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Abstract
Multi-human parsing has received considerable research attention in recent years. Deep
learning-based Multi-human parsing methods demonstrated promising results. In reality,
mostmethods sufferwhile running on edge devices due to their extensive network architecture
and low inference speed. Moreover, the inadequacies in modeling long-range feature depen-
dencies have led to suboptimal representations of discriminative features across semantic
classes. To address these challenges and facilitate real-time implementation on edge devices,
we design a deep yet lightweight Encoder and a Multi-Scale Self-Attention based Decoder
to capture long-range dependencies and spatial relationships. Furthermore, we have opti-
mized our model through half-precision quantization, enhancing efficiency for edge devices.
Experiments on publicly available Crowd Instance-level Human Parsing (CIHP) and Look
into Person (LIP) datasets show the efficacy of our framework to parsemulti-humanwith high
inference speed at 55.6 FPS. Additionally, real-world testing on Jetson Nano edge devices
showcases competitive performance. An extensive ablation study on different modules vali-
dates our network.
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1 Introduction

In the realm of computer vision, the intricate task of multi-class human parsing involves
a meticulous examination of pixel-level human-centric interpretation. This endeavor aims
to precisely delineate each instance into distinct human components, discerning the diverse
manifestations of the human form. The significance of multi-class human parsing lies in
its ability to furnish specific details about human instances, thereby proving indispensable
for a spectrum of human-related applications, including human-object interaction, dense
pose estimation, fashion editing, person re-identification, fashion landmark recognition, and
complex human-centric video analysis in challenging scenarios [1–8].
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The landscape of multi-human parsing has witnessed remarkable advancements through
the lens of deep learning-basedmethodologies, particularly within detection-based two-stage
techniques. Pioneering this domain, Faster r-CNN [9] emerged as a front-runner, employ-
ing a two-stage human instance detector to extract proposal regions and execute fine-grained
parsing of human parts. Despite its outperformance over predecessors, Faster r-CNN encoun-
tered misalignment issues at the pixel level between network inputs and outputs. In response
to this challenge, Mask r-CNN [10] was introduced, leveraging RoIAlign to uphold precise
spatial relationships. While Mask r-CNN exhibited substantial progress, it fell short of an
end-to-end solution.

Addressing the quest for end-to-end solutions, Zhu et al. proposed a parsing networkwith a
component-aware convolution structure [11]. Although achieving end-to-end functionality,
its computational demands and dependency on detection approaches hindered efficiency,
particularly in edge devices. Introducing a groundbreaking detection-free approach, Gong et
al. presented a part grouping network [12] that reframed instance-level human parsing as two
collaborative sub-tasks. Despite its innovation, the addition of parallel branches for human
parsing and edge prediction lacked effective modeling of their connections. The subsequent
introduction of Graphonomy [13] aimed to overcome this limitation through a hierarchical
graph structure, yet faced challenges in generalizability due to dataset-specific constraints.

In recent advancements in human parsing, self-attention mechanisms have become essen-
tial. For example, Song et al. [14] introduced the Global Transformer Module (GTM) to
capture long-range dependencies and improve contextual information extraction. Guan et
al. [15] addressed multi-human parsing using a graph transformer module to infer semantic
correlations. Yang et al. [16] proposed mask2former parsing, a transformer-based framework
for human parsing. Despite its accuracy, its computational demands limit its applicability.
Inspired by these methods, we incorporate self-attention mechanisms into our human parsing
framework.

In response to these challenges, we present our novel end-to-end low-cost multi-human
parsing model. Harnessing the power of a deep yet lightweight encoder inspired by the
squeeze and excitation network [17] and a Vision Transformer-based Decoder employing
a Multi-scale Self-Attention (MSSA) mechanism for capturing long-range dependencies,
our approach achieves a delicate balance. Drawing inspiration from UNet [18], our model
seamlessly integrates context and global information through skip connections, facilitating
rapid convergence. Figure 1 showcases a representative result generated by our approach on
edge devices. Following is a summary of the strengths and significant contributions of this
paper.

• Propose a novel end-to-end edge device-friendlymulti-human parsing network optimized
for edge devices, enhanced with a light encoder and a self-attention based decoder.

Fig. 1 Illustration of multi-human parsing using our method on Edge devices (Jetson Nano)
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• Design a deep yet lightweight encoder based on a squeeze and excitation network
to provide the decoder with rich feature representations while preserving real-time
implementation feasibility. We enriches the decoder performances through utilizing the
multi-scale self-attention mechanism and Path Aggregation Network.

• We optimize our model through half-precision quantization and conduct extensive abla-
tion studies to validate the proposed network on the Crowd Instance-level Human Parsing
(CIHP) and Look into Person (LIP) datasets, and implement the model on Jetson Nano
edge devices.

