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Abstract
The transformer architecture has consistently achieved cutting-edge performance in the task
of 2D to 3D lifting human pose estimation. Despite advances in transformer-based meth-
ods they still suffer from issues related to sequential data processing, addressing depth
ambiguity, and effective handling of sensitive noisy data. As a result, transformer encoders
encounter difficulties in precisely estimating human positions. To solve this problem, a novel
multi-transformer encoder with a multiple-hypothesis aggregation (MHAFormer) module
is proposed in this study. To do this, a diffusion module is first introduced that generates
multiple 3D pose hypotheses and gradually distributes Gaussian noise to ground truth 3D
poses. Subsequently, the denoiser is employed within the diffusion module to restore the fea-
sible 3D poses by leveraging the information from the 2D keypoints. Moreover, we propose
the multiple-hypothesis aggregation with a join-level reprojection (MHAJR) approach that
redesigns the 3Dhypotheses into the 2Dposition and selects the optimal hypothesis by consid-
ering reprojection errors. In particular, the multiple-hypothesis aggregation approach tackles
depth ambiguity and sequential data processing by considering various possible poses and
combining their strengths for a more accurate final estimation. Next, we present the improved
spatial-temporal transformers encoder that can help to improve the accuracy and reduce the
ambiguity of 3Dpose estimation by explicitlymodeling the spatial and temporal relationships
between different body joints. Specifically, the temporal-transformer encoder introduces the
temporal constriction & proliferation (TCP) attention mechanism and the feature aggrega-
tion refinement module (FAR) into the refined temporal constriction & proliferation (RTCP)
transformer, which enhances intra-block temporal modeling and further refines inter-block
feature interaction. Finally, the superiority of the proposed approach is demonstrated through
comparison with existing methods using the Human3.6M and MPI-INF-3DHP benchmark
datasets.
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1 Introduction

Thefield of 3Dhuman pose estimation is a computer vision task that aims to focus on inferring
the 3D positions of human body joints from images or videos [1–5]. It has achieved con-
siderable attention in recent decades due to its pivotal role in diverse applications, including
virtual reality, action recognition, and human-robot interaction. This task can be categorized
into two primary approaches: the end-to-end approach and the lifting-based approach. The
end-to-end approach performs a direct regression of 3D coordinates from RGB images. In
contrast, lifting approaches employ a two-stage pipeline where the initial stage extracts 2D
keypoints, and the subsequent stage lifts the 2D coordinates into 3D space. Nowadays, sev-
eral cutting-edge approaches embrace the 2D to 3D lifting-based techniques. In this study,
we adopt the lifting-based approach due to its capacity to utilize well-established and precise
2D pose detectors, which simplifies the process of inferring 3D human posture from eas-
ily accessible 2D keypoint annotations. Despite leveraging the robust efficiency of 2D pose
detectors, the 2D-to-3D lifting approach remains a complex challenge due to the intrinsic lack
of depth ambiguity, occlusion, deformation, and sensitive noisy data in 2D representations.
To tackle these challenges, the field of human pose estimation has witnessed the development
of techniques, with convolutional neural networks and transformer-based approaches playing
a pivotal role.

Recently, convolutional neural networks (CNN) have gained significant attention among
researchers due to their ability to automatically learn features, and capture spatial relation-
ships, which makes them well-suited for 3D human pose estimation. In recent times, various
CNN-based approaches [6–10] have emerged to address the challenges associatedwith occlu-
sion and depth ambiguity in pose estimation. In this regard, the authors in [6] have presented
a graph convolutional networks (GCN) based spatio-temporal approach, which effectively
tackles the problemof the 3Dhuman body and 3Dhand pose estimation from a short sequence
of 2D joint detections. In addition, the authors in [7] have proposed an attentionalmechanism,
which enhances accuracy and overcomes the occlusion problem efficiently by emphasizing
informative regions in the input data. In reference [8], the authors have provided graph atten-
tion with spatio-temporal CNN architecture, which utilized the graph attention mechanisms
to model intricate spatio-temporal relationships among body joints. This approach plays a
vital role in improving the understanding of complex dependencies to achieve accurate pose
estimation. Additionally, the authors in [9] have embedded the hierarchical poselet-guided
graph convolutional network (HP-GCN), which utilizes graph convolutional networks to cap-
ture spatial and structural connections between body joints, which leads to enhanced pose
estimation, especially when dealing with occluded scenarios. Moreover, the authors in [10]
have introduced a higher-order regular splitting graph network (RS-Net) for 2D-to-3D human
pose estimation, which aims to capture long-range dependencies between body joints using a
multi-hop neighborhoods approach. Despite CNN-based methods improving accuracy, they
still face challenges in effectively handling self-occlusion and long-range dependencies. In
response to these concerns, transformer-based methods excel by proficiently modeling the
long-range dependencies among body joints.
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On the other hand, transformer-based methods outperform CNN approaches in 3D human
pose estimation due to their ability to capture long-range dependencies and complex relation-
ships among body joints. They demonstrate proficiency in modeling global dependencies,
efficiently managing self-occlusion, and providing a strong framework for temporal model-
ing.Many researchers have recently focusedon transformer-based approaches [11–15]. In this
context, the authors of [11] have proposed the PoseFormer technique, which develops an effi-
cient spatio-temporal transformer technique to decode complex local relationships between
joints in each frame and capture global dependencies across the entire sequence.Nevertheless,
the PoseFormer approach encounters challenges in efficiently managing intricate temporal
dependencies across long sequences. To tackle this, the authors in [12] have introduced a novel
MixSTE (Mix Spatio-Temporal Encoder) module, which significantly improves the compu-
tational efficiency and effectiveness of capturing temporal dependencies in 3D human pose
estimation. Following this, the MixSTE method has been effectively designed with an inno-
vative seq2seq technique to grasp the overall consistency among sequences, which improves
accuracy in the reconstruction of poses.However, theMixSTE’s inability tomodel long-range
dependencies and capture spatial context leads to inaccurate pose estimation, especially
for complex poses and noisy environments. To address these challenges, MHFormer [13]
leverages multi-head attention and a hierarchical structure. The multi-head attention allows
MHFormer to attend to different parts of the input sequence simultaneously, which helps it
model long-range dependencies. Subsequently, the hierarchical structure allows MHFormer
to learn different representations of the spatial relationships between tokens at different lev-
els of granularity, which helps it capture spatial context. Consequently, the MHFormer can
produce more realistic 3D poses by modeling long-range dependencies and capturing spatial
context, especially for challenging postures and obstructed limbs. However, the MHFormer
encounters a notable challenge by conceptualizing the human body as a unified structure
without explicitly describing the connections between different body parts. This approach
limits its capability to represent relationships specific to individual body parts. To leverage
this problem, the authors of [14] have introduced the part-aware attention module, which
employs a part-aware embedding to encode the association of each joint with its correspond-
ing body part and utilizes a part-aware attention mechanism to learn distinct representations
of spatial relationships between joints located in different body parts. Part-aware attention
primarily focuses on capturing dependencies between joints belonging to the same part, mak-
ing it challenging to effectively capture long-range dependencies between joints located in
different body parts. To address this limitation, a strided transformer architecture [15] has
been proposed, which enhances the receptive field by allowing joints from various body
parts to attend to each other. This is achieved through the use of multiple strided attention
layers, each having a different stride, enabling the model to capture long-range dependencies
between joints located in different parts of the body. In this study, we leverage a transformer-
based architecture as our baseline model for 3D human pose estimation due to the strong
capability of modeling sequential data.

The 3D human pose estimation is typically divided into 2 categories: deterministic and
probabilistic methods. The deterministic methods [11, 12] aim to provide a specific out-
put, which is used to directly predict the keypoint locations in the 3D space. Moreover, the
deterministic methods are known for their speed and efficiency, making them suitable for
real-time applications. However, they may struggle with depth ambiguities or uncertainties
in the image, leading to less accurate results in complex scenarios. In contrast, the proba-
bilistic methods [13, 16] denote the 2D to 3D lifting approaches, which generate multiple
potential outcomes for each image. This approach facilitates handling uncertainties and ambi-
guities inherent in the lifting technique. Furthermore, existing probabilistic approaches use
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generative adversarial networks [17] to predict the multiple 3D hypotheses. Even though
these methods yield multiple 3D hypotheses, real-time applications still require individual
3D poses. Despite significant advancements, these approaches still face challenges in accu-
rately capturing intricate spatial relationships and dependencies during the pose estimation
process, resulting in suboptimal outcomes in specific scenarios. To address these issues, we
proposed the diffusion model and multiple hypothesis aggregation with a join-level reproject
approach. This study focuses on the probabilistic method, offering customizable parameters
for the number of hypotheses and iterations. This flexibility enables the generation of the
final feasible 3D pose.

