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Abstract
Radiology report generation aims to generate pathological assessments from given radio-
graphic images accurately. Prior methods largely rely on autoregressive models, where the
sequential token-by-token generation process always results in longer inference time and
suffers from the sequential error accumulation. In order to enhance the efficiency of report
generation without compromising diagnostic accuracy, we present a novel radiology report
generation approach based on diffusion models. By integrating a graph-guided image feature
extractor informed by a radiology knowledge graph, our model adeptly identifies critical
abnormalities within images. We also introduce an auxiliary lesion classification loss mecha-
nism using pseudo labels as supervision to align image features and textual disease keyword
representations accurately. By adopting the accelerated sampling strategy inherent to diffu-
sion models, our approach significantly reduces the inference time. Through comprehensive
evaluation on the IU-Xray andMIMIC-CXR benchmarks, our approach outperforms autore-
gressive models in inference speed while maintaining high quality, offering a significant
advancement in automating radiology report generation task.

Keywords Radiology report generation · Diffusion model · Lesion feature extraction ·
Medical knowledge graph

1 Introduction

In contemporary clinical settings, radiology images are pivotal in diagnosing many condi-
tions, such as pneumonia and pneumothorax. Typically, interpreting these images and the
subsequent composition of examination reports demands a substantial investment of time
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from skilled medical practitioners, imposing a considerable workload. The automation of
radiology report generation emerges as a promising solution to mitigate this challenge. Con-
sequently, this task has garnered significant attention from the research community in recent
years [1–6].

Early works in radiology report generation primarily extend from image captioning tech-
niques, which produce textual descriptions conditioned on the given image. Notably, [7]
leveraged CNNs for feature extraction and HRNNs [8] for report generation, while CMAS
[4] employed dual RNNs to enhance sentence accuracy in reports. However, radiology report
generation presents unique challenges compared to image captioning due to significant biases
in visual and textual data [2, 9]. Radiology images pose difficulties in highlighting small,
critical areas like lesions. This necessitates incorporating prior knowledge for better lesion
detection. To address this, Zhang et al. [1] introduced a knowledge graph to assist in finding
relationships among chest normal or disease keywords and emphasize disease terms. More-
over, recent works [10–12] have applied contrastive learning to enhance representations of
visual abnormal regions and textual disease keywords, which have departed from traditional
image captioning approaches.

However, all these works are based on autoregressive models, which generate sentences
token by token suffering from unsatisfactory inference speed as illustrated in the top part of
Fig. 1 and sequential error accumulation [13]. To address the issues, researchers have begun
to explore the utilization of non-autoregressive (NAR) architectures in the text generation
task. NAT [14] firstly proposes the non-autoregressive transformer in the machine translation
task and generates the entire output sequence in parallel, thereby improving generation speed
and efficiency. COLD [15] proposed a decoding method that relaxes the discrete language
model outputs to continuous variables and backpropagates gradient information from the
right context. However, these NAR methods exhibit limited scalability and pose challenges
in integrating prior knowledge, with evidence suggesting their inadequacy for comprehensive
language modeling [16].

Diffusion model [17] is impressive in their generative quality and versatility in image
generation. In text generation, it enables the parallel generation of all tokens as shown in the
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Fig. 1 Difference of the autoregressive decoder and diffusion model in radiology report generation
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bottom part of Fig. 1. Some progress has been made in improving diffusion models for text
generation. Diffusion-LM [18] and Diffuseq [19] take continuous text representations (e.g.,
word embeddings or hidden states) as training targets and conduct diffusion processes in the
corresponding latent space. Besides, Diffusion models also exhibit excellent scalability to
facilitate the integration of cross-modal information. Liu et al. [20] connects image space and
text space by using a lightweight mapping network as prior knowledge. Furthermore, in the
generative process, employing sampling methods at timesteps can significantly accelerate
the inference speed. Thus, exploring the application of diffusion models in radiology report
generation is of value.

