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Abstract

Detection and diagnosis of breast cancer have greatly benefited from advances in deep
learning, addressing the critical problem of early detection and accurate diagnosis. This
paper presents a review of 68 high-quality articles related to deep learning techniques
applied to various imaging modalities including mammography, ultrasound, MRI, histo-
pathology, and thermography published in 2022 and 2023. Additionally, this paper dis-
cusses and compares the deep learning approaches to detect breast cancer based on the
dataset, input size of the model, model architecture, the proposed approach, targeted prob-
lem, and output performance. There is a primary concern about the variability in imaging
data, which can lead to inconsistency in diagnosis. In this study, deep learning, particularly
Convolutional Neural Networks (CNNs), was leveraged to enhance image accuracy and
consistency across multiple imaging modes. CNNs have demonstrated enhanced sensitivity
and specificity in mammography imaging, for example, by detecting microcalcifications
and masses. According to studies based on MRIs, deep learning models are able to dis-
tinguish between different tissue types, aiding in the precise localization of tumors. Ther-
mography is less common, but deep learning models can detect abnormal thermal patterns
associated with malignancies. In addition, this paper addresses the issue of limited and
imbalanced datasets, which often hamper deep learning models’ performance. Data aug-
mentation and transfer learning are explored as solutions to improve model robustness and
generalizability. This paper provides a comprehensive review of breast cancer detection
and diagnosis datasets, highlighting their significance and unique characteristics. Research-
ers can select appropriate resources for their diagnostic studies and model development by
analyzing these datasets thoroughly. Even so, larger datasets and improved model interpret-
ability remain challenges. We propose future research directions to address these issues,
emphasizing multi-modal data integration and advanced algorithmic development.
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QUS Quantitative Ultrasound

TNBC Triple Negative Breast Cancer

CNN-LSTM Convolutional Neural Network-Long Short-Term Memory

BTEC-Net Breast Tumor Ensemble Classification Network

RFS-UNet Residual Feature Selection UNet (Ultrasound image)

BUSI Breast Ultrasound Images

VGGNet Visual Geometry Group Network

UCA US-guided Co-Attention

[N Ultrasound

Resnet18 Residual Network 18

DLRP Deep Learning Radiomic Pathway

CSOA-wKNN  Crow Search Optimization Algorithm with weighted K-Nearest
Neighbors

FNR False Negative Rate

CER Classification Error Rate

Al Artificial Intelligence

CAD Computer-Aided Diagnostic

BC Breast Cancer

ML Machine Learning

CNNs Convolutional Neural Networks

IARC International Agency for Research on Cancer

CT Computed Tomography

HI Histopathology Images

WSIs Whole Slide Images

GSA Gravitational Search Algorithm

HHO Harris Hawks Optimization

WOA Whale Optimization Algorithm

SVM Support Vector Machines

ReLU Rectified Linear Unit

NLP Natural Language Processing

CSOA Crow-Search Optimization Algorithm

DFOA Dragon-Fly Optimization Algorithm

PSO Particle Swarm Optimization

1 Introduction

There are several diseases that are characterized by uncontrolled division and progression
of sporadic cells. Through the lymphatic system and circulation framework, these bizarre
cells can attack neighboring tissues and spread to other parts of the body. Medical image
classification has greatly influenced diagnostic techniques and therapeutic interventions
[1]. Traditional diagnostic procedures, such as colonoscopy, are difficult to perform accu-
rately and take large amounts of time [1]. Diseases, like cancer, are also characterized by
uncontrolled division and advancement of sporadic cells in the body. It is possible for these
bizarre cells to attack adjoining tissues and spread to other parts of the body through the
lymphatic system or circulation framework. It is the abnormal cell division that causes a
mass to develop called a tumor. There are many factors that may cause cancer, including
innate changes, common components, lifestyle choices, and certain diseases. Cancerous
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tumors (malignant) and benign tumors (benign) can both occur. Increasing incidences of
cancer require precise and effective diagnostic tools to help medical experts make early
diagnoses and treatment recommendations [2]. For example, the most common types of
skin cancer caused by UV radiation are melanoma and nonmelanoma. Globally, skin can-
cer, especially melanoma, is on the rise. Skin cancer must be detected early for effective
treatment and to improve patient outcomes. For the detection and classification of various
cancers, including breast cancer, advanced machine learning techniques like deep learning
have been successfully applied in medical imaging [3]. As a result of the use of deep learn-
ing models like the InceptionV3 coupled with support vector classifiers, timely treatment
recommendations are provided to patients with various types of cancer [2]. In the same
way, early diagnosis is crucial for effective treatment of breast cancer. Machine learning
and artificial intelligence are enhancing breast cancer detection accuracy, increasing sur-
vival rates and improving outcomes. There are several types of cancer, including:

e Breast Cancer: The disease primarily affects women, but can also affect men’s breast

tissue.

Lung Cancer: Cancer of the lungs caused by smoking or exposure to carcinogens.

Colorectal Cancer: The disease usually occurs in the colon or rectum, and it is usually

detectable early through screening.

Prostate Cancer: Male prostate cancer is one of the most common cancers.

Skin Cancer: Melanoma and nonmelanoma are the most common skin cancers caused

by UV radiation.

Leukemia: Bone marrow cancer and blood-forming cell cancer.

Lymphoma: An immune system cancer that starts in the lymphatic system.

Pancreatic Cancer: Diagnosed at an advanced stage when it develops in the pancreas.

Ovarian Cancer: It affects only the ovaries and is often diagnosed only at an advanced

stage.

e Brain Cancer: Brain tumors can develop in the brain itself or in the surrounding struc-
tures, resulting in a wide range of symptoms.

Global Burden of Disease Cancer Collaboration and the IARC (International Agency
for Research on Cancer) have projected that cancer cases rose 28 percent between 2006 and
2016. In 2030, 2.7 million new cases of cancer are expected [4]. Figure 1 shows the projec-
tions for new cancer cases in the United States based on type [5].

In the United States, breast cancer ranks as the second most prevalent form of cancer.
Breast Cancer (BC) is the malignant tumor that develops from breast cells. In most cases,
BC begins in the milk producing ducts, or lobules, which drain milk to the nipple. When
BC invades healthy tissues near the underarm lymph nodes, they have a path to other parts
of the body. Cancer cells have spread beyond the original tumor at BC stage [6].

The importance of breast cancer lies in its impact on women’s wellbeing and its ques-
tioning of their commitments. Cancer-related deaths are still a major cause of death,
emphasizing the need for further study and improved treatments. The breast cancer mind-
fulness movement has set a standard for other cancers to follow. The importance of back
communities, personalized care approaches, and treatment developments in healthcare are
highlighted by its implementation. Its pertinence is highlighted by its financial burden,
early discovery strategies, and advancements in behavioral mindfulness. The prevalence,
health impacts, and role in forming cancer care make breast cancer a vital area of therapeu-
tic research, open health activities, and constant support. Detecting cancer early, including
breast cancer, has a profound impact on the delivery of healthcare and the understanding

@ Springer



Multimedia Tools and Applications

Estimation of 2023 Cancer-Related Fatality Numbers for Specific Types
2000000 )

1750000
1500000
1250000
1000000
750000
500000
250000
0

Fig. 1 Common cancer types projected to cause death in 2023

of results. Cancer detection at its earliest stages increases treatment success rates, reduces
mortality, and reduces the need for forceful intervention. In early-stage breast cancer, five-
year survival rates are around 99%. The use of less forceful medicines such as surgery,
chemotherapy, and radiation led to quicker recuperation times and better corrections.

Artificial Intelligence (AI) has risen as a progressive drive within the field of medical
diagnostics, outstandingly within the early location of cancers. Due to their tremendous
potential to improve precision, proficiency, and unwavering quality, Machine Learning
(ML) and Deep Learning (DL) have received much attention within this transformative
scene. Deep Learning has made particularly significant strides in cancer discovery, espe-
cially in breast cancer. Machine Learning, which precedes Deep Learning, helps computers
make forecasts based on information designs and enhance cancer location. Its algorithmic
flexibility has enabled the investigation of broad datasets, leading to the identification of
unpretentious characteristics characteristic of cancerous growths. Nevertheless, Machine
Learning depends heavily on manual fine-tuning to achieve optimal results due to high-
lights’ complexity and limited flexibility. Deep Learning uses neural networks with mul-
tiple layers to extract complex highlights from crude information without manual inter-
vention. As a result, Deep Learning is capable of observing subtleties that are difficult to
detect with conventional techniques. Deep Learning has since overcome Machine Learn-
ing’s limitations, thereby improving cancer location specificity and affectability.

The powerful potential of Deep Learning is vividly demonstrated within the context of
breast cancer. Detecting potential malignancies in mammograms can be difficult due to
the complicated surfaces and designs. With its various levels of design, Deep Learning
is uniquely capable of unraveling these complexities, perceiving small abnormalities that
might be missed by humans. Because it can memorize enormous datasets, it can observe
designs exhibiting breast cancer with astounding precision. Using Deep Learning mod-
els like Convolutional Neural Systems (CNNs), breast cancer location has exceeded past
benchmarks in an outstanding manner. Using mammogram images, these models have
shown an unmatched ability to identify potential cancerous injuries in the early stages of
their development. As a result, they have an increased potential for early mediation and a
move forward in understanding results.

The most outstanding manifestation of Deep Learning can be found in cancer loca-
tion, which is based on Machine Learning. A smart technology called Deep Learning is

@ Springer



Multimedia Tools and Applications

changing how we identify breast cancer. Using computers, it can detect important fea-
tures and patterns really accurately. It is possible for technology and medicine to change
healthcare when they come together. It’s amazing how deep learning is helping spot breast
cancer.

1.1 Motivation

One of the most common and deadly cancers among women, breast cancer still poses a
significant threat to millions of lives every year. Diagnostic imaging and therapeutic
approaches have advanced in recent decades, but early and accurate diagnosis continues to
pose a challenge. For successful treatment and improved patient survival rates, early detec-
tion is crucial. However, radiologists are not infallible when interpreting mammograms
because of fatigue, differences in experience, and the subjective nature of visual assess-
ment. Medical imaging analysis has been transformed by artificial intelligence (Al), par-
ticularly deep learning, in recent decades. Large datasets can be analyzed using deep learn-
ing algorithms, which mimic neural networks in the brain. As a result, they are particularly
suitable for tasks that involve high-dimensional and intricate data, such as detecting subtle
anomalies in medical images that indicate cancer. In addition to augmenting radiologists’
diagnostic capabilities, deep learning in medical imaging can also improve breast cancer
detection accuracy, efficiency, and consistency.

Deep learning methodologies play an important role in the detection of breast cancer in
this comprehensive study. Over the past few years, deep learning has rapidly advanced and
been applied to a variety of medical fields, with breast cancer research receiving particular
attention. Data-driven deep learning promises to reduce human error and provide robust,
reproducible breast cancer diagnostics. A detailed review of deep learning advancements
in breast cancer detection is presented in this article. The aim of this review is to provide
researchers, clinicians, and healthcare stakeholders with an understanding of deep learn-
ing’s role in enhancing breast cancer diagnostics. We will explore various deep learning
architectures, such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and hybrid models, discussing their strengths and limitations. In addition, we will
discuss methods and techniques employed in preprocessing, training, and validating these
models, emphasizing their contributions to improved accuracy and reliability.

This study will also address potential research directions for deep learning in breast can-
cer detection. The foundation of a trustworthiness and interpretability of Al-driven diag-
nostic systems will be enhanced by emerging trends like transfer learning, data integration
across multiple modes, and explainable AI. We will also discuss the ethical and practical
challenges of implementing these advanced Al solutions in clinical settings, including data
privacy, algorithmic bias, and regulatory frameworks. It is crucial to analyze the transform-
ative potential of deep learning in early breast cancer detection as artificial intelligence
continues to advance and integrate into healthcare. In order to overcome this devastating
disease, deep learning has the potential to improve early detection and save many lives.

1.2 Contribution

In this section, we depict the unmistakable commitments of this overview article to the
advancing scene of breast cancer location and conclusion. By synthesizing an assorted
cluster of investigate discoveries and experiences, we point to supply a comprehensive
asset that propels our understanding of the essential role deep learning plays within the
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domain of restorative imaging and healthcare. Our commitments include a multifaceted
investigation of breast cancer imaging modalities, a curated compilation of datasets, an in-
depth investigation of neural arrange approaches, and a forward-looking viewpoint on the
clinical suggestions of our discoveries. It aims to enhance the understanding of available
datasets, facilitate better experimental design, and enable better deep learning models to be
developed. These datasets highlight critical variations and challenges, such as imbalance
between classes, data quality variability, and missing data. The main contributions of this
paper are as follows:

e We offer up-to-date factual information on breast cancer types and mortality rates
within the year 2023. By displaying Fig. 1, we contextualize the criticalness of making
strides breast cancer location strategies and emphasize the pertinence of our study arti-
cle in contributing to this imperative range of healthcare.

e In this survey article, we provide a comprehensive synthesis of various imaging modal-
ities employed in the detection of breast cancer. We meticulously analyze each imaging
technique, including Mammogram, CT scan, Ultrasound, MRI, and Histopathological
imaging, elucidating their strengths and limitations. By consolidating a wide range of
research findings, we offer a holistic view of how these modalities contribute to the
early detection and diagnosis of breast cancer.

e A wide variety of breast cancer imaging techniques is included in our extensive col-
lection of datasets. This compilation serves as a valuable resource for researchers and
practitioners seeking benchmark datasets for evaluating and training deep learning
models. By meticulously discussing the characteristics, sources, and annotations of
these datasets, we facilitate an informed selection process for researchers embarking on
breast cancer detection projects.

e This survey extensively explores the myriad ways neural networks have been lever-
aged to enhance breast cancer detection accuracy. We delve into the specifics of con-
volutional neural networks (CNN5), recurrent neural networks (RNNs), and other deep
learning architectures tailored for medical imaging analysis. By synthesizing research
outcomes from various studies, we illustrate how these techniques harness the power of
artificial intelligence to contribute significantly to accurate breast cancer diagnosis.

e It is important to emphasize the variety of augmentation strategies employed by differ-
ent studies. Identify specific variations or combinations of techniques that have been
found effective for diagnosing breast cancer. It could include discussing unique aug-
mentation pipelines or incorporating domain expertise into augmentation.

e An analysis of recent breast cancer detection research yields new insights in this article.
We discuss emerging trends, unresolved challenges, and potential avenues for future
exploration by critically analyzing various studies. Readers gain a deeper understanding
of breast cancer diagnosis through our unique perspective.

1.3 Paper structure

In order to provide a systematic exploration of the profound impact of deep learning
on breast cancer detection, this survey article is organized into a structured framework.
Each section is meticulously designed to guide readers through a comprehensive journey,
depicted in Fig. 2, from understanding the fundamental principles of breast cancer imag-
ing modalities to delving into the intricate landscape of deep learning techniques and their
application.
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Fig.2 An illustrative roadmap for navigating deep learning in breast cancer diagnosis

2 Review methodology

This section outlines a structured methodology used to systematically review the existing
literature on the use of deep learning techniques in detecting breast cancer. The following
sections provide a detailed, step-by-step description of the methodology used in conduct-
ing this systematic review. The process emphasizes transparency, rigor, and compliance
with established guidelines during the synthesis and analysis of evidence.

2.1 Planning the review

Creating research questions is the initial step in establishing the evaluation criteria. These
meticulously crafted questions were used to conduct further searches across various data
sources. The review method collects and identifies pertinent data for the proposed investi-
gation. Articles are either considered or heavily discarded based on the evaluation process.
The task selection by a single researcher could potentially introduce bias into the study.
Therefore, this Systematic Literature Review was carried out by dividing the work among
all the contributors of this paper. Each author drafted a document detailing their insights on
the review process and shared it with the rest of the team. This cycle was repeated over a
fixed period. Numerous online databases were thoroughly searched. Figure 3 illustrates the
evaluation process.

2.2 Research questions
The systematic review that focuses on detecting breast cancer using deep learning tech-

niques aims to address key research questions and objectives, striving for a comprehensive
evaluation of the wide range of studies in this area. Its main goal is to thoroughly examine
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Fig.3 Process of review methodology

the methodologies, advancements, and results in the field of using deep learning for breast
cancer detection. Through a detailed analysis, this review aims to uncover crucial insights
that could potentially enhance and improve the effectiveness of deep learning models in
accurately detecting and diagnosing breast cancer, thereby making a significant contribu-
tion to the progress of medical diagnostics in this vital area. The research questions and
objectives guiding the focus of this review are shown in Table 1.

2.3 Sources of information

To conduct a thorough review of the literature, it’s crucial to perform an extensive search
across various electronic sources. To increase the chances of finding relevant research pub-
lications, we have compiled a specific set of data sources as follows:

Springer (www.springerlink.com)

ACM Digital Library (www.acm.org/dl)
IEEE Xplore (ieeexplore.ieee.org)
ScienceDirect (www.sciencedirect.com)
Taylor & Francis (www.taylorandfrancis.com)

2.4 Search criteria

Research studies published in 2022 and 2023 were examined to: (1) evaluate the use of
various imaging modalities, (2) compare breast cancer (BC) imaging modalities, and (3)
identify the most frequently cited and publicly available BC databases with different types
of BC. The search criteria generally used in this research study consisted of the terms
“Breast Cancer” AND “Deep Learning”. We’ve selected papers that specifically focus on
the intersection of “Breast Cancer” and “Deep Learning”, choosing those where both key-
words appear in their titles. This strict criterion was used to streamline the selection, given
the vast number of papers that include these keywords in a broader context. Our goal is to
present a curated collection that deeply explores the nuanced relationship between Breast
Cancer and advancements in Deep Learning, offering a concentrated and insightful exami-
nation of this critical intersection.

2.5 Inclusion and exclusion criteria

The inclusion and exclusion criteria were set up to ensure the relevance and consistency in
the selection of research studies for this investigation.
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Inclusion criteria are:

e Publication Period: Only studies published in 2022 and 2023 were included to cap-
ture the most recent advancements and findings.

e Relevance to Breast Cancer: Studies that are directly related to breast cancer diag-
nostics, imaging modalities, and the application of machine learning and deep learn-
ing techniques in this context were included.

e Language: Only studies available in English were considered to ensure consistency
in understanding and analysis.

Exclusion criteria are:

e Publication Date: Studies published before 2022 or after 2023 were excluded to con-
centrate on the latest developments in the field.

e Irrelevance: Studies that did not primarily focus on breast cancer diagnostics, imag-
ing modalities, or the application of machine learning within this domain were
excluded.

e Non-English Language: Studies not available in English were excluded to avoid
potential language barriers in analysis and interpretation.