Specifically, the diffusion model with a multiple hypothesis aggregation approach strug-
gles to fully exploit temporal information, which lacks short-range and long-range temporal
dependencies in themotion sequences. To solve this problem,we integrated the temporal con-
striction and proliferation (TCP) transformer with the feature aggregation refinement (FAR)
module, which effectively handles the short-range and long-range temporal dependencies
problems. Additionally, the TCP and FAR modules reduce computational complexity by
streamlining temporal feature processing. The TCP mechanism prioritizes crucial temporal
aspects, reducing unnecessary computations by focusing on relevant interactions. The FAR
module enhances feature aggregation by emphasizing significant features and minimizing
redundancies. Thesemodules enhance efficiency andmaintain accuracy in temporalmodeling
while significantly reducing the computational load. To the best of the author’s knowledge,
this is the first approach to utilize the TCP and FAR modules in the diffusion method via the
temporal transformer encoder (TTE) mechanism. Motivated by the above discussions, this
study aims to present a novel multi-transformer encoder with multiple-hypothesis aggrega-
tion (MHAFormer) via diffusionmodel for 3D human pose estimation. Themain contribution
of the proposed approach is described as follows:

1. A diffusion model is presented to produce multiple 3D hypotheses, which gradually
distributes Gaussian noise to ground truth 3D poses. Following this, the denoiser is
employed within the diffusion module to effectively restore the feasible 3D poses by
leveraging the information from the 2D keypoints.

2. A multiple-hypothesis aggregation with a joint-level reprojection (MHAJR) approach
is proposed, which redesigns the 3D hypotheses into the 2D position and selects the
optimal hypothesis by considering reprojection errors. Specifically, the selected opti-
mal hypothesis is integrated into the final 3D position to enhance the accuracy of the
prediction.

3. The proposedRTCP transformer integrates the spatial-temporal encoders with a temporal
constriction and proliferation (TCP) structure to enhance intra-block temporal modeling
and expose multi-scale attention information. This approach effectively captures both
short-range and long-range temporal dependencies in motion sequences, leading to more
accurate 3D pose predictions.

4. The feature aggregation refinement (FAR)module is introduced in the RTCP transformer
to optimize feature fusion. This is achieved by employing two TCP attention blocks that
facilitate interaction among queries, keys, and values. Specifically, the TCP attention
mechanism plays a crucial role in enhancing feature fusion within the transformer net-
work.

5. Extensive experiments are conducted on the benchmark datasets Human3.6M and MPI-
INF-3DHP, demonstrating the superiority of our proposed method over other state-of-
the-art approaches.
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2 Related works

In this division, we present a brief overview of human pose estimation. First, we analyze
the 3D human pose estimation in Section 2.1. Next, we describe the graph convolutional
networks-based approaches in Section 2.2. Finally, we explore transformer-based architec-
tures in Section 2.3.

2.1 3D human pose estimation

In recent years, 3D human pose estimation has emerged as a pivotal role in computer vision,
which involves analyzing images from either a single or multiple perspectives. In the context
of 3D human pose estimation, the main objective is to accurately determine the positions
of human body joints in images or videos. To achieve this objective, numerous techniques
such as one-stage detectors and two-stage detectors have been developed to enable the clas-
sification of human poses. The one-stage detectors perform end-to-end learning by directly
predicting 3D body joint coordinates from raw image data [18] and the two-stage detectors
involve two intermediate steps. During the initial stage, we calculate 2D keypoints based
on the input image. In the subsequent stage, we leverage the relationships between 2D and
3D human pose to transform the initially estimated 2D keypoints into corresponding 3D
positions. Due to the progress in dependable 2D detection, recent 2D-to-3D lifting meth-
ods [19–22] have demonstrated superior performance compared to end-to-end approaches.
For example, the authors in [19] introduced the concept of pose grammar to encode human
body configuration for 3D pose estimation, leading to more accurate and robust pose estima-
tion. Further, the authors proposed a novel multi-view and temporal fusing transformer [20]
(MTF-Transformer), which effectively integrates multiple viewpoints and temporal infor-
mation through a novel attention mechanism and a temporal fusion transformer to estimate
accurate 3D poses under diverse capture conditions. Additionally, the authors utilized the
CV-UGCNs [21] approach to effectively capture the spatial arrangements and cross-view
relationships within 3D human poses, which enabled the network to learn and enforce struc-
tural consistency across multiple viewpoints, leading to more accurate and realistic pose
estimation. Moreover, the authors designed TP-LSTM [22], a deep learning architecture
that effectively utilizes temporal information, which captures the dynamic nature of human
motion by incorporating long-range temporal dependencies, enabling them to generate more
accurate and consistent pose estimates over time. Taking inspiration from the aforementioned
discussion, we exploit a two-stage pipeline for 3D pose estimation because it is a widely used
and effective approach that consistently outperforms single-stage methods.

2.2 Graph convolutional networks-based approaches

Graph convolutional networks (GCNs) have become a dominant paradigm in the field of 3D
human pose estimation. This innovative method employs the inherent skeletal structure of
the human body, which is represented as a graph to enhance the accuracy and robustness of
pose predictions. In recent times, several methods [23–25] have employed the graph convolu-
tional neural network architecture to demonstrate their efficiency in 3D pose estimation. The
authors in [23] have presented the modulated-graph convolutional network (MGCN), which
employs the affinity modulation technique to enhance the model’s ability to capture complex
relationships between body joints. In addition, the relation-balanced graph convolutional
network (RBGC-Net) [24] method has introduced the local-global feature fusion technique,
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which extracts local relationships between neighboring joints while balancing them with
global relationships, improving interactions between joints and leading to more accurate
estimations. Specifically, the authors in [25] have proposed the Graph-MLP approach, which
integrates graph convolutional networkswithin themulti-layer perceptron (MLP) framework.
This design aims to capture both local spatial interactions between joints and global connec-
tivity information encoded in the human skeleton. The incorporation of GCNs enriches the
feature representation, leading to more accurate pose estimation. Even though GCN-based
approaches have demonstrated superior performance, it is difficult to capture long-range
dependencies across the entire body. This limitation may lead to challenges in understand-
ing complex body postures and the global interactions within the body. To address these
problems, the transformer-based approach leverages the self-attention technique to obtain
long-range relationships and a global context more effectively.

2.3 Transformer-based architectures

The computer vision community has increasingly focused on the transformer model [26–29],
which stands out for its robust global self-attention mechanism. The self-attention technique
has ignited impactful research endeavors within the expansive domain of computer vision
[11–13, 30–32]. Initially, the authors in [30] have introduced the ViTmethod, which employs
a pure transformer architecture directly on sequences of image patches, showcasing its ability
to achieve state-of-the-art performance in image classification tasks. In addition, the authors
in [32] have proposed the P-STMO approach that utilizes theMLP block as the spatial feature
extractor, which proves more effective than transformer or fully connected layers in terms
of capturing spatial relationships between joints. Subsequently, the temporal downsampling
strategy reduces data redundancy and increases the temporal receptive field, allowing the
model to learn long-range temporal dependencies with less computational cost. In [31], the
authors have presented the PoseFormerV2 method, which effectively integrates the Time &
Frequency domain features using the hybrid-attention mechanism to capture detailed infor-
mation within each frame. Specifically, the authors in [13] have proposed the MHFormer
that can effectively learn spatio-temporal representations of multiple pose hypotheses in
an end-to-end manner. This approach utilizes the cross-hypothesis communication strategy,
which combines features frommultiple hypotheses to generate an accurate 3D pose. Inspired
by the above analysis, we presented the multiple-hypothesis aggregation (MHA) method to
accurately predict the 3D position.

3 Proposedmethod and implementation

3.1 Multiple hypothesis aggregation withmulti-transformer encoder module

Initially, a diffusion model designed to generate multiple 3D hypotheses from a single 2D
observation is presented. Following this, the refined temporal constriction and prolifera-
tion transformer is proposed, which combines the spatial-transformer encoder (STE) and
temporal-transformer encoder (TTE). In the context of the TTE method, we specifically
introduced two modules: the temporal constriction & proliferation, and feature aggregation
refinement module. The TCPmodule employs key and value refinement to enhance the trans-
former’s capabilities and expose multi-scale attention information. Subsequently, the FAR
module is specifically designed to integrate spatial and semantic information across neigh-
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boring temporal encoders using a cross-attention mechanism, which enhances the model’s
capacity and learns inter-block temporal dynamics (Fig. 2). Finally, we present the MHAJR
approach in the diffusion model, which aims to aggregate multiple hypotheses to produce an
accurate 3D position. The overall architecture of our proposed method is illustrated in Fig.
1. Generally, each frame of the input video is treated as a token in the transformer and repre-
sented as X ∈ R

B×J×F×2, where B denotes the batch size, J denotes the number of joints, F
signifies the frames and 2 represents the 2D coordinates of the input sequence, respectively.
In addition, the noisy 3D pose is defined as Yt ∈ R

B×J×F×3. Specifically, the transformer’s
input combines both the 2D keypoints X and the noisy 3D poses Yt affected by Gaussian
noise. Moreover, the spatial and temporal transformers are utilized to iteratively capture
both spatio-temporal information within the input sequence. The input token size reshaped
as Zs ∈ R

(B×F)×J×C and Zt ∈ R
(B×J )×F×C , where C denotes the channel size. During

the model training phase, the transformer encoder processes input data denoted as Zs and
Zt . Subsequently, the denoise model utilizes the acquired knowledge from the transformer
network to generate precise 3D poses, which are represented as ˜Y0 ∈ R

B×J×F×3.