In this paper, we propose a radiology report generation method based on the diffusion
model (DMR2G), breaking the previous paradigm that relied on the autoregression framework
for the radiology report generation task.We introduce prior knowledge to augment the quality
of generated reports and employ the DDIM [21] method to reduce sampling timesteps,
thereby expediting the inference speed. Leveraging the scalability of the diffusion model, we
design the graph-guided image feature extractor, which is grounded in the general radiology
knowledge graph. This extractor utilizes the prior knowledge embedded within the pre-
construct graph to aid in the identification of abnormal regions within the image. We also
propose the auxiliary lesion classification loss as a supervisory signal, employing pseudo
labels to align image abnormal region features and textual disease keywords. We evaluate
our method on two benchmarks, IU-Xray [22] and MIMIC-CXR [23]. During the inference
process, our model outperforms most autoregressive-based models in inference speed while
maintaining comparable report generation quality. In summary, our main contributions are
as follows:

• We propose an innovative method based on the diffusion model for radiology report
generation, exploring a new framework for this task.

• We design the graph-guided feature extractor to integrate prior knowledge and utilize the
auxiliary lesion classification loss to enhance the visual-textual alignment.

• We apply accelerated sampling strategies to greatly accelerate the inference speed while
maintaining the accuracy of report generation at a comparable level.

2 Related work

2.1 Image captioning

Image captioning aims to generate human-like sentences to describe a given image. This task
[24, 25] is considered a high-level visual understanding problem that combines the research of
computer vision and natural language processing. Early models [25–28] use a visual encoder
to extract visual features and apply recurrent neural network as decoder for caption generation.
Later on, attention-based methods have been proposed to capture multimodal alignment [29–
31] and perform object-relational reasoning [32, 33]. Besides, researchers have explored to
leverage semantic attributes [34–37] and scene graphs [38] for captioning. These approaches
mainly adopt the encoder-decoder framework and have demonstrated a great improvement
in some traditional image captioning benchmarks. However, rather than only generating one
single sentence, radiology report generation aims to generate a long paragraph,which consists
of multiple structural sentences with each one focusing on a specific medical observation for
a specific region in the radiology image.
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2.2 Radiology report generation

Writing a radiology report can be time-consuming and tedious for experienced radiologists,
and error-prone for un-experienced radiologists. Most previous works [3, 4, 7] attempt to
adopt an HRNN to automatically generate a fluent report. However, due to the serious data
deviation, these models are poor at finding visual groundings and are biased towards gener-
ating plausible but general reports without prominent abnormal narratives. Recently, some
approaches [1, 2, 5, 6] have been proposed to alleviate data deviation. HRGR-Agent [2] pro-
posed a hybrid model using template retrieval and text generation, focusing on the generated
normal and abnormal sentences to enhance the model’s ability to describe abnormalities.
Additionally, ASGK [9] introduces the medical graph to enhance the understanding of the
relationships among lesions. Additionally, with the rise of large languagemodels, researchers
have explored their integration into radiology report generation. Notable works, [39, 40] have
demonstrated that these models help mitigate the problems associated with data deviation
and can generate more nuanced and informative narratives. Consequently, we also design
corresponding modules to incorporate medical prior knowledge.

2.3 Diffusionmodel for text generation

Existing generative models like GAN [41] and VAE [42] have problems such as training
instability, mode collapsing. While solving these problems, diffusion models have state-of-
the-art sample quality in many tasks [43–45]. DDPM [17] proposed a parameterized Markov
chain trained by variational inference. However it is not the diffusion model’s nature to deal
with discrete data, some works have been proposed to tackle this problem, and ARDMs [46]
introduced a new model at the intersection of autoregressive models and discrete diffusion
models. Analog bits [47] represented the discrete data as binary bits and used a continuous
diffusion model to model these bits. Diffusion-LM [18] transferred tokens to continuous
embedding representations and modeled them with continuous diffusion models. Further-
more, DiffCap [48] explores a continuous diffusion model on image captioning tasks. The
diffusion model offers the benefits of consistent training stability and high-quality genera-
tion in many tasks. Therefore, we further explore the new framework based on continuous
diffusion model for radiology report generation.

