her inter-
acted items and dislikes his/her un-interacted items. For instance, if Mike buys an 
apple and does not buy a pear, we assume that Mike prefers apple to pear based 
on the pairwise preference assumption, while Mike likes apple and dislikes pear 
according to the pointwise one.

Fig. 4  The comparison of pairwise preference and pointwise preference. In pairwise preference assump-
tion, we assume a user likes an interacted item more than an un-interacted one; and in pointwise prefer-
ence assumption, we assume a user likes an interacted item and dislikes an un-interacted one
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We call the pointwise variant of S-FMSM as S-FMSM(poi). The prediction rule of 
S-FMSM(poi) is equal to that of S-FMSM(pai), but it adopts the cross-entropy loss 
function. The objective function of S-FMSM(poi) is shown as follows:

where � = {Vi⋅,Wi⋅, bi, �𝓁 , �
u
𝓁
, i = 1, 2,… ,m;u = 1, 2,… , n;𝓁 = 1, 2,… , L} are the 

model parameters to be learned, N  is a sampled unobserved item set to address the 
problem of lack of negative feedback, rui = 1 if i = it

u
 and rui = −1 if i ∈ N  , r̂ui is the 

predicted rating of user u on item i, and R(�) =
�v

2

���
���Vit

u
⋅

���
���
2

+
�v

2

���
���Vj⋅

���
���
2

+
�w

2

∑
i
�
∈Iu

����Wi
�
⋅
����2 + �w

2

∑L

𝓁=1

���
���Wit- 𝓁

u
⋅

���
���
2

+
�v

2
b2
it
u

+
�v

2
b2
j
+

��

2

�����𝓁����2 + ��

2

���
����u𝓁

���
���
2

 is a regulariza-
tion term used to avoid overfitting.

6.2  Gradients and update rules

We follow the SGD algorithm used in S-FMSM(pai) to solve the minimization of the 
objection function in Eq. (21).

For a positive feedback pair (u, i), i = it
u
 , we have the gradients:

(21)min
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∑
u∈U

∑
i∈{it

u
}∪N

log(1 + exp(−ruir̂ui)) +R(𝛩),
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For a negative feedback pair (u, i), i ∈ N  , we have the gradients:

For either the positive or the negative sampled pair (u, i), we adopt the same update 
rule, i.e.,� = � − �∇� , for each parameter, where 𝛾 > 0 is the learning rate.

6.3  The algorithm of S‑FMSM(poi)

The SGD-based learning algorithm is depicted in Algorithm  2. Similar to that of 
S-FMSM(pai) in Algorithm 1, we first initialize the model parameters (line 1) and 
calculate the similarity among the items (line 2) and then have an outer loop ranges 
from 1 to T (line 3), and |P| inner iterations (line 4). The main difference is that we 
sample a set of items that have not been interacted by the user before (line 5). After 
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that, we calculate the gradients (lines 7-8) and update the corresponding model 
parameters (line 9) for each item in the item set.

7  Experiments

7.1  Datasets

We adopt six commonly used public datasets from two domains in the experiments, 
including the MovieLens data and the Amazon e-commerce data.

MovieLens1: The MovieLens data are collected by the GroupLens Research 
team, containing users’ rating records from the MovieLens website [2]. The Mov-
ieLens 100K (ML100K) dataset has been released since April 1998 and records the 
ratings (from 1 to 5) on 1,682 movies given by 943 users from September 1997 to 
April 1998. MovieLens 1M (ML1M) has been released since February 2003 and 
records the ratings on 3,952 movies given by 6,040 users from April 2000 to Febru-
ary 2003. Both of them are benchmark datasets for studies of recommendation algo-
rithms because of their proper density. The average length of users’ movie sequences 
in ML1M is larger than that in ML100K.

Amazon2: The Amazon e-commerce data collected by McAuley et  al. [6, 14] 
contains product reviews and metadata (e.g., descriptions, category information and 
prices) from Amazon and is categorized into several classes. We choose four com-
monly used data covering different industries, including Office Products (Office), 
Automotive (Auto), Video Games (Video), and Cell Phones & Accessories (Cell), 
which are sparse in comparison with the MovieLens datasets.