3.1.1 3D human pose evaluation via diffusion model

In this section, we initially examine the diffusion model [33–35], comprising both the diffu-
sion module and the reverse module. In the beginning stage, the diffusion module gradually
diffuses the Gaussian noise to the ground truth 3D poses and the reverse module employs
the denoiser to recover the unstructured 3D poses. The detailed architecture of the diffusion
model is illustrated in Fig. 3.

DiffusionmoduleThe diffusionmoduleQ produces the contaminated samplesY1,Y2, ...,

YT by applying multiple levels of noise � ∼ N (0, I ) to the ground truth 3D pose Y0 at each
timestep t ∈ [0, T ], where, T signifies the maximum timestep. Specifically, the diffusion
module Q is defined as follows:

Q(Y1:T | Y0) :=
T
∏

t=1

Q(Yt | Yt−1), (1)

Q(Yt | Yt−1) := N (Yt ;
√

1 − ϒtYt−1, ϒt I ), (2)

2D Pose Sequence

Noisy 3D Sequence

Input Sequence

⊕
Final 3D Pose Estimation

Positional Embedding

Timestep Embedding

Temporal Transformer Encoder

TCP Attention Mechanism

FAR Module

RTCP Block

Denoiser Block

MHAJR Module

Diffusion Model

Diffusion Block

Spatial Transformer Encoder

Fig. 1 Theoverall architecture of the proposedMHAFormermethod. Initially, the input is formedbycombining
the 2D and 3D noisy sequences. Subsequently, the input sequences undergo processing in the proposedmethod
section. The presented method contains of three main components: spatial transformer encoder, temporal
transformer encoder, and denoiser. The comprehensive diagram of the spatio-temporal transformer encoders
and diffusion model is illustrated in Figs. 2 and 3. Finally, we predicted the 3D pose sequences
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Fig. 2 The schematic diagram of the spatial and refined temporal constriction and proliferation (RTCP) trans-
formers. The spatial transformer block is exhibited in Section 1. The temporal transformer block is illustrated
in Section 2. Subsequently, we presented the temporal constriction and proliferation (TCP) transformer block
and feature aggregation refinement (FAR) module in Sections 2.1 and 2.2. The network is constructed by
stacking TCP blocks to facilitate the extraction of multi-scale information through attention. Additionally, the
FAR module is introduced to fuse inter-block information and combine the keys and values for the feature
aggregation to boost the transformer’s ability

where ϒt denotes the cosine noise variance and I indicates the identity matrix. Following
the DDPM method [36], we can reformulate (1) to achieve Yt from Y0 without the need for

Gaussian 
Noise

Gaussian 
Noise

Diffusion Process Reverse Process Reverse Process

: ,
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∈ [ , ]
∈ [ , ]

(a) Training (b) Inference
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Timestep
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Keypoints

: ,
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3D Pose

Noisy 3D 
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Feasible 
3D Pose

Noisy 3D 
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Ground Truth 
3D Pose

Feasible 
3D Pose

Multi-Hypothesis
3D Poses

Diffusion Model

Multiple
Hypothesis 

Aggregation

Final 3D Prediction

MHAJR Method
(Selected the 

Best 
Hypothesis)

Fig. 3 The overall diagram of the denoiser model, which consists of two main sections: (a) Training and (b)
Inference. (a) Training: we gradually distribute Gaussian noise to the ground truth Y0 to obtain the noisy
3D pose Yt . Next, the denoiser method utilizes the 2D keypoints X and timestep embedding t to restore the
feasible 3D pose ˜Y0. (b) Inference: we process the Gaussian noise to the ground truth 3D pose Y0:H ,0 to
obtain the noisy 3D poses Y0:H ,T . Then, we produce the multiple 3D hypotheses ˜Y0:MH,0 by using the
denoiser model. Subsequently, the iterative process is employed K times to enhance the final pose. This is
achieved by passing the generated hypotheses with varying levels of noise Y0:H ,t into the denoiser model
during each iteration. In the end, the final 3D pose ˜Y0:H ,0 is selected by the utilization of a multiple-hypothesis
aggregation technique
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iteration.

Q(Yt | Y0) := N (Yt ;
√

�̄tY0, (1 − �̄t )I ),

:=
√

�̄tY0 + �

√

1 − �̄t , � ∼ N (0, I ), (3)

where �̄t = ∏t
s=0 �s , �t = 1 − ϒt and � indicates the Gaussian noise.

Reverse module As illustrated in Fig. 3, the reverse module is designed to reconstruct a
plausible 3D posture ˜Y0 from the noisy 3D postureYt . In this scenario, we directly predict the
feasible 3D pose through a learned transformer network D, which is formulated as follows:

˜Y0 = D(Yt ,X , t), (4)

L = EYt , t[
∥

∥Y0 − ˜Y0
∥

∥

2
2]. (5)

Transformer network Unlike the existing approaches [16, 37], our works leverage the
novel transformer-based network as our backbone denoted as D, which consists of the STE
and TTE methods. Specifically, the TTE employs the TCP and FAR modules to obtain
multi-scale information. This additional information is added into the denoiser model D
(Transformer network), which helps to reduce uncertainty and produce more accurate 3D
poses. Additionally, the comprehensive information on STE, TTE, TCP, and FAR modules
is exhibited in Sections 3.1.2, 3.1.3, 3.1.4, and 3.1.6. Moreover, we leverage the MHAJR
approach in the diffusion model, which aggregates the multiple hypotheses and selects the
optimal hypotheses by considering the shortest distance in terms of reprojection error. In
Subsection 3.1.7, we explained the more information about the MHAJR method. Following
this, the diffusion model is primarily divided into two key segments: Training and Inference.

Training As illustrated in Fig. 3 (Left), the Gaussian noise � ∼ N (0, I ) is diffused to
the ground truth 3D posture Y0 to obtain the corrupted posture Yt .

Q(Yt | Y0) =
√

�̄tY0 + �

√

1 − �̄t . (6)

Afterward, Yt is forwarded to a denoiser D, which aims to reconstruct the 3D pose ˜Y0

without the presence of noise.

˜Y0 = D(Yt ,X , t), (7)

where X denotes the 2D keypoints and t indicates the timestep. The overall framework is
carried out through a mean squared error (MSE) loss.

L = ∥

∥Y0 − ˜Y0
∥

∥

2
2 . (8)

Inference:The noisy 3D hypothesisY0:H ,T is obtained through samplingGaussian noise.
As illustrated in Fig. 3 (Right), themultiple 3Dhypothesis is predicted by processing noisy 3D
hypotheses Y0:H ,T to the denoiser model. Subsequently, the iterative process is employed K
times to refine the final pose, which is achieved by passing the generated hypothesesY0:MH,0

with varying levels of noiseY0:H ,t into the denoiser model during each iteration using DDIM
[38] technique. The process is defined as follows:

Y0:H .t ′ =
√

�̄t ′ .Y0:MH,0 +
√

1 − �̄t ′ − σ 2
t .�t + σt�, (9)

where t denotes the present timestep and t ′ represents the next timestep. Moreover, the
timestep is expressed as follows: t = T .( 1−k

K ), where k ∈ [0, K ). Following this, �t and σt
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are defined as follows:

�t = (Y0:H ,t −
√

�̄t .Y0:MH,0)/

√

1 − �̄t , (10)

σt =
√

(1 − �̄t ′)/(1 − �̄t ).

√

1 − �̄t/�̄t ′ , (11)

where �t indicates the Gaussian noise at the tth timestep, which is obtained from (6) and
σt is a stochastic diffusion process. Specifically, the feasible 3D pose ˜Y0:H ,0 is estimated by
passing the noisy 3D pose Y0:H .t ′ to the denoiser model with 2D keypoints X . The denoising
process is defined as follows:

˜Y0:H ,0 = D(Y0:H .t ′ ,X , t). (12)

Conditional 2D keypointsOur main objective is to predict 3D pose hypotheses based on
2D keypoints, utilizing the noisy 3D poses represented as Y0:H :t in the denoising process.
Nevertheless, the input of the noisy 3D poses is insufficient for predicting plausible 3D poses.
Therefore, we employed the 2D keypoints X as an additional input to the denoiser, which
enhances the denoising process. Moreover, we deploy various strategies to fuse 2D keypoints
detectors & noisy 3D poses, including concatenation, cross-attention, and many other meth-
ods. Notably, we directly utilize the concatenation technique to integrate the 2D keypoints
with noisy 3D poses and forward this combination as input to the denoiser. Furthermore, the
schematic diagram of the denoiser model is exhibited in Fig. 3.

Timestep embedding technique To adequately handle different levels of noise in 3D
poses, it is crucial to incorporate details regarding the current timestep denoted as t . This
timestep parameter signifies the frequency at which Gaussian noise is introduced, allowing
the denoiser to adapt and handle diverse noise levels across different timesteps. Following
the DDPM paradigm, we employ a sinusoidal functional to convert the t into a dedicated
embedding for specific timestep. This embedding is then incorporated into the input embed-
ding, following a similar approach to the integration of positional embeddings in transformer
models.