The remaining part of this paper has been arranged as follows. In Section 2, we have
discussed related literature. We have presented the details of the proposed methodology in
Section 3. The experiment of our proposed method takes place in Section 4, and we have
analyzed the results in Section 5. We have analyzed the effect of our changes in Section 6.
In the end, we have concluded our work in Section 7.

2 Related works

The field of human parsing has garnered considerable attention in recent times, fueled
by its practical applications and commercial significance. Despite the strides made in this
domain, determining the intricate structure of the human body remains a formidable chal-
lenge. Extensive research efforts have been documented in the literature, with a predominant
categorization into two key domains: single-human parsing and multi-human parsing.

2.1 Single human parsing

The domain of single human parsing, often referred to as per-pixel classification, is pri-
marily concerned with the comprehensive understanding of individual human images. In
addressing this task, several innovative approaches have been introduced, each leveraging
unique modules and methodologies. The Mutual Learning to Adapt framework, as intro-
duced by Nie et al. [19], is tailored for simultaneous pose estimation and human parsing
tasks. It facilitates rapid adaptation of parsing and pose models by amalgamating insights
from their respective models. A comparable strategy was pursued in the study by Liang et al.
[20]. Furthermore, Wang et al. [21] proposed the High-Resolution Network to address visual
recognition challenges, employing a mechanism that iteratively integrates multi-resolution
representations to enhance feature richness. Zhang et al, introduced a part-aware context
network [22], specifically designed for single human parsing. This network incorporates a
part class module, a dispersion module, and a relational module. The synergy between these
components enables effective communication of human structure information, contributing
to improved parsing accuracy. Hierarchical Human Parsing, proposed by Wang et al., [23],
adopts the representational capacity of Graph Convolutional Networks. This approach aids
in the comprehension of hierarchical human layouts, providing a holistic understanding of
the relationships between different anatomical components. In another vein, Zhang et al.,
proposed a heterogeneous non-local block in [24]. This block, operating based on crucial
points locations and human semantics, facilitates the thorough exploration of connections
among parser, posture, and edge. By considering these diverse elements in tandem, the model
achieves a more comprehensive grasp of contextual information.

Liu et al., introduced the Human Kinematic Skeleton Graph Layer in [25], leveraging
the human kinematic skeleton to enhance the original neural networks. This augmentation
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addresses challenges related to occlusions, varied positions, and the differentiation between
right and left components, enhancing the model’s robustness.

Zhang et al. introduced HTCorrM [26], an extension of CE2P [27], which leverages part
edges to enhance the modeling of inter-part relationships. This augmentation contributes to
a more comprehensive understanding of the complex interactions between different body
parts. In a parallel development, Liu et al. proposed HIPN [28], a hybrid learning framework
that combines denoisingwith semi-supervised learning techniques. By incorporating positive
and negative learning mechanisms, HIPN exhibits improved resilience to noise, making it
better equipped to handle noisy pseudo labels.

A notable addition is the Region-Level Parsing Refiner module proposed by Zhou et al.
[29]. This module, integrated into the parsing pipeline, focuses on refining parsing perfor-
mance by incorporating region-level parsing learning. This targeted enhancement contributes
to more precise and contextually informed parsing outcomes. However, it is important to note
that the aforementioned models are tailored for scenarios involving single human parsing.
Real-world problems often present more complex scenarios, necessitating the extension of
these models’ applicability to multi-human parsing scenarios. This highlights the ongoing
challenge in broadening the scope of these models for increased versatility.

2.2 Multi-human parsing

Multi-human parsing (MHP) transcends the limitations of single-human parsing, encompass-
ing the intricate task of partitioning crowd scene images into semantically consistent regions
associated with body parts or clothing items, while discerning diverse identities. Two primary
paradigms characterize MHP: top-down (comprising two-stage and one-stage approaches)
and bottom-up.

Top-Down Approaches:
In the realm of top-down approaches, a bounding box-based detector identifies humans,

extracts information, and generates regions of interest (ROIs) from the original image. The
parsing results are then obtained through comprehensive segmentation of these ROIs. The
two-stage top-down technique, exemplified by Faster r-CNN [9] and Mask r-CNN [10],
leverages an initial object detection stage followed by a dedicated parsing module. Context
Embedding [27] introduces a unique method involving two single human parsing training
models, integrating ground truth instances and predicted examples, followed by a global
fusing method. BraidNet [30] incorporates a braiding network with local structure capturing
and semantic knowledge learning networks. A part decomposition and refinement network
(PDRNet) based on part-wise semantic prediction was proposed in [31]. PDRNet utilizes
part-wise mask prediction to decompose the human body into different semantic parts and
employs a refinement module to obtain accurate masks for each part. Despite achieving
state-of-the-art accuracy, two-stage methods face challenges in flexibility and real-world
application inference time [32].