Since our model is designed for implicit feedback, we treat all the observed 
behaviors as implicit feedback and preprocess each dataset as follows: (i) we remove 
the records of the users who rate fewer than five times; (ii) we remove the records of 
the items that are rated fewer than five times; (iii) we sort all the records according to 

1 https ://group lens.org/datas ets/movie lens/.
2 http://jmcau ley.ucsd.edu/data/amazo n/.

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/
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the timestamps and split each user’s sequence into three parts, i.e., the item(s) at the 
last step for test, the item(s) at the penultimate step for validation, and the remaining 
items for training. The statistics of the processed datasets are shown in Table 2. All 
the processed datasets and code used in our empirical studies are released.3

7.2  Evaluation metrics

We evaluate the recommendation performance of the algorithms via some com-
monly used ranking-oriented metrics for the recommendation lists of items, i.e., 
Precision@k (Pre@k), Recall@k (Rec@k), F1@k, NDCG@k, and 1-call@k. Notice 
that k stands for the length of the recommendation lists, which is fixed as k = 20 in 
the experiments.

– Pre@k is the percentage of accurately predicted items in a recommendation list, 

 where �(x) is an indicator function with �(x) = 1 if x is true and �(x) = 0 other-
wise, i(�) represents the item that is located at the position � of the recommenda-
tion list Ire

u
 , and 

∑k

�=1
�(i(�) ∈ I

te
u
) means the number of items in Ire

u
∩ I

te
u
.

– Rec@k is the percentage of accurate prediction in the test data, 

 where 
∑k

�=1
�(i(�) ∈ I

te
u
) means how many recommended items in Ire

u
 are also 

in Ite
u
 . In the top-k recommended item list, 

∑k

�=1
�(i(�) ∈ I

te
u
) denotes the num-

ber of true positive cases (TP), and |Ite
u
| (i.e., the number of preferred items of 

user u) is the sum of the number of true positive cases and the number of false 
negative cases (i.e., TP+FN). Averaging all the recall values of the users in the 
test set, we get the equation of recall in Eq. (35).

(34)Pre@k =
1

�Ute�
�
u∈Ute

∑k

�=1
�(i(�) ∈ I

te
u
)

k
,

(35)Rec@k =
1

�Ute�
�
u∈Ute

∑k

�=1
�(i(�) ∈ I

te
u
)

�Ite
u
� ,

Table 2  Statistics of the 
processed data used in the 
experiments, including the 
number of users (User #), the 
number of items (Item #), the 
number of records (Record #), 
and the density (Density)

Dataset User # Item # Record # Density (%)

ML100K 943 1,349 99,287 7.80
ML1M 6,040 3,416 999,611 4.80
Office 16,243 5,526 97,327 0.11
Video 30,935 12,111 260,163 0.07
Auto 31,877 9,992 122,009 0.04
Cell 67,453 17,969 346,245 0.03

3 http://csse.szu.edu.cn/staff /panwk /publi catio ns/S-FMSM/.

http://csse.szu.edu.cn/staff/panwk/publications/S-FMSM/
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– F1@k combines Pre@k and Rec@k, which is defined as follows, 

– NDCG@k is commonly used to measure the position-aware ranking quality of a 
recommendation list, 

 The NDCG score of a specific user u is defined as follows, 

 where DCGu@k =
∑k

�=1

2�(i(�)∈Ite
u
)−1

log(�+1)
 and Zu is the best DCGu@k score with the 

preferred items in Ite
u
 in the beginning of Ire

u
.

– 1-call@k means whether there is at least one preferred item in a recommendation 
list, 

7.3  Baseline methods

We compare our S-FMSM against five closely related recommendation methods:

– PopRank It uses the bias of each item as the prediction score and generates the 
same recommendation list for all the users, which is thus lack of personalization.

– BPR [23]: For recommendation with implicit feedback, BPR is a very competi-
tive MF method with pairwise preference assumption, which optimizes the dif-
ference between the users’ preferences for a positive sample and a negative sam-
ple.