Hence, the proposed approach enables the flexibility for users to customize the number
of hypotheses (H) and iterations (K) according to their preferences. As a result, we can
generate multiple hypotheses, which gradually improve the final predictions throughout the
inference phase. Specifically, this approach resolves the issue of a fixed number of hypotheses
encountered in earlier methods [13, 39, 40].

3.1.2 Spatial transformer encoder

The spatial transformer encoder adeptly captures the inter-joint relationships within the
human skeleton for every frame. The joint matrix for each frame is considered as a spa-
tial attention token denoted by Zs ∈ R

(B×F)×J×C . The tokens are subsequently integrated
with a spatial position matrix Es ∈ R

(B×F)×J×C and introduced into the key components
of the transformer model such as multi-layer perceptron and multi-head self-attention, as
explained in [26]. The dimensions of the tokens remain constant after the feature extraction
by the spatial transformer encoder. This process is defined as follows:

˜ST (Zs) = Zs + MSA (Zs) , (13)

ST (Zs) = ˜ST (Zs) + MLP
(

˜ST (Zs)
)

.

The spatial position encoding Es is embedded into the Zs .MSA(·) and MLP(·).
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3.1.3 Temporal transformer encoder

The temporal transformer encoder utilizes the feature aggregation refinement (FAR) module,
which analyzes the trajectory of each joint across input frames and leverages the attention
mechanisms to capture multi-scale information, enhancing the understanding of joint move-
ments. The joints are segmented into separate tokens Zt ∈ R

(B×J )×F×C in the temporal
encoder. Afterward, a temporal positional encoding Et ∈ R

(B×J )×F×C is embedded to the
input token before being passed into TTE. The process is formulated as follows:

˜TT (Zt ) = Zt + FAR (Zt−1, Zt ) , (14)

TT (Zt ) = ˜TT (Zt ) + MLP
(

˜TT (Zt )
)

.

In (14), FAR(·) denotes the feature aggregation refinement module, which receives the
input tokens from both the current temporal block Zt and the previous temporal block Zt−1.
Specifically, the FAR module is employed to aggregate features within the attention block,
facilitating the learning of more comprehensive information.

3.1.4 Temporal constriction & proliferation attention module

To enhance the comprehensive extraction of information from the self-attention layer, we
introduce a temporal constriction and proliferation attention block, which aims to investi-
gate the multi-scale information inherent in keys K ∈ R

n×d and values V ∈ R
n×d . The

dimensionality of queries Q ∈ R
n×d is maintained, whereas the keys and values undergo

processing across multiple stages. This approach enables the attention matrix to learn multi-
scale information while preserving consistent temporal resolution. As shown in Fig. 2, the
TCP block progressively compresses both K and V. The sequence length of K and V is
systematically reduced by sampling ratio (r) at each stage.

3.1.5 TCP attention block with keys & values

The TCP attention module has shown its effectiveness in various tasks by reducing redun-
dancy and capturing high-level semantic information while preserving low-level details. To
achieve more refined representations for keys and values, we utilize the temporal constriction
and proliferation network to augment intra-block exploration. Given an input feature vector
z ∈ R

n×d with a sequence length n and channel dimension d , the TCP attention block gen-
erates an output feature vector with the same dimensions. The U-shaped temporal attention
operation is denoted as TCP(·). It can be expressed as follows:

z0down = z, zl+1
down = σ

(

LN
(

Fdown

(

zldown

)))

, (15)

z0up = zmdown , zl+1
up = σ

(

LN
(

Fup

(

zlup
)))

+ zm−1−l
down ,

where σ(·) denotes the activation function, LN(·) represents the LayerNorm layer, andFdown

and Fup denote the constriction and proliferation functions, respectively. zldown ∈ R

n
rl×d

indicates the constrictions process and zlup ∈ R

n
rm−l ×d signifies the proliferation process,

l ∈ [0, 1, . . . ,m − 1] is the index of the sampling stage, and TCP(z) = zmup ∈ R
n×d denotes

the final output. As shown in Fig. 2 (2.1), the TCP block constricts and amplifies the feature
z through m stages.
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The integration of constriction and proliferation attention block for keys and values enables
the extraction of more refined representations from the data. The constriction process facili-
tates information distillation, reducing noise levels, while the proliferation process restores
the lost information and integrates it with higher-level features. The direct utilization of keys
and values may expose the model to vulnerability to data noise, which leads to degradation
of model performance. Therefore, the TCP block serves as a robust and efficient method for
refining key and value representations, leading to an enhancement in the overall performance
of the model.

3.1.6 Feature aggregation refinement module

The feature aggregation refinement module plays a crucial role in enhancing the accuracy
and robustness of human pose estimation models, which are designed to refine and integrate
information across different layers of the neural network architecture. In a recent study,
the Deformable ConvNets [41] analysis has demonstrated the remarkable effectiveness of
aggregating features from neighboring layers in merging spatial information and semantics.
However, the exploration of this feature aggregation method in transformer architectures
has not been fully realized. In this research, we proposed a novel transformer network that
utilizes feature aggregation modules to improve spatial-temporal semantics. This is attained
by stacking numerous cross-layer feature modules in the FAR approach. The overall diagram
of the FAR module is exhibited in Fig. 2 (2.2). Each module is built with two neighboring
spatial-temporal encoders that aggregate features from two temporal transformer blocks.

The proposed FAR module employs the interaction between queries, keys, and values
across two temporal constriction and proliferation attention blocks within neighboring STEs.
This design seamlessly extends feature fusion to the transformer network by leveraging the
attention scheme effectively. Additionally, the cross-layer attention operation is denoted by
FAR(·). This process is formulated as follows:

FAR = Attn (Zt−1, Zt ) , (16)

= Attn
(

Qt , K
′, V ′) ,

= Softmax

(

Qt K ′�
√
d

)

V ′,

K ′ = Concat (Kt ,F (Kt−1)) ,

V ′ = Concat (Vt ,F (Vt−1)) .

The latent features of the previous block are denoted as Zt−1, and the current block
represents Zt , respectively. Zt can be transformed into query, key, and value representations
using distinct weight matrices. Qt , Kt , and Vt represent the query, key, and value from the
second TTE. Kt−1 and Vt−1 denote the keys and values from the first TTE and K ′ and
V ′ are derived through cross-layer attention using the (16), where, Concat represents the
concatenation operation, F denotes the adaptive pooling applied to Kt−1 and Vt−1 from the
first TTE. Both Kt , Vt , and Kt−1, Vt−1 are processed after the temporal constriction and
proliferation attention block.

3.1.7 Multiple hypothesis aggregation via join level reprojection approach

Initially, the previous probabilistic 3D pose estimation approach [39] mainly focused on
generating the 3D hypotheses, which aggregate multiple hypotheses to obtain the optimal

123



Multimedia Tools and Applications

final 3D pose. These probabilistic methods typically emphasize superiority by reporting
the error corresponding with the best 3D hypothesis (nearest to the ground truth 3D pose).
However, the probabilistic method is not appropriate for real-time scenarios when there is
a lack of accessible ground truth values. Consequently, the final prediction is obtained from
the averaged 3D pose, showcasing a performance that is notably less impressive than the
best result. A couple of studies [40, 42] explore various techniques for aggregating multiple
hypotheses, which demonstrate their superior effectiveness over averaging when tested on
videos recorded in real-world settings. Moreover, these investigations fail to demonstrate a
relation between 3D predictions & 2D observations. Therefore, additional enhancements are
required to obtain more precise outcomes.

To address these concerns, we initially verified the maximum efficiency of aggregation
approaches at two tiers by selecting the optimal hypothesis that demonstrates the nearest
proximity to the ground truth. During the initial phase, the pose-level selection method is
employed to choose the most favorable pose for the final result. In the second stage, the joint-
level selection process identifies the optimal joints, which are subsequently integrated into
the final prediction. Hence, the joint-level selection outperforms pose-level selection in terms
of accuracy in pose estimation. Specifically, this study employed joint-level selection, which
allows the model to adapt more effectively to variations in body movements and enhance
the overall performance of pose estimation. More precisely, the model leverages input 2D
keypoints to guide the selection of the most probable 3D hypothesis ˜Y0. Subsequently, the
final prediction is determined by the maximum posterior probabilityQ(˜Y0|X , ˜Y0:H ,0) during
the inference process. Despite the absence of depth information for 3D poses, 2D keypoints
adeptly indicate potential locations of human joints in 3D space. Therefore, 2D keypoints
remain pivotal in the context of aggregating multiple hypotheses.

Inspired by the aforementioned discussion, we propose multiple hypothesis aggregation
via the join-level reprojection (MHAJR) approach, which is exhibited in Fig. 4. We employ
the estimated intrinsic camera parameters to project the 3D hypotheses ˜Y0:H :0 into the 2D
pose. Following that, we compute the distance between the input 2D keypoints and multiple
hypotheses and select the optimal hypothesis by considering the shortest distance in terms
of reprojection error. This approach enables the selection of specific hypotheses for different

Predicted Best HypothesisGround truth Shortest Distance

Reprojection

2D Position
2D Keypoints

Left Foot

Right Hand3D Prediction

Fig. 4 The overall architecture of the multiple hypotheses aggregation via joint-level reprojection (MHAJR)
method. The MHAJR approach reprojected the 3D pose hypotheses into the 2D poses and we compare each
joint with corresponding input 2D keypoints. Subsequently, we choose the optimal hypothesis with the shortest
distance to ground truth 3D poses. The dotted line denotes the predicted 3D hypotheses, we selected the best
hypothesis that achieved the most joints closest to the ground truth, and the solid blue line indicates ground
truth 3D postures
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joints, which combines all the selected joints to formulate the final prediction ˜Y0. This process
is defined as follows:

˜Y(i)
0 = ˜Y(i)

h′,0, h′ = argmin
h∈[0,H ]

∥

∥

∥P
(

˜Y(i)
h,0

)

− X (i)
∥

∥

∥

2
, (17)

where i denotes the joint index and P(·) represents the reprojection method.