3 Methodology

In this section, we provide a detailed introduction to the proposed diffusion-based framework
for radiology report generation shown in Fig. 2. To make this paper self-contained, we first
offer an overview of diffusion model and the method for accelerated sampling to improve the
model’s inference speed in Section 3.1. In Section 3.2, we introduce the proposed framework
to use the diffusion model for radiology report generation. Then we describe the graph-
guided image feature extractor in Section 3.3, which is utilized to integrate pathological prior
knowledge. Finally, we present the abnormality classification loss to enhance the alignment
between pathological region features in images and lesion entity keywords in Section 3.4.

3.1 Preliminaries

Diffusion model The diffusion model is a generative model that simulates the process of
gradually adding noise to data, and then learning to reverse this process to generate new
samples.
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Fig. 2 The framework of DMR2G. (a)We propose a radiology report generationmethod based on the diffusion
model, breaking the previous paradigm that relied on the autoregression framework (Section 3.2). During the
diffusion process, we employ the denoising decoder to facilitate the interaction between the predicted noise
and the extracted image features to generate the next report embedding. (b) We design the graph-guided image
feature extractor, which is grounded in the general radiology knowledge graph (Section 3.3). (c) We also
propose the auxiliary lesion classification loss as a supervisory signal, employing pseudo labels to align image
abnormal region features and textual disease keywords (Section 3.4)

A Markov chain mathematically describes the forward process, where each step adds a
small amount of Gaussian noise, following a predefined schedule. At each time step t ∈
{1, 2, . . . , T } , a noise sample zt is sampled from q(zt |zt−1) = N (zt ;√

1 − βtzt−1, βt I),
where βt control the noise added at time step t . When T is large enough, a real-world sample
will gradually and ultimately diffuse to a standard Gaussian noise distribution. The forward
process is typically characterized by its simplicity and tractability, as it transforms the data
into a noisy distribution that is easy to sample from a Gaussian distribution:

q(zt |z0) = N (zt ;
√

ᾱtz0, (1 − ᾱt )I), (1)

where αt = 1 − βt and ᾱt = ∏t
s=1 αs .

For the reverse process, the diffusion model uses a learned parameterized denoising
distribution zt−1 ∼ pθ (zt−1|zt ) to recover samples from noise gradually. The denoising
distribution is parameterized by θ to fit the posterior distribution q(zt−1|zt , z0) of the for-
ward process. q(zt−1|zt , z0) can be derived as:

q(zt−1|zt , z0) = N (zt−1; μ̃(z0, zt ), β̃t I), (2)
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where μ̃(z0, zt ) =
√

ᾱt−1βt
1−ᾱt

z0 +
√

αt (1−ᾱt−1)

1−ᾱt
zt , and β̃t = 1−ᾱt−1

1−ᾱt
βt . With learned denoising

distribution pθ , a synthetic real-world sample z0 can be generated from pure random noise
zT step-by-step.

The primary objective of the loss function in diffusion models is to guide the reverse
process in accurately recovering the original data from its noised version. One common
formulation of the loss function in diffusion models is based on optimizing the Variational
Lower Bound (VLB). A specific instantiation of the VLB optimization is the mean squared
error (MSE) loss between the actual noise added to the data in the forward process and the
noise predicted by the model in the reverse process. This MSE loss can be mathematically
represented as follows:

Lsimple(z0) =
T∑

t=1

Eq(zt |z0)||μθ(zt , t) − μ̃(zt , z0)||2. (3)