– TransRec [5]: TransRec is a translation-based method which embeds items into a 
“transition space” and models users as translation vectors. Here we adopt L2 dis-
tance as metric and the probability that a user u transitions from item it−1

u
 to its 

next item it
u
 is estimated by r̂uit

u
= bit

u
− d(Vit−1

u
⋅
+ Uu⋅ + R

⋅
,Vit

u
⋅
) , where 

||Vit−1
u

⋅
|| ≤ 1 , ||Vit

u
⋅
|| ≤ 1 , d(Vit−1

u
⋅
+ Uu⋅ + R

⋅
,Vit

u
⋅
) = ||Vit−1

u
⋅
+ Uu⋅ + R

⋅
− Vit

u
⋅
|| is 

the Euclidean distance, and R
⋅
 is the global translation vector shared by all users.

– FISM [9]: In the factored item similarity model, the users’ representations are 
learned through an item similarity matrix. Formally, the prediction rule of FISM 
is r̂ui = Ū−i

u⋅
VT
i⋅
+ bu + bi , where Ū−i

u⋅
=

1√�Iu�{i}�
∑

i�∈Iu�{i}
Wi�⋅ and Wi′⋅V

T
i⋅

 is the 
learnable similarity between item i′ and item i.

(36)F1u@k = 2 ×
Preu@k × Recu@k

Preu@k + Recu@k
.

(37)NDCG@k =
1

|Ute|
∑
u∈Ute

NDCGu@k.

(38)NDCGu@k =
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Zu
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(39)1- call@k =
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– FPMC [24]: FPMC is a combination of an MF [19] method and a first-order 
Markov chain, which models the sequential information in a factorization way. 
The probability that user u transfers from the last item it−1

u
 to its next item it

u
 is 

estimated by r̂uit
u
= Uu⋅V

T
it
u
⋅
+ Pit−1

u
⋅
QT

it
u
⋅
 , where Pit−1

u
⋅
 and Qit

u
⋅
 are two item transfer 

representations for the precursor and the successor, respectively.
– Fossil [3]: Fossil is a combination of a factored similarity method and a high-

order Markov chains. The prediction of user u to item it
u
 is computed as 

r̂uit
u
= Ū

−it
u

u⋅ VT
it
u
⋅
+ bit

u
 , where the user’s representation is 

Ū
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u
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1√�Iu�{itu}�
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t
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𝓁
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𝓁
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u
⋅
 . And 

∑L

𝓁=1
(�

𝓁
+ �u

𝓁
)Wit- 𝓁

u
⋅
 

is associated with the high-order weighted transfer representations.

Table 3 shows the comparison between the aforementioned baseline methods and 
our S-FMSM.

7.4  Parameter configurations

For fair comparison, we fix the number of dimensions d = 20 , the learning rate 
� = 0.01 for all the factorization-based models in the experiments. And we adopt 
the commonly used stochastic gradient descent algorithm to train all the factoriza-
tion-based methods. For FISM, we randomly sample a set of negative items A with 
|A| = 3|P| following [9]. For BPR, TransRec, FPMC, Fossil and our S-FMSM, we 
use the same sampling strategy, i.e., randomly selecting one negative sample each 
time, for fair comparison.

For other hyper-parameters, we choose the trade-off parameter of the regulariza-
tion terms �v = �w = �v = �� from {0.1, 0.01, 0.001} , the order L from {1, 2, 3} and 
the iteration number T from {100, 500, 1000} via the NDCG@20 performance on 
the validation data. Moreover, the similarity trade-off � in our S-FMSM is chosen 
from {0, 0.2, 0.4, 0.6, 0.8, 1} on the validation data. To ensure the reliability of these 
parameters, for each validation data, we select the optimal parameters according to 
the averaged performance of NDCG@20 of three runs. With the optimal parameter 
values, the final results on the test data are also averaged values of three runs.