In the one-stage top-down paradigm, such as Nested Adversarial Network [33] and the
unified framework proposed by Qin et al. [34], the end-to-end process concurrently recog-
nizes human instances and employs attention modules for parsing human aspects. However,
these methods struggle with parsing small regions due to limited contextual information.
Renovating Parsing r-CNN [35] and AI-Parsing [36] address this limitation through global
semantic representation and instance-level parsing, respectively. While achieving high accu-
racy, these detection-based approaches heavily rely on the detection module, incurring high
computational costs.
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Bottom-Up Approaches:
Bottom-up approaches focus on faster inference, treating global fine-grained semantic seg-

mentation as an instance-level task. Techniques like Atrous Spatial Pyramid Pooling (ASPP)
[37] and Macro-structure Parsing [38] leverage atrous convolution and ASPP frameworks
for multi-scale context capture. Part Grouping Network [12] generates human instance out-
comes using additional edge data. Hierarchical graph-based methods like Graphonomy [13]
and Grapy-ml [39] explore label semantic relations at the global level but face challenges in
instance-level performance due to encoder limitations.

A novel approach presented in [40] addresses instance-aware human part parsing by
simultaneously learning category-level human semantic segmentation and multi-person pose
estimation in a joint, end-to-end fashion. By incorporating a dense-to-sparse projection field
and formulating joint association as maximum-weight bipartite matching, the framework
achieves robustness and end-to-end trainability. Building upon this work, [41] introduces an
efficient solver for differentiable joint association, enhancing training efficiency compared
to the previous approach, despite marginal sacrifices in parsing accuracy. Although this
approach is efficient, it is not optimized for implementation on edge devices.

Customized approaches, like fusion [42], blend top-down and bottom-up strategies to
leverage their respective merits. Incorporating insights from the previous work [42], the
authors proposed a part-relation-aware human parser (PRHP) in their subsequent study [43].
PRHP precisely delineates three types of human part relations-decomposition, composition,
and dependency-by employing three distinct relation networks, enhancing the model’s gen-
erality and efficacy. While effective, such fusion increases implementation complexity.

Multi-human parsing has been a subject of extensive study,with approaches falling into the
categories of top-down and bottom-up methods. Existing methods, while making significant
strides, often grapple with complexities, high computational costs, and dependencies on
parallel branches, such as human detection or edge prediction. This poses challenges for
real-time deployment on edge and resource-constrained devices.

To overcome these limitations, our proposed approach adopts a bottom-up strategy to
streamline the multi-human parsing process for efficient inference. In contrast to traditional
methods, our solution is anchored in a deep yet lightweight encoder, ensuring computational
efficiency without compromising on feature richness. The core of our innovation lies in
the decoder, which incorporates a vision transformer-based multi-scale self-attention. This
module enables the capturing of long-range dependencies, providing a more holistic under-
standing of the global context in crowd scenes.

One distinctive feature of our network is its departure from the conventional reliance on
parallel branches, such as detection and edge prediction. Instead, our approach emphasizes
an end-to-end paradigm, aiming to efficiently learn both local and global features without
the need for auxiliary models. This not only simplifies the parsing pipeline but also enhances
the adaptability of the network for real-time deployment on edge devices.

In the subsequent sections, we delve into the details of our proposed framework, high-
lighting the key components and their contributions to addressing the challenges posed by
existing multi-human parsing methodologies.

3 Proposedmethod

Our objective is to predict a pixel-wise label map with dimensions H × W × Cout based on
an input image with dimensions H × W × Cin . Here, H and W correspond to the height
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and width of the image, respectively, while Cin and Cout represent the number of input
channels and the number of output classes, respectively. The schematic representation of our
comprehensive method is illustrated in Fig. 2, which delineates the two primary components:
the Encoder and the Decoder.

3.1 Encoder

Within the encoder of our architecture, we employ a diverse set of building blocks, including
the Convolutional Block (Conv), Efficient Block (EffiBlock), Residual Convolutional Block
(RCB), and Spatial Pyramid Pooling (SPP), to encode the input image into feature repre-
sentations at multiple hierarchical levels. The input image initially undergoes a Conv block,
followed by ten consecutive EffiBlocks. This sequential application facilitates deep feature
extraction while managing computational complexity effectively. Subsequently, the input
traverses another Conv block, a Residual Convolutional Block (RCB) [44], and a Spatial
Pyramid Pooling (SPP) block. This combination of operations enables the encoder to learn
residual characteristics and merge features with varying resolutions, furnishing our decoder
with superior feature representations for segmentation.