Sampling strategy DDIMs [21], an implicit generative model trained with denoising auto-
encoding score matching objectives. DDIM can generate high-quality samples much more
efficiently than existingDDPMs [17] andNCSNs [49], with the ability to performmeaningful
interpolations from the latent space. In generative process, we can generate a sample zt−1

from a sample zt by [21]:

zt−1 = √
αt−1(

zt − √
1 − αtε

(t)
θ (zt )√

αt
) +

√
1 − αt−1 − σ 2

t · ε
(t)
θ (zt ) + σtεt . (4)

When σt = √
(1 − αt−1)/(1 − αt )

√
1 − αt/αt−1 for all t , the forward process becomes

Markovian, and the generative process becomes a DDPM. Therefore, we downsample the
generative process from 1000 to 200, which greatly speeds up our report generation algorithm
without hurting sample quality.

3.2 Radiology report generation based on diffusionmodel

The task of radiology report generation necessitates that the model crafts an accurate diag-
nostic reportR = {w1, w2, ..., wN } of length N based on the provided radiographic images
I radio. Contrary to most previous approaches that employ autoregressive frameworks, which
suffer from unsatisfactory inference speed and sequential error accumulation [13], our work
utilizes diffusion models for this task. This process begins with noise that has been randomly
sampled. Conditioned on the extracted features of radiographic images, it incrementally con-
verts these random noises into the words that comprise radiology reports through a denoising
process.

To tame diffusionmodels for a better text generator, we firstly extend continuous diffusion
models to text with a discrete categorical nature, following the Diffusion-LM [18]. For a
given radiology report, we map the discrete words to vectors {v1, v2, ..., vN } in continuous
semantic space using an embedding function vi = gφ(wi ), where vi ∈ R

d and φ represents
the parameters of the embedding function. The inverse process involves mapping vectors v

back to tokens w by selecting the most probable word at each position donated as p̃(w|z0).
To enhance convergence of the generated z0 towards a single word, we adopt the strategy

from Diffusion-LM [18] by shifting from noise prediction to z0 prediction. We employ a
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modified loss function for the joint optimization of the diffusion model and word embedding
function parameters to facilitate end-to-end training:

Lsimple(w) =Eqφ(z0,h Î ,w)[
T∑

t=2

Eq(zt |z0)||z0θ (zt , h Î , t) − z0||2+

||μ̃(zT , z0)||2 + ||z0θ (z1, h Î , 1) − gφ(w)||2 − log p̃(w|z0)],
(5)

where zθ is the denoising transformer, h Î is the feature of radiology image.

3.3 Graph-guided image feature extractor

Unlike conventional images, radiology images exhibit a greater similarity in appearance
due to the imaging methods and human tissues themselves, and the areas of pathology are
small and difficult to discern. Therefore, we employ prior medical knowledge to improve the
extraction of features from radiology images.
Radiology image encoder Given a radiology image I ∈ R

H×W×C , we firstly use the pre-
trained medical visual encoder of MedClip [50] to extract the image features, where H , W ,
and C are the height, width, and number of channels of the image. Specifically, the image is
initially split into patches with the shape of P × P , which are then flattened into sequences
of length S, where

√
S = H/P = W/P . After that, L Img transformer blocks are employed

to extract features from the image, where one encoding layer can be articulated as:

h̄lI = LN(MHA(hlI ) + hlI ), (6)

hl+1
I = LN(FFN(h̄lI ) + h̄lI ), (7)

where hlI ∈ R
S×d is the input of the l-th layer. FFN and LNdenote the Feed ForwardNetwork

[51] and Layer Normalization operation [52]. MHA [51] is multi-head attention. The image
features outputted by the image encoder are denoted as hI .
Medical graph encoder The chest knowledge graph Gmed proposed in [1] has been widely
integrated with radiology report generation systems to enhance the understanding of the
relationships among pathologies. Gmed consists of 27 entities and a root node referring to
the global feature and an adjacency matrix Aadj = {ei j } to represent the edges. Each node is
a disease keyword and we set ei j to 1 when source node ni connects target node n j . Nodes
linked to the same organ or tissue are connected and the root. Then we adopt pre-trained
BERT [53] to initialize each entity and represent them as h1G ∈ R