4 Experimental results and analysis

4.1 Dataset and evaluationmetrics

The presented approach is estimated on two challenging benchmark datasets Human3.6M
[43] and MPI-INF-3DHP [44]. The Human3.6M dataset, the largest publicly available
resource for 3D human pose estimation, encompasses 3.6 million images obtained from
a setup of 4 synchronized cameras operating at a frequency of 50 Hz. Specifically, seven
professional subjects are involved in performing 15 daily activities, including main tasks
such as “Waiting," “Smoking," and “Posing." Following the established protocol from prior
studies [10, 11, 13] the training set consists of five subjects (S1, S5, S6, S7, S8), while the
evaluation set involves two subjects (S9 and S11). The MPIINF-3DHP contains both indoor
and outdoor environmental datasets, involving more diverse motions than Human3.6M.

The experiments employ two standard evaluation protocols. Initially, theMPJPEquantifies
the average Euclidean distance between the predicted joint pose and their corresponding
ground truth pose. This protocol is commonly represented as protocol-1 in various studies
[10, 11]. Subsequently, the P-MPJPE is a metric used to evaluate the accuracy of 3D pose
estimation models. It provides a measure of how well the estimated poses align with the
ground truth, considering both translation and rotation. This specific protocol is commonly
denoted as protocol-2 in the relevant literature [12, 13].

4.2 Implementation details

In this work, we implemented the proposed MHAFormer using the PyTorch framework and
our experiments were performed on GeForce RTX 4090 GPU. In addition, we employed
the 2D keypoints obtained from a 2D pose detector [45] to evaluate the effectiveness of our
method. Moreover, the model was trained using the Adam optimizer, and we established
the batch size, dropout rate, and activation function at 1024, 0.1, and GELU, respectively.
Following the approach demonstrated by [12], we defined the input sequence length as 243
for the Human3.6M dataset and 27 for the MPI-INF-3DHP dataset. In the training phase,
both the hypotheses (H ) and iterations (K ) start with an initial value of 1. In the inference
phase, these values are adjusted to 20 for hypotheses and 10 for iterations. The maximum
timestep value T is defined as 1000.

4.3 Human3.6M dataset evaluation

We compare the proposed approach with different cutting-edge deterministic approaches
on the Human3.6M dataset as exhibited in Table 1 (Top). As illustrated in Tables 1 and 2,
the most favorable results were reported by different approaches, showcasing their effi-
ciency under the MPJPE and P-MPJPE metrics with cascaded pyramid network (CPN)
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input, respectively. Furthermore, the qualitative evaluation results of our proposed method
on testing sequences (S9 & S11) of the Human3.6M dataset are exhibited in Figs. 5 and
6. Moreover, we utilize the 2D pose detectors obtained through the widely-used CPN
[45] and ground truths as inputs for training. Specifically, our proposed MHAFormer
method obtains superior performance of 40.2% and 32.0% under the MPJPE and P-MPJPE
metrics. When compared to transformer-based methods such as PoseFormer, MixSTE, STR-
Former,HDFormer, andMSTFormer, our proposed approach shows improvements inMPJPE
values by (4.1%, 0.7%, 0.8%, 2.4%, 2.5%) under protocol-1 and in P-MPJPE values by
(2.6%, 0.6%, 0.4%, 1.1%, 1.7%) under protocol-2.

As illustrated in Table 1 (Bottom), the proposed approach is compared with other
probabilistic methods. The results are presented according to four specified experimental
conditions:

P-Agg: The pose-level aggregation method represents the most straightforward approach,
where the 3D coordinates of each joint are averaged across all pose hypotheses.

J-Agg (Proposed): We utilize the joint-level aggregation approach (MHAJR) to obtain
the final prediction, which individually aggregates results for each joint and improves the 3D
pose accuracy.

P-Best :This approach entails selecting the single-pose hypothesiswith the highest overall
score, representing the 3D posture that closely aligns with the ground truth.

J-Best (Proposed): We adopt the optimal joint-level approach, selecting the hypothesis
nearest to the ground truth and integrating the selected joints to construct the final 3D pose.

Moreover, compared with transformer-based methods under P-Agg (H = 20) eval-
uation settings, our approach has a significant improvement over MHFormer (2.7mm),
MHFormer++ (2.2mm), EMHIFormer (N=81) (3.8mm), and EMHIFormer (N=351)
(2.5mm), respectively. Specifically. when increasing the hypothesis H(1 → 20) under the
P-Agg and P-Best levels, the proposedmethod doesn’t significantly improve the performance
(40.2mm → 40.3mm) and (40.2mm → 40.1mm). The outcome encourages us to propose

Fig. 5 Qualitative comparison results on Human3.6M dataset. We evaluated our proposed method using the
test set (S9 & S11) sequences such as posing and smoking. The dashed line represents multiple hypotheses
(H = 10), we selected the most suitable hypothesis by choosing the one with the minimum distance to the
2D input and the solid blue line indicates the ground-truth 3D pose

123



Multimedia Tools and Applications

Fig. 6 Qualitative evaluation results on Human3.6M dataset. We evaluated our suggested approach under
multiple hypotheses with different challenging test sets (S9 & S11) sequences. The dotted line denotes the
multiple hypotheses (H = 5), and the solid blue line represents the ground-truth 3D pose

a J-Best setting, which demonstrates a significant improvement (40.2 → 37.1mm). In par-
ticular, the best performance is attained when employing the J-Best setting, where specific
joints within the same hypothesis are evaluated. This observation encourages us to introduce
J-Agg (H = 20), aiming to exploit the distinctions at the joint level among hypotheses.
In contrast to P-Agg, the efficiency is improved under the J-Agg setting, demonstrating an
improvement from (40.3 → 40.0mm).

4.4 MPI-INF-3DHP dataset evaluation

To evaluate our proposed approach against state-of-the-art methods, we utilize the MPI-
INF-3DHP benchmark dataset and measure performance using PCK, AUC, and MPJPE
metrics. Also, the MPI-INF-3DHP dataset is a large collection of 3D human pose data,
including 1.3 million frames captured in a multi-camera studio with ground truth obtained
through commercial markerless motion capture. It presents various motions performed by
eight actors in both indoor and outdoor environments. In addition, the evaluation results are
illustrated in Table 3 and our proposed approach obtains the best results with PCK is 97.7%,
AUC is 76.9% and MPJPE is 31.5mm, particularly in the scenario of a single hypothesis
(H = 1). Moreover, when increasing the hypothesis H(1 → 20) under the P-Agg and
P-Best levels, our approach attains the second-best outcomes with PCK, AUC, and MPJPE
(98.0%, 77.0%& 31.3mm), and (98.0%, 77.2%& 30.6mm) respectively. Specifically, when
evaluating our proposed method performance under the J-Agg and J-Best (Proposed) levels,
we obtain the top results with PCK, AUC, and MPJPE (98.1%, 77.1% & 30.9mm), and
(98.3%, 78.4%& 29.2mm) respectively. Compared with transformer-based approaches such
as MHFormer, and MixSTE, our method obtains the best improvements in terms of PCK,
AUC, and MPJPE by (4.3%, 15.1% & 28.8mm) and (1.4%, 2.6% & 6.2mm) under the J-
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Table 3 Quantitative evaluation on the MPI-INF-3DHP dataset under three evaluation metrics

Methods PCK ↑ AUC ↑ MPJPE ↓
TCN [46] (N=81) CVPR’19 86.0 51.9 84.0

Anatomy [49] (N=81) TCSVT’21 87.9 54.0 78.8

PoseFormer [11] (N=9, H=3, P-Agg) ICCV’21 88.6 56.4 77.1

U-CDGCN [50] (N=96) MM’21 97.9 69.5 42.5

MHFormer [13] (N=27) CVPR’22 93.8 63.3 58.0

P-STMO [32] (N=81) ECCV’22 97.9 75.8 32.2

MixSTE [12] (N=243) CVPR’22 96.9 75.8 35.4

MHFormer++ [65] (N=9) PR’23 94.8 65.8 54.0

Uplift & Upsample [55] (N=81) WACV’23 97.9 75.8 32.2

EMHIFormer [66] (N=9) JVCIR’23 97.1 74.9 33.8

STRFormer [56] (N=27) IMAVIS’23 94.8 67.1 54.4

HDFormer [57] (N=32) arXiv’23 96.8 64.0 51.5

HSTFormer [58] (N=81) arXiv’23 97.3 71.5 41.4

JoyPose [59] PR’24 94.1 − −
DAF-DG [61] CVPR’24 92.9 60.7 63.1

GLA-GCN [62] (N=27) ICCV’23 98.1 76.5 31.3

MHAFormer (N=243, K=1, H=1) 97.7 76.9 31.5

MHAFormer (N=243, K=10, H=20, P-Agg) 98.0 77.0 31.3

MHAFormer (N=243, K=10, H=20, J-Agg) 98.1 77.1 30.9

MHAFormer (N=243, K=10, H=20, P-Best) 98.0 77.2 30.6

MHAFormer (N=243, K=10, H=20, J-Best) 98.3 78.4 29.2

The best and second-best results are highlighted in red and blue fonts, respectively

Best level. In the end, the proposed method achieves superior performance when compared
to the conventional methods under the single and multiple-hypotheses evaluation.