These criteria were rigorously applied during the selection process to ensure the
validity and suitability of the studies included in this research.

3 Background

Breast cancer is important because it affects women’s wellbeing and questions their
commitments. Despite advances in treatment and research, cancer-related deaths remain
a leading cause of death. It is the breast cancer mindfulness movement that has set the
standard for other cancers to follow. Medical image analysis models can be trained and
retrained according to changes in image distribution using adaptive self-learning tech-
niques [7]. Additionally, early detection of breast cancer using mammogram images
reduces women’s mortality rates and allows them to receive proper treatment, with
recent advancements enhancing their effectiveness [8].

Women are mostly affected by this disease, but it can affect men’s breast tissues as
well. Breast cancer is one of the leading causes of death in women with an estimated
annual incidence and mortality rate of over 2.1 million [9]. Screening methods like
mammography increase the chance of successful treatment when detected early [9].

With Deep Learning, complex highlights can be extracted without manual intervention
from crude information by using neural networks with multiple layers. As a result, Deep
Learning is able to detect subtleties that conventional methods are unable to detect. In med-
ical imaging, deep learning approaches are being used to improve detection and diagno-
sis of diseases such as rheumatoid arthritis using X-rays and magnetic resonance imaging
[10]. By overcoming Machine Learning’s limitations, Deep Learning has improved cancer
location specificity and affectability. Among recent advancements in breast cancer classifi-
cation frameworks, deep learning models have been incorporated for feature extraction and
optimization, which significantly improves performance over traditional approaches [11].
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Table 2. Breast tissue medical images
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3.1 Differentimaging approaches for breast cancer detection

It is vital to diagnose BC accurately and precisely in order to improve survivorship [12].
In breast cancer diagnosis, different imaging modalities play a different role, each with its
own significance. There are several imaging modalities available, including mammogra-
phy, ultrasound, histopathology, MRIs (Magnetic Resonance Imaging), and thermography.
Table 2 illustrates these approaches in an elegant manner. These diverse approaches are
more effective at understanding and diagnosing breast cancer.

3.1.1 Mammography

Mammography is the most common and time-tested method used to detect breast cancer,
especially in women with no symptoms. It is the gold standard for identifying breast cancer
in its earliest and most treatable stages through the use of this sophisticated imaging tech-
nology. X-ray images of the breast are a key component of this diagnostic prowess. The
use of these images allows for a comprehensive examination and screening of breast tis-
sue, employing low-energy X-rays [13]. Mammography harnesses the prowess of modern
medical imaging to detect breast cancer even before outward symptoms manifest. In addi-
tion to improving patient outcomes, early detection significantly increases the likelihood of
successful treatment options. A randomized controlled trial involving the broader popula-
tion has firmly established mammography’s effectiveness in saving lives. In these trials,
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mammography screening has been shown to reduce the incidence of breast cancer mortal-
ity [14]. Over time, mammography has evolved to offer even better diagnostic capabili-
ties. In such an advancement, a three-dimensional imaging approach has been introduced
known as ’Digital Tomosynthesis Mammography’ that enables breast examinations to be
more precise. Another pioneering technique, *Contrast-Enhanced Digital Mammography’
(CEDM), is also emerging. Through the intravenous infusion of an iodinated contrast agent
along with traditional mammography procedures, CEDM increases the visibility of poten-
tial abnormalities [15]. Mammography plays an integral role in the battle against breast
cancer due to these innovative methodologies.

3.1.2 Ultrasound

Ultrasound imaging is distinguished from various alternatives by its monochromatic dis-
play and lower resolution. The grayscale presentation of ultrasound is far from a drawback,
despite its lack of color palette. More vibrant images might mask intricate details. Malig-
nancies often show consistent patterns on ultrasound images. In these images, the visual
narrative is often asymmetrical due to their irregular shapes. This area is closely examined
by healthcare professionals since these irregularities may indicate malignancy. As a result
of these irregularities, diagnosis of such illnesses is also challenging. The visual clarity
of ultrasound images is often blurred, which differs from the sharp definition of high-res-
olution imaging techniques. Fuzziness may seem limiting, but it serves as a reminder of
how complex medical imaging can be. These blurry images reflect the elusive nature of
underlying pathologies in cases of malignancy. Additionally, vague margins in ultrasound
images of malignant regions accentuate their intricate nature. They blend into surround-
ing tissue instead of having well-defined edges, creating uncertainty during the diagnostic
process. Due to its sensitivity, ultrasound is able to capture the intricate interaction between
malignant tissue and its surrounding environment. In contrast to mammography, ultrasound
is excellent at distinguishing cysts from solid masses [16]. As opposed to more vibrant
imaging techniques, ultrasound provides an in-depth view into the intricacies of the human
body despite its monochromatic, low-resolution nature. An ultrasound image of a malig-
nancy reveals irregular shapes, blurred contours, and indistinct margins, highlighting the
inherent challenges and nuances of accurate diagnosis. Ultrasound images are intrinsically
speckled, and this impacts their quality [17].

3.1.3 MRI

The sensitivity of Magnetic Resonance Imaging (MRI) is unparalleled among breast imag-
ing methodologies. It reveals intricate details about breast lesions, including their shape,
dimensions, and spatial orientation. The unmatched versatility and accuracy of MRI can
be attributed to its ability to support multi-planar imaging and facilitate three-dimensional
reconstruction [10]. However, MRI does come with some trade-offs despite its advantages.
Although MRI provides a comprehensive picture of breast lesions, it is resource-intensive.
There is a significant time commitment and costs associated with the procedure, potentially
limiting its widespread use.

With mammography as its complement, MRI is a key component of breast can-
cer (BC) screening. As a result of its unprecedented sensitivity, it can detect subtle
abnormalities that might elude other imaging techniques. With mammography and
MRI combined, a comprehensive breast health evaluation is provided. Furthermore,
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MRI proves particularly useful for BC patients presenting with pulmonary symptoms
beyond screening. The use of computed tomography (CT) images for preoperative
staging has gained significant traction in such cases. The CT image provides a detailed
view of the chest, which can aid healthcare professionals in understanding the extent
of disease progression and the potential impact of surgical interventions. In addition
to providing anatomical insight, CT images can also be predictive. Medical practition-
ers are able to discern lymph node metastasis likelihood by meticulously analyzing
CT images. It can be used to guide treatment decisions and design personalized care
pathways based on this predictive potential. Though Magnetic Resonance Imaging
offers the highest level of sensitivity, its costs and time limitations limit its use. Medi-
cal professionals gain a deeper understanding of breast health through the synergy of
mammography and MRI. CT imaging also provides predictive capabilities, increasing
healthcare professionals’ ability to fight breast cancer by increasing anatomical clarity
simultaneously [18].

3.1.4 Histopathology

Breast cancer (BC) is an extremely difficult diagnosis to make if you don’t have access
to histopathology along with various other medical imaging modalities [19]. In the
field of cancer diagnosis and treatment, histopathology plays an essential role due to
its ability to capture phenotypic details. Histopathology Images (HI) are nevertheless
subject to substantial limitations within BC’s multi-classification, due to the inher-
ent complexity of the samples they capture. Histopathology images show pronounced
coherency among cancerous cells, one of the challenges. Due to the high level of simi-
larity between cells, categorizing cells accurately can be difficult. In addition, HI faces
a dual challenge of significant intraclass differences as well as relatively low interclass
differences. On the basis of visual analysis, this complexity makes identifying different
forms of cancer even more challenging.

When compared with images from different classes, histopathology images from the
same class have greater resolution, more pronounced contrasts, and substantial vis-
ual disparities [20]. Because of this phenomenon, different types of BC can be dif-
ficult to distinguish because their images are so drastically different. It is because of
this inherent variability that expert interpretation is necessary. Furthermore, gigapixel
Whole Slide Images (WSIs) present their own set of challenges. WSIs with resolutions
exceeding 1 GB each present formidable challenges for Deep Learning (DL) models.
A huge volume of data makes processing WSIs a computationally demanding task.
DL models struggle with the challenge of analyzing colossal images efficiently while
maintaining depth of insight.

Despite its unrivaled status as the gold standard for BC diagnosis [19], Histopa-
thology faces formidable obstacles during multi-classification applications. Images
are complicated by cancerous cells’ coherence, intraclass differences, and interclass
dynamics. Furthermore, there are intrinsic differences in imaging characteristics
within the same class that contribute to the complexity of BC classification. Gigapixel
WSIs also present computational challenges, which test DL models’ capabilities. It is
difficult to diagnose breast cancer based on histopathology due to many challenges, but
the pursuit of improved diagnostic accuracy remains a driving force.
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3.1.5 Thermography

Another imaging modality used for diagnosing breast cancer (BC) is Breast Thermogra-
phy, or Thermal Imaging. It uses heat patterns as a key indicator of potential breast abnor-
malities. It is based on the increased heat generation caused by malignant cells. Breast
Thermography offers a number of advantages over its competition. The most prominent
feature of this process is that it is non-invasive, painless, and non-contact. It prevents any
discomfort that might occur when using traditional imaging techniques, thereby ensur-
ing the safety of the thermographer as well as the patient. Due to its non-invasive nature,
Breast Thermography is an attractive option for routine annual medical checkups [21].

Thermography plays a crucial role in early diagnosis of breast cancer when used in con-
junction with mammography. Mammography is one of the most effective ways to detect
breast cancer in young women, but it is limited by the dense breast tissue and low contrast
of the images it produces. Thermography-based techniques are capable of diagnosing can-
cer 8 to 10 years before mammography at the early stages of development [22]. Thermal
imaging has the potential to save lives because of this time advantage. Besides BC, Infra-
red Thermography can be used to detect a variety of cancers in the initial stages. The test
is useful for detecting brain tumors, skin cancer, and more. Nevertheless, its significance
goes beyond cancer detection. It can diagnose diseases such as liver disorders, diabetes,
and ocular diseases, as well as emerging pathogens such as COVID-19 virus [23]. Infrared
Thermography plays a pivotal role in holistic health assessment based on this multifac-
eted application. Essentially, Breast Thermography uses heat patterns to uncover potential
breast anomalies in a non-invasive, patient-friendly manner [21]. It improves early detec-
tion of breast cancer when combined with mammography [22]. Infrared thermography’s
relevance to detection of cancer and disease [23] is bolstered by its broader application
in modern medicine. Thermal imaging contributes to better patient outcomes by enabling
earlier and more convenient diagnosis of conditions. The advantages and disadvantages of
various breast cancer imaging modalities should be weighed after discussing their distinct
characteristics and functionality. As shown in Table 3, each technique’s strengths and limi-
tations are summarized, making it easier to understand their respective roles in the diagno-
sis of breast cancer.

Medical experts like pathologists and radiologists must analyze medical images meticu-
lously to detect breast cancer. However, qualitative image assessment has inherent limita-
tions. There is a significant risk of subjectivity when there is a shortage of skilled patholo-
gists. When evaluating numerous cells manually, concentration lapses can occur, leading
to misdiagnoses. The monotony of this process makes it time-consuming and error-prone.
These challenges can be addressed with advanced image analysis technologies. In addition
to enhancing consistency and accuracy, automated methods, like machine learning algo-
rithms, also reduce the need for human intervention. In addition to robust validation, tech-
nology adoption must address concerns about data security.

3.2 Computer-Aided Diagnostic (CAD)

In order to provide informed treatment for breast cancer, early detection is crucial. Through
algorithms, computer-aided diagnostic systems simplify the detection and localization pro-
cess. However, studies [24] highlight concerns as well as benefits. It is possible for CAD soft-
ware to generate high false positive rates, which reduces sensitivity. CAD is inconsistent in its
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accuracy, and some cancerous lesions go undetected. In the development of CAD systems,
Moore’s law [25] has a significant impact. The ability to perform complex calculations on
large datasets is improved by faster, more cost-effective hardware. CAD systems can enhance
breast cancer diagnostics by integrating with medical imaging. Nevertheless, limitations high-
lighted in studies [24] emphasize continued system refinement. Moore’s law [25] drives CAD
development, enhancing its ability to handle large datasets.

The potential impact of Al-assisted Computer-Assisted Diagnosis (CAD) systems across
various healthcare domains has garnered considerable attention [26, 27]. Although Al has
been integrated into medical practice, substantial clinical benefits have yet to be realized. Due
to this lack of practical applications, it can be difficult to assess Al’s efficacy in the healthcare
environment, since its promise often outpaces its actual implementation. The integration of Al
into clinical practice still faces two major challenges:

e Generalization Challenges of Machine Learning and Deep Learning Models: Machine
Learning (ML) and Deep Learning (DL) models are challenged by the intricate and multi-
faceted nature of complex medical datasets. It is often difficult for these models to general-
ize to intricate, real-world medical scenarios, despite their ability to recognize patterns. Al
models must be able to adapt to patient populations, diseases, and treatment paradigms
that are constantly changing in healthcare due to the dynamic data generated.

e Dataset Limitations and Ethical Considerations: High-quality labeled datasets are crucial
to the successful development and deployment of Al models. Despite this, such datasets
are still difficult to obtain, in part because of ethical and legal concerns about privacy and
sharing. Data utilization is further restricted by emerging regulations, making it challeng-
ing for Al to tap its full potential for therapeutic advances.

In healthcare, Al has been largely proven in retrospective studies, which examine historical
data retrospectively. However, since these studies are retrospective, selection biases are possi-
ble, which limits their applicability to prospective studies. In order to determine the true valid-
ity of a study, prospective studies are conducted and external validations are performed. The
translation of Al-driven technologies from research environments to clinical practice requires
these critical steps.

Integrating Al into clinical workflows must bridge the gap between research-driven poten-
tial and measurable clinical benefits. A prospective study validates the effectiveness of Al in
real-time scenarios and helps refine models for improved generalization. For Al to be truly
transformative in healthcare, it is crucial to address dataset challenges through innovative col-
laborations, follow ethical considerations, and navigate regulatory landscapes.

Even though Al-assisted CAD has tremendous potential in healthcare, its implementation
is difficult due to technical obstacles such as model generalization, data availability, and ethi-
cal concerns. In order to transform Al from a theoretical potential into a practical reality, the
healthcare community should pursue prospective studies and tackle these challenges actively.

3.3 Deep learning

Figure 4 visualizes the evolution of technology over time, delineating distinct epochs
that shape the trajectory of progress. Foundational concepts and early computing para-
digms were established during the inference period of 1950 to 1970. In the subsequent
era from 1970 to 1980, an emphasis was placed on information processing and concep-
tual frameworks, marking the beginning of the knowledge era. There is an ascending
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Fig.4 Navigating technological epochs—tracing the evolution from inference to deep learning

trend in the graph, which marks the advent of machine learning (ML) in the 1980s.
The intervening years from 1980 to 2011 witnessed the proliferation of algorithms and
methodologies, culminating in the paradigm shift towards data-driven decisions. The
last decade has been known as the deep learning period (DL), where vast datasets and
sophisticated neural networks have helped push artificial intelligence forward to unprec-
edented levels. Figure 4 demonstrates the dynamic eras that have shaped the technologi-
cal landscape, serving as a visual narrative that complements this paper’s more thematic
discourse.

Machine Learning (ML) and Deep Learning (DL) stand as pivotal cornerstones in the
realm of artificial intelligence (Al), facilitating the development of intelligent systems
capable of learning from data and making informed decisions. Artificial intelligence
uses machine learning to make predictions and make decisions from data patterns with-
out explicit programming. Figure 5 illustrates the relationship between deep learning,
machine learning, and artificial intelligence. Artificial intelligence encompasses both
deep learning and machine learning, both of which contribute to the broader field of
artificial intelligence.

A neural network with interconnected layers is used for Deep Learning (DL) to
enhance ML capabilities. Machine learning automates the process of extracting hierar-
chies of features from raw data by mimicking brain function. Due to its depth and com-
plexity, Deep Learning enhanced the performance of AI systems. In artificial intelli-
gence (Al), Deep Learning (DL) and Machine Learning (ML) utilize data to predict or
make decisions. The complexity and depth of the two algorithms for feature extraction
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Deep Learning: A subset of ML that uses
neural networks with many layers. It excels at
recognizing patterns in large and complex
datasets by mimicking how the human brain
processes information. Through multiple
interconnected layers, deep learning models
can automatically extract and learn features,
making them highly effective for tasks like
image and speech recognition.

Artificial Intelligence
(AI): A broad field
focused on creating
machines that can
perform tasks that
typically require
human intelligence.

Machine Learning
(ML): A subset of
Al that uses
algorithms to find
patterns in data.

Fig.5 Deep learning, machine learning, and artificial intelligence interrelate

and representation make them fundamentally different. Machine learning algorithms
use features extracted from raw input data as inputs for learning. It is the quality and
relevance of the features that directly influence the performance of the model at this
point.

Machine Learning (ML): There are many different ways to apply machine learn-
ing techniques, including both traditional and sophisticated algorithms. Traditional
machine learning involves domain experts identifying and engineering relevant fea-
tures from data through manual or semi-manual processes. Based on these features,
algorithms such as decision trees, support vector machines, random forests, or logis-
tic regression are formulated. Feature selection plays a significant role in model suc-
cess. Machine learning includes both traditional and more sophisticated algorithms.
Traditionally, feature extraction has been a manual or semi-manual process, requiring
domain experts to identify and engineer relevant features from data. Decision trees,
support vector machines, random forests, and logistic regression algorithms use these
features as inputs. A great deal depends on the quality of the features selected for these
models.

Deep Learning (DL): Artificial neural networks are used in deep learning to auto-
matically learn hierarchical representations of data using artificial neural networks.
Feature engineering can be eliminated by using deep learning algorithms to learn fea-
tures and representations from raw data. It is particularly useful when dealing with
unstructured and complex data, such as images, audio, and text. Deep learning involves
feature extraction as an integral part of the learning process [28]. Each layer in a
deep neural network learns to represent the input data at different levels. Initial lay-
ers learned simple features like edges and corners, while deeper layers learned more
complex features. In several domains, including image recognition, natural language
processing, and speech synthesis, this ability to automatically learn relevant features
has led to significant advances.

Figure 6 shows the different approach of DL and ML.
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3.4 Convolutional Neural Networks (CNNs) in the realm of computer vision

Artificial Neural Networks (ANNs), including Convolutional Neural Networks (CNNs),
have revolutionized computer vision. The ANNs are modeled after the intricate operations
of human neural networks, resulting in a revolution in the field of malignant tumor detec-
tion. In Fig. 7, artificial neurons interact to create a cohesive structure.