27×d . We employ Lgrp

transformer blocks to encode the features of the knowledge graph:

h̄lG = LN(RSA(hlG , Aadj) + hlG), (8)

hl+1
G = LN(FFN(h̄lG) + h̄lG). (9)

The relational self-attention (RSA) module is employed to integrate the structural graph
information into the model. Specifically, the adjacency matrix, denoted as Aadj, functions
as a visibility mask within the standard self-attention mechanism. This ensures that a node
influences only its directly connected nodes, thereby reinforcing their interconnections.
Graph attention The graph attention aims to integrate knowledge from Gmed with visual
features. Following Liu et al. [54], we utilize Lcrs cross-attention blocks to achieve this goal.
The whole process can be written as follows:

h̄l
Î

= LN(CA(hl
Î
, hG) + hl

Î
), (10)
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hl+1
Î

= LN(FFN(h̄l
Î
) + h̄l

Î
). (11)

In each cross attention head, Query comes from visual features hl
Î
, where h1

Î
= hI . Key and

Value come from the learned graph representations hG .

3.4 Auxiliary lesion classification loss

Accurately categorizing pathology based on radiology image features is paramount in radi-
ology report generation. To enhance the modeling of pathological features within radiology
images, we introduce an auxiliary lesion classification loss that leverages constructed cate-
gory information. Specifically, we utilize CheXbert [55] to generate a pseudo label for each
image-text pair according to the radiology report R which can then be formulated as:

{y1, y2, · · · , yi , · · · , yNLC} = flab(R), (12)

where the result is an one-hot vector and yi ∈ {0, 1} is the prediction result for i-th category.
Note that the value of one indicates that category’s existence, NLC = 14 is the number of
categories, and flab denotes the automatic radiology report labeler.

Then we apply mean pooling to the output of the graph-guided image feature extractor h Î ,

yielding h̃ Î ∈ R
d . Subsequently, a linear classification head Fcls is utilized to conduct multi-

label binary classification, after which a sigmoid function is applied to obtain the predicted
probabilities, denoted as

ŷ = Sigmoid(Fcls(h̃ Î )). (13)

The auxiliary lesion classification is computed by the binary cross entropy (BCE):

LALC = 1

NLC

NLC∑

i=1

BCE(ŷi , yi ). (14)

Finally, the model is jointly trained using both LALC and Lsimple(w), culminating in a final
loss function denoted as:

Lfinal = Lsimple(w) + LALC. (15)

4 Experiments

4.1 Datasets and evaluationmetrics

Datasets We conduct experiments on two widely-used benchmarks for radiology report
generation: IU-Xray [22] from Indiana University and MIMIC-CXR [23] from Beth Israel
Deaconess Medical Center. The former dataset is a relatively small dataset with 7470 chest
X-ray images and 3955 corresponding reports, the latter one is the largest public radiology
dataset with 473057 chest X-ray images and 206563 reports. Following the experiment
settings from previous studies [2, 5, 54], we exclusively focus on generating the findings
section, while omitting samples lacking this section within both datasets. Specifically, for
the IU-Xray dataset, we use the same split as stated in [5] and for MIMIC-CXR we adopt its
official split. Table 1 shows the statistics of bath datasets in terms of the numbers of images,
reports, patients, and the average length of reports with respect to training/validation/test set.
EvaluationmetricsFollowing previousworks [5, 56, 57],we employ thewidely-used natural
language generation (NLG)metrics to evaluate the quality of the generated radiology reports.
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Table 1 The statistics of two
benchmark datasets w.r.t their
training, validation test sets,
including the numbers of images,
reports, and patients, and the
averaged word-based length
(AVG. LEN.) of reports

DATASET IU-Xray MIMIC-CXR
TRAIN VAL TEST TRAIN VAL TEST

IMAGE 5.2K 0.7K 1.5K 369.0K 3.0K 5.2K

REPORT 2.8K 0.4K 0.8K 222.8K 1.8K 3.3K

PATIENT 2.8K 0.4K 0.8K 64.6K 0.5K 0.3K

AVG. LEN. 37.6 36.8 33.6 53.0 53.1 66.4

We adopt the standard evaluation protocol to calculate the captioning metrics: BLEU [58],
ROUGE-L [59] and CIDEr [60].