Conv Block. A Conv Block comprises three fundamental operations, which include con-
volution (Conv2d), batch normalization (BN), and activation using the SiLU function [45].
Initially, the input data is subjected to convolution, which serves to extract relevant features.
Subsequently, the application of batch normalization (BN) not only regularizes the process
but also expedites learning. Finally, the SiLU activation function plays a crucial role in deter-
mining whether a neuron should be activated by computing weights and adding bias to the
result.

EffiBlock.Adding extra layers is one of the primary methods for enhancing deep learning
performance [46]. However, it leads to the model becoming over-fitted. We utilize EffiBlock
based on the inverted residual block [47, 48] and Squeeze and ExcitationNetwork [17] shown
in Fig. 3 to improve information flow and offer better features encoding without increasing
computational load. The Inverted Residuals Block leverages the concept of inverted residuals
[47] to enhance gradient propagation within the feature extraction network while minimizing
memory usage during inference. EffiBlock employs squeeze-and-excitation attention mech-
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Fig. 2 The proposed architecture for edge devices friendly multi-human parsing network
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Fig. 3 EffiBlock based on the inverted residual block and Squeeze and Excitation Network

anisms in the channel dimension, prioritizing informative channel features and suppressing
less relevant ones. We primarily utilized EffiBlock to expedite and streamline feature extrac-
tion, thus enhancing segmentation speed.

3.2 Decoder

The encoder’s output is gradually extended in the decoder. With upsampling and convolu-
tional operation, exact localization is made possible by the decoder [49]. Within the decoder,
high-level features are fused with spatial information and feature maps obtained from the
encoder. The inputs to the decoder consist of data from the immediate preceding decoder
layer, alongside the corresponding encoder features. Furthermore, we incorporate a residual
connection approach in the decoder, inspired by the path aggregation network [45, 50], as
illustrated in Fig. 2. Towards the conclusion of our decoder, we employ a Multi-scale Self-
Attention Module to better understand and segment complex patterns [51, 52], followed by
the segmentation block for the final processing.

Multi-scale Self-Attention (MSSA) Module.
The Module for Multi-Scale Self-Attention (MSSA) emerges as a pivotal component,

facilitating the model’s comprehension of the intricate dynamics within various symmetri-
cal regions of the human body. Its strategic focus on pertinent segments within the input
sequence enables the model to accentuate crucial attributes while efficiently filtering out
extraneous data. The significance of multi-scale features predates the advent of deep learn-
ing, as highlighted in [53]. In the domain of deep segmentation networks, the amalgamation
of multi-scale features has exhibited remarkable efficacy, as evidenced by the works [54,
55]. Drawing inspiration from these advancements, our approach leverages learned features
across multiple scales, synergistically integrated with self-attention mechanisms. This fusion
empowers the encoding of both global and local intricacies, thereby enhancing the model’s
discriminative capabilities [56].

In the MSSA framework (shown in Fig. 4), input is derived from a 2D feature map F
characterized by dimensions (H ,W ,C), where H and W denote height and width, respec-
tively, and C signifies the number of channels. Initially, the input channels undergo division
via conventional convolutional operations, succeeded bymax-pooling procedures employing
kernel sizes of 5, 9, and 13. Subsequently, the outputs from these max-pooling operations are
concatenated with the original data, facilitating the amalgamation of features across diverse
resolutions and yielding refined feature representations denoted as X . These processed fea-
tures are then subjected to group normalization and projection into a lower-dimensional space
via learnable weight matrices (Wq , Wk , and Wv). This projection yields sequences of query
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Fig. 4 The architecture of Multi-Scale Self-Attention Module

(Q), key (K ), and value (V ) vectors, which are subsequently utilized within an attention
mechanism to capture contextual dependencies across the input feature map.

A(Q, K , V ) = so f tmax(
QKT

√
dk

)V (1)

The attentionmechanism operates through an (1) wherein the query, key, and value vectors
are orchestrated to compute attention scores, which are further normalized via softmax.
Following this, the output of the self-attention mechanism undergoes transformation via a
position-wise feedforward layer, applying non-linear operations to individual elementswithin
the sequence.

FF(x) = max(0, xW1 + b1)W2 + b2 (2)

This feedforward layer, characterized by (2), encompasses learnable weight matrices and
biases (W1, b1, W2, and b2), facilitating the extraction of intricate features. The resulting
output from the feedforward layer is then integrated with the output of multi-scale features
X via residual connections, culminating in a comprehensive representation enriched with
contextual insights and discriminative features.

Segment. The segment block takes on the crucial task of generating the ultimate seg-
mented output. Its function involves the integration of decoder network features at varying
scales. This process is achieved through the implementation of a three-layer Fully Connected
Network (FCN) equipped with sigmoid-weighted linear units (SiLU). The outcome of this
stage comprises prototype masks of image size that are agnostic to individual instances, as
inspired by the work of Bolya et al. [57].