The "input layer" of this architecture serves as the gateway for external information
to permeate the neural network. The next step is to unfurl the "dense layers," capable of
accommodating the intricate nuances of data processing. Figure 8§ illustrates how each neu-
ron within these layers serves as a fundamental unit of computation in computation. The
neurons behind these layers are adept at aggregating and processing information inherited
from preceding layers, a process characterized by weighted multiplication of inputs and
bias terms.

As a result of this cognitive construct, insights from previous hidden layers are com-
bined into a cohesive output layer that represents how the network interprets input data.
A comparison of the projected output with the expected output results in a quantification
of an error metric that quantifies the discrepancy between actual and projected output.
A critical component of refining predictive prowess is the training process. By adjusting
synaptic weights, the dynamic process minimizes detected errors by using the principle
of backpropagation. To narrow the gap between projected and actual results, the "Gradi-
ent Descent Algorithm" systematically aligns the network with actual data patterns. Fig-
ures 7 and 8 illustrate how computational innovation and biomimetic principles have pro-
pelled the frontiers of scientific discovery and fundamentally changed the landscape of
artificial intelligence. Computer vision has been revolutionized by CNNs, which take this
concept one step further, simulating human brain functions in processing complex data.
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Human brains use CNNs to process visual information. Neurons in the human visual cor-
tex respond only to local visual stimuli. It is possible to replicate the concept with CNNss,
which use convolutional layers for detecting local features, pooling layers for preserving
important data, and fully connected layers for predicting the future.

In Medical Image Analysis (MIA) and classification, CNN is a highly preferred neural
network [29]. There are many applications of CNNs, including computer vision [30], face
recognition [31], natural language processing (NLP) [32], audio and video processing [33].
There are two key benefits of CNN architectures: parameter sharing and sparse connections
[34]. The basic architecture of a Convolutional Neural Network (CNN) consists of multiple
layers that employ filters or kernels, followed by a pooling layer for down sampling. ReLU,
Sigmoid, Tanh, and Softmax are activated by the Fully Connected (Dense) layers.

Within the regions covered by the Convolutional layers, the input image is processed
through mathematical (Convolutional) operations. Each convolutional layer is activated
by a ReLU activation function in order to overcome the ’Vanishing Gradient Problem’.
It primarily focuses on dimensionality reduction by using the ’Sliding Window’ concept.
In general, three methods of pooling exist: maximum pooling, average pooling, and sum
pooling. Maximum pooling is the most commonly used method. Fully connected layers
(FC) establish connections between each node within a layer. Convolutional and pooling
layers are primarily classified by dense layers. The ultimate dense layer generates probabil-
ity values between 0 and 1 using the ’Softmax’ activation function for individual artificial
neurons. The architecture of a model has a significant impact on enhancing performance of
various applications. As shown in Fig. 9, convolutional neural networks are used to catego-
rize breast cancer tumors.

3.5 Transfer learning

Transfer learning is a machine learning technique with great potential for advancing
scientific data analysis. Pre-trained models are employed to enhance the learning pro-
cess and predict performance on new tasks. As a result of leveraging insights from one
domain, transfer learning can accelerate learning in another, even when data distribu-
tions differ. In essence, transfer learning improves a target domain’s understanding
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Fig.9 A basic convolutional neural network for classifying mammogram images

by using knowledge extracted from a source domain. In addition, the benefit is even
stronger when labeled data is limited, allowing for a faster convergence of the model
during training. There are multiple paradigms for applying transfer learning, such as
instance-based transfer, feature-based transfer, and model-based transfer.

Instance-based transfers use the same data instances or examples in both the source
and target domains. With feature-based transfer, learned representations (features) are
transferred from one domain to another, allowing for better generalization. An advan-
tage of model-based transfer is that it uses pre-trained models, such as neural networks,
to enhance the efficiency and effectiveness of the target domain’s model.

The LeNet architecture introduced by LeCun et al. [35] sparked the evolution of
Convolutional Neural Networks (CNNs). The early CNNs are limited to handwritten
numeral classification, which made them less generalizable. As a result of Krizhevsky
et al.’s [36] "AlexNet", the landscape has changed significantly. A deeper model and
advanced parameter optimization techniques were utilized in this architecture to push
the boundaries of image recognition and classification. At the time, hardware limita-
tions limited CNNs’ learning capacity, requiring "AlexNet" to be trained on two GPUs
simultaneously.

Overfitting challenges are introduced by the pursuit of greater network depth. To over-
come these issues, the authors implemented Local Response Normalization (LRN) and
overlapping subsampling techniques. VGGNet [37] emerged as a multilayered architecture
that surpassed AlexNet by 19 layers. By using compact 3 x 3 filters, it achieved the effects
of larger filters like 55 or 7X7, reducing parameter count and complexity. Nevertheless,
it was hampered by the extensive use of 140 million parameters.

Inception-V1 [38] or GoogleNet [39] aimed at balancing performance and computa-
tional cost. Feature extraction has been revolutionized by the "Inception block"’s merge,
transform, and split functions. Despite its heterogeneous topology and representation inef-
ficiencies, "Inception-V1" also introduced auxiliary learners for faster convergence. In
"ResNet" architectures, residual connections are used to mitigate vanishing gradient prob-
lems. The ImageNet [40] dataset provided an opportunity to demonstrate the versatility of
various ResNet models [41], including ResNet18, ResNet34, ResNet50, ResNet101, and
ResNet152. Inception-V3 and Inception-V4 [42] incorporated asymmetric filter sizes and
refined "Inception-V1" concept. Inception-ResNet combines residual connections for a
departure from filter concatenation.

MobileNet [43] is an innovative depthwise separable convolution method introduced by
Sandler et al. In this scheme, spatial and depth-wise filtering are efficiently decoupled, thus
drastically reducing computations and maintaining a high level of performance. With the
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lightweight architecture, image tasks could be accelerated on the device. Inverted residual
blocks and linear bottlenecks accompanied "MobileNetV2 [44]" to enhance the original
concept. It is an attractive choice for a variety of resource-constrained scenarios due to its
superior efficiency and its use of fewer parameters. "MobileNetV3 [45]" continued the evo-
lution with tailored architectures for different efficiency and accuracy trade-offs. Mobile-
NetV3 expanded the horizons of efficient CNNs by integrating advanced design elements
like h-swish activation functions. MobileNet’s journey illustrates the importance of versa-
tile models that can handle a variety of computational requirements. Model scaling is revo-
lutionized by "EfficientNet [46]. EfficientNet uses compound scaling to achieve optimal
balance between width, depth, and resolution. Using this approach, the network is system-
atically scaled up in multiple dimensions to increase performance and efficiency.

With EfficientNet’s compound scaling method, depth, width, and resolution of the net-
work are uniformly scaled using a single scaling coefficient. Networks created using this
technique are both computationally efficient and representationally powerful. By reduc-
ing parameters and computing costs, it achieves state-of-the-art performance on various
benchmarks.

This architecture uses depthwise separable convolutions, inverted residual blocks, and a
carefully considered scaling schedule. EfficientNet models are able to achieve impressive
accuracy in image classification and other computer vision tasks while being resource-effi-
cient. In neural architecture design, EfficientNet serves as a benchmark for balancing per-
formance and efficiency in deep neural networks. As a result, it demonstrates how careful
scaling across dimensions can result in improved models that can be deployed across dif-
ferent platforms and devices. Scientific data analysis can be transformed by transfer learn-
ing. Utilizing prior knowledge from related fields enhances learning, fosters better pre-
dictive performance, and accelerates scientific discoveries across many fields. In modern
scientific research, transfer learning techniques continue to refine their applications despite
challenges, making them an important asset.

3.6 Data augmentation

Various data transformations are applied to existing data samples in order to artificially
increase the diversity and quantity of training data. Machine learning models can be
improved through data augmentation by exposing them to a broader range of variations in
the data [47]. This section describes various augmentation techniques in detail:

e Adding Noise: The purpose of adding noise to existing data is to deliberately add ran-
dom variation to it. In this way, real-world fluctuations can be simulated and overfitting
reduced, resulting in a more robust model. It is possible to add noise to text data in
various ways, such as with Gaussian noise for images. After augmented data is pro-
vided, the model is able to learn from a broader spectrum of examples, improving its
generalization and performance on new data.

e Cropping: In data augmentation, cropping involves removing unwanted portions of an
image. In this way, the model is more able to cope with changes in object orientation
and scale. The random cropping process extracts different sections of an image, intro-
ducing diversity and improving the model’s ability to identify objects from different
viewpoints. In training datasets that lack diversity in object placement or have images
of varying dimensions, cropping is particularly useful.
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e Flipping: Data augmentation techniques such as flipping involve mirroring an image
or data vertically or horizontally. Flipping is mostly used in image classification and
object detection to expand datasets and introduce variations that enhance robust feature
learning. Thus, this method effectively counteracts the bias associated with object ori-
entation at the outset, increasing generalizability across diverse real-world scenarios.

e Scaling: The process of rescaling involves changing the size of an image or input data.
As a result, tasks like image classification and object detection can be performed.
Changing the scale increases dataset diversity, helping the model learn a broader range
of features. The ability to handle various scales in real-world scenarios is enhanced by
rescaling, as it anti-biases biases due to specific sizes in the original data.

e Brightness: The brightness level of an image or input data can be adjusted as part of
data augmentation. It is particularly relevant to image analysis and object recognition
since it introduces variations in illumination conditions into the dataset. In a real-world
situation, the model learns to recognize objects under different illumination settings by
modifying brightness.

e Rotation: Images are rotated using a specific angle as a data augmentation technique.
Image classification and object detection are particularly well suited to rotation, as it
allows the model to learn features from different perspectives. It addresses biases that
may be associated with specific object orientations in the initial data, enhancing the
model’s ability to adapt to various angles in real-world situations.

e Translation: The translation process involves shifting images or input data horizontally
or vertically. Images and objects can be recognized using this technique. By translat-
ing the dataset, the model is able to learn features from different positions as a result
of added diversity. It is particularly useful in counteracting bias associated with spe-
cific object placements in the initial dataset, improving the model’s ability to generalize
across different scenarios.

e Contrast: Data augmentation technique contrast adjustment involves modifying the
contrast level of images or input data. By introducing varying contrast levels, this
approach improves image classification and object detection. Models can be trained to
differentiate objects under different visual conditions by varying contrast, which leads
to improved performance and adaptability.

e Saturation: Color saturation is the process of altering the intensity of colors in an image
or input data. Images can be classified and objects can be detected using this technique.
In order to identify objects in various color conditions, the model learns how to manip-
ulate saturation levels. In real-world situations, this approach is especially effective at
overcoming biases caused by specific color representations in the original dataset.

e Color augmentation: Color augmentation involves modifying the color properties of
images or input data using various techniques. Images and objects can be recognized
using this approach. As the model learns features under different visual conditions due
to color changes, the dataset becomes more diverse. It enhances the model’s ability to
adapt to different color scenarios in real-world settings by mitigating biases caused by
specific color representations in the initial data.

Models of breast cancer detection benefit greatly from data augmentation. Mammo-
graphic images are rotated, flipped, and colored to represent real-world scenarios [48]. The
model is enhanced to recognize cancerous features under changing lighting conditions, ori-
entations, and colors. Due to its improved generalization, the model can more accurately
and reliably diagnose breast cancer in various cases. Figure 10 illustrates data augmenta-
tion techniques.
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3.7 Hybrid methods in deep learning and optimization algorithms

Deep learning (DL) combined with optimization algorithms, such as metaheuristics, rep-
resents a promising research area in artificial intelligence. Hybrid methods leverage the
strengths of both domains to enhance machine learning performance and robustness. This
section explores the synergy between deep learning and optimization techniques in breast
cancer detection, highlighting their applications and contributions.

3.7.1 Enhancing deep learning with metaheuristics

In optimization, metaheuristics refer to high-level procedures that can identify, generate,
or select a heuristic that can provide a satisfactory solution. In combination with DL, these
algorithms can improve model accuracy and generalization significantly.

Optimizing Neural Network: Optimizing neural network architectures is another key
application of hybrid methods. Genetic algorithms and particle swarm optimization can
automatically search for the best combination of layers, nodes, and connections for a breast
cancer detection model, leading to more efficient and powerful results [49]. With these
optimized architectures, medical images can capture complex patterns, improving diag-
nostic accuracy. Furthermore, metaheuristic algorithms can be used to enhance the perfor-
mance of neural networks to detect breast cancer [50].

Hyperparameter Tuning: Additionally, hybrid methods excel at hyperparameter tuning,
an essential step in the training of deep learning models. The use of metaheuristics allows
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researchers to identify the optimal set of hyperparameters, including learning rates, batch
sizes, and regularization parameters. To fine-tune these parameters, techniques such as ant
colony optimization (ACO) [51] and simulated annealing [52] have been successfully used.

Feature Selection and Extraction: The use of hybrid methods is also effective in the
selection and extraction of features in addition to optimizing architectures and hyperpa-
rameters. The use of metaheuristics can reduce dimensionality and improve the efficiency
of deep learning models when applied to large datasets. Medical images can be used to
distinguish between benign and malignant features in breast cancer detection. The use of
metaheuristic algorithms in feature selection for medical image analysis has been demon-
strated, for instance, in a GA-based hierarchical feature selection approach [53].

3.7.2 Applications in breast cancer detection

Breast cancer detection using hybrid deep learning and optimization algorithms has
yielded remarkable results. Through the combination of deep learning and metaheuristics,
these methods can enhance detection accuracy and provide more reliable diagnostic tools.
Hybrid methods have demonstrated their effectiveness in a variety of medical imaging
tasks, as demonstrated in [54] and [55]. This area is also benefitting from the Enhanced
Firefly Algorithm for Constrained Numerical Optimization [56], which provides improved
optimization techniques for enhancing DL models’ performance in breast cancer detection.

Improving Diagnostic Accuracy: The use of hybrid methods has improved breast cancer
detection models’ accuracy. These methods optimize feature selection, model parameters,
and training processes to make DL models more effective for detecting malignant patterns
in medical images such as mammograms, ultrasounds, and MRIs. It is critical for patient
outcomes to have improved diagnostic accuracy because it not only aids in early detection,
but also reduces false positives and false negatives.

Enhancing Model Robustness and Generalization: Metaheuristics are useful in develop-
ing models that are not only accurate but also robust to variations in data. Medical applica-
tions require robustness because patient data variability can significantly impact diagnostic
performance. It is easier to generalize hybrid models across different datasets and patient
populations. Adaptability ensures consistently good performance in diverse clinical set-
tings, increasing the reliability and applicability of diagnostic tools.

Case Studies and Practical Implementations: Hybrid methods have been implemented
in real-life situations to detect breast cancer. DL and optimization techniques in hybrid sys-
tems outperform traditional methods, increasing diagnoses’ accuracy and speed. The inte-
gration of PSO with convolutional neural networks (CNNs) has improved identifiers and
categorization of breast lesions.

Integration with Healthcare Systems: The integration of hybrid models into exist-
ing healthcare systems can have a significant impact on workflow and decision-making.
These models help healthcare professionals diagnose patients accurately and expeditiously,
which leads to improved treatment outcomes. In addition, hybrid methods can reduce the
burden on radiologists and improve healthcare efficiency by streamlining the diagnostic
process. Deep learning and optimization algorithms, especially metaheuristics, offer sig-
nificant advancements in breast cancer detection. Diagnostic accuracy, model robustness,
and workflow efficiency are all improved by these hybrid methods. In addition to optimiz-
ing neural network architectures, hyperparameters, and feature selection processes, these
approaches provide more reliable and efficient diagnostic tools. The implementation of
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these hybrid methods will lead to better outcomes for patients and more effective health-
care solutions with continued research and development.

4 Explainability of deep learning models in breast cancer

Deep learning (DL) has shown promising results in the diagnosis and prognosis of breast
cancer, significantly improving the accuracy and efficiency of medical imaging and diag-
nostic tasks. In spite of this, clinical adoption and trust are hindered due to the black-box
nature of these models. To address these issues, Explainable Al (XAI) aims to make the
decision-making process of deep learning models more transparent and understandable for
medical practitioners.

Explainability in healthcare is essential for several reasons, including ensuring trust in
the model’s predictions, enabling understanding of complex medical conditions, and ena-
bling regulatory compliance. According to Wani et al. [57], explainable Al integration in
the Internet of Medical Things (IoMT) presents a variety of techniques, challenges, and
opportunities. They described how XAI can enhance the interpretability of models and
maintain high performance while unraveling the complexities of Al-driven healthcare
applications. Saraswat et al. [58] also discussed how XAI can bridge the gap between Al
models and human expertise in Healthcare 5.0. The authors discussed the opportunities
and challenges of implementing XAI in healthcare, including improving diagnostic accu-
racy, patient trust, and regulatory compliance, while addressing issues related to model
complexity and data privacy.

In order to diagnose breast cancer, medical imaging data such as mammograms, ultra-
sounds, and MRI scans are often analyzed. In recent years, deep learning models, particu-
larly convolutional neural networks (CNNs), have been widely used to detect tumors, seg-
ment them, and classify them. In spite of their success, these models may not be easy to
interpret, which can hinder their clinical application. It has been discovered that a number
of XAl techniques can be used to enhance the transparency of DL models when diagnosing
breast cancer.

Rajpal et al. [59] suggested the XAI-MethylMarker approach can be used to discover
biomarkers of breast cancer subtypes using methylation data. In this two-stage framework,
autoencoders are used for dimensionality reduction, feed-forward neural networks are used
for classification, and then a biomarker discovery algorithm is used to identify 52 biomark-
ers. With fivefold cross-validation, they identified clinically relevant biomarkers associated
with druggable genes, prognostic outcomes, and enriched pathways associated with breast
cancer subtypes.

e Saliency Maps: A saliency map indicates which regions in an image the model consid-
ers important. During the analysis of a mammogram, a saliency map can reveal which
areas contributed most to the classification of the region as malignant or benign.

e (Class Activation Maps (CAMs) and Grad-CAM: Visual explanations are provided by
heatmaps that identify an image’s important regions corresponding to specific classes.
As a result, radiologists are able to gain a better understanding of which parts of the
image influenced the prediction of the model.

e Layer-wise Relevance Propagation (LRP): Each input feature contributes to the predic-
tion of a neural network using LRP. LRP can be used to determine the features (e.g.,
shape, texture) of a tumor that led to a diagnosis of breast cancer.
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Fig. 11 Workflow of Explainable AI (XAI) in deep learning models for breast cancer diagnosis

e SHAP (SHapley Additive exPlanations): For each feature, SHAP values are used to
explain the prediction. Model output can be influenced by patient characteristics and
imaging features.