Table 3  Comparison among a popularity-based method, five factorization-based methods, and our 
S-FMSM

Property PopRank BPR TransRec FISM FPMC Fossil S-FMSM

Personalized ×
√ √ √ √ √ √

Sequence-aware × ×
√

×
√ √ √

Mixed similarity × × × × × ×
√

Pairwise ranking ×
√ √

×
√ √ √

Translation-based × ×
√

× × × ×
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Table 4  The searched best values of the parameters in each method on six different datasets. Notice that 
we fix d = 20 , � = 0.01 and select �

v
 = �

w
 = �

v
 = �� from {0.1, 0.01, 0.001} , L from {1, 2, 3} and T from 

{100, 500, 1000} via the NDCG@20 performance on the validation data

Configuration Dataset Method Chosen parameters

d = 20, � = 0.01 ML100K PopRank

BPR �u = �v = �v = 0.01,T = 1000

TransRec �u = �v = �u = 0.01,T = 500

FISM �w = �v = �v = �u = 0.001,T = 500

FPMC �u = �v = �p = �q = 0.01,T = 1000

Fossil �w = �v = �� = �v = 0.001,L = 3,T = 500

S-FMSM �w = �v = �� = �v = 0.001,L = 3, � = 1,T = 1000

ML1M PopRank

BPR �u = �v = �v = 0.01,T = 500

TransRec �u = �v = �u = 0.01,T = 500

FISM �w = �v = �v = �u = 0.001,T = 100

FPMC �u = �v = �p = �q = 0.01,T = 1000

Fossil �w = �v = �� = �v = 0.001,L = 3,T = 100

S-FMSM �w = �v = �� = �v = 0.001,L = 3, � = 0.8,T = 1000

Office PopRank

BPR �u = �v = �v = 0.1,T = 1000

TransRec �u = �v = �u = 0.1,T = 1000

FISM �w = �v = �v = �u = 0.01,T = 1000

FPMC �u = �v = �p = �q = 0.01,T = 1000

Fossil �w = �v = �� = �v = 0.01,L = 2,T = 1000

S-FMSM T = 500

Auto PopRank

BPR �u = �v = �v = 0.1,T = 1000

TransRec �u = �v = �u = 0.1,T = 1000

FISM �w = �v = �v = �u = 0.01,T = 1000

FPMC �u = �v = �p = �q = 0.1,T = 1000

Fossil �w = �v = �� = �v = 0.1,L = 1,T = 1000

S-FMSM �w = �v = �� = �v = 0.1,L = 1, � = 0.2,T = 1000

Video PopRank

BPR �u = �v = �v = 0.01,T = 1000

TransRec �u = �v = �u = 0.1,T = 1000

FISM �w = �v = �v = �u = 0.01,T = 1000

FPMC �u = �v = �p = �q = 0.01,T = 1000

Fossil �w = �v = �� = �v = 0.01,L = 2,T = 1000

S-FMSM �w = �v = �� = �v = 0.001,L = 2, � = 0.8,T = 500
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For reproducibility, we report the searched optimal values of the parameters w.r.t. 
the NDCG@20 performance on the validation data in Table 4.

7.5  Experimental results

Table 5 shows the recommendation performance of six baseline methods and our 
S-FMSM with pairwise preference learning on six real-world datasets.

7.5.1  Main results

• Our model achieves the best performance on all the datasets except on Video 
where it is comparable with Fossil and on ML100K where it is comparable 
with TransRec, which shows the effectiveness of our proposed mixed similarity 
model. In order to be more clearly visible, we extract the two evaluation met-
rics, i.e., NDCG@20 and Rec@20, and show them in Fig.  5. From the histo-
grams, we can see the effectiveness of our model over the compared methods. 
From the comparison between the factorization-based models and our S-FMSM 
in Table 3, we can see that only our S-FMSM incorporates the mixed similarity 
into the short-term preference.

• PopRank is a basic method that ranks items according to their popularities, 
which provides poor results due to its non-personalization as expected.

• For the non-sequential recommendation models, the pairwise approach BPR is 
better than the pointwise one FISM, which shows the advantage of the pairwise 
preference assumption.