4.2 Implementation details

We utilize a BART [61] structure as the denoising decoder, initialized randomly, and incor-
porated a modification where the causal attention mechanism is replaced with conventional
self-attention. In the graph-guided image feature extractor, we use the pretrained MedClip
[50] as the radiology image encoder.We employ the pretrainedBERT [53] to encode the nodes
within medical graphs. For training our method, We set the diffusion embedding dimension
to 128 and the maximum diffusion step T to 1000. We use the sqrt schedule from Diffu-
sionLM [18] to initialize the adaptive time schedule with a learning rate of 10e-4 with 10000
warm-up step and a linearly-decreasing schedule. The proposed adaptive noise schedule is
updated every 10000 training steps for IU-Xray and 20000 for MIMIC-CXR. During the
generative process, we utilize 200 inference steps and explore maximum Bayes risk (MBR)
decoding [62] to select the best sample. We trained our model on 2 NVIDIA 3090 Ti GPUs
and evaluated the performance on 1 NVIDIA 3090 Ti GPU.

4.3 Main results

We compare DMR2G with a wide range of existing state-of-the-art autoregressive methods
on two benchmarks. R2Gen [5] and R2GenCMN [63] have been widely used a baseline
MRG model recently. PPKED [54] and MET [57] are proposed to integrate medical knowl-
edgewith typicalMRGbackbones. XProNet [56] utilize cross-modal prototypes to record the
information.Moreover, we also compare the semi-autoregressive (Semi-AR) andNARmeth-
ods. SATIC [64] keeps the autoregressive property in global but generates words parallelly
in local. CMAL [65] utilize a multi-agent reinforcement learning system to cooperatively
maximize a sentence-level reward. In addition, we compare the inference speed with some
methods that have publicly released code.

Given that the prevailing paradigm adopts an autoregressive framework, we categorize
autoregressive models into a single group for comparative analysis, while Semi-AR and
NAR models are categorized into one group for comparison. As shown in Table 2, the pro-
posed DMR2G demonstrates comparable report quality to that of previous state-of-the-art
autoregressive models on both datasets but with a noticeable speedup. In detail, it outper-
forms classic image captioning methods such as Att2In [66] in terms of both performance
and inference speed. DMR2G also achieves considerable performances over autoregressive
models such as R2Gen [5] while maintaining an approximately 3.64× speed advantage on
the IU-Xray dataset and 7.37× speed advantage on the MIMIC-CXR dataset. Compared to
the non-autoregressive models, our method strikes a better balance between performance
and speed. In summary, our proposed method demonstrates a superior balance between
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Table 2 Performance of our proposedDMR2G and other state-of-the-art methods on the IU-Xray andMIMIC-
CXR datasets

IU-Xray [22]
Methods Pattern B-1 B-2 B-3 B-4 R-L C Latency Speedup

Att2In [66] AR 0.248 0.134 0.116 0.091 0.309 0.215 256 ms 0.55×
R2Gen [5] 0.470 0.304 0.219 0.165 0.371 0.398 142 ms 1.00×
PPKED [54] 0.483 0.315 0.224 0.168 0.376 0.351 – –

R2GenCMN [63] 0.474 0.302 0.220 0.168 0.370 – 64 ms 2.22×
XProNet [56] 0.463 0.301 0.210 0.156 0.359 – 61 ms 2.33 ×
MET [57] 0.483 0.322 0.228 0.172 0.380 0.435 – –