3.3 Model compression

In our efforts to enhance the efficiency of our model for human parsing, we encountered the
familiar dilemma of striking a balance between accuracy and computational speed within
the realm of deep learning. While recent strides have significantly improved accuracy levels,
the demand for faster model processing has prompted the exploration of techniques such as
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quantization. Quantization emerges as a strategy to reduce the precision of a model’s weights
and activations, thereby alleviating memory and computational requirements. This technique
leads to reduced model sizes, expedited inference speeds, diminished memory usage, and
decreased computational power consumption.

To tackle these challenges, we undertook post-training quantization (PTQ), a process
involving the transition of our parsing model to half-precision quantization [58]. Unlike
methods requiring additional training, PTQ solely involves calibrating the model’s weights
using a small calibration dataset after the initial training phase to achieve satisfactory quan-
tization outcomes.

3.4 Activation and loss function

The choice of activation function plays a pivotal role in determining the model’s perfor-
mance. For instance, replacing SiLU with ReLU [59] can enhance inference speed but may
lead to notable decrease in performance.While alternative activation functions like ELU [60],
FReLU [61], and AconC [62] exist, our experimental investigation suggests that these alter-
natives do not consistently offer significant performance improvements and may also exhibit
memory inefficiencies. The choice of the loss function is crucial for any deep learning-based
model, especially for complex image segmentation architectures such as human parsing, since
it triggers the algorithm’s learning process. Deep learning algorithms employ the stochas-
tic gradient descent technique to optimize and learn the objective. We conducted a series
of tests involving various loss functions, which included Focal loss, Varifocal loss, and the
loss method introduced in a recent research paper [63]. After thorough evaluation, it became
evident that cross-entropy with logits emerged as the most efficient choice for training our
model.

4 Dataset and experiment

4.1 Dataset

To evaluate the efficacy of our approach in comparison to edge techniques, we conducted
experiments using the CIHP [12] and LIP [64] datasets.

The CIHP dataset comprises around 38,280 diverse images categorized into training
(28,000), validation (5,000), and test (5,000) sets. This extensive human parsing dataset
includes pixel-wise semantic part annotations for 20 categories and instance-level identifi-
cation.

The LIP dataset, or Look into Person, is a large-scale dataset focused on semantic-level
annotation of people. It comprises 50,000 photos with detailed pixel-by-pixel annotations
for 20 classes. The dataset is divided into training (30,000), validation (10,000), and test
(10,000) sets.

4.2 Experimental setup

Our experiments were conducted on two distinct environments: Environment 1 and Environ-
ment 2. For the training and ablation study, we utilized Environment 1, which comprises a
Windows 10 system with 64GB of RAM, leveraging a single NVIDIA GeForce RTX 3090
GPU with 24GB of memory. To ensure a fair comparison with state-of-the-art methods, we
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employed Environment 2, consisting of a Windows 10 environment with 32GB of RAM and
a NVIDIA GeForce RTX 2070 GPU with 8GB of memory.

The model underwent 100 epochs of training, utilizing a batch size of 16, and the input
images were resized to dimensions of 640×640. In order to augment the dataset and enhance
model generalization, we applied various data augmentation techniques, encompassing geo-
metric and lighting distortions. The initial learning rate was set at 0.005, accompanied by a
momentum value of 0.9 and a decay rate of 0.0001, strategically implemented to mitigate
overfitting.

5 Results and discussion

5.1 Quantitative performance

To validate our network’s effectiveness, we assessed its performance on two diverse datasets
(CIHP and LIP) and conducted a quantitative comparison with state-of-the-art methods. Our
evaluation included a comparison with state-of-the-art (SOTA) models across metrics such
as mIoU [66], inference frames per second (FPS), the number of parameters, and the model
size.

Table 1 illustrates the superior performance of our network when compared to various
bottom-up and one-stage top-down methods. Notably, our approach exhibits significantly
better results than both one-stage (Yang et al. [65]) and bottom-up methods, including Gong
et al. (2018) [12],Graphonomy [13], andGrapy-ml [39]. In the samevein, one-stage top-down
methods such as Aiparsing [36] (mIoU 59.7) and Yang et al. [35] (mIoU 58.4) approach our
level of performancewithmIoUscores of 59.8.However, in termsof computational efficiency,
our method outshines the competition. It enables faster human parsing with a higher mIoU
score. Aiparsing [36] and Yang et al. [35] require 50.2 million and 150 million parameters,
respectively, and achieve inference speeds of 8.9 FPS and 5.0 FPS, respectively. In contrast,
our method operates with just 21 million parameters and delivers inference speeds that are 6
times faster than Aiparsing and approximately 11 times faster than Yang et al. [35]. Among
the bottom-up-based methods, Graphonomy [13] achieves an impressive inference speed
of around 25.0 FPS but lags behind in mIoU performance. Furthermore, the weight size
of our model is remarkably compact, totaling just 43 MB, whereas the closest competitors
weigh in at 159 MB and 177 MB, respectively. This makes our model resource-efficient and
well-suited for edge devices, setting it apart as a more accessible and lightweight solution.