• The sequential recommendation algorithms (i.e., TransRec, FPMC, Fossil and 
our S-FMSM) do not treat the user-interacted items as a bag of items, but rather 
as a sequence of items, which makes the models more powerful in terms of rec-
ommendation accuracy. For the denser datasets (i.e., ML100K and ML1M), Fos-
sil performs better than FPMC, which shows that the high-order Markov chains 
captures more information than the lower order one. Moreover, FISM depicts the 
transitive relations between items which MF does not, so that it contributes to a 

Table 4  (continued)

Configuration Dataset Method Chosen parameters

Cell PopRank

BPR �u = �v = �v = 0.1,T = 1000

TransRec �u = �v = �u = 0.1,T = 1000

FISM �w = �v = �v = �u = 0.01,T = 500

FPMC �u = �v = �p = �q = 0.1,T = 1000

Fossil �w = �v = �� = �v = 0.01,L = 1,T = 500

S-FMSM �w = �v = �� = �v = 0.01,L = 1, � = 0.8,T = 1000
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Table 5  Recommendation performance of PopRank, Bayesian personalized ranking (BPR) [23], transla-
tion-based recommendation (TransRec) [5], factored item similarity model (FISM) [9], factorizing per-
sonalized Markov chains (FPMC) [24], fusing similarity models with Markov chains (Fossil) [3], and 
our sequence-aware factored mixed similarity model (S-FMSM) with pairwise preference learning on six 
real-world datasets