4.5 Ablation study

4.5.1 Component analysis

To validate the impact of each integrated element in our suggested model, we conducted a
thorough ablation analysis using the Human3.6M dataset under the MPJPEmetric within the
J-Agg and J-Best settings. In this work, we employ the MixSTE approach as our baseline
method. As shown in Table 4, the MixSTE approach obtained the 40.9mm MPJPE result.
Further, when integrating the diffusion module with our baseline method (MixSTE + Diffu-
sion), we achieve the 0.1mm improvement (40.9mm → 40.8mm) in the single-hypothesis
case. By leveraging a diffusion process, it effectively propagates information across the pose
sequence, ensuring smoother and more realistic transitions between frames. This leads to a
more robust handling of occlusions and ambiguities in the data. In addition, we observe a
0.2mm increment (40.8mm → 40.6mm) when incorporating the TCP module into our pro-
posed approach (MixSTE + Diffusion + TCP). The TCP structure is a key innovation in our
model, which dynamically adjusts the diffusion process based on temporal constraints and
feature proliferation, enabling more accurate modeling of time-dependent changes in data.
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Table 4 Ablation analysis on different proposed elements

MixSTE Diffusion TCP FAR MHAJR Hypothesis Setup MPJPE

✓ ✗ ✗ ✗ ✗ 1 Not Applicable 40.9

✓ ✓ ✗ ✗ ✗ 1 Not Applicable 40.8

✓ ✓ ✓ ✗ ✗ 1 Not Applicable 40.6

✓ ✓ ✓ ✓ ✗ 1 Not Applicable 40.5

✓ ✓ ✓ ✓ ✓ 1 P-Agg 40.4

✓ ✓ ✓ ✓ ✓ 20 P-Agg 40.3

✓ ✓ ✓ ✓ ✓ 20 J-Agg 40.0

✓ ✓ ✓ ✓ ✓ 20 J-Best 37.1

The evaluation is conducted on the Human3.6M dataset with the MPJPE metric under J-Agg and J-Best setup.
The results marked in red and blue denote the first & second-best outcomes, respectively

This approach adeptly captures both short-range and long-range temporal dependencies in
motion sequences, enhancing the accuracy of 3D pose predictions. By including the FAR
module in our proposed technique (MixSTE +Diffusion + TCP + FAR), we observe a 0.1mm
improvement (40.6mm → 40.5mm). The FAR module improves feature representation
by aggregating and refining spatial-temporal information. This process highlights essential
features and minimizes noise, leading to more accurate pose estimation and reduced compu-
tational overhead. Specifically, when incorporating the MHAJR approach into our proposed
method (MixSTE + Diffusion + TCP + FAR + MHAJR), we observe a (0.1mm) improve-
ment (40.5mm → 40.4mm) under the P-Agg setting in a single-hypothesis scenario. When
increasing the hypothesis H(1 → 20) into our proposed method, we can notice that 0.1mm
improvement (40.4mm → 40.3mm) under the P-Agg setting. In particular, our proposed
method attains the second-best results, with a (0.3mm) improvement (40.3mm → 40.0mm),
when evaluated under the J-Agg setting with 20 hypotheses. Significantly, we achieved the
most favorable results with a (2.9mm) improvement (40.0mm → 37.1mm) when assessing
the proposed method under the J-Best setting with 20 hypotheses. The MHAJR technique
allows the model to evaluate and aggregate multiple potential hypotheses, improving accu-
racy by considering various plausible solutions and minimizing reprojection errors. This
feature further refines pose estimation and enhances the robustness of the model. Moreover,
our ablation study has provided valuable insights into the effectiveness of individual com-
ponents within our proposed model. The experimental outcomes highlighted the importance
of different modules, including Diffusion, TCP, FAR, and MHAJR, playing crucial roles in
enhancing performance within specific contexts. Finally, under the J-Best setting with 20
hypotheses, we achieved the most substantial enhancement of (2.9mm), emphasizing the
effectiveness of our comprehensive approach in refining 3D pose estimation accuracy.

4.5.2 Hyperparameter analysis

We conducted a hyperparameter analysis of our proposed method, comparing it with cutting-
edge approaches using the Human3.6M dataset, as illustrated in Table 5. The proposed
MHAFormermethod outperforms existingmethods in terms ofMPJPE, particularly excelling
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Table 5 Ablation analysis of hyperparameter settings of our proposed method with cutting-edge approaches
on the Human3.6M dataset

Methods Hypotheses Iterations Params Infer. FPS MPJPE ↓
MixSTE 1 N/A 33.6 4547 40.9

P-STMO 1 N/A 6.7 3040 42.8

GraphMDN 5 N/A − − 61.3

PoseFormer 1 N/A 9.5 1952 44.3

MHFormer 3 N/A 24.7 − 43.0

MHFormer++ 1 N/A 18.92 − 42.5

MHAFormer 1 1 34.9 4050 40.2

MHAFormer 5 20 34.9 1564 40.0

MHAFormer 10 20 34.9 1134 37.1

with 10 hypotheses and 20 iterations to achieve an MPJPE of 37.1. This significant reduction
in error highlights the model’s accuracy and effectiveness.

1. With 1 hypothesis and 1 iteration: MHAFormer achieves an MPJPE of 40.2, which
outperforms most existing methods such as P-STMO, PoseFormer, MHFormer, and
MHFormer++.

2. With 5 hypotheses and 20 iterations: TheMPJPE improves slightly to 40.0, demonstrating
that increasing the number of hypotheses and iterations refines the accuracy.

3. With 10hypotheses and20 iterations:TheMPJPE significantly drops to 37.1, highlighting
the advantage of using more hypotheses and iterations for better joint position accuracy.

Despite having a parameter count (34.9 million) comparable to MixSTE (33.6 million),
MHAFormer performance in MPJPE shows its superior model efficiency and capability in
3D human pose estimation. The adaptability of MHAFormer, with varying hypotheses and
iterations, allows it to handle more complex scenarios effectively.

4.6 Qualitative results

In this section, we first analyze the proposed multiple hypotheses performance on the
Human3.6M dataset in Section 4.6.1. Subsequently, we conduct the comparison between
the suggested approach and cutting-edge methods in Section 4.6.2. Finally, we investigate
the performance of the proposed method using real-time videos in Section 4.6.3.

4.6.1 Qualitative comparison of Human3.6M dataset

Weconducted a qualitative comparison of our proposedmethodwithmultiple hypotheses and
ground truth 3D pose in the Human3.6M dataset. Also, we evaluated our proposedmethod on
Human3.6M test set (S9 & S11) sequences such as Sitting, Walking, Waiting, andWalkDog.
The qualitative comparison results are illustrated in Fig. 6. As shown in Fig. 6, the dotted
lines denote our proposed multiple hypotheses (H = 5), and the solid blue line represents
the ground truth 3D pose. Additionally, we conduct a qualitative evaluation of different
sequences, such as Posing and Smoking (Test set), within the Human3.6M dataset. Moreover,
the evaluation outcomes are exhibited in Fig. 5. In the case of qualitative comparison, we
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generated the 10 hypotheses and selected the best hypothesis using the reprojection error. As
shown in Fig. 5, the best-selected hypothesis indicates the solid red line that is nearest to the
ground truth 3D pose. Furthermore, the dotted lines in each sequence represent the multiple
hypotheses (H = 10) highlighted within the circled area.

4.6.2 Qualitative comparison of wild videos

We conduct a qualitative analysis of our proposed method, comparing it with competitive
approaches such as MHFormer, GraphMLP, MixSTE, and PoseFormer. This evaluation is
performed on challenging in-the-wild videos to demonstrate the effectiveness of our approach
in real-world scenarios. Further, the comparison results are illustrated in Fig. 7. The deviated
3D pose prediction is emphasized within a dotted black circle. Notably, the green circle
signifies locations where our approach demonstrates superior outcomes. Moreover, the 2D
detector CPN [45] is utilized to extract 2D poses, which are then fed into the models to
ensure a fair comparison. Despite the complicated actions and rapid motions, the suggested
approach excels in generating realistic and plausible 3D predictions that outperform previous
approaches.