The application of XAl to breast cancer and healthcare in general remains challenging,
despite its advancements:

e Scalability: Medical imaging datasets tend to be large and computationally intensive,
making XAI methods difficult to scale.

e Interpretability vs. Accuracy Trade-off: Maintaining accuracy and making a model
more interpretable are often at odds. Developing XAl solutions that balance these two
aspects is crucial.

e Domain Expertise Integration: In order for XAl to be effective, medical experts and Al
researchers must work together.

e Regulatory and Ethical Considerations: In healthcare, XAl must comply with regula-
tory standards and address ethical concerns, such as patient privacy.

In conclusion, explainable Al can enhance the clinical applicability and reliability
of deep learning models for breast cancer. XAl can improve healthcare diagnostics and
patient outcomes by ensuring the decision-making process of these models is transparent.
The integration of explainable AI (XAI) with deep learning models for breast cancer must
be illustrated in detail, from data collection to clinical validation. Figure 11 illustrates each
crucial step and the techniques used to ensure model accuracy and interpretability.

Data collection and preprocessing are the first steps in the process. In this initial stage,
medical imaging data such as mammograms, ultrasounds, and MRI scans are collected
along with methylation data. Deep learning models rely heavily on these datasets for train-
ing and validation. Data collection leads to two primary branches based on the type of data.
There are three main branches of medical imaging data: mammograms, ultrasounds, and
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MRIs. An ideal deep learning model for image analysis is a Convolutional Neural Network
(CNN). The CNN is capable of identifying patterns and features in medical images that
are indicative of breast cancer. It is the second branch that deals with biomarkers for breast
cancer derived from methylation data. Autoencoders and Feed-Forward Neural Networks
are used for this type of data. The autoencoder reduces the dimensions of the data, while
the feed-forward neural network makes predictions using the compressed representation.

Explainability techniques are used to interpret the predictions once the models have
been trained. It is crucial to gain insight into the model’s decision-making process and
ensure that clinicians can understand the results. Visual explanations are provided using
Grad-CAM, while feature attribution is handled by LIME/SHAP. Grad-CAM generates
heatmaps to illustrate the regions in medical images that contribute to the model’s predic-
tions, helping to visualize the areas in which the CNN concentrates when making a diag-
nosis. It is possible to attribute the model’s predictions to individual features in the meth-
ylation data using LIME and SHAP, which helps to understand the contribution of each
feature to the final prediction. Interpretation and validation are the final stages of the work-
flow. Translating model predictions into clinically actionable insights is crucial. Heatmaps
are created to illustrate which areas influence the model’s predictions, feature importance
plots are created for methylation data to highlight the most significant features influenc-
ing the predictions, and clinical validation of biomarkers for breast cancer diagnosis and
prognosis is conducted. Figure 11 illustrates how this comprehensive workflow integrates
different types of data, deep learning models, and explainability techniques to improve AI’s
clinical application. This structured approach is designed to ensure that artificial intelli-
gence advances facilitate meaningful, interpretable insights for healthcare professionals.

This workflow describes the entire process of using XAl to diagnose breast cancer, from
data collection to clinical validation, ensuring accuracy as well as interpretability. Through
enabling Al systems to make their decision-making processes more transparent, XAl can
improve patient outcomes and advance medical diagnostics.

5 Related surveys

Recently, there’s been a lot of interest in using deep learning for breast cancer research.
Deep learning is good at analyzing complex patterns in large sets of data, which can help
us understand and detect breast cancer early. Deep learning is used in different ways for
breast cancer research, like looking at medical images (such as mammograms) to find sus-
picious areas, studying the genes related to breast cancer, and combining patient records
with molecular information for better diagnosis and predictions. In recent years, many sur-
vey works have been reported. In this section, we’ll talk about existing survey papers that
summarize what we know about using deep learning for breast cancer. These surveys give
a good overview of the methods, challenges, and progress in this area. We’ll focus on eight
surveys that cover various aspects of deep learning applications in breast cancer research,
from analyzing images to understanding the genetic aspects. These surveys help us see
what we’ve achieved so far and where we need to focus our efforts in the future. on deep
learning that are summarized as follows.

Loizidou et al. [60] presented a comprehensive review of computer-aided breast cancer
detection in mammography. They explored the effectiveness of conventional feature-based
machine learning and deep learning algorithms, focusing on the detection and classification
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of micro-calcifications and masses. The authors critically analyzed popular open-access
mammography datasets and emphasized the importance of best practices for algorithm val-
idation and reporting metrics. The review concludes with insights into the potential impact
of CAD algorithms on reducing biopsies and error rates, while acknowledging challenges
like the lack of explainability in machine learning results. The authors recommended fur-
ther research and validation with an increased amount of clinical data to enhance the clini-
cal utility of Computer-Aided Diagnosis (CAD) systems.

Sahu et al. [61] provided a detailed examination of recent advancements in the realm
of artificial intelligence (Al)-based breast cancer detection using mammograms. The
authors focused on the evolving landscape of machine learning (ML) and deep learning
(DL) techniques, delving into their applications for accurate breast cancer diagnosis. They
categorized mammogram-based breast cancer detection techniques within a structured
framework, offering a comprehensive overview of the methodologies employed. The paper
extensively discusses the significance of DL-based features over hand-crafted features and
highlights the preference for transfer learning in scenarios with limited datasets.

Radak et al. [62] conducted a thorough investigation into the application of machine
learning (ML) and deep learning (DL) techniques for breast cancer diagnosis and classi-
fication, emphasizing their significance in addressing the global health concern of breast
cancer. The paper, published in June 2023, delves into the pivotal role of computer-aided
diagnosis (CAD) in enhancing the precision of medical condition identification, with a
specific focus on breast cancer. The authors highlighted the efficacy of CAD in early and
rapid breast cancer diagnosis, particularly through the integration of CAD into mammog-
raphy analysis. This integration is demonstrated to improve diagnostic accuracy, facilitat-
ing prompt medical interventions and potentially enhancing patient outcomes. The paper
underscores the significance of various diagnostic methods for breast cancer, including
biopsy, mammography, magnetic resonance imaging (MRI), and ultrasound. The authors
underscored the significance of integrating these diagnostic methods to enhance precision
and facilitate prompt medical interventions.

Thakur et al. [63] presented a systematic review of machine and deep learning tech-
niques for breast cancer identification and classification through medical image modali-
ties. The paper, published by Springer Nature, outlines ten research questions covering
image modalities, datasets, pre-processing, segmentation, and classification techniques.
The authors reviewed papers and book chapters from 2010 to 2021, focusing on digital
mammograms and public datasets in 57% of the studies. Common techniques include noise
removal, data augmentation, scaling, and image normalization to address inconsistencies.
Segmentation methods include thresholding, region-based, edge-based, clustering-based,
and deep learning techniques, with SVM and CNN variants as prevalent classifiers.

Chugh et al. [64] presented a survey on machine learning (ML) and deep learning (DL)
applications in breast cancer diagnosis. Published by Springer Nature, the paper empha-
sizes the importance of early diagnosis for survivability. The authors conducted a review of
recently developed computer-aided diagnosis (CAD) systems, comparing Machine Learn-
ing (ML) and Deep Learning (DL) techniques with traditional methods. They discussed the
technical details, advantages, and disadvantages of each model, and addressed unresolved
issues and research gaps in the field. The survey acknowledges the emergence of artificial
intelligence technologies assisting radiologists in medical image analysis. ML and DL, as
subsets of Al, have demonstrated promising results in breast cancer diagnosis, providing
improved efficiency and cost reductions. The paper examines various classifiers of ML and
DL approaches, with DL surpassing traditional ML in diagnosing breast carcinoma, par-
ticularly with extensive datasets.
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Table 4 Technical comparison between related surveys

Ref Paper Taxonomy Future Year Publisher Valuation Datapre-  Graphical Rep-
selection works and  analysis analysis  metric processing  resentation
process open issues analysis techniques

[60] VvV X X X X X X v

[61] x v v X X X X v

[62] x v v X X v X v

[631 Vv v v v v v v v

[64] x v v X X v X v

[65] x X X X X X X v

[66] x v v X X v v v

671 Vv v X X X v v v

Yadavendra and Satish [65] conducted a comparative study on breast cancer tumor clas-
sification, focusing on the application of classical machine learning (ML) methods and a
deep learning (DL) approach. It addresses the growing importance of accurate and timely
breast cancer diagnosis. Early detection is highlighted as a critical factor in improving
outcomes and reducing the impact of the disease on patients. In their study, the authors
explore different ML methods, including logistic regression, random forest, support vec-
tor classifier (SVC), AdaBoost classifier, bagging classifier, voting classifier, and the DL
method Xception. The research employs a well-established dataset of breast histopathol-
ogy images, consisting of over two lakhs (200,000) color patches, each sized 50 50 and
scanned at a resolution of 40 X.

Li et al. [66] explored the use of machine learning (ML) and deep learning (DL) tech-
niques to improve patient outcomes by detecting lung cancer early. This study examines the
landscape of deep learning applications in breast cancer diagnosis, with a particular focus
on augmentations that improve early detection accuracy. The purpose of this review is to
explore the advancements in computer-aided diagnosis (CAD) systems designed specifi-
cally for breast cancer and to provide a detailed comparison between ML, DL, and conven-
tional diagnostic approaches. By exploring the technical intricacies of CAD systems, we
shed light on their potential to revolutionize breast cancer diagnosis. Their survey paper
offers clinicians a nuanced perspective on both ML and DL models, bridging theoretical
aspects with practical implications.

Wen et al. [67] explored recent developments in machine learning (ML) and deep learn-
ing (DL) for breast cancer diagnosis, focusing on applications of Al to computer-aided
diagnosis. The researchers used a systematic approach to evaluate 166 papers covering
ML and DL for breast cancer detection. The review included analysis of frequently used
datasets, preprocessing techniques, and classification methods. In addition, the authors
provided insights into their effectiveness and limitations through a variety of methods and
challenges. ML and DL applications in breast cancer diagnosis were analyzed comprehen-
sively for insights into the current state of the art.

Table 4 serves as a comprehensive summary, presenting insights into taxonomy, paper
selection processes, future works, open issues, fundamental aspects of deep learning tech-
niques, addressed problems, and diverse analyses. Distinguishing itself from prior surveys,
this paper delves specifically into the realm of deep learning applications in breast cancer
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diagnosis, providing a thorough classification of all covered papers. Numerous shortcom-
ings observed in previous works have motivated the undertaking of this research:

e Temporal Coverage: Unlike many earlier reviews focusing on papers published before
2020, this study considers the latest research up to 2023, ensuring a more up-to-date
perspective on advancements in deep learning for breast cancer diagnosis.

e Overlooking Key Topics: Numerous papers in the field often overlook crucial topics
related to deep learning in breast cancer, such as diverse architectures, data preprocess-
ing techniques, and model evaluation methodologies. This survey aims to bridge these
gaps.

e Focused Approach: Previous works often lacked a specific focus on deep learning
methods for breast cancer diagnosis, often concentrating on specific subtopics. In con-
trast, this paper centers on the overarching theme of deep learning applications in breast
cancer.

e Technical Depth: Technical explanations and analyses of deep learning approaches
were often insufficient in prior reviews. This study extensively examines various
deep learning techniques in breast cancer diagnosis, providing a deeper understand-
ing of their intricacies.

e Visual Aids for Comprehension: While graphical representation was absent in
many prior reviews, this study employs visual aids to enhance comprehension,
facilitating a more accessible understanding of complex methodologies.

e Systematic Classification: This study categorizes reviewed papers into relevant
subcategories, offering a systematic classification that aids in a more detailed and
nuanced comparison.

e Rigorous Paper Selection Process: Existing works often lack a systematic paper
selection process, while this study rigorously outlines its methodology, ensuring
transparency and reliability in the selection of literature.

e Comprehensive Analysis: A comparison of different evaluation metrics and data-
sets is often overlooked in previous works, and this paper provides a comprehen-
sive analysis of these aspects, offering readers a more nuanced understanding of the
performance metrics employed.

e Applications and Challenges: Analyzing the specific applications and challenges
addressed by researchers adds a comparative perspective, aiding readers and
researchers in choosing suitable techniques based on their specific objectives and
constraints.

Given these shortcomings in existing literature, this survey paper is dedicated to
deepening our understanding of the landscape of deep learning applications in breast
cancer diagnosis, addressing gaps, and providing a comprehensive overview of recent
advancements in this critical area of medical research. In the context of deep learning
applications for breast cancer, this survey paper conducts a detailed comparison of var-
ious technical and non-technical metrics, shedding light on the evolution of research in
the field.
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6 Deep learning-based approaches to detect breast cancer

This section discusses advanced deep learning techniques that have significantly impacted
breast cancer detection. The focus of this paper is to explore how deep learning method-
ologies can enhance diagnosis through a variety of imaging types, including convolutional
neural networks (CNN5s) and optimization algorithms.

6.1 Mammographicimaging

In this subsection, deep-learning approaches are used to detect breast cancer using mam-
mography imaging. The purpose of this paper is to discuss how deep learning techniques
have been applied to mammographic data to improve the accuracy and efficiency of breast
cancer diagnosis. As Table 5 represents Kerschke et al. [68] proposed a retrospective
approach for evaluating breast cancer screening performance. Women 50-69 years of age
underwent 2257 full-field digital mammography screenings in 2011-2013. Using deep
learning Al, each recalled lesion was scored (0-95), indicating its likelihood of being can-
cerous. In contrast to human readers, the sensitivity of Al on lesion level and non-FPRs
for women were estimated as functions of the classification cutoff. This study aims to
test whether an Al system based on deep learning can distinguish benign from malignant
abnormalities in mammograms. In this way, the Al system improved the discrimination
between benign and malignant lesions, thus increasing its positive predictive value while
reducing its sensitivity. It is important to consider whether the loss of sensitivity can be
traded for a reduction in false-positive recall, as those early-stage cancers may have rel-
evance to improving survival. Al-assisted recall decisions seem to benefit the masses, espe-
cially since the system achieved comparable sensitivity for readers with less false positives.

According to Houssein et al. [69], a deep learning architecture based on a marine preda-
tor algorithm can detect breast cancer faster. Based on hybrid CNNs, an improved optimi-
zation algorithm, and transfer learning, this paper proposes a novel classification model
to help radiologists diagnose breast cancer efficiently. They improved the MPA by using
an opposition-based learning strategy to address its inherent weaknesses. The improved
marine predators algorithm (IMPA) is used to determine the optimal hyperparameters
for CNN architectures. A CNN model called ResNet50 (residual network) is used in the
proposed method. An IMPA-ResNet50 architecture is created by combining this model
with the IMPA algorithm. CBIS-DDSM curated breast imaging subset and MIAS mam-
mographic datasets are used for analysis. Various approaches have been compared with
the proposed model. In comparison to the state-of-the-art approaches, the proposed model
performed better. In addition to GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and
MPA-ResNet50, the counterpart algorithms are also hybrids with the ResNet50 architec-
ture. IMPA-ResNet50 has achieved a better performance than its counterparts, according
to the results.

Qu et al. [70] proposed deep learning on digital mammography for expert-level diag-
nosis accuracy in breast cancer detection. Comparing DL models trained on historical
mammograms with only image-level pathology labels with experienced radiologists,
they performed surprisingly well. With 5979 historical exams obtained before Septem-
ber 2017 with biopsy-verified pathology, DenseNet was trained and cross-validated,
and tested with 1194 newly acquired cases after that. DL predictions generated higher
ROC:s than radiologists’ ratings in both cross-validation and test sets. This study aims to
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demonstrate that deep learning can be trained using big-data resources to create expert-
level breast cancer diagnosis models. According to their study, a well-defined deep
neural network can be trained on historical mammogram-pathology pairs to accurately
detect breast cancer. Furthermore, their study demonstrated that mammography-specific
neural networks can be further optimized. Neuronal networks should provide radiolo-
gists with knowledge instead of them providing it themselves.

The ensemble model proposed by Nemade et al. [71] uses deep learning to classify
breast cancers. A single pretrained model or an ensemble of such models is used for
Transfer Learning (TL). In preprocessing, datasets are resized and normalized, and
imbalances are corrected. The use of CNN models, including the well-known VGG16,
InceptionV3, and VGG19, facilitates robust ensemble results. The primary objective is
to develop an efficient Computer-Assisted Diagnosis (CAD) model to categorize breast
masses. In order to boost the performance of deep models, an ensemble classifier was
created by stacking previously trained models on extensive datasets. The key strategies
used include balancing skewed data, TL, and early stopping. This research is notable for
its efforts to address dataset imbalances to avoid model bias, leverage well-established
CNN models and enhance their performance with ensemble classifiers. Two mammogra-
phy datasets were evaluated: DDSM and CBIS-DDSM. Three pre-trained convolutional
neural network (CNN) models were used as base classifiers to enhance breast lesion
classification from mammography scans. In total, two ensemble models were trained.
For classification, Ensemble Model 1 uses a linear meta-learner in the form of logis-
tic regression, and Ensemble Model 2 uses a neural network. As a result, the proposed
models outperformed existing state-of-the-art systems in terms of breast cancer clas-
sification performance. Thus, the proposed models may provide medical professionals
with a useful tool for accurately classifying breast lesions. By comparing the proposed
system with existing methods, it was demonstrated to be robust and superior. Neverthe-
less, the study used only fixed-size images that had already been curated, which limited
its results.

Majji et al. [72] explored smart IoT applications in breast cancer detection. A feedback
artificial crowd search-based Shepherd Convolutional Neural Network (ShCNN) is used in
this research as an IoT-based smart healthcare system. As a first step, the FACS method is
used to determine the best routes. To determine the optimal route, this method takes into
account factors like distance, energy, and latency. After merging the CSA and FAT, the
FACS is developed. The system categorizes breast cancer at the base station once routing is
complete. The pre-processed mammography images are analyzed for features such as area,
mean, and contrast. Breast cancer is classified by ShCNN, a FACS algorithm that enhances
the image quality via data augmentation. An evaluation of this method is based on the
amount of energy it consumes, the time it takes, and the accuracy of the results. Results
showed a high True Positive Rate (TPR) of 99.45%, a sensitivity of 96.10%, and a 91.56%
accuracy. IoT can be used in modern healthcare to provide a reliable method for breast can-
cer classification.