The best results are marked in bold

Dataset Method Pre@20 Rec@20 F1@20 NDCG@20 1-call@20

ML100K PopRank 0.0153 0.1197 0.0247 0.0619 0.2174

BPR 0.0282±0.0004 0.1974±0.0049 0.0452±0.0007 0.1032±0.0012 0.3132±0.0043

TransRec 0.0287±0.0001 0.2259±0.0012 0.0469±0.0001 0.1155±0.0007 0.3528±0.0016

FISM 0.0275±0.0005 0.1832±0.0070 0.0439±0.0009 0.0985±0.0025 0.2930±0.0080

FPMC 0.0273±0.0003 0.2292±0.0071 0.0452±0.0006 0.1147±0.0020 0.3574±0.0046

Fossil 0.0277±0.0004 0.2299±0.0004 0.0458±0.0006 0.1153±0.0020 0.3627±0.0018

S-FMSM 0.0286±0.0005 0.2322±0.0057 0.0471±0.0008 0.1220±0.0017 0.3669±0.0038

ML1M PopRank 0.0067 0.0678 0.0116 0.0313 0.1133

BPR 0.0113±0.0000 0.1102±0.0006 0.0196±0.0001 0.0518±0.0004 0.1827±0.0011

TransRec 0.0149±0.0002 0.1448±0.0016 0.0259±0.0004 0.0656±0.0008 0.2327±0.0017

FISM 0.0100±0.0001 0.0999±0.0007 0.0174±0.0002 0.0451±0.0007 0.1648±0.0016

FPMC 0.0176±0.0002 0.1703±0.0026 0.0306±0.0004 0.0821±0.0003 0.2614±0.0039

Fossil 0.0192±0.0002 0.1870±0.0028 0.0334±0.0004 0.0879±0.0005 0.2865±0.0047

S-FMSM 0.0194±0.0003 0.1895±0.0019 0.0337±0.0004 0.0895±0.0015 0.2879±0.0036

Office PopRank 0.0003 0.0040 0.0005 0.0013 0.0051

BPR 0.0022±0.0001 0.0337±0.0013 0.0040±0.0002 0.0148±0.0007 0.0423±0.0017

TransRec 0.0020±0.0000 0.0305±0.0004 0.0036±0.0000 0.0145±0.0004 0.0377±0.0003

FISM 0.0021±0.0001 0.0340±0.0004 0.0040±0.0000 0.0154±0.0003 0.0413±0.0004

FPMC 0.0020±0.0001 0.0297±0.0011 0.0037±0.0001 0.0133±0.0001 0.0353±0.0010

Fossil 0.0023±0.0000 0.0346±0.0007 0.0042±0.0001 0.0153±0.0004 0.0428±0.0006

S-FMSM 0.0025±0.0001 0.0398±0.0026 0.0047±0.0002 0.0175±0.0011 0.0479±0.0025

Auto PopRank 0.0023 0.0362 0.0043 0.0173 0.0457

BPR 0.0030±0.0001 0.0448±0.0017 0.0056±0.0002 0.0196±0.0004 0.0576±0.0019

TransRec 0.0026±0.0000 0.0375±0.0004 0.0048±0.0001 0.0165±0.0004 0.0491±0.0005

FISM 0.0029±0.0000 0.0435±0.0009 0.0054±0.0001 0.0188±0.0005 0.0560±0.0006

FPMC 0.0019±0.0000 0.0266±0.0003 0.0034±0.0001 0.0117±0.0002 0.0353±0.0007

Fossil 0.0032±0.0000 0.0467±0.0007 0.0059±0.0001 0.0209±0.0002 0.0612±0.0008

S-FMSM 0.0033±0.0000 0.0474±0.0004 0.0060±0.0000 0.0211±0.0002 0.0622±0.0004

Video PopRank 0.0024 0.0371 0.0044 0.0151 0.0467

BPR 0.0050±0.0000 0.0734±0.0006 0.0092±0.0001 0.0319±0.0003 0.0928±0.0008

TransRec 0.0052±0.0001 0.0771±0.0015 0.0095±0.0002 0.0330±0.0008 0.0957±0.0019

FISM 0.0046±0.0000 0.0675±0.0005 0.0083±0.0001 0.0291±0.0003 0.0852±0.0006

FPMC 0.0055±0.0001 0.0850±0.0010 0.0101±0.0001 0.0376±0.0004 0.1026±0.0010

Fossil 0.0059±0.0000 0.0895±0.0002 0.0108±0.0001 0.0388±0.0001 0.1088±0.0005

S-FMSM 0.0059±0.0001 0.0890±0.0010 0.0108±0.0001 0.0398±0.0006 0.1089±0.0009

Cell PopRank 0.0027 0.0381 0.0050 0.0157 0.0532

BPR 0.0033±0.0000 0.0447±0.0005 0.0060±0.0001 0.0203±0.0009 0.0617±0.0007

TransRec 0.0034±0.0001 0.0474±0.0007 0.0062±0.0001 0.0220±0.0004 0.0622±0.0008

FISM 0.0034±0.0001 0.0480±0.0008 0.0063±0.0001 0.0198±0.0004 0.0644±0.0012

FPMC 0.0031±0.0001 0.0435±0.0006 0.0057±0.0001 0.0201±0.0004 0.0575±0.0009

Fossil 0.0035±0.0001 0.0496±0.0013 0.0064±0.0002 0.0229±0.0003 0.0638±0.0017

S-FMSM 0.0040±0.0000 0.0568±0.0007 0.0074±0.0001 0.0265±0.0005 0.0737±0.0007
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higher recommendation accuracy. In addition, the best value of the parameter L 
is small for the sparser datasets (i.e., Cell and Auto), which may be due to the 
fact that the sequential information between the items in a sparse data is not so 
strong.

• The results on the evaluation metrics are relatively small. This is because in the 
next-item recommendation task, only the item(s) at the last step of each user’s 
interaction sequence is(are) put into the test set.

• Our model outperforms TransRec in all cases only except on the precision metric 
of ML100K, while Fossil is comparable with it in most cases. This showcases 
that our S-FMSM can provide more accurate recommendation than the different 
sequence modeling method.

Fig. 5  Recommendation performance of our S-FMSM with pairwise preference learning and other meth-
ods on six real-world datasets (left: NDCG@20; right: Rec@20)

ecfifOM1LMK001LM
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Fig. 6  Recommendation performance (NDCG@20) of our S-FMSM and Fossil with different values of 
� ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} on six real-world datasets



7530 Z. Zhan et al.

1 3

• Fossil is a very strong baseline in the area of sequential recommendation. Our 
S-FMSM has achieved consistent improvement compared with Fossil on all the 
datasets, which again demonstrates the strength of our solution.

7.5.2  Effect of the parameter �

In order to discern how mixed similarity shapes outcomes in the proposed model, we 
choose the trade-off parameters �v = �w = �v = �� ∈ {0.1, 0.01, 0.001} , L ∈ {1, 2, 3} , 
T ∈ {100, 500, 1000} with a fixed � from {0,0.2,0.4,0.6,0.8,1} via the NDCG@20 
performance on the validation data. Then, we study our model with the optimal 
parameters on each test data for three times and report the averaged results.