4.6.3 Qualitative comparison of real-time videos

To demonstrate the effectiveness of our proposed approach, we carry out real-time experi-
ments using four video sequences. Each sequence showcases intricate and challenging poses,
providing a comprehensive evaluation of the proposed method’s performance across a range
of difficult scenarios. Also, the 2D and 3D pose prediction is illustrated in Fig. 8. Specif-
ically, the presence of the green circle mark signifies the superior outcomes demonstrated

Input Ours MHFormer GraphMLP MixSTE PoseFormer

Fig. 7 Qualitative evaluation is conducted on in-the-wild videos to compare the suggested approach with
cutting-edge methods such as MHFormer, GraphMLP, MixSTE, and PoseFormer. The correctly predicted
pose is marked with a green circle (proposed), whereas the incorrectly predicted pose is denoted by a black
circle
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Fig. 8 We conducted a real-time experiment to evaluate our proposed method on different challenging
sequences. The illustration of 2D and 3D pose estimation is showcased in the first and second columns.
The presence of green color circle marks illustrates the superior performance of our proposed method

by our proposed method. Moreover, the application of our proposed approach in real-world
scenarios has exhibited improved performance.

5 Conclusion

In this study, the multi-transformer encoder with a multiple-hypothesis aggregation method
has been proposed for 3D pose estimation. Initially, the diffusionmodel has been presented to
generatemultiple customizable 3D hypotheses, which ensured compatibility with our specifi-
cations. The diffusionmodule gradually diffuses Gaussian noise to ground truth 3D poses and
the reverse module employs the denoiser to recover the unstructured 3D poses. Subsequently,
the MHAJR approach has been proposed to aggregate the multiple 3D hypotheses and select
the optimal 3D hypothesis for the final prediction by considering reprojection errors. Specif-
ically, the proposed RTCP transformer has integrated the spatial & temporal encoders with a
temporal constriction and proliferation structure to enhance intra-block temporal modeling
and extract the multi-scale information. Moreover, the FAR module has been integrated into
the RTCP transformer to optimize feature fusion, which is achieved by employing two TCP
attention blocks that facilitate interaction among queries, keys, and values. Finally, the exten-
sive experimental results on the Human3.6M and MPI-INF-3DHP benchmark datasets have
demonstrated the superiority of the proposedmethod when compared to other state-of-the-art
approaches.

Acknowledgements This work was supported in part by the Basic Science Research Program under Grant
NRF -2016R1A6A1A03013567 and Grant NRF-2021R1A2B5B01001484 and by the framework of the Inter-
national Cooperation Program under Grant NRF-2022K2A9A2A06045121 through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education.

Author Contributions The author confirms responsibility for data collection, analysis and interpretation of
results, and manuscript preparation.

123



Multimedia Tools and Applications

Data Availability Data will be made available on request.

Declarations

Conflict of Interest The author declares that they have no conflict of interest.

References

1. Fan L, Jiang K, Zhou W, Gao Z, Luo Y (2024) 3d human pose estimation from video via multi-scale
multi-level spatial temporal features. Multimed Tools Appl 1–20

2. GuR, Jiang Z,WangG,McQuadeK,Hwang J-N (2022)Unsupervised universal hierarchicalmulti-person
3d pose estimation for natural scenes. Multimed Tools Appl 81(23):32883–32906

3. Liu Y, Cheng X, Ikenaga T (2024) Motion-aware and data-independent model based multi-view 3d pose
refinement for volleyball spike analysis. Multimed Tools Appl 83(8):22995–23018

4. Yan L, Ma S, Wang Q, Chen Y, Zhang X, Savakis A, Liu D (2022) Video captioning using global-local
representation. IEEE Transactions on Circuits and Systems for Video Technology 32(10):6642–6656

5. Yan L,Wang Q,Ma S,Wang J, Yu C (2022) Solve the puzzle of instance segmentation in videos: a weakly
supervised framework with spatio-temporal collaboration. IEEE Transactions on Circuits and Systems
for Video Technology 33(1):393–406

6. CaiY,GeL,Liu J,Cai J, ChamT-J,Yuan J, ThalmannNM(2019)Exploiting spatial-temporal relationships
for 3d pose estimation via graph convolutional networks. In: Proceedings of the IEEE/CVF international
conference on computer vision pp 2272–2281

7. Liu R, Shen J, Wang H, Chen C, Cheung S.-c, Asari V (2020) Attention mechanism exploits tempo-
ral contexts: real-time 3d human pose reconstruction. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp 5064–5073

8. Liu J, Rojas J, Li Y, Liang Z, Guan Y, Xi N, Zhu H (2021) A graph attention spatio-temporal convolutional
network for 3d human pose estimation in video. In: 2021 IEEE International conference on robotics and
automation (ICRA), IEEE, pp 3374–3380

9. Wu Y, Kong D, Wang S, Li J, Yin B (2022) Hpgcn: hierarchical poselet-guided graph convolutional
network for 3d pose estimation. Neurocomputing 487:243–256

10. Hassan MT, Ben Hamza A (2023) Regular splitting graph network for 3d human pose estimation. IEEE
Trans Image Process 32:4212–4222. https://doi.org/10.1109/TIP.2023.3275914

11. Zheng C, Zhu S, Mendieta M, Yang T, Chen C, Ding Z (2021) 3d human pose estimation with spatial and
temporal transformers. In: Proceedings of the IEEE/CVF international conference on computer vision
(ICCV), pp 11656–11665

12. Zhang J, Tu Z, Yang J, Chen Y, Yuan J (2022) Mixste: Seq2seq mixed spatio-temporal encoder for 3d
human pose estimation in video, in 2022 IEEE. In: CVF Conference on computer vision and pattern
recognition (CVPR), pp 13222–13232

13. Li W, Liu H, Tang H, Wang P, Van Gool L (2022) Mhformer: multi-hypothesis transformer for 3d human
pose estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 13147–13156

14. Xue Y, Chen J, Gu X, Ma H,Ma H (2022) Boosting monocular 3d human pose estimation with part aware
attention. IEEE Trans Image Process 31:4278–4291

15. LiW,LiuH,DingR, LiuM,WangP,YangW(2022) Exploiting temporal contextswith strided transformer
for 3d human pose estimation. IEEE Trans Multimed 25:1282–1293

16. Holmquist K,Wandt B (2023) Diffpose: Multi-hypothesis human pose estimation using diffusion models.
In: Proceedings of the IEEE/CVF international conference on computer vision, pp 15977–15987

17. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020)
Generative adversarial networks. Commun ACM 63(11):139–144

18. Ma X, Su J, Wang C, Ci H, Wang Y (2021) Context modeling in 3d human pose estimation: a unified
perspective. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp
6238–6247

19. Fang H-S, Xu Y, Wang W, Liu X, Zhu S-C (2018) Learning pose grammar to encode human body
configuration for 3d pose estimation. In: Proceedings of the AAAI conference on artificial intelligence,
vol 32

123

https://doi.org/10.1109/TIP.2023.3275914


Multimedia Tools and Applications

20. Shuai H, Wu L, Liu Q (2023) Adaptive multi-view and temporal fusing transformer for 3d human pose
estimation. IEEETrans PatternAnalMach Intell 45(4):4122–4135. https://doi.org/10.1109/TPAMI.2022.
3188716

21. Hua G, Liu H, Li W, Zhang Q, Ding R, Xu X (2023) Weakly-supervised 3d human pose estimation with
cross-view u-shaped graph convolutional network. IEEE Trans Multimed 25:1832–1843. https://doi.org/
10.1109/TMM.2022.3171102

22. Lee K, Kim W, Lee S (2023) From human pose similarity metric to 3d human pose estimator: Temporal
propagating lstm networks. IEEE Trans Pattern Anal Mach Intell 45(2):1781–1797. https://doi.org/10.
1109/TPAMI.2022.3164344

23. Zou Z, Tang W (2021) Modulated graph convolutional network for 3d human pose estimation. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp 11477–11487

24. Chen L, Liu Q (2023) Relation-balanced graph convolutional network for 3d human pose estimation.
Image Vision Comput 140:104841

25. Li W, Liu H, Guo T, Ding R, Tang H (2022) Graphmlp: a graph mlp-like architecture for 3d human pose
estimation. arXiv:2206.06420

26. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A.N, Kaiser Ł, Polosukhin I (2017)
Attention is all you need. Adv Neural Inf Process Syst

27. Cui Y, Yan L, Cao Z, Liu D (2021) Tf-blender: temporal feature blender for video object detection. In:
Proceedings of the IEEE/CVF international conference on computer vision, pp 8138–8147

28. Geng Z, Liang L, Ding T, Zharkov I (2022) Rstt: real-time spatial temporal transformer for space-time
video super-resolution. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp 17441–17451

29. Lu Y,Wang Q, Ma S, Geng T, Chen YV, Chen H, Liu D (2023) Transflow: transformer as flow learner. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 18063–18073

30. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer
M, Heigold G, Gelly S et al (2020) An image is worth 16x16 words: transformers for image recognition
at scale. arXiv:2010.11929

31. Zhao Q, Zheng C, LiuM,Wang P, Chen C (2023) Poseformerv2: exploring frequency domain for efficient
and robust 3d human pose estimation. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp 8877–8886

32. ShanW, Liu Z, Zhang X,Wang S, Ma S, GaoW (2022) P-stmo: pre-trained spatial temporal many-to-one
model for 3d human pose estimation. In: European conference on computer vision, Springer, pp 461–478