Kavitha et al. [73] suggested that deep learning-based capsule neural networks could be
used to diagnose breast cancer from mammogram images. OMLTS-DLCN is a new model
for early breast cancer detection utilizing multi-level thresholds and DL enabled capsule
networks. The segmentation model incorporates Adaptive Fuzzy Median Filtering for
noise removal, Optimal Kapur’s Multilevel Thresholding with Shell Game Optimization
for noise removal. For feature extraction, a Capsule Network is used, and for classification,
a Back-Propagation Neural Network is used. OMLTS-DLCN’s accuracy rates on Mini-
MIAS and DDSM benchmark datasets were 98.50% and 97.55%, respectively.
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Ghoushchi et al. [74] reported that deep learning could be used to predict where tumors
are located in breast cancer. In this study, modified deep learning (DL) techniques are lev-
eraged to pinpoint cancer tumor locations using machine learning. This study analyzes
resized and segmented BCDRDO1 data. To address imbalances between classes, the first
experiments employed a simple architecture with a weighted function. The Gabor filter
and visualization of the images helped pinpoint the breast tissue’s location. The subsequent
experiments used more complex network architectures, including a VGG (9 layers, 2.9 mil-
lion parameters) and a 10 layer, 0.9 million parameters network. Breast cancer lesions can
be distinguished well using convolutional neural networks (CNNGs).

Allogmani et al. [75] proposed using deep learning to detect anomalies in breast can-
cer. This paper presents a deep learning framework for detecting benign and malignant
breast abnormalities using only normal data. A major challenge in the medical domain is
the imbalance of data. It consists of two stages: (1) image pre-processing, and (2) Mobile-
NetV2 pre-trained feature extraction, followed by single-layer perceptron. Breast cancer
diagnosis models were developed on the basis of different datasets. To reduce manual
labor and potential diagnostic errors, the project’s main objective was to tackle the preva-
lent issue of data imbalance in the medical sector. It also addresses the limitations of ear-
lier studies using patch-based methods. Earlier studies have been able to process entire
images due to the current framework. Tests of this approach were conducted on two public
datasets: INbreast and MIAS. The INbreast dataset showed an AUC of 94.25% for can-
cer detection and 89.79% for abnormalities. Cancer detection AUC values for MIAS were
97.36% and abnormality detection AUC values were 81.40%.

For breast cancer severity classification, Chakravarthy et al. [76] proposed a metaheuris-
tic weighted k-nearest neighbor algorithm that uses deep learning. This study aims to
improve the classification of breast cancer, one of the most prevalent and deadly types of
cancer in women. This research integrates deep learning, metaheuristics, and classification
algorithms to increase the survival rate and enable early diagnosis. In the MIAS, INbreast,
and WDBC databases, digital mammogram images are used to classify breast cancer sever-
ity. By using three nature-inspired algorithms (i.e., particle swarm optimization (PSO),
dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm
(CSOA)), the weighted k-nearest neighbor (WKNN) algorithm’s classification performance
was enhanced using transfer learning for feature extraction.

Zhang et al. [77] developed an image-based weakly supervised deep learning framework
to detect breast cancer in women with HR status. It focuses on the development of a deep
learning framework, called BSNet, for non-invasively diagnosing the hormone receptor
(HR) status of breast cancer. Breast cancer treatment is largely determined by the hormone
receptor status. Breast cancer can be detected with mammography, but its molecular status
cannot be determined without a pathological biopsy. For easy diagnosis of breast cancer
patients’ HR status, a web server has been developed in order to make the model more
accessible to medical professionals. The purpose of this tool is to provide precision medi-
cal care without invasive procedures such as punctures. Positive results have been found in
the study. The average AUC for BSNet on the test and external validation sets, respectively,
was 0.89 and 0.92, exceeding those of other baseline models. To refine the model for larger
clinical applications, however, more work needs to be done.

Dadsetan et al. [78] proposed using deep learning to predict breast cancer risk. Sev-
eral deep learning architectures are presented in this research, including LRP-NET, a novel
architecture. Specifically, it is designed to detect changes in breast tissue over the course
of multiple negative/benign mammograms. Case—control studies are used to predict breast
cancer risk in the near future. The imaging tool is based on clinical knowledge and uses
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four consecutive mammograms to capture bilateral breast tissue changes. In this study, the
LRP-NET model is used to examine the relationship between spatial-temporal changes
in breast tissue across longitudinal normal screening mammograms and cancer risk. Four
consecutive mammographic examinations are used to extract these spatiotemporal features.
LRP-NET performed better than other models when it came to predicting breast cancer
risk.

Jiang et al. [79] developed a three-stage deep learning framework to detect and catego-
rize breast cancer in mammograms using the PAA algorithm. The primary goal of this
study is to enhance the precision and efficiency of medical diagnoses, thereby easing phy-
sicians’ workloads. Initially, PAA and Faster R-CNN are compared for their detection
capabilities for breast lesions. The single-stage PAA algorithm was then extended into a
two-stage model utilizing cascading two-branch ROI detectors. In addition, the post-pro-
cessing algorithm was adaptively adjusted based on breast density classification. For mam-
mograms, the method achieved impressive classification outcomes by combining the ROI
classifier with the image classifier in the third stage. This method identifies lesion types,
pinpoints lesion locations, and categorizes entire images on the basis of experimental
results. However, the research relied solely on input from one perspective. The literature
suggests that multi-views and multiple inputs can significantly enhance classification and
detection. This model will be streamlined and multi-viewed in the future, according to the
researchers. Additionally, the attention module will be used to emphasize the interrelation-
ship between lesions across different views, thus enriching the features of identical lesions.

Raaj [80] developed an artificial intelligence architecture for detecting and diagnosing
breast cancer. Classifying mammogram images as normal, benign, or malignant is done
using Convolutional Neural Networks (CNN). Radon transform, data augmentation mod-
ule, and hybrid CNN architecture are included in the proposed system. A radon transform
converts each spatial pixel in a source mammogram image into a time—frequency varia-
tion image. The existing dataset has been enhanced to better detect breast cancer. Using
the hybrid CNN architecture, the data-augmented images are classified into three types.
A mathematical morphological-based segmentation algorithm is used to segment cancer
pixels. Data from the Digital Database for Screening Mammography (DDSM) and the
Mammographic Image Analysis Society (MIAS) is used to estimate a deep learning archi-
tecture’s performance efficiency. Experimental results for both open access datasets are
compared to similar recent studies. According to the experimental results in this article, the
methodology clearly segments abnormal mammogram images into cancer regions.

Kumbhare et al. [81] proposed using federated learning to detect breast cancer through
heuristic-based deep learning. To enhance accuracy and precision of breast cancer diagno-
sis, the study introduces an intelligent heuristic-based deep learning framework based on
Fuzzy Logic (FL). The HyperEye Medical System uses this model for real-time applica-
tions. FL is commonly used in medical diagnosis systems for processing and storing mam-
mogram images. Enhanced Recurrent Neural Networks (E-RNNs) address gradient van-
ishing and overfitting issues by using DenseNet for feature extraction. HDRO algorithms
enhance the efficiency and reliability of RNNs. An evaluation of the proposed HRDO-
FL+E-RNN model revealed improved accuracy compared to FL+CNN, DenseNet,
Ensemble, and RNN methods. Detecting breast cancer in an earlier stage has both the
potential to reduce mortality rates and raise awareness among women, thanks to a new
approach to early detection.

Ramesh et al. [82] developed a deep learning architecture to categorize and segment
breast cancer. Through deep-learning algorithms, benign from malignant tumors were seg-
mented carefully. By replacing expert annotations and exhaustive pathology reports with

@ Springer



Multimedia Tools and Applications

this technological leap, physicians are able to detect malignancies with greater precision.
GoogleLeNet architecture is used as the framework for this innovation, which powers seg-
mentation. A machine learning classifier, such as SVM, Decision Tree, Random Forest, or
Naive Bayes, takes control of the segmented data. By combining these processes, the study
simplifies the diagnostic procedure and improves cancer classification accuracy and reli-
ability. They found that their work provided better accuracy, Jaccard coefficient, sensitiv-
ity, and specificity than conventional architectures. Various machine learning architectures
benefit from the proposed method because its segmentation accuracy is 99.12%. Due to
this, our methodology has proved very beneficial when applied to the medical field.

Maria et al. [83] proposed hyper-resolution machine learning and FPGA techniques for
real-time BI-RADS breast cancer classifier deployment. The second most common cancer
in women worldwide is breast cancer. It is important to develop better diagnostic tools
since surgical, radiation, and medication treatments have high success rates, especially
when detected early. The study uses a custom Digital Mammogram Diagnostic Convo-
Iutional Neural Network (DMD-CNN) model to categorize mammogram breast lesions,
focusing on BI-RADS criteria. This work uses a PYNQ-based Artix 7 FPGA to accelerate
the DMD-CNN model, a first in breast cancer diagnostics. This model is more accurate
than existing methods by 98.2%. The current model has an accuracy increase of 4% and
a recognition rate of 96% over the current model. Using k-fold cross-validation as well as
extensive mammography dataset testing, the model’s efficiency was further confirmed. In
addition, the FPGA hardware acceleration processed around 91 images per second, signifi-
cantly faster than GPU and CPU methods, and consumed only 3.12 Watts.

Hekal et al. [84] reported that a deep learning ensemble system is capable of detect-
ing early breast cancer. An ensemble deep learning system is presented in the study for
the early detection of breast cancer. Unlike traditional ensemble learning, this system ana-
lyzes only suspected nodule regions (SNRs) instead of entire images. In order to detect
even small nodules, dynamic thresholding is used; it adjusts according to the image’s spe-
cifics. Four Convolutional Neural Networks (CNNs) are used in this ensemble: AlexNet,
ResNet-50, ResNet-101, and DenseNet-201. In order to determine whether an image is
benign or malignant, a binary Support Vector Machine (SVM) is applied after each CNN.
Final decisions are made based on the ensemble CNN'’s outputs and the four CNN’s train-
ing accuracy. Tests on the public CBIS-DDSM dataset showed that the system was able to
categorize malignant and benign mass nodules with a 94% accuracy. Ensemble systems
showed superior accuracy and benefits over other methods using the same dataset.

Ortega Martorell et al. [85] characterized and visualized breast cancer patients using
deep learning. Through the use of Fisher Information Networks, a deep learning model was
used to extract features from mammograms for a deeper understanding of these features. It
provides a visual representation of mammogram features that help organize patients based
on their similarities, opening the door to a "patient-like-me" approach. By comparing new
patient data to existing cases with similar characteristics, clinicians can offer more person-
alized diagnoses. The visual analysis of the CBIS-DDSM dataset demonstrated significant
diagnostic potential. In addition to facilitating a more intuitive understanding for clinicians,
this method increases breast cancer diagnosis accuracy. The result is more precise clini-
cal decisions made based on comparisons with closely matched existing patient data, thus
reducing overdiagnosis.

Shimokawa et al. [86] reported that stromal invasion in digital breast tomosynthesis
could be predicted using a deep learning model. This study used digital breast tomography
(DBT) to develop a DL algorithm for predicting stromal invasion. Initially, 499 patients
with suspected breast cancer underwent DBT between March 1 and August 31, 2019,
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ranging in age from 29 to 90 years. A further analysis was conducted on 140 patients who
later underwent surgery for breast cancer. Patients were classified into two groups based on
pathological reports: non-invasive cancer (20 patients) and invasive cancer (120 patients).
Four deep learning models were used to define non-invasive and invasive cancers, namely
VGGI16, Resnet50, DenseNet121, and Xception. AUC was used to measure the diagnostic
capability of the models. Accordingly, the AUC values for the four models were 0.56, 0.67,
0.71, and 0.75. The DL model can predict stromal invasion in breast cancer patients using
DBT images.

Mohapatra et al. [§7] evaluated deep learning models based on histopathological mam-
mogram images. Using a convolutional neural network (CNN), the authors investigated
how breast cancer can be detected from mammograms. A number of CNN architectures
were evaluated, including AlexNet, VGG16, and ResNet50. A few of these models used
transfer learning with pre-trained weights, while others were trained from scratch. Using
the mini-DDSM dataset, a freely accessible resource, the classifiers were trained and
tested. Medical datasets have limited samples, so overfitting is possible. To address this
problem, rotation, and zooming techniques were applied. The validation strategy adopted
a 90:10 split. To conclude, CNNS, especially with transfer learning, can be used to identify
benign, cancerous, and normal mammogram images. Nevertheless, training approaches
and architectures can have significant effects on performance.

Shimokawa et al. [88] proposed an imaging deep learning model to detect breast can-
cer using bilateral asymmetrical detection (BilAD). Bilateral asymmetry detection (BilAD)
is a deep learning method that uses asymmetry in breast tissue to detect breast cancer. It
involved 115 breast cancer patients with pathological confirmation. The original images
of each patient were paired with those of normal areas and malignant tumors. In order
to distinguish between these image pairs, the BilAD model was modified from the Xcep-
tion convolutional neural network (CNN). The BilAD model, based on the asymmetry of
bilateral breast tissue, is more effective than a unilateral CNN model (uCNN) at detecting
breast cancer.

6.1.1 Datasets for mammographicimaging

This section provides an overview of several pivotal mammographic imaging datasets used
to detect and diagnose breast cancer. There is a wide range of datasets, different image
quality, and detailed annotations to choose from, making them an invaluable resource for
developing and validating diagnostic algorithms, as well as developing medical imaging
technology. A description of prominent mammography datasets is presented here, along
with the highest levels of accuracy achieved by algorithms derived from these datasets.

¢ In the Digital Database for Screening Mammography (DDSM) [89], digitized film-
screen mammograms are displayed with ground truth and other information. This
resource provides a large set of mammograms in digital format for researchers to evalu-
ate and compare the performance of computer-aided detection (CAD) algorithms. The
database was completed in the fall of 1999. It contains 2620 mammography screening
exams with four views. New software tools have been added since then, simplifying the
extraction of image data to other file formats, enabling easier access to the ground truth
data, and simplifying the evaluation of CAD algorithms. A retrospective evaluation of
cancer cases is often the starting point for the evaluation of a CAD algorithm. This
type of preliminary evaluation saves time and money compared to a prospective clini-
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cal evaluation. It is possible to digitize mammograms from a mammography center’s
case files and use those for a retrospective CAD performance evaluation, but this task
is time-consuming and expensive. The DDSM data can be used to avoid this expense.
It is possible to learn much more about CAD methods by evaluating performance when
investigators use a common database rather than their own data. It is possible to com-
pare the relative strengths of different algorithms by using the same data, performance
measures, and test methodologies. Thus, new or combined approaches to the problem
may be developed, resulting in superior results. Mammograms were obtained from
Massachusetts General Hospital, Wake Forest University School of Medicine, Sacred
Heart Hospital, and Washington University of St. Louis School of Medicine for the
DDSM. In each case, four different standard views (medio-latral oblique, cranio caudal,
and lateral) were digitized. Each case was assigned to a volume based on its severity.
The normal volumes contain mammograms from screening exams that were reported as
normal and had a normal screening exam four years later. This volume contains exams
that had a noteworthy abnormality but did not require additional work-up. These benign
volumes contain cases in which something suspicious was found and the patient was
recalled for additional testing that proved benign. Histologically proven cancer cases
are included in cancer volumes. The volumes may contain cases with less severe find-
ings as well as cases with more severe findings, depending on the volume to which the
case is assigned. An expert radiologist specified the ACR breast density for every case
in the DDSM, including the patient’s age, the screening exam date, and the date when
the mammograms were digitized. All volumes other than the normal volume contain
pixel-level abnormality markings. Mammograms have been automatically cropped to
remove much of the background (non-breast tissue) after digitization. As a next step,
they were manually processed to darken (digitally zero) pixels in regions that contained
patient identifiers, and then stored in truly lossless compressed files. Ground truth data
was entered into computer-readable format using custom software that allowed one to
draw free-form digital curves of the radiologist-identified ground truth regions. The
highest accuracy achieved by algorithms in this review utilizing this dataset is 98.44%.
e The CBIS-DDSM (Curated Breast Imaging Subset of DDSM) [90] is a refined
version of the Digital Database for Screening Mammography (DDSM), created to
enhance the evaluation of computer-aided detection (CADe) and diagnosis (CADx)
systems in breast cancer research. By providing a standardized and comprehensive
resource for medical imaging researchers, this dataset addresses the shortcomings
of the original DDSM. There are 753 cases with calcifications and 891 cases with
masses, which total 2,620 scanned film mammograms. In order to facilitate various
analytical tasks, the images were decompressed and re-annotated by trained mam-
mographers to ensure accurate region-of-interest (ROI) segmentations. The CBIS-
DDSM preserves all the original information by converting images from an obsolete
lossless JPEG format to 16-bit grayscale TIFF and then to DICOM. This dataset
features precise ROI segmentation, especially for mass cases, achieved through a
modified local level set framework, improving the accuracy of CADe and CADx
algorithms. In addition, 339 images with unclear or incorrect annotations were
removed in order to maintain the dataset’s quality and reliability. BI-RADS catego-
ries are used to divide the dataset into training and testing sets for comprehensive
evaluation. Additionally, the CBIS-DDSM includes extensive metadata in CSV for-
mat, including patient identification, breast density, view type, mass characteristics,
calcification details, BI-RADS assessment, pathology, and subtlety rating. A more
accurate diagnostic tool can be developed using this metadata. As a result of the
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dataset, researchers are able to analyze both full mammography images and cropped
images of abnormalities. In order to ensure compatibility with modern systems and
to increase accessibility to the dataset, the tools used for image processing have been
updated and made available on GitHub. In order to validate the dataset, hand-drawn
outlines were compared with automated segmentations by an experienced radiolo-
gist, demonstrating a significant improvement in segmentation accuracy over the
DDSM annotations. During the quality control process, researchers ensured that the
dataset was reliable, providing a reliable resource for developing new methods for
detecting and diagnosing breast cancer. By providing a meticulously curated and
standardized dataset, the CBIS-DDSM offers a significant advancement in mam-
mography research. The highest accuracy achieved by algorithms in this review uti-
lizing this dataset is 98.32%.

e The Mammographic Image Analysis Society (MIAS) [91] consists of 322 digitized
images with original resolutions of 1024 x 1024 pixels. MIAS is a UK-based research
group. The dataset contains 207 normal images, and 115 aberrant images. Several sec-
tions of the dataset are divided into training and testing sections. Specifically, 31% of
the samples (100 images) are used for training, and 69% (222 images) are used for
testing, with no data augmentation applied. The MIAS database also includes ground
truth annotations for the abnormalities that appear in the images, which is an invaluable
resource for developing diagnostic algorithms. The highest accuracy achieved by algo-
rithms in this review utilizing this dataset is 99.17%.

e The INbreast [92] contains full-field digital mammograms (FFDM), created specifi-
cally to support the development of computer-aided detection (CAD) and diagnosis
systems in breast cancer research. Annotations will be provided to make the data-
set both useful for clinical practice and research. Using a MammoNovation Siemens
FFDM machine with an amorphous selenium solid-state detector with a pixel size of
70 microns and a contrast resolution of 14 bits, the dataset was collected at CHSJ’s
Breast Center in Porto. DICOM format ensures the images and associated metadata are
preserved, while all personal information is anonymized. INbreast contains 115 cases
and 410 images. In 90 cases, there are two views per breast (craniocaudal and medi-
olateral oblique), while 25 cases involve women who had a mastectomy. Mammograms
with normal findings, masses, calcifications, architectural distortions, and asymmetries
are included in the dataset. In orthogonal views, masses appear as three-dimensional
structures with convex borders, while calcifications are classified as benign (larger and
smoother) or malignant (small and finer). Mammographic distortions appear as star-
shaped interruptions in the normal pattern, and breast asymmetries reflect differences
in volume or parenchyma. OsiriX software is used to annotate the dataset meticu-
lously, performed by a specialist and validated by another. Data on lesion types, loca-
tions, and contours are stored in XML files. Each XML file contains information such
as the number of regions of interest, the area, and center coordinates. The MLO view
includes annotation types such as asymmetries, calcifications, microcalcification clus-
ters, masses, distortions, and spiculated regions. For CAD system evaluation, this thor-
ough annotation process ensures high-quality ground truth data. The highest accuracy
achieved by algorithms in this review utilizing this dataset is 91.84%.