As can be seen from Fig. 6, with different values of the parameter � ∈ {0, 0.2, 0.4, 
0.6, 0.8, 1} , the recommendation performance of our S-FMSM(pai) on the test 
data is better than that of Fossil in all cases. By adjusting the parameter � of our 
S-FMSM(pai), we can see that when � is 1 (ML100K), 0.8 (ML1M), 0.8 (Office), 
0.2 (Auto), 0.8 (Video) and 0.8 (Cell), it achieves the best performance.

When � = 0 , our S-FMSM(poi) is reduced to Fossil(poi), and we mark Fossil(poi) 
as dotted line in Fig. 6. We can see that in most cases, S-FMSM(poi) with differ-
ent � outperforms Fossil(poi), in spite of some exceptional values. Nevertheless, 
S-FMSM(poi) always obtains more accurate recommendation performance than 
Fossil(poi) with a tuned value of �.

Notice that � is a parameter that needs to be tuned in a typical machine learning 
problem, which is usually data dependent. The experimental results also show that 
we need to choose the optimal value via a validation data, as we have done in the 
part of the main results.

ecfifOM1LMK001LM

lleCoediVotuA

Fig. 7  Recommendation performance (NDCG@20) of our S-FMSM and Fossil with different numbers 
of latent dimensions d ∈ {10, 20, 30} on six real-world datasets
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7.5.3  Impact of the number of latent dimensions d

In order to study the sensitivity of the model dimension d, we change the value of 
d from {10, 20, 30} and choose the trade-off parameters via the NDCG@20 perfor-
mance on the validation data. The results on test data are illustrated in Fig. 7.

From Fig. 7, we observe that our S-FMSM(pai) beats Fossil with varying latent 
dimensions on all datasets. For our S-FMSM(poi), it also beats Fossil on all data-
sets expect ML1M and Video; on Auto, Office, and Cell, it can even outperforms 
S-FMSM(pai). We can also find that a larger value of d usually leads to a better 
result, which is consistent with most previous studies on matrix factorized based 
methods. For a particular dataset, it is again a common practice to choose an appro-
priate value of d w.r.t. the performance on the validation data. Generally, it is 
believed that pairwise preference learning is superior to pointwise preference learn-
ing since it relaxes users’ preference on items, while our experimental results show 
that which preference learning variant will have better performance is dependent on 
datasets. Therefore, we can decide which variant to use according to its performance 
on the validation data.

Table 6  Recommendation performance of our S-FMSM(pai) and S-FMSM(poi) with different similarity 
measurements, including cosine similarity (cos) and Jaccard index (jac)

Dataset Method Pre@20 Rec@20 F1@20 NDCG@20 1-call@20

ML100K cos, pai 0.0286±0.0005 0.2322±0.0057 0.0471±0.0008 0.1220±0.0017 0.3669±0.0038
cos, poi 0.0290±0.0004 0.2359±0.0043 0.0477±0.0007 0.1218±0.0012 0.3680±0.0038
jac, pai 0.0289±0.0002 0.2382±0.0009 0.0478±0.0003 0.1231±0.0008 0.3726±0.0024
jac, poi 0.0286±0.0001 0.2323±0.0038 0.0472±0.0003 0.1206±0.0015 0.3644±0.0040

ML1M cos, pai 0.0194±0.0003 0.1895±0.0019 0.0337±0.0004 0.0895±0.0015 0.2879±0.0036
cos, poi 0.0186±0.0000 0.1803±0.0031 0.0324±0.0001 0.0841±0.0016 0.2766±0.0027
jac, pai 0.0189±0.0004 0.1847±0.0028 0.0330±0.0007 0.0859±0.0021 0.2821±0.0047
jac, poi 0.0186±0.0003 0.1827±0.0034 0.0324±0.0005 0.0841±0.0025 0.2790±0.0032