Table 1 Examples of high-performing deep learning networks’ efficiency on CIHP Validation sets

Method Approach Backbone Parameters (M) Model Size (MB) mIoU FPS

Yang et al. [65] One stage top-down ResNet50 54.3 213 56.3 7.4

Yang et al. [35] One stage top-down ResNet50 58.4 224 58.3 5.0

Aiparsing [36] One stage top-down ResNet50 50.2 393 59.7 8.9

Gong et al. [12] Bottom-up ResNet101 629.2 1228 54.4 4.2

Graphonomy [13] Bottom-up Xception 157.0 159 55.5 25.0

Graphy-ml [39] Bottom-up Xception 176.0 177 56.2 16.6

Our’s Bottom-up EffiBlock 21.0 43 59.8 55.6

The bold text indicates the best result
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We also report the quantitative score of our approach on the LIP dataset (validation) shown
in Table 2. The results clearly demonstrate our method’s significantly outperforms compared
to the current state-of-the-art techniques. To illustrate, we attain anmIoU of 61.55, surpassing
the closest competitors. Specifically, the bottom-up approach CDGNet [71] achieves 60.30,
the hybrid approach HIPN [28] obtains 59.61, and the top-down approach M2FP [16] also
reaches 59.86.

The key advantage of our approach lies in its end-to-end design with a deep yet lighter-
weight encoder and MSSA based decoder which effectively captures the global context
and significantly enhances parsing accuracy. Our encoder utilizes efficient blocks, which
are notably lighter than Xception, ResNet100, and ResNet50. Additionally, our decoder
incorporates a multi-scale self-attention module with an efficient design. This translates into
a model with fewer parameters and faster inference times. Optimization further enhances the
model’s compatibility with edge devices. Our model can run at 55.6 FPS, making it both
efficient and suitable for edge devices.

5.2 Performance on edge devices and resource constrained devices

Edge devices, characterized by their lightweight and compact nature, are adept at efficiently
running computer vision models. The concept of edge computing involves bringing data
processing and storage closer to the origin of the data. This proximity enables edge devices to
performdata processing internally, therebyminimizing data transmission costs and enhancing
security by reducing vulnerability.

The adoption of edge devices is on the rise in various industries, as highlighted by Imani
et al. (2023) in their study on efficient usage [72]. Our implementation involves deploying
models on the Jetson Nano (B01), as illustrated in Fig. 5. The Jetson Nano boasts impressive
specifications, featuring a Quad-core ARM Cortex-A57 MPCore processor for the CPU,
NVIDIA Maxwell architecture with 128 CUDA cores for the GPU, 4 GB 64-bit LPDDR4

Table 2 Examples of high-performing deep learning networks’ performance on LIP Validation sets

Method Approach Backbone mIoU

BraidNet [30] Top-down ResNet101 54.42

SemaTree [67] Top-down ResNet101 54.73

SCHP [68] Top-down ResNet101 59.33

QANet [69] Top-down HRNetW48 59.61

M2FP [16] Top-down ResNet101 59.86

CNIF [42] Hybrid ResNet101 57.74

HIPN [28] Hybrid ResNet101 59.61

MMAN [38] Bottom-up ResNet101 46.93

Chen et al. [37] Bottom-up ResNet101 44.80

HHP [23] Bottom-up ResNet101 59.25

HTCorrM [26] Bottom-up HRNetW48 56.85

PRM [70] Bottom-up ResNet101 58.86

CDGNet [71] Bottom-up ResNet101 60.30

Our’s Bottom-up EffiBlock 61.55

The bold text indicates the best result
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Fig. 5 The Visualization of the Jetson nano (B01) edge device

memory running at 1600MHzwith a bandwidth of 25.6GB/s, and a 16GB eMMC5.1 storage
capacity.

Despite the inherent constraints of edge devices, our models demonstrated remarkable
effectiveness on hardware with limited resources. We present comprehensive performance
results for our model on image and real-time data (YouTube) in Table 3.

Our analysis revealed that employing smaller image sizes, such as 256, led to quicker
inference times in comparison to larger image sizes (320). Additionally, the choice of dataset
(LIP or CIHP) had a discernible impact on inference times. For instance, models operating
on the LIP dataset demonstrated an inference time of 116.5 ms at an image size of 256, while
for the CIHP dataset with same size, it was 129.9 ms.