SATIC [64] Semi-AR 0.424 0.286 0.169 0.145 0.337 0.349 137 ms 1.04×
DSA-Transformer [67] 0.466 0.303 0.219 0.166 0.372 0.391 117 ms 1.21×
CMAL [65] NAR 0.232 0.116 0.101 0.083 0.286 0.198 96 ms 1.48×
DMR2G (Ours) 0.465 0.293 0.202 0.146 0.360 0.381 39 ms 3.64×

MIMIC-CXR [23]

Methods Pattern B-1 B-2 B-3 B-4 R-L C Latency Speedup

Att2In [66] AR 0.314 0.198 0.133 0.095 0.264 0.106 – –

R2Gen [5] 0.353 0.218 0.145 0.103 0.277 0.253 435 ms 1.00×
PPKED [54] 0.360 0.224 0.149 0.106 0.284 0.237 – –

R2GenCMN [63] 0.353 0.218 0.148 0.106 0.278 – 131 ms 3.32×
XProNet [56] 0.344 0.215 0.146 0.105 0.279 – 112 ms 3.88×
MET [57] 0.386 0.250 0.169 0.124 0.291 0.362 – –

SATIC [64] Semi-AR 0.364 0.208 0.133 0.089 0.266 0.248 401 ms 1.08×
DSA-Transformer [67] – – – – – – – –

DMR2G (Ours) NAR 0.373 0.217 0.136 0.099 0.267 0.262 59 ms 7.37×
A higher value denotes better performance in all columns. The best score is highlighted in bold

performance and inference speed compared to other autoregressive or non-autoregressive
approaches.

4.4 Ablation study

To fully investigate the contribution of our proposed graph-guided image feature extractor,
auxiliary lesion classification loss, and different inference steps, we perform ablation exper-
iments on both datasets. Our base model only keeps the transformer structure and employs
the diffusion model with 200 inference steps. The experimental results are shown in Table 3.
Effectiveness of graph-guided image feature extractor For the graph-guided image feature
extractor, we remove the graph-guided image feature extractor (GIFE)module and only retain
the radiology image encoder to extract image features. The medical graph encoder utilizes
prior knowledge to aid in the identification of abnormal regions within the image. As shown
in Table 3, when removing theGIFEmodule, ourmodel has a significant performance drop on
both IU-Xray andMIMIC-CXR datasets, especially in CIDEr score. The results demonstrate
that the graph can enhance the understanding of the relationships among pathologies and
facilitate a more precise extraction of image features.
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Table 3 The experimental results
of ablation studies on the IU-Xray
and MIMIC-CXR datasets

IU-Xray B-1 B-2 B-3 B-4 R-L C

w/o ALCL 0.441 0.279 0.192 0.139 0.356 0.333

w/o GIFE 0.454 0.282 0.188 0.129 0.348 0.246

DDIM 50 Steps 0.416 0.255 0.169 0.119 0.349 0.295

DMR2G 0.465 0.293 0.202 0.146 0.360 0.381

MIMIC-CXR B-1 B-2 B-3 B-4 R-L C

w/o ALCL 0.353 0.201 0.125 0.091 0.248 0.249

w/o GIFE 0.362 0.226 0.132 0.095 0.256 0.211

DDIM 50 Steps 0.342 0.199 0.123 0.082 0.250 0.245

DMR2G 0.373 0.217 0.136 0.099 0.267 0.262

The best values are highlighted in bold

Effectiveness of auxiliary lesion classification loss We remove the auxiliary lesion classi-
fication loss (ALCL) that augments the modeling of pathological features within radiology
images. As a supervisory signal, the loss employs pseudo labels to align image abnormal
region features and textual disease keywords. In the absence of this particular module, as
shown in Table 3, the BLEU-1 scores decline from 0.465 to 0.441 and from 0.373 to 0.353 in
both datasets, respectively. The results demonstrate the effectiveness of the auxiliary lesion
classification loss.
Effectiveness of less inference stepsDuring the generative process, we reduce the inference
steps from 200 to 50. The reduction in inference steps inherently leads to expedited infer-
ence speed. Conversely, the diminished inference steps engender challenges in ensuring the
predicted text representation can be accurately mapped back to discrete words. As shown
in Table 3, the performance metrics demonstrate a comprehensive decline when employing
50 inference steps. Consequently, we opt to utilize 200 inference steps to achieve a more
favorable equilibrium between performance and speed.