The Mammographic Image Analysis Society (MIAS) database is the most commonly
used dataset in mammography imaging research. Figure 12 provides a detailed overview of
the process involved in creating this dataset. The following section describes various mod-
els and their performance results using this dataset.
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Fig. 12 Showing the process of generating the MIAS dataset

6.1.2 Model accuracy comparison on the MIAS dataset

State-of-the-art (SOTA) models have been used for mammographic imaging for
breast cancer detection using the MIAS dataset, demonstrating a range of accuracy.
From traditional machine learning techniques to sophisticated deep learning architec-
tures, these models span a wide range of capabilities. Hybrid models that incorporate
advanced techniques and deep learning architectures have shown superior performance
in handling the complexity of mammographic images. Raaj [80] developed a hybrid
CNN with Radon transform that achieved 99.17% accuracy. The Radon transform cap-
tures essential features from mammograms, which, combined with the deep learning
capabilities of the CNN, allows robust feature extraction and classification. Similarly,
the GoogleLeNet architecture combined with machine learning classifiers like SVM,
Decision Tree, Random Forest, or Naive Bayes, as developed by Ramesh et al. [82],
also achieves high accuracy (99.12%), underscoring the effectiveness of deep feature
extraction followed by traditional classification methods. Allogmani et al. [75] pro-
posed MobileNetV2 with pre-trained feature extraction and a single-layer perceptron
that achieved 91.76% accuracy. However, MobileNetV2’s single-layer perceptron
may not be sufficient to capture the complex patterns found in mammography images,
resulting in lower performance. Chakravarthy et al. [76] proposed the CSOA-wKNN,
which has an accuracy of 74.78%. In addition, traditional algorithms cannot handle the
intricacies of medical image data, even when combined with other methods. Therefore,
sophisticated feature extraction and classification techniques are critical to achieve
high accuracy in mammographic imaging as a result of the performance disparity
among these models. For breast cancer detection using the MIAS dataset, state-of-the-
art hybrid models and deep learning architectures are essential to capturing complex
patterns and nuances. Figure 13 shows the different model accuracies for the MIAS
dataset.
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Fig. 13 Comparison of model accuracy on the MIAS dataset

6.1.3 Model accuracy comparison on the CBIS-DDSM dataset

With the CBIS-DDSM dataset, several state-of-the-art models demonstrate diverse per-
formance levels, underscoring the complexity and varying effectiveness of different
deep learning architectures. Houssein et al. [69] developed a hybrid architecture com-
bining IMPA with ResNet50, which achieves an impressive accuracy of 98.32%. Fea-
ture extraction and representation are enhanced by ResNet50’s integration with IMPA
since it mitigates the vanishing gradient problem and offers robustness against the van-
ishing gradient problem. Ensemble models that combine VGG16, InceptionV3, and
VGG19 demonstrate 98.1% accuracy. Nemade et al. [71] proposed that the strength of
this ensemble approach lies in the complementability of each individual model: Incep-
tionV3 is renowned for its ability to capture hierarchical patterns thanks to its deep yet
straightforward architecture, while VGG16 and VGG19 are renowned for their deep but
straightforward architectures. According to Hekal et al. [84], the ensemble of AlexNet,
ResNet-50, ResNet-101, and DenseNet-201 records an accuracy of 94%. The inclusion
of advanced networks such as DenseNet-201, which improve gradient flow and reuses
features extensively, might dilute the overall performance, resulting in suboptimal inte-
gration of learned features, despite the inclusion of AlexNet, an older and less sophisti-
cated model. Other models like the Fisher Information Networks CNN, as proposed by
Ortega Martorell et al. [85], and HRDO-FL + E-RNN, as proposed by Kumbhare et al.
[81], report accuracies of 89.6% and 95.73%, respectively. Although Fisher Informa-
tion Networks’ CNN may be effective in specific contexts, it may not be able to capture
the intricate patterns necessary for high-accuracy mammography. As a result, HRDO-
FL +E-RNN performs better but still falls short of the top performers, and this may
be a consequence of its limited ability to deal with spatial dependencies or to integrate
sequential information. In summary, the varying performance of these models empha-
sizes the importance of advanced architectures such as ResNet and efficient ensemble
techniques in achieving superior accuracy in mammography imaging, whereas older
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Model Accuracy Comparison on CBIS-DDSM Dataset
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Fig. 14 Comparison of model accuracy on the CBIS-DDSM dataset

models or those with less optimized feature extraction capabilities tend to lag behind.
Figure 14 shows the different model accuracies for the CBIS-DDSM dataset.

6.2 Ultrasound imaging

It emphasizes the use of deep learning techniques in ultrasound imaging as a method of
detecting breast cancer. Several studies have demonstrated how deep learning can improve
the accuracy and efficiency of breast cancer detection using ultrasound imaging by har-
nessing the capabilities of deep learning. As Table 6 represents Wang et al. [93] proposed
using a deep learning network incorporating an automatic segmentation network to diag-
nose breast cancer by automated breast ultrasound. In this study, 769 breast tumors were
enrolled in training and test sets at 600 versus 169. With new DLNs (Resent v2, ResNet50
v2, ResNet101 v2), morphological information was extracted from breast tumors by adding
a novel ASN to the traditional ResNet networks. It calculated accuracy, sensitivity, speci-
ficity, positive and negative predictive values, area under the receiver operating charac-
teristic curve (AUC), and average precision (AP). Two radiologists with differing experi-
ence levels were compared with novel DLNSs. In order to obtain morphological information
on breast lesions, the researchers developed a new segmentation network. To create novel
DLNs, the new segmentation network was added to the traditional classification network.
Breast cancer detection by ABUS benefited from DLNs with novel diagnostic characteris-
tics as measured by AUC and AP.

Yu et al. [94] developed a model for predicting neoadjuvant chemotherapy response
using deep learning radiomics. Six hundred and three patients who had NAC between Jan-
uary 2018 and June 2021 across three different institutions were retrospectively included
in the study. The trained DCNNs were validated in testing cohorts (n=183), which n
refers to the number of patients, using ultrasound images taken before and after treatment.
The image-only model structure was found to perform the best based on predicted per-
formance. Additionally, independent clinical-pathologic variables were used to construct
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an integrated DLR model. The DeLLong method was used to compare the areas under the
curve of these models and the AUCs of two radiologists. DLR was used to evaluate the
therapy response to NAC in advanced breast cancer patients and the resulting model was
validated using independent multicenter data. In this way, the response to NAC can be
evaluated early and therapy planning can be guided accordingly. A DLR-based prediction
model for NAC response was constructed based on pretreatment US imaging and signifi-
cant clinical factors. The DLR model performed exceptionally well in a validation set. Inte-
grated DLR models can also predict NAC efficacy in advance and adjust therapy regimens
in time for people who may not respond well to NAC.

Balaha et al. [95] reported that a hybrid deep learning and genetic algorithms approach
(HMB-DLGAHA) is suitable for early breast cancer detection. This study will introduce
a comprehensive hybrid methodology for learning, detecting, classifying, and identifying
breast ultrasound images. A combination of Convolutional Neural Network (CNN) models,
Transfer Learning (TL), and Genetic Algorithms (GA) is used in this innovative approach.
CNN models play a pivotal role in both the learning and parameter optimization phases of
this framework. Alternatively, genetic algorithms can be utilized to optimize hyperparam-
eters by fine-tuning them. The authors aim (1) to simplify the proposed "HMB1-BUSI’
CNN architecture in comparison with pre-trained CNNs such as VGG19 and ResNet, and
(2) to demonstrate its generalization to various datasets.

Fujioka et al. [96] proposed using a deep learning-based computer system to detect
breast cancer using ultrasound. In this study, a deep learning-based computer-aided detec-
tion system was tested for breast ultrasound accuracy. Furthermore, a real-time YOLOv3-
tiny model was trained to detect lesions using an expanded set of training images. Twenty-
eight readers evaluated test images with and without CADe. Results of the study showed
that the CADe system significantly improved lesion detection, with an area under the curve
(AUC) of 0.7726 compared to 0.6314 without it. CADe’s deep learning-based approach
improves readers’ interpretation of breast ultrasounds, increasing the accuracy of breast
cancer screening and diagnosis.

Boulenger et al. [97] proposed an automated method for triple negative breast cancer
detection from ultrasound images based on deep learning. The purpose of this study was
to develop an automated system that could identify triple-negative breast cancer (TNBC)
from ultrasound images by utilizing deep learning. An analysis of 145 patients and 831
images from Peking Union College Hospital was conducted over a period of one year.
Immunohistochemical (IHC) results were used for determining cellular subtypes. In order
to predict TNBC, a CNN with a VGG-based architecture was used. This approach is unique
in that it is non-invasive and automated. This method does not rely on biopsy information
or manually defined features like traditional methods. Clinicians can use this system to
devise treatment plans and assess prognoses. Modeling results showed AUC of 0.86, 85%
accuracy, 86% sensitivity, 86% specificity, and an Fl-score of 0.74. Different molecular
subtype groups showed distinct differences in the model’s features, indicating more accu-
rate treatment selection.

Taleghamar et al. [98] proposed using multi parametric ultrasound images to predict
chemotherapy response to breast cancer. Quantitative ultrasound (QUS) multi-parametric
images were analyzed before treatment to predict how breast cancer responds to neoadju-
vant chemotherapy (NAC). QUS images of breast tumors were generated using data from
181 patients scheduled for NAC and subsequent surgery. NAC’s effectiveness was evalu-
ated post-surgery using standard clinical and pathological assessments. To extract optimal
feature maps from these images, two deep convolutional neural network (DCNN) struc-
tures were explored: residual networks and residual attention networks. It is possible to
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extract these features from both the tumor core and its margin. Based on RAN architecture,
the model extracted features from both tumor cores and margins with 88% accuracy. In a
decade-long survival analysis, responders and non-responders were found to have signifi-
cant survival differences based both on their pre-treatment and post-treatment predictions.
DCNNS s that are attention-focused may provide early indications of breast cancer treatment
response.

Atrey et al. [99] proposed the use of a hybrid deep learning approach to classify breast
cancer using mammography and ultrasound. This study investigates the feasibility of com-
bining mammography and ultrasound to enhance breast cancer (BC) diagnosis, two tools
commonly used together by radiologists. It introduces a bimodal Computer-Assisted Diag-
nosis (CAD) algorithm based on CNN-LSTM deep learning. While the Convolutional Neu-
ral Network (CNN) is used for feature extraction, the Long Short-Term Memory (LSTM)
handles classification. The most relevant features are retained by applying a statistical sig-
nificance analysis to the extracted features. An ultrasound and mammography dataset were
used to test the proposed method in real-time. AUC and accuracy of this bimodal CAD
approach are better than those of unimodal systems. Furthermore, the bimodal system per-
formed better than the Support Vector Machine (SVM) classifier. Through a bimodal DL
approach, the study demonstrates the benefits of integrating mammography and ultrasound
features in BC diagnosis.

Cho et al. [100] proposed a method based on deep learning to segment ultrasound
images for breast cancer diagnosis. An image segmentation network was used to identify
tumor regions in breast ultrasound images by the authors using a multistage segmentation
algorithm. The network consists of two main stages: classification and segmentation. To
classify input images as normal or abnormal, the BTEC-Net model was used. The fusion
of two subnetworks led to the creation of a feature network. The pixel values of the normal
image were all set to zero, significantly reducing false positive (FP) errors. When images
are classified as abnormal, the RFS-UNet model is used to segment the tumor regions.
BUSI and UDIAT datasets were used to test the method’s efficacy. A comparison of the
proposed method with traditional techniques showed that the proposed method was more
accurate than the former. Moreover, the Grad-CAM analysis confirmed the model’s focus
on the relevant breast region for accurate segmentation, with relevant features extracted.

Qi et al. [101] suggested using deep learning to detect breast cancer in ultrasound
images. Using ultrasonography images for breast cancer diagnosis, the authors introduced
an automated system intended to improve the efficiency and reliability of breast cancer
screenings. Mobile phones are used in this innovative system to detect malignant changes
in ultrasound reports. Three subsystems are based on deep neural networks. It utilized three
extensive annotated ultrasonography breast image datasets to train and assess its perfor-
mance. As a result of its similar performance to human experts, the system shows real-
world clinical potential. Nevertheless, it remains difficult to interpret.

According to Welhenge [102], deep learning-based fog computing can detect breast
cancer. VGGNet-based convolutional neural networks (CNNs) are used in this study for
accurate cancer detection from ultrasound images. A three-tiered architecture is used to
solve deep learning’s data storage problems: edge devices capture data, fog devices process
it, and cloud devices store the results. As a result of this approach, not only is diagnosis
accuracy improved, but data management is also improved. A VGGNet-based CNN was
used in this study to achieve 98.5% training accuracy in detecting breast cancer.

According to Huang et al. [103], deep learning radiopathomics can distinguish lumi-
nal and non-luminal tumors in breast cancers at an early stage. This multicentre study
examined data from three cohorts collected between January 2019 and August 2021 from
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a prospective study (ChiCTR1900027497). A total of 1809 ultrasound imaging and 603
H&E-stained whole slide images were collected from 603 patients with early-stage breast
cancer for the study. For US images, a Resnet18 model pre-trained on ImageNet was used.
For WSI images, an attention model based on multi-instance learning was used. UCA is a
unique US-guided Co-Attention module that fuses US and WSI features. The Deep Learn-
ing Radiomics-Pathomics (DLRP) model was built using 1467 US images and 489 WSIs
from 489 patients. As part of the model, three sets of features were incorporated: the deep
learning US feature, the deep learning WSIs feature, and the UCA-fused feature. To test the
diagnostic abilities of the DLRP model, 342 US images and 114 WSIs from 114 patients
were validated, followed by 270 US images and 90 WSIs from 90 patients. Additionally,
the study compared the diagnostic efficacy of DLRP against deep learning radiomics and
deep learning pathomics models.

6.2.1 Datasets for ultrasound imaging

This section provides an overview of several pivotal ultrasound imaging datasets used to
detect and diagnose breast cancer. There is a wide range of datasets, different image qual-
ity, and detailed annotations to choose from, making them an invaluable resource for devel-
oping and validating diagnostic algorithms, as well as developing medical imaging tech-
nology. A description of prominent ultrasound datasets is presented here, along with the
highest levels of accuracy achieved by algorithms derived from these datasets.

e The Breast Ultrasound Images (BUSI) [104] dataset contains a comprehensive col-
lection of breast ultrasound images intended to facilitate classification, detection, and
segmentation of breast cancer. This dataset was compiled from 600 female patients in
Cairo, Egypt, who visited Baheya Hospital for Early Detection & Treatment of Wom-
en’s Cancer in 2018. After preprocessing to remove unimportant information, the data-
set contains 780 images from an original collection of 1100 images. There are 133, 487,
and 210 images in each of these classes, which are categorized into normal, benign, and
malignant. These images were captured using LOGIQ E9 ultrasound systems, which
are known for their high resolution of 1280 1024 pixels and their capability in radiol-
ogy, cardiac, and vascular applications. Transducers used in the imaging process oper-
ated at frequencies between 1 and 5 MHz on a Matrix linear probe ML6-15-D. These
images were initially stored in DICOM format, but were later converted to PNG format
using a DICOM converter application. Deep learning models can be trained on images
with an average size of 500500 pixels. Data preprocessing was crucial to ensuring
its quality and utility. This process involved removing duplicate images and cropping
images to remove unused boundaries, which could interfere with classification. An
expert team of radiologists from Baheya Hospital meticulously reviewed and corrected
any incorrect annotations. For segmentation tasks, the refined dataset was organized
into folders according to the three categories, with each image corresponding to a spe-
cific category, and a ground truth mask image for each category. Additionally, DICOM
images were converted to PNG format and image names were annotated. Machine
learning tasks were enhanced by ground truth annotations. The boundary of breast
masses was delineated using Matlab freehand segmentation. To signify its purpose,
each image has a corresponding mask image whose name is appended with "_mask". In
addition, the detailed annotation process ensures that the dataset can be effectively used
to train models to detect and segment breast cancer lesions with high accuracy. For
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Fig.15 Showing the process of generating the BUSI dataset

this research, patient confidentiality and informed consent were strictly adhered to. The
highest accuracy achieved by algorithms in this review utilizing this dataset is 99.487%.

The most famous used dataset in ultrasound imaging research is the Breast Ultrasound
Images (BUSI) database. Figure 15 provides a detailed overview of the process involved in
creating this dataset.

6.3 MRI and CT imaging

The purpose of this subsection is to explore the application of MRI (Magnetic Resonance
Imaging) and CT (Computerized Tomography) imaging for breast cancer detection, par-
ticularly the effect of deep learning methodologies on the diagnostic process for breast
cancer detection. According to research in this area, advanced imaging techniques may
improve accuracy and precision in breast cancer diagnosis. As Table 7 signifies Guo and
colleagues [105] used MRI-based deep learning radiomics to identify low HER2 HER2
status in breast cancer patients in order to predict disease-free survival. Two institutions
retrospectively recruited 481 breast cancer patients who underwent preoperative MRI.
Radiomic features and DSFR features were extracted from segmented tumors separately to
construct models. After averaging the output probabilities of both models, the DLR model
was constructed to assess HER?2 status. To analyze disease-free survival (DFS) in HER2-
low-positive patients, a Kaplan—-Meier survival analysis was performed. DFS was further
investigated using a multivariate Cox proportional hazard model. DLR models showed
AUCs of 0.868 for training cohorts and 0.763 for validation cohorts for HER2-positive
and HER2-overexpressing patients, respectively. This study aims to develop a noninvasive
MRI-based DLR method for the assessment of HER2-positive breast cancer and to inves-
tigate how prediction scores affect the prognosis of patients. DLR predicted disease-free
survival in patients with tumors with different HER2 expression, and the prediction result
was a significant independent predictor of DFS. In both the training and validation cohorts,
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DLR demonstrated high and stable accuracy in predicting HER?2 status. Using the DLR
model, radiologists and clinicians will be able to better identify HER2-low-positive breast
cancers and guide patient treatment accordingly.