Office cos, pai 0.0025±0.0001 0.0398±0.0026 0.0047±0.0002 0.0175±0.0011 0.0479±0.0025
cos, poi 0.0026±0.0000 0.0404±0.0006 0.0048±0.0000 0.0179±0.0003 0.0495±0.0004
jac, pai 0.0024±0.0001 0.0363±0.0008 0.0044±0.0001 0.0161±0.0002 0.0442±0.0009
jac, poi 0.0023±0.0001 0.0354±0.0009 0.0043±0.0001 0.0149±0.0004 0.0425±0.0015

Auto cos, pai 0.0033±0.0000 0.0474±0.0004 0.0060±0.0000 0.0211±0.0002 0.0622±0.0004
cos, poi 0.0032±0.0000 0.0478±0.0002 0.0059±0.0000 0.0215±0.0003 0.0621±0.0002
jac, pai 0.0033±0.0000 0.0472±0.0006 0.0060±0.0001 0.0210±0.0003 0.0619±0.0008
jac, poi 0.0032±0.0000 0.0468±0.0001 0.0057±0.0000 0.0217±0.0002 0.0606±0.0002

Video cos, pai 0.0059±0.0001 0.0890±0.0010 0.0108±0.0001 0.0398±0.0006 0.1089±0.0009
cos, poi 0.0057±0.0000 0.0862±0.0009 0.0105±0.0001 0.0384±0.0005 0.1054±0.0010
jac, pai 0.0059±0.0001 0.0889±0.0010 0.0107±0.0001 0.0385±0.0006 0.1082±0.0014
jac, poi 0.0057±0.0000 0.0855±0.0003 0.0104±0.0000 0.0376±0.0001 0.1046±0.0003

Cell cos, pai 0.0040±0.0000 0.0568±0.0007 0.0074±0.0001 0.0265±0.0005 0.0737±0.0007
cos, poi 0.0042±0.0001 0.0586±0.0008 0.0077±0.0001 0.0279±0.0008 0.0767±0.0009
jac, pai 0.0040±0.0001 0.0566±0.0006 0.0074±0.0001 0.0263±0.0003 0.0734±0.0010
jac, poi 0.0040±0.0000 0.0561±0.0003 0.0073±0.0001 0.0255±0.0004 0.0733±0.0004
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7.5.4  Impact of the similarity measurement

In order to study the effect of different similarity measurements, we replace cosine 
similarity with Jaccard index as predefined similarity in both two variants of 
S-FMSM and then obtain S-FMSM(jac, pai) and S-FMSM(jac, poi). After that, for 
two methods, we search optimal parameters �v = �w = �v = �� ∈ {0.1, 0.01, 0.001} , 
L ∈ {1, 2, 3} , T ∈ {100, 500, 1000} , and � ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} via the averaged 
NDCG@20 performance on the validation data of three runs. With optimal param-
eters, we run our models on test data and report the averaged results of three runs.

From Table 6, we can see that different similarity measurements lead to roughly 
similar recommendation performance, which indicates that our proposed similarity 
learning framework is robust with different similarity measurements.

8  Conclusions and future work

In this paper, we propose a novel sequence-aware recommendation method, i.e., 
sequence-aware factored mixed similarity model (S-FMSM), for a recently studied 
important task of next-item recommendation. We develop two variants, including 
a pairwise preference learning method S-FMSM(pai) and a pointwise preference 
learning method S-FMSM(poi). Our model considers a predefined similarity (e.g., 
cosine similarity or Jaccard index) between a recent item and the target item in order 
to better capture the short-term sequential effect. The main contribution is to study 
the mixed similarity in sequential recommendation. We mainly focus on factoriza-
tion-based methods and conduct extensive empirical studies in the context of several 
state-of-the-art factorization-based methods on six real-world datasets and find that 
our S-FMSM achieves very promising performance.

For future works, we are interested in capturing more effect of users’ short-term 
preferences by designing personalized variable-length subsequences. We are also 
interested in leveraging some auxiliary information such as social context [16, 30] 
so as to improve the recommendation performance for inactive users. Moreover, the 
concept of mixed similarity has a certain universality, and therefore, in the future, 
we plan to incorporate it into more sequential recommendation methods.
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