4.5 Case study

To further investigate the effectiveness of our method, we perform qualitative analysis on
MIMIC-CXR [23] with their ground truth, XProNet [56], and generate reports from different
models. As we can see in Fig. 3, DMR2G is able to generate descriptions aligned with those
written by radiologists with similar contents. For the autoregressive framework, XProNet

Radiology Image : as compared to the previous
radiograph there is no relevant change. the monitoring
and support devices are constant. low lung volumes
borderline size of the cardiac silhouette. mild
pulmonary edema. moderate retrocardiac atelectasis.
no evidence of pneumonia.

: as compared to the previous radiograph
there is no relevant change. the monitoring and
support devices are in unchanged position. the
monitoring and support devices are constant.
unchanged appearance of the cardiac silhouette. no
pleural effusions

: as compared to the previous radiograph
there is no relevant change. the monitoring and
support devices are constant. the lung volumes are
low borderline size of the cardiac silhouette with mild
pulmonary edema. no evidence of pneumonia.

: as compared to the previous radiograph there
is no relevant change. the monitoring and support devices are in
unchanged position. a right-sided pigtail catheter has increased in
size compared to the prior study. low lung volumes are constant
with unchanged appearance of complications. mild tortuosity of the
thoracic aorta. no evidence of pneumonia. unchanged size of the
cardiac silhouette.

: as compared to the previous radiograph there is no
relevant change. the monitoring and support devices are in
constant position. no pleural effusions. no pneumonia at the lung
bases.

: as compared to the previous radiograph there is no
relevant change. the monitoring and support devices are constant.
there has been placement of right internal jugular central venous
catheter remains in position with the tip tube which is
approximately 5 cm above the carina and approximately 3 cm. no
evidence of pneumonia.

Fig. 3 Illustrations of the reports generated by different models for one sample from MIMIC-CXR [23]. For
better visualization, different colors indicate different symptoms
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suffers from sequential error accumulation [13] leading to generating the duplicate sentences,
as highlighted in the blue-marked sentences of the result. In contrast, our method does not
suffer from this issue.

In addition, this case serves as a qualitative analysis of the ablation experiments. For exam-
ple, following the exclusion of themedical graph, DMR2G exhibits a diminished interrelation
amongmedical entities, thereby leading to instances where associated entities fail to co-occur
concurrently. The exclusion of the abnormal classification loss within DMR2G attenuates the
concordance between abnormal regions in images and their corresponding pathological enti-
ties, potentially introducing bias into the process of report generation. When we use fewer
sampling steps for the model to generate reports, the fewer sampling steps lead to a decrease
in the quality of the generation.

5 Conclusion

In this paper, we present DMR2G, a novel framework based on diffusionmodels for radiology
report generation. We propose the graph-guided image feature extractor that utilizes the prior
knowledge embedded within the pre-construct graph to aid in the identification of abnormal
regions within the image. Additionally, we also propose the auxiliary lesion classification
loss to align image abnormal region features and textual disease keyword representations
by employing pseudo labels. Through the utilization of the accelerated sampling strategy
inherent to diffusion models, our method effectively mitigates the constraints inherent in
conventional autoregressive models. Experimental results on the IU-Xray and MIMIC-CXR
datasets demonstrate that our proposed method achieves a better trade-off between perfor-
mance and inference speed than other approaches.
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