33. Choi J, Shim D, Kim HJ (2023) Diffupose: Monocular 3d human pose estimation via denoising diffusion
probabilisticmodel. In: 2023 IEEE/RSJ international conference on intelligent robots and systems (IROS),
IEEE, pp 3773–3780

34. Kang H, Wang Y, Liu M, Wu D, Liu P, Yuan X, Yang W (2024) Diffusion-based pose refinement and
multi-hypothesis generation for 3d human pose estimation. In: ICASSP 2024-2024 IEEE international
conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 5130–5134

35. Han C, Liang JC, Wang Q, Rabbani M, Dianat S, Rao R, Wu YN, Liu D (2024) Image translation as
diffusion visual programmers. arXiv:2401.09742

36. Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. Adv Neural Inf Process Syst
33:6840–6851

37. Choi J, Shim D, Kim HJ (2023) Diffupose: monocular 3d human pose estimation via denoising diffusion
probabilisticmodel. In: 2023 IEEE/RSJ International conference on intelligent robots and systems (IROS),
pp 3773–3780. https://doi.org/10.1109/IROS55552.2023.10342204

38. Song J, Meng C, Ermon S (2020) Denoising diffusion implicit models. arXiv:2010.02502
39. Li C, Lee GH (2019) Generating multiple hypotheses for 3d human pose estimation with mixture density

network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp
9887–9895

40. Oikarinen T, Hannah D, Kazerounian S (2021) Graphmdn: leveraging graph structure and deep learning
to solve inverse problems. In: 2021 International joint conference on neural networks (IJCNN), IEEE, pp
1–9

41. Yu B, Jiao L, Liu X, Li L, Liu F, Yang S, Tang X (2022) Entire deformable convnets for semantic
segmentation. Knowl-Based Syst 250:108871

42. Sharma S, Varigonda PT, Bindal P, Sharma A, Jain A (2019) Monocular 3d human pose estimation by
generation and ordinal ranking. In: Proceedings of the IEEE/CVF international conference on computer
vision, pp 2325–2334

43. Ionescu C, Papava D, Olaru V, Sminchisescu C (2013) Human3. 6m: large scale datasets and predictive
methods for 3d human sensing in natural environments. IEEE Trans Pattern AnalMach Intell 36(7):1325–
1339

123

https://doi.org/10.1109/TPAMI.2022.3188716
https://doi.org/10.1109/TPAMI.2022.3188716
https://doi.org/10.1109/TMM.2022.3171102
https://doi.org/10.1109/TMM.2022.3171102
https://doi.org/10.1109/TPAMI.2022.3164344
https://doi.org/10.1109/TPAMI.2022.3164344
http://arxiv.org/abs/2206.06420
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2401.09742
https://doi.org/10.1109/IROS55552.2023.10342204
http://arxiv.org/abs/2010.02502


Multimedia Tools and Applications

44. Mehta D, Rhodin H, Casas D, Fua P, Sotnychenko O, Xu W, Theobalt C (2017) Monocular 3d human
pose estimation in the wild using improved cnn supervision. In: 2017 International conference on 3D
vision (3DV), IEEE, pp 506–516

45. Chen Y, Wang Z, Peng Y, Zhang Z, Yu G, Sun J (2018) Cascaded pyramid network for multi-person
pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
7103–7112

46. Pavllo D, Feichtenhofer C, Grangier D, Auli M (2019) 3d human pose estimation in video with temporal
convolutions and semi-supervised training. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 7753–7762

47. Zeng A, Sun X, Huang F, Liu M, Xu Q, Lin S (2020) Srnet: improving generalization in 3d human
pose estimation with a split-and-recombine approach. In: Computer vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, Springer, pp 507–523

48. Shan W, Lu H, Wang S, Zhang X, Gao W (2021) Improving robustness and accuracy via relative infor-
mation encoding in 3d human pose estimation. In: Proceedings of the 29th ACM international conference
on multimedia, pp 3446–3454

49. Chen T, Fang C, Shen X, Zhu Y, Chen Z, Luo J (2021) Anatomy-aware 3d human pose estimation with
bone-based pose decomposition. IEEE Trans Circuits Syst Video Technol 32(1):198–209

50. HuW, Zhang C, Zhan F, Zhang L,Wong T-T (2021) Conditional directed graph convolution for 3d human
pose estimation. In: Proceedings of the 29th ACM international conference on multimedia, pp 602–611

51. ZhanY, Li F,WengR, ChoiW (2022) Ray3d: ray-based 3d human pose estimation for monocular absolute
3d localization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 13116–13125

52. LiW,LiuH,DingR, LiuM,WangP,YangW(2022) Exploiting temporal contextswith strided transformer
for 3d human pose estimation. IEEE Trans Multimed 25:1282–1293

53. Xue Y, Chen J, Gu X, Ma H,Ma H (2022) Boosting monocular 3d human pose estimation with part aware
attention. IEEE Trans Image Process 31:4278–4291

54. Tang Z, Li J, Hao Y, Hong R (2023) Mlp-jcg: multi-layer perceptron with joint-coordinate gating for
efficient 3d human pose estimation. IEEE TransMultimed 25:8712–8724. https://doi.org/10.1109/TMM.
2023.3240455

55. Einfalt M, Ludwig K, Lienhart R (2023) Uplift and upsample: efficient 3d human pose estimation with
uplifting transformers. In: Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pp 2903–2913

56. Liu X, Tang H (2023) Strformer: spatial-temporal-retemporal transformer for 3d human pose estimation.
Image Vision Comput 140:104863

57. Chen H, He J-Y, XiangW, LiuW, Cheng Z-Q, Liu H, Luo B, Geng Y, Xie X (2023) Hdformer: high-order
directed transformer for 3d human pose estimation. arXiv:2302.01825

58. Qian X, Tang Y, Zhang N, Han M, Xiao J, Huang M-C, Lin R-S (2023) Hstformer: hierarchical spatial-
temporal transformers for 3d human pose estimation. arXiv:2301.07322

59. Du S, Yuan Z, Lai P, Ikenaga T (2024) Joypose: jointly learning evolutionary data augmentation and
anatomy-aware global-local representation for 3d human pose estimation. Pattern Recognit 147:110116

60. Tang Z, Qiu Z, Hao Y, Hong R, Yao T (2023) 3d human pose estimation with spatio-temporal criss-cross
attention. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp
4790–4799

61. Peng Q, Zheng C, Chen C (2024) A dual-augmentor framework for domain generalization in 3d human
pose estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 2240–2249

62. Yu BX, Zhang Z, Liu Y, Zhong S-h, Liu Y, Chen CW (2023) Gla-gcn: global-local adaptive graph
convolutional network for 3d human pose estimation from monocular video. In: Proceedings of the
IEEE/CVF international conference on computer vision, pp 8818–8829

63. Li C, Lee GH (2020) Weakly supervised generative network for multiple 3d human pose hypotheses.
arXiv:2008.05770

64. WehrbeinT,RudolphM,RosenhahnB,WandtB (2021)Probabilisticmonocular 3dhumanpose estimation
with normalizing flows. In: Proceedings of the IEEE/CVF international conference on computer vision,
pp 11199–11208

65. Li W, Liu H, Tang H, Wang P (2023) Multi-hypothesis representation learning for transformer-based 3d
human pose estimation. Pattern Recognit 141:109631

123

https://doi.org/10.1109/TMM.2023.3240455
https://doi.org/10.1109/TMM.2023.3240455
http://arxiv.org/abs/2302.01825
http://arxiv.org/abs/2301.07322
http://arxiv.org/abs/2008.05770


Multimedia Tools and Applications

66. Xiang X, Zhang K, Qiao Y, El Saddik A (2023) Emhiformer: an enhanced multi-hypothesis interaction
transformer for 3d human pose estimation in video. J Visual Commun Image Represent 95:103890

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Exploiting multi-transformer encoder  with multiple-hypothesis aggregation via diffusion model  for 3D human pose estimation
	Abstract
	1 Introduction
	2 Related works
	2.1 3D human pose estimation
	2.2 Graph convolutional networks-based approaches
	2.3 Transformer-based architectures

	3 Proposed method and implementation
	3.1 Multiple hypothesis aggregation with multi-transformer encoder module
	3.1.1 3D human pose evaluation via diffusion model
	3.1.2 Spatial transformer encoder
	3.1.3 Temporal transformer encoder
	3.1.4 Temporal constriction & proliferation attention module
	3.1.5 TCP attention block with keys & values
	3.1.6 Feature aggregation refinement module
	3.1.7 Multiple hypothesis aggregation via join level reprojection approach


	4 Experimental results and analysis
	4.1 Dataset and evaluation metrics
	4.2 Implementation details
	4.3 Human3.6M dataset evaluation
	4.4 MPI-INF-3DHP dataset evaluation
	4.5 Ablation study
	4.5.1 Component analysis
	4.5.2 Hyperparameter analysis

	4.6 Qualitative results
	4.6.1 Qualitative comparison of Human3.6M dataset
	4.6.2 Qualitative comparison of wild videos
	4.6.3 Qualitative comparison of real-time videos


	5 Conclusion
	Acknowledgements
	References