To illustrate the real-time viability of our model, we conducted experiments using ran-
domly selected YouTube videos on our Jetson Nano. The obtained results, as depicted in
Fig. 6, showed high promise, even when considering the distinct lighting conditions and the
absence of this data in our training and validation sets. Our model accurately predicted each
frame, delivering an impressive inference speed of 8 frames per second.

A noteworthy aspect of our work is that we’ve managed to maintain the same level of
accuracy and model quality despite the reduced inference speed on these edge devices. This
robust compatibility of our approach opens the door to its potential application on various
low-computing Internet of Things (IoT) devices and smartphones.

5.3 Qualitative performance

Our approach yields superior results when compared to state-of-the-art methods, exempli-
fying its remarkable performance. In Fig. 7 (first row), the approach by Chen et al. [37]

Table 3 Performance Comparison on Edge Devices

Dataset Img-size Inference

LIP 256 116.5

320 144.4

CIHP 256 129.9

320 149.8

Live Data 320 125.0
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Fig. 6 Real-time Performance Evaluation on YouTube Videos with Edge Devices (Jetson Nano)

fails to accurately parse the head and hair regions, while Grapy-ml [39] falters in capturing
the upper clothing of the subject. In contrast, our method excels in parsing each body part
correctly, owing to its robust feature extraction capabilities, which effectively capture and
represent correlations between body parts. In the second row of Fig. 7, both [37] and [39]
methods struggle to parse overlapping individuals, whereas our network delivers complete
and accurate results, aligning closely with ground truth annotations. Notably, for smaller
regions, [37] and [39] exhibit ambiguity issues, for example, erroneously classifying a bald
head as part of the background, as demonstrated in row 3. In contrast, our model correctly
classifies such regions as part of the ground truth.

To ensure the broader applicability of our network, we subjected it to rigorous testing
on the LIP dataset and compared it with state-of-the-art networks, further establishing its
capabilities. Our approach seamlessly handles the challenges posed by the LIP dataset, as
illustrated in Fig. 8. Notably, our method demonstrates superior performance across various
human body parts. In the first row, our approach accurately parses the right arm, while
competitors such as CorrPM [24] and CDGNet [71] struggle to do so. Similarly, in the
second row, our method excels in parsing the right leg, whereas others falter. In the third
row, while Chen et al. [73] encounter difficulties in parsing the left hand and CE2P [27]
struggles with the upper body, our model performs with precision. Finally, in the last row,
although [26] shows improvement in parsing gloves and shoes, our approach achieves even
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Fig. 7 Qualitative comparison of our multi-human parsing model with state-of-the-art methods on CIHP
dataset

more comprehensive results. The robust and complete performance of our model can be
attributed to its efficient design, particularly its enhanced feature extraction and multi-scale
self-attention-based decoding mechanisms.

6 Extensive experiments

In this ablation study, we explore the effects of networkmodifications using the CIHP dataset.
We trained the model for 10 epochs using Environment 1. To evaluate the impact of these
modifications, we randomly selected 100 samples from the CIHP validation set
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Fig. 8 Qualitative comparison of our human parsing model with state-of-the-art methods on LIP dataset

Effect of Encoder: We conducted comprehensive tests on various encoders, observing
a trade-off between inference speed and accuracy. Some encoders yielded faster inference
times but sacrificed accuracy, while others prioritized accuracy at the expense of speed.
For instance, in our efforts to match the complexity of MobileNetV3, we streamlined our
model by removing the last layer of EffiBlock (our standard model typically comprises 10
layers) and compared their performances. As illustrated in Table 4, MobileNetV3 [48] boasts
fewer parameters than our streamlined version. However, despite having fewer layers, our
model consistently outperforms MobileNetV3 [48] in terms of accuracy. For instance, while
MobileNetV3 [48] achieves a mean Intersection over Union (mIoU) of 46.2 and takes 13.8
milliseconds to infer, our model completes inference in just 13.4 milliseconds and achieves
a higher mIoU of 49.6.

Effect of Decoder: We performed a thorough comparative analysis between a conven-
tional decoder design and our enhanced decoder featuring a Multi-scale Self-Attention. The
findings reveal that our modified decoder excels in decoding features with heightened accu-
racy compared to the traditional UNet decoder. For instance, while the traditional decoder

Table 4 Extensive experiments
on various encoders

Encoder Layers Parameters mIoU Inf. (ms)

MobileNetv3 [48] 354 6.3 M 46.2 13.8

Our’s (light) 302 9.5 M 49.6 13.4
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Table 5 Performance comparison between Swin Transformer and MSSA

Decoder Layers Parameters mIoU Inf. (ms)

Swin Transformer [74] 304 9.9 M 48.4 13.3

MSSA 302 9.5 M 49.6 13.4

design achieved a mean Intersection over Union (mIoU) of 47.0, employing the modified
decoder with MSSA elevated the mIoU to an impressive 51.7. Although this enhancement
resulted in a slight increase in inference time from 11.8 milliseconds to 14.2 milliseconds,
the trade-off in time is marginal when weighed against the substantial gain in accuracy.