Li et al. [106] developed a method for predicting lung metastases using imaging char-
acteristics associated with intratumoral and peri-tumoral tissue. This study retrospectively
collected LDCT images of 100 breast cancer patients with lung lesions. In the study, 60
cases of BCLM and 40 cases of PLC were included. This study combined residual convo-
lutions with traditional radiomics features by using a ResNet18-based deep learning model.
Using a multi-region strategy, this model incorporated both ITR and PTR features. Through
random assignment of training and validation sets, they conducted three-fold cross-valida-
tion. With deep learning and radiomics combined with ITRs and PTRs, the model aimed
to improve BCLM and PLC diagnoses. In order to improve classification, they integrated
radiomics features and deep learning features into a feature fusion model. BCLM and PLC
can be diagnosed by considering both intra-tumoral and peri-tumoral image features. AUC
could be significantly improved by combining radiomics features with deep learning fea-
tures. With this model, precision medicine can be achieved through accurate classification
of BCLM and PLC, as well as assistance with clinical diagnosis.

Zhang et al. [107] predicted axillary lymph node metastasis using a deep learning radi-
omics nomogram derived from multiphase computed tomography. DLRN is designed to
predict axillary lymph node metastasis (ALNM) in breast cancer patients. Invasive breast
cancer patients with nonspecific symptoms were studied. A non-linear support vector
machine was used to create radiomics and deep learning signatures for CT scans. DLRN
was evaluated for performance and used independent predictors. Based on the results,
radiomics signatures, deep learning signatures, and clinical N stage, which N stands for
Node, were all independent predictors. With a receiver operator characteristic curve area
of 0.893, DLRN accurately predicted ALNM in the validation set. Also, the DLRN dem-
onstrated higher clinical utility than other predictors. Consequently, the DLRN provides
valuable insight into individualized breast cancer treatment.

Koh et al. [108] reported that deep learning is helpful for detecting breast cancer on
chest computed tomography. In this study, a deep learning algorithm was assessed and
validated specifically for detecting breast cancers on chest CT scans. This study investi-
gated the performance of the RetinaNet-based network, a deep learning algorithm previ-
ously demonstrated to detect breast masses on mammography, on chest CT images in order
to detect breast cancer. Previous studies have shown that RetinaNet rivals traditional two-
stage object detectors in mammography. Besides being evaluated for its ability to detect
breast cancer on chest CT scans, a deep learning model was also tested for its robustness to
external and internal validations. By using these methods, the researchers sought to deter-
mine the comprehensive applicability and accuracy of RetinaNet. Retrospective analysis
included 1170 preoperative chest CT scans taken after breast cancer diagnosis. Three cat-
egories of scans were conducted: algorithm development (1070), internal testing (100), and
external testing (100). These datasets were used to train and evaluate a deep learning model
based on the RetinaNet framework. This study demonstrated that deep learning algorithms
have the potential to detect breast cancer early on chest CT scans across two test sets.

Bargall6 et al. [109] classified laterality and mastectomy/lumpectomy for breast can-
cer patients to improve deep learning auto segmentation performance. The study offers a
methodical pipeline for CT imaging of breast cancer that uses a trained nn-Unet model to
auto-contour standard tissue structures. Through auto-contouring, it determines whether a
patient needs a lumpectomy or mastectomy. Classifiers using stochastic gradient descent
consistently outperformed Random Forest Classifiers. Due to the classification’s high
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accuracy, precise network contouring can be achieved over generic models, reducing target
delineation inaccuracies. Furthermore, the research highlights the importance of consid-
ering unique anatomies or procedures when classifying institutions. Despite the proposed
system’s effectiveness in classifying breast cancer patients, there is still room for improve-
ment in workflow elements. It can effectively distinguish between patients with breast can-
cer on left or right sides, as well as between those who had lumpectomies versus mastec-
tomies. In both cases, the Random Forest algorithm was found to be the most optimal. In
the primary test set, the Random Forest classifier was able to discriminate between breast
and lumpectomy surgeries, and it also had an AUC of 9.93 in the secondary sample of 16
patients, with a 93.75% accuracy rate. The proposed method showed high accuracy based
on laterality and surgical procedure, the proposed method showed high accuracy and effi-
ciency in classifying breast cancer patients.

Zhou et al. [110] reported that deep learning can be used to predict neoadjuvant sys-
temic therapy for triple negative breast cancer. DL was investigated to predict whether tri-
ple-negative breast cancer (TNBC) patients would show pathological complete response
(pCR). In this procedure, dynamic contrast enhanced MRI (DCE) and diffusion weighted
imaging are used at the early stage of neo-adjuvant systemic therapy (NAST). DL model
was meticulously trained using 130 images from TNBC patients. Based on the areas under
the receiver operating characteristic curves (AUCs) for both the training and validation
phases, it showed commendable performance. The AUC of this model was consistently
high despite rigorous testing on an independent set of 32 patients. In a prospective blinded
test involving 48 patients, these results were further confirmed. These results suggest that
DL models have promising capabilities when applied to multiparametric MRI data, espe-
cially. In the early stages of NAST, such models can differentiate TNBC patients with pCR
from those without.

6.4 Histopathological and microscopic imaging

Deep learning is applied to analyzing histopathological and microscopic imaging for breast
cancer detection in this subsection. The combination of advanced imaging techniques with
deep learning offers detailed insights at the cellular level to help diagnose breast cancer
more accurately and efficiently. Deep learning algorithms have successfully been applied to
interpret and analyze these complex images in pivotal studies.

As Table 8 signifies Taheri and Golrizkhatami [111] proposed magnification-depend-
ent and magnification-dependent classification of breast cancer histopathological images.
Annually, breast cancer causes numerous deaths. Detecting malignant breast cancer can
be simplified through automated computer methods that reduce pathologists’ workload
and diagnoses more accurately. Histopathological images of breast cancer are used in this
study to introduce two methods for diagnosing the disease. Based on specific magnifica-
tion factors, the first system uses pre-trained DenseNet201 CNN models, fine-tuned on the
BreakHis dataset. In the second system, there are four subsystems, each customized for a
specific magnification. Final diagnosis results are then combined from these subsystems.
The proposed methods demonstrate superiority over existing techniques when tested on
the BreakHis dataset. Histopathological breast images can be classified using CNN archi-
tectures originally designed for color objects. In comparison to all other state-of-the-art
methods, the single magnification-based (MSB) system outperformed all others using
DenseNet201 technology. To classify patients, a multi-magnification-based (MIB) system
used predictions from four magnification-specific DenseNet201 models.
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Chattopadhyay et al. [112] described MTRRE-Net as a deep learning model for detect-
ing breast cancer in histopathological images. In the MTRRE-Net framework, a multi-scale
two-fold residual recurrent network (MTRRE-Net) is used to detect breast cancer using
histopathology images. BreakHis is a dataset known for having intricate appearances that
complicate straightforward classification. It emphasizes local features to discern intri-
cate patterns to improve classification accuracy. It uses residual skip connections, multi-
scale learning of image features, and residual recurrent connections. Feature delivery is
enhanced by these elements, and residual skip connections integrate shallow and intricate
features. As a result of its unique two-fold residual recurrent operation, the model addresses
the degradation problem in deep architectures. With its multi-scaling operation, it excels at
extracting significant features from small datasets, enhancing classification accuracy. Tests
on the BreaKHis dataset showed impressive accuracy across a wide range of magnification
levels. In comparison with other pre-trained models, such as GoogLeNet, DenseNet169,
and VGGL16, it outperformed them all. A comparison with state-of-the-art models further
validated its effectiveness.

Liu et al. [113] reported that deep learning methods can be applied to pathology images
to classify breast cancer. AlexNet-BC is a new breast cancer classification framework built
on the foundational AlexNet model. Using the BreaKHis dataset and optimizing the origi-
nal AlexNet network structure to compensate for the limitations of small-scale breast path-
ological images datasets. A novel low-entropy output penalty is introduced to counteract
overfitting caused by softmax-cross-entropy learning. A penalty is applied when the pre-
dicted likelihood probability exceeds a threshold. Pre-trained and fine-tuned with a transfer
learning approach, enhanced neural networks demonstrate superior performance. Addition-
ally, IDC and UCSB datasets are used to validate the model’s robustness. In spite of its
high accuracy, the model does not segment the lesion area, which will be the subject of
future research, integrating deep learning semantic segmentation.

Muntean and Chowkkar [114] proposed breast cancer detection from histopathologi-
cal images using deep learning and transfer learning. Researchers compared CNN and
DenseNet121 models for classifying breast histopathological images as malignant or
benign. The impact of image magnification, scaling, and rotation on model accuracy was
studied using 7,909 images. This study examines the performance of two deep learning
models in comparison to one another: a Convolutional Neural Network (CNN) that was
built from scratch with parameter tuning and a DenseNet121, which uses transfer learning
to automatically categorize breast histopathological images. This study investigates how
image magnification, scaling, and rotation affect the model’s accuracy using 7909 histo-
pathological images. It consists of convolutional neural networks, pooling neural networks,
and fully connected neural networks, with a learning rate of 0.0001 and ReL.U as the acti-
vation function. On the other hand, DenseNet121, with its 121 layers, utilizes ImageNet’s
pretrained weights and uses sigmoid activation functions. On Google Colab Notebook,
Keras and TensorFlow libraries were used to implement both models. Data was sourced
from Google Drive. The purpose of the research is to analyze the accuracy of these models
in terms of test and training accuracy, emphasizing the importance of increased accuracy
and true negative values in medical diagnosis.

As a result of scaling the images from 128 X 128 to 100X, DenseNet121 was able to
achieve its highest accuracy (86.6% at 100X magnification). The CNN model, on the
other hand, achieved a 90.9% accuracy rate under different conditions, namely 100X
magnification, 64X 64 image size scaling, and 180-degree rotation. Transfer learn-
ing led to a 16.4% increase in accuracy at 100X magnification during training. Study
findings concluded that the DenseNetl21 model accurately detected breast cancer
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in histopathological images, and future studies could explore other transfer learning
models.

Tsafas et al. [115] employed a deep-learning technique to detect breast cancer using
non-linear images from human tissue biopsies. This study explores the use of raw THG
images to identify breast biopsy tissue types. There is no additional processing or stain-
ing required to highlight multilayered structures in membranes. By leveraging deep
learning, the research attempted to differentiate benign from malignant breast tissues
and assess disease severity using THG images from unlabeled samples. Breast cancer
intratumoral heterogeneity and multiregional classification were examined in this study.
It enables precise cancer grading (benign, grades I-1II) using its multiclass CNN model.
In order to determine the best treatment strategy for a patient, an accurate diagnosis and
knowledge of his or her cancer grade is essential. The non-destructive and label-free
properties of optical methods may be useful in future histopathology. As a result of this
approach, fresh, unstained biopsy samples can be characterized quickly. The technique
could increase cancer detection rates and shorten biopsy characterization time, which
would improve histopathology. With this advance, patients might be able to undergo
less unnecessary biopsies and enjoy a higher quality of life. THG imaging combined
with recent advances in laser scanning microscopes paves the way for digital pathology
to benefit both patients and healthcare systems.

Toa et al. [116] proposed a deep residual learning method using attention algorithms
to classify breast cancers. This paper applies deep learning methods to both non-IDC and
IDC classification. Several sample images are available for training deep learning models,
which makes them ideal for processing medical images. Residual attention neural network
breast cancer classification (RANN-BCC) is a model designed to assist physicians in rap-
idly and efficiently analyzing breast cancer images. Breast cancer diagnosis can be speeded
up with RANN-BCC, which uses residual neural networks (ResNet) to support classifica-
tion. In addition to comparing the results of the RANN-BCC model with other deep learn-
ing models, a classification test was conducted using a dataset of non-IDC and IDC images.
Using residual attention neural networks breast cancer classification (RANN-BCC), they
identify invasive ductal carcinoma (IDC) and non-invasive ductal carcinoma (non-IDC) in
the given breast cancer dataset. Using the RANN-BCC model, they demonstrate that their
model outperforms other deep learning models. As a result of integrating self-attention,
cross-attention, collectors, and compressors into Residual Neural Network 34 (ResNet34),
the accuracy increased from 79.49 to 92.45%. The authors claim this integrative approach
will not only benefit medical practitioners but also contribute to computer-aided diagnosis.

Wetstein et al. [117] reported that breast cancers can be graded and rated with deep
learning. A deep learning model was developed to grade histopathology slides using
whole-slide images of breast cancer. 706 females between the ages of 20 and 40 were used
to train the algorithm, which included tumor grade, tubule formation, and mitotic rate.
Expert pathologist annotations were used as a benchmark to compare the model’s perfor-
mance with 686 patients. The Cohen’s Kappa score of 0.59 indicates an 80% accuracy rate
in distinguishing between low/intermediate and high grades of tumors. In terms of overall
survival (OS), disease/recurrence-free survival (DRFS/RFS), and survival for both groups,
the model’s predictions revealed significant differences. Cox regression analysis of the uni-
variate data further confirmed these findings. While molecular subtype stratification and
clinicopathologic features were taken into account, a trend persisted. The deep learning
model needs further refinement to better predict survival of breast cancer patients based on
whole-slide images.
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Sheeba et al. [118] proposed microscopic image analysis for breast cancer detection
based on ensemble deep learning architectures. In this study, ensemble deep learning tech-
niques are integrated with feature extraction and classification techniques to detect breast
cancer. It encompasses both historical data and newly acquired microscopic images, gath-
ered from the web of things (WoT). Initially, the input image is preprocessed. A Gaussian
filter is used to eliminate noise, followed by an active contour convolutional neural network
to segment the results. This process uses a combination of convoluted transfer learning
and regional attention. Localization-centric cancer classification techniques are superior to
existing methodologies in this field. Based on simulation results, the proposed method of
cancer classification based on localization is superior. According to this study, its average
classification accuracy stands at 96%, detection accuracy at 92%, mean average precision at
82%, sensitivity at 92%, specificity at 91%, and relative mean square error at 70%.

Huang et al. [119] found that deep learning can detect breast cancer through cross-
staining histopathology images. The study used color normalization and nucleus extraction
techniques. Furthermore, a workflow for analyzing fluorescent nucleic acid-stained images
was introduced that uses an Al model designed to analyze H&E-stained segmentation.
The accuracy of pinpointing H&E-stained and fluorescent-stained images was 89.6% and
80.5%, respectively. Using existing pathology AI models for cross-staining inference, the
precision of the inference remained the same as the proposed workflow. This study pro-
vided a methodology for cross-staining recognition between H&E-stained bright-field and
fluorescent-stained dark-field images, allowing for parallel analysis across staining meth-
ods. With this innovative approach, current H&E AI models can be extended and more
opportunities for fluorescence-based clinical research can be created.

Bhowal et al. [120] proposed fuzzy ensembles of deep learning models for breast cancer
histology using cognitive fuzzy integral theory, coalition games, and information theory.
A new model for classifying breast cancer histology images outperformed most existing
ones. To fuse deep learning models, they used Choquet Integral, which considers deci-
sions from subsets of classifiers, a method not previously employed in this area. A par-
ticularly significant contribution was their method of simplifying a typically complex pro-
cess by using Coalition Games and Information Theory. DCNN architectures like VGG16,
VGG19, Xception, InceptionV3, and InceptionResnetV2 were fine-tuned to extract high-
level bottleneck features. The features allow for two-class and four-class histology image
classifications. Ensemble models, which combine confidence scores from DCNN models,
are based on Choquet integrals, Coalition Game Theory, and Information Theory. A recent
model failed to outperform their method when tested on the ICIAR 2018 BACH dataset.
They achieved 96% accuracy with their fusion method, an improvement of 1% over their
best individual models for 2-class problems. The precision and recall of the model also
improved significantly after fusion. As a result of deep learning’s overconfidence, their
model greatly improved accuracy for the 4-class problem, but only marginally for the
2-class problem.

Yang et al. [121] proposed that histopathological images as well as clinical data could
be used to predict the risk of HER2-positive breast cancer recurrence and metastasis. Based
on histopathological images and clinical data, this study presents a novel application for
deep learning. However, this research is still in its early stages. Clinical efficacy tests must
be conducted before the model can be widely used for diagnosis and treatment. To evaluate
the risk of recurrence in HER2-positive breast cancer patients, a predictive framework was
developed based on pathological and clinical data. Images of whole slide sections stained
with H&E were initially acquired from surgical specimens. After segmenting the H&E
WSIs, they were enlarged to 512 x 512 pixels, followed by several image processing steps.

@ Springer



Multimedia Tools and Applications

Using the CNN algorithm, image features were identified and integrated with the clinical
data. Two-fold cross-validation (CV) was performed to confirm the validity of the novel
multimodal prognostic prediction model. To measure the model’s efficacy, all available
HER2-positive breast cancer patients from The Cancer Genome Atlas (TCGA) were used.
In order to assess HER2-positive breast cancer patient’s risk of relapse and metastasis,
imaging images and clinical data can be combined with advanced deep learning models.

An integrated deep learning model has been proposed by Liu et al. [122] for the pre-
diction of molecular subtypes of human breast cancer. An algorithm is used to identify
non-invasive breast cancer molecular subtypes. Multimodal deep learning model addresses
the limitation of prior studies that relied on single-mode data and lacked adequate feature
extraction. By integrating gene and image modal data, this model ensures a comprehensive
extraction of deep features. By combining these features, breast cancer molecular subtypes
can be predicted intelligently. PCA was used as part of the gene mode preprocessing to
expedite the training of the network and to minimize the parameters of the network. The
issue of large pixel sizes in pathological images was also addressed by slicing full-scale
images. Upon submitting the model to ten iterations of tenfold cross-validation, the predic-
tion accuracy reached 88.07 percent. For each of the four subtypes, an AUC test was con-
ducted, yielding an average AUC of 0.94277.

Farahmand et al. [123] reported that deep learning could predict HER?2 status and trastu-
zumab response in HER2 + breast cancer. In this study, a CNN method is introduced that is
more accurate than previous techniques at predicting HER2 status. In cross-validation and
independent testing, the classifier obtained an AUC of 0.90 with 188 manually annotated
H&E WSIs. Additionally, the classifier aligned well with pathologist annotations. The clas-
sifier achieved a 0.80 AUC when trained on samples from 187 HER2 + patients treated
with trastuzumab. It is possible to predict HER2 status and trastuzumab response using this
H&E-based algorithm, which may support clinical decisions. With the developed method,
patients could determine which HER2 drug would benefit them by combining Al with tra-
ditional approaches.

Bychkov et al. [124] used outcomes and biomarkers for the prediction of survival in two
multinational breast cancer series. Specifically, the study aimed to predict breast cancer
survival. These algorithms were trained using 354 TMA samples from the same series.
For validation, 674 tumor slides from another multicenter study (FinHer) were used. In
addition, a pathologist assessed TMA samples in the FinProg test set visually and then
incorporated the results. In spite of factors such as histological grade, tumor size, and axil-
lary lymph node status, the multitask CNN was statistically significant for predicting sur-
vival. A pathologist combined deep learning with tissue characteristics visually assessed to
improve accuracy to 0.66.

Asyir et al. [125] presented MITNET as a novel dataset for mitosis recognition in breast
cancer tissue whole slide images. MITNET is used in this paper to detect nuclei and clas-
sify mitoses in breast cancer whole slide images (WSI). Moreover, this paper introduces
two new datasets. In the first dataset, 139,124 annotated nuclei are shown in 1749 patches
extracted from 115 WSIs containing breast cancer tissue in the first dataset. The second
dataset consists of 4908 mitotic and 4908 non-mitotic WSI images, which are used for
mitosis classification. With the created datasets, the MITNET network is trained using two
deep learning architectures, MITNET-det and MITNET-rec, to isolate nuclei cells and iden-
tify mitoses in WSIs. In MITNET-det, nucleus images are extracted from and fused using
CSPDarknet and Path Aggregation Network (PANet). To detect nuclei on three different
scales, scaled-YOLOV4 is used. Classification involves passing the WSI images through the
MITNET-rec deep learning architecture to identify mitosis. MIDOG and ATYPIA datasets
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are used for training and validation of the created dataset. MIDOG and ATYPIA-based
classifiers fail to recognize mitosis on our dataset, which indicates that the mitosis dataset
has unique features and characteristics. The overall MITNET framework also detects the
nucleus with high detection rates in WSIs, according to the experimental results. A high
F1-score allows pathologists to recognize WSI, which improves their accuracy.

Wu et al. [126] reported that multimodal microscopic imaging combined with deep
learning could be highly effective in diagnosing breast cancer. This study introduces
a novel method of combining microscopical imaging with deep learning. An imaging
approach based on bright-field imaging (BFMI), autofluorescence imaging (AFMI), and
orthogonal polarization imaging (OPMI) captures comprehensive information about tissue
morphology, collagen content, and structure. These details are extremely valuable because
they reveal how collagen is distributed and arranged in tissues in relation to tumor pro-
gression. Multimodal images are combined at the pixel and decision level in the study to
produce fusion classification models. A simulation approach outperforms a single-mode
approach.

6.4.1 Datasets for histopathological and microscopicimaging

In this section, a comprehensive overview of several pivotal histopathological and micro-
scopic imaging datasets is offered. Each dataset differs in its range, image quality, and
annotations, making them invaluable resources for both developing diagnostic algorithms
and furthering medical imaging research. The following is an exploration of prominent his-
topathological and microscopic datasets, including the highest accuracy levels achieved by
algorithms utilizing these datasets.

e The BreaKHis (Breast Cancer Histopathological Image) dataset [127] provides
microscopic images of benign and malignant breast tumors that can be used to develop
and validate automated systems for breast cancer diagnosis. During January 2014 to
December 2014, P&D Laboratory in Brazil conducted a clinical study on this dataset.
In this study, 82 patients with breast cancer clinical indications were studied. To pro-
tect patient privacy, all participants provided informed consent. There are 7,909 images
in the dataset, including 2,480 benign and 5,429 malignant samples. The images were
captured using an Olympus BX-50 microscope coupled with a Samsung digital color
camera, at four different magnifications: 40x, 100x, 200x, and 400x. Using RGB color
space and 24-bit color depth, high-quality visual information was obtained. The effec-
tive pixel sizes for each magnification are 0.49 pm, 0.20 pm, 0.10 pm, and 0.05 um,
respectively, providing detailed views of the tissue samples. Images are saved as PNG
files with dimensions of 700X 460 pixels after they have been cropped to remove black
borders and text annotations. Several steps were involved in preparing the tissue sam-
ples, including fixation, dehydration, clearing, infiltration, embedding, and trimming.
The sections were cut to 3 um thickness and stained with hematoxylin and eosin (HE).
To capture images, pathologists selected regions of interest (ROIs) within each slide
that had tumorous areas. In each slide, 40X magnification was used to cover the entire
ROI, then 100X, 200X, and 400X magnifications were used to cover the remaining
ROI. The multi-level imaging approach captures different aspects of the morphology
and structure of the tissue. As part of the BreaKHis dataset, images are meticulously
categorized into four types of benign tumors (adenosis, fibroadenoma, phyllodes tumor,
and tubular adenoma) as well as four types of malignant tumors (ductal carcinoma, lob-
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ular carcinoma, mucinous carcinoma, and papillary carcinoma). In the dataset, images
are distributed across these categories and magnifications, making targeted research
and analysis possible. In providing this extensive and well-annotated dataset, the crea-
tors hope to foster advances in computer-aided diagnosis (CAD) systems for breast can-
cer, thereby fostering the development of more accurate and reliable diagnostic tools.
The highest accuracy achieved by algorithms in this review utilizing this dataset is
98.48%.

e The ICIAR Breast Cancer dataset [128], part of the Grand Challenge on BreAst
Cancer Histology images (BACH) organized for the 15th International Conference on
Image Analysis and Recognition (ICIAR 2018), serves as a crucial resource for advanc-
ing the field of breast cancer histology image analysis. In order to develop algorithms
that can accurately identify different kinds of breast tissue, the dataset is designed to
support the development of automatic classification algorithms. Breast cancer diagno-
sis relies on images stained with hematoxylin and eosin (H&E). To aid pathologists in
detecting breast cancer, these images are classified into four categories: normal, benign,
in situ carcinoma, and invasive carcinoma. There are two main parts to the BACH chal-
lenge dataset. The first step consists of analyzing histology microscopy images anno-
tated image-by-image by experts. It contains 400 training and 100 test images repre-
senting the four aforementioned classes equally. The images were acquired with a Leica
DM 2000 LED microscope and a Leica ICC50 HD camera, collected from patients in
the Porto and Castelo Branco regions of Portugal. Three hospitals provided these sam-
ples, including Hospital CUF Porto, Centro Hospitalar do Tdmega e Sousa, and Centro
Hospitalar Cova da Beira, and the annotation was performed by two medical experts.
The second part of the dataset involves pixel-by-pixel labeling of whole-slide breast
histology images. An expert reviewer ensures the quality and reliability of these anno-
tations on whole-slide images (WSIs). In this part of the dataset, pixel-level labels are
provided that can be used to train and evaluate segmentation algorithms for histopatho-
logical image analysis. In the BACH challenge, participants submitted their methods
and results for evaluation. The Grand Challenge platform provided researchers with an
organized and competitive environment. Convolutional neural networks (CNN) were
the most successful approach for automatic classification of breast cancer histology
images, achieving an accuracy of 87%. Digital pathology and the automation of breast
cancer diagnosis are being encouraged with the availability of this dataset. The highest
accuracy achieved by algorithms in this review utilizing this dataset is 96%.

The most commonly used dataset in histopathological and microscopic imaging
research is the BreakHis (Breast Cancer Histopathological Image) database. Figure 16 pro-
vides a detailed overview of the process involved in creating this dataset. The following
section describes various models and their performance results using this dataset.

6.4.2 Model accuracy comparison on the BreaKHis dataset

Several advanced models have demonstrated varying levels of performance across differ-
ent magnifications (40x, 100x, 200x, and 400x) in the domain of histopathological and
microscopic imaging based on the BreaKHis dataset, revealing the complexity and effi-
ciency of different deep learning architectures tailored to different imaging tasks. Taheri
and Golrizkhatami [111] proposed the DenseNet201 CNN model for lower magnifications,
coupled with magnification-specific subsystems. With its dense connectivity patterns, this
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Fig. 16 Showing the process of generating the BreaKHis dataset

model is able to capture detailed patterns effectively, and enhances feature reuse and mit-
igates the vanishing gradient problem. As a result of the increased complexity and fine
details of high-magnification images, performance drops to 89.81% at the highest mag-
nification (400x). Across magnifications, Chattopadhyay et al. [112] reported 97.12%
(40x), 95.22% (100x), 96.85% (200x), and 97.81% (400x) accuracy for the MTRRE-Net
(Multi-scale Two-fold Residual Recurrent Network). Multiscale analysis and residual and
recurrent networks are combined in this model, making it effective for capturing both
spatial and sequential information at different magnification levels. Liu et al. [113] devel-
oped AlexNet-BC, which stands out with superior performance across all magnifications,
achieving accuracies of 98.15% (40x), 97.71% (100x), 97.96% (200x), and 98.48% (400x).
AlexNet still performs exceptionally well despite being an older model, possibly due to
batch normalization and other techniques. As a result of its high performance, it is a robust
and adaptable imaging solution for histopathology. The BreaKHis dataset illustrates the
importance of advanced network architectures and specialized subsystems designed for
specific magnifications. DenseNet201 performs well at lower magnifications, but less so
at higher magnifications. In contrast, MTRRE-Net’s consistent performance across mag-
nifications and AlexNet-BC’s superior accuracy reflect the effectiveness of multi-scale and
residual learning approaches, as well as the potential to achieve high accuracy in histo-
pathological imaging using well-optimized older architectures. Figure 17 shows the differ-
ent accuracy levels for BreaKHis dataset.

6.5 Thermal imaging

This subsection examines the use of thermal imaging in breast cancer detection, highlight-
ing the role of deep learning in the process. Thermal imaging is a non-invasive and cost-
effective method for detecting breast abnormalities. Deep learning techniques combined
with thermal imaging have the potential to significantly improve breast cancer detection
and diagnosis. The purpose of this paper is to examine key studies that have analyzed ther-
mal images for the detection of breast cancer using deep learning.
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Fig. 17 Comparison of model accuracy on the BreaKHis dataset

As Table 9 represents Ensafi et al. [129] proposed combining multiple views of ther-
mography images together to improve deep learning paradigms for breast cancer diag-
nosis. Breast cancer is one of the leading causes of death among women worldwide, and
the study aims to enhance early detection of this disease through thermography. Ther-
mography is an invasive, non-painless, and cost-effective method for detecting abnor-
malities of the breast surface. To optimize the performance of preexisting deep learning
models, this study integrates multiple views of thermograms, including frontal-45, lat-
eral-45, and lateral45. A comprehensive diagnosis is provided by the model by leverag-
ing transfer learning. Infrared images are obtained from the Database for Mastology
Research (DMR). The sensitivity, specificity, and efficiency of thermogram analysis can
be improved by 2-15%, 2-30%, and 2-25%, respectively, utilizing transfer-based deep
learning. This study presents multiple thermogram views combined with transfer learn-
ing in order to develop an innovative method of diagnosing breast cancer. The proposed
model has the potential for interpreting breast thermography images in the future as
compared to deep learning and handcrafted feature-based methods.

According to Tsietso et al. [130], thermal infrared imaging and clinical data can be
combined to develop a multi-input deep learning approach for breast cancer screen-
ing. In this study, a multi-input network with transfer learning is used to classify breast
thermograms. As part of the network, clinical data and three breast views are incorpo-
rated along with automatic Region of Interest (ROI) extractions for symmetry analysis.
This model is simulated using a graphical user interface (GUI). This study incorpo-
rates transfer learning to reduce computation costs, develops a multi-input network for
accurate classification of patients, and adds automatic ROI extraction. With clinical data
integration, the study achieved a 90.48% accuracy rate. Besides detecting breast cancer,
the proposed model has potential applications in medical radiology.
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Abdulla Salim Al Husaini et al. [131] found that combining thermal imaging with
deep learning models, specifically Inception V3, Inception V4, and a modified Incep-
tion MV4, was effective in improving breast cancer detection. To identify breast disor-
ders early using thermal images, this study evaluated these models’ performance. The
Inception V4 model demonstrated high accuracy when applied to color images, achiev-
ing a 100% accuracy rate with the SGDM optimization method and a learning rate
of 1x 107 in just 4 epochs. Inception MV4 also demonstrated high accuracy and 7%
faster classification response time than Inception V4. These models gained little per-
formance from adding more layers. Inception V3 performed better on grayscale images
than its counterparts when more epochs were used when compared to Inception V4
and MV4.

Chatterjee et al. [132] presented a two-stage approach for breast cancer detection
using thermographic images. Initially, features are extracted using a deep learning
model, VGG16, and then an optimal subset of these features is selected using a mem-
ory-based Dragonfly Algorithm (DA) enhanced with the Grunwald-Letnikov (GL)
method. Based on testing of the model on the DMR-IR dataset, 100% diagnostic accu-
racy was achieved with 82% less features than using the VGG16 model alone. Breast
cancer detection can be made more accurate and efficient with this method since it
filters non-essential features efficiently.

6.5.1 Datasets for thermal imaging

In this section, several pivotal datasets used in breast cancer detection and diagno-
sis research are analyzed in detail. These datasets are unique in terms of their range,
image quality, and detailed annotations, making them invaluable tools for advancing
the field of medical imaging and developing diagnostic algorithms. The following is
an exploration of prominent thermal datasets, including the highest accuracy levels
achieved by algorithms utilizing these datasets.

e The DMR-IR (Database for Mastology Research with Infrared Thermal Imaging)
[133] is an open-access database provided by Federal Fluminense University, which
aims to support early breast cancer detection. Data included in this database include
infrared (IR) images, digitized mammograms, medical history, dietary habits,
age, symptoms, and more. Breast cancer research can benefit from a multifaceted
approach, including IR images, ultrasound images, and MRI images. Both static
and dynamic protocols were employed to capture the IR images with the FLIR-SC
620 imaging camera. In the database, each infrared image measures 640 X 480 pix-
els. By providing detailed patient information alongside diverse imaging data, this
resource facilitates the development and testing of diagnostic algorithms. The high-
est accuracy achieved by algorithms in this review utilizing this dataset is 100%.

The most commonly used dataset in thermal imaging research is the DMR-IR (Data-
base for Mastology Research with Infrared Thermal Imaging) database. Figure 18 pro-
vides a detailed overview of the process involved in creating this dataset. The follow-
ing section describes various models and their performance results using this dataset.
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Thermal images for breast cancer detection
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Fig. 18 Showing the process of generating the DMR-IR dataset

6.5.2 Model accuracy comparison on the DMR-IR dataset

Based on the DMR-IR dataset, two state-of-the-art models demonstrate outstanding per-
formance, demonstrating the power of combining deep learning architectures with optimi-
zation and classification techniques. The combination of InceptionV3, InceptionV4, and
MV4, as proposed by Abdulla Salim Al Husaini et al. [131], achieves an impressive accu-
racy of 99.748%. Inception architectures are renowned for their powerful feature extrac-
tion capabilities. Through their inception modules, InceptionV3 and InceptionV4 handle
multi-scale features effectively, which is essential when capturing and processing thermal
patterns. As a result of MV4, the model can distinguish subtle details with near-perfect
accuracy. Surpassing even this impressive benchmark, the model incorporating VGG16,
the Dragonfly Grunwald-Letnikov Dragonfly algorithm (GLDA), and an SVM classi-
fier, as proposed by Chatterjee et al. [132], attains a flawless accuracy of 100%. The deep
convolutional layers of VGG16 are effective at capturing hierarchical features, while the
GLDA optimizes feature selection. In this way, only the most relevant features are retained,
reducing noise and improving the performance of the classifier. With remarkable preci-
sion, the SVM classifier, known for its robustness in high-dimensional spaces, then classes
these optimized features. This study highlights the importance of combining advanced
convolutional neural networks with innovative optimization algorithms and robust classi-
fiers based on the DMR-IR dataset. The near-perfect accuracy of the InceptionV3 + Incep-
tionV4+MV4 model and the flawless performance of the VGG16+GLDA 4+ SVM clas-
sifier illustrate the potential of these approaches in achieving state-of-the-art results in
thermal imaging applications. Feature extraction, optimization, and precise classification
techniques are key to the success of these models. Figure 19 shows the different model
accuracies for this dataset.

6.6 Others

This subsection examines various innovative deep learning approaches for the detection
and classification of breast cancer that do not strictly fall under conventional imaging
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Model Accuracy Comparison on DMR-IR Dataset
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Fig. 19 Comparison of model accuracy on the DMR-IR dataset

techniques. To enhance the accuracy and efficiency of breast cancer diagnosis, these alter-
native methods utilize deep learning in unique ways, applying it to different types of data
or combining it with novel algorithms. These diverse and creative applications of deep
learning in breast cancer detection will be reviewed.

As Table 10 represents the classification of breast cancer, Sharma et al. [134] employed
a snapshot ensemble deep learning model and a t-distributed stochastic neighbor embed-
ding. The purpose of this study is to analyze historical breast cancer data to detect and
predict the disease. To reduce dimension and assemble snapshot models for efficient diag-
nostics, the authors recommend t-distributed stochastic neighbor embedding (t-SNE).
T-SNE enhances scatter plots and optimizes costs. The research uses a snapshot ensemble
deep learning framework to combine predictions from multiple base models. From the UCI
Machine Repository, Wisconsin Breast Cancer Dataset (WBCD) is used. This model out-
performed state-of-the-art models such as averaging, weighted averaging, stacked ensem-
bles, and Polyak Rupert. The proposed model seemed to have great potential for real-world
application based on these promising results.

Kayikci and Khoshgoftaar [135] proposed a gated attentive multimodal deep learning
approach for the prediction of breast cancer. This paper presents a multimodal deep learn-
ing model incorporating clinical, copy number alteration, and gene expression data. Mam-
mography images can be used to detect subtle indications of cancer, and details specific to
a patient, such as age and family history, can help refine their predictions. This study aims
to bolster breast cancer prediction by using attention mechanisms. By combining multi-
modal data, breast cancer prognosis is enhanced. Two stages are involved in the process.
In the first step, sigmoid gated attention convolutional neural networks are used to create
stacked features. The second uses a bimodal attention process. This model may improve
detection and outcomes of breast cancer patients. Deep learning and CNNs