Effect of Multi-Scale Self-Attention (MSSA): The impact of MSSA was evaluated by
replacing MSSA with Swin Transformer. Table 5 presents the performance comparison.
MSSA significantly outperforms in terms of mIoU , while requiring fewer parameters and
maintaining the same inference time.

We have also qualitatively compared the effects ofMSSA and Swin Transformer attention,
as shown in Fig. 9. The model trained with the Swin Transformer struggled to correctly parse
each human instance, whereas the model using MSSA demonstrated comparatively better
performance. For instance, in both images, the Swin Transformer misclassified upper clothes
as background, while MSSA accurately identified them as the correct classes. Additionally,
we analyzed the network’s features with Swin and MSSA. The analysis revealed MSSA’s
superior ability to capture patterns, as illustrated in Fig. 9 (columns 5 and 6). It is noteworthy
that our MSSA implementation utilized a single head, as opposed to a multi-head setup.
Interestingly, experiments comparing single-head and multi-head configurations revealed
that, for our specific task, the single-head approach slightly outperformed the multi-head
approach. For example, while the multi-head configuration achieved an mIoU of 49.06%,
the single-head configuration exhibited a slightly higher mIoU of 49.64%.

Effect of Activation Function: Table 6 presents the impact of different activation func-
tions on the model’s performance, evaluated through various metrics. Activation functions
including SiLU, ReLU, AconC, ELU, and FReLU were examined. SiLU and ELU achieve
the highest mIoU scores of 49.74% and 49.41%, respectively, indicating superior segmen-
tation accuracy. Conversely, ReLU and FReLU exhibit lower mIoU scores of 47.24% and
47.26%, respectively. In terms of inference speed, ReLU, SiLU, and ELU perform similarly
well, with inference times of 12.1 ms, 12.4 ms, and 12.4 ms, respectively. However, AconC
and FReLU demonstrate slower inference speeds of 15.5 ms and 15.4 ms, respectively.

Regarding memory consumption during training, AconC requires the highest memory
at 17.6 G, followed by FReLU at 16.8 G, SiLU and ELU both at 15.2 G, and ReLU at

Input GT Swin Paring MSSA Paring Swin Feature MSSA Feature

Fig. 9 Illustration of MSSA’s ability to capture complex patterns in human parsing

123



Multimedia Tools and Applications

Table 6 Effect of various activation function on our model

Activation mIoU Inference (ms) Train Memory (G)

SiLU 49.74 12.4 15.2

ReLU 47.24 12.1 14.7

AconC 48.43 15.5 17.6

ELU 49.41 12.4 15.2

FReLU 47.26 15.4 16.8

14.7 G. Despite SiLU’s slightly higher memory usage than ReLU, it offers better segmen-
tation accuracy compared to ReLU, indicating a trade-off between memory efficiency and
performance.

6.1 Failure cases

Our model exhibits occasional challenges in producing the desired outcomes, particularly
when handling instances that are rarewithin the dataset or involve extreme overlap and crowd-
ing. Figure 10 illustrates instances where our approach encounters difficulties. In the first
sample of this example, the model mistakenly segments a coat as the upper-cloth, while in the
second sample, it becomes confused and predicts the upper-cloth as part of the background.

7 Conclusion

Wepresent an end-to-endmulti-human parsing network tailored specifically for edge devices.
Our novel approach involves the creation of a deep yet lightweight encoder, strategically

Fig. 10 An example of failure cases generated by our approach
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incorporating a squeeze and excitation network to achieve a delicate equilibrium between
computational efficiency and feature richness. The integration of the Multi-scale Self-
Attention (MSSA) further elevates the model’s ability to capture long-range dependencies,
thereby significantly enhancing its representation of global features. The meticulous design
of our decoder plays a crucial role in facilitating smooth information flow throughout the net-
work. Optimization further enhances the model’s compatibility with edge devices. While our
model demonstrates proficiency in accurately parsing multiple humans, there are scenarios
where it may encounter challenges, particularly in cases of extreme overlap, crowding, and
rare occurrences within the dataset. Addressing these complexities may involve enhancing
themodel’s capability to handle heavily overlapping instances and rare scenarios with greater
agility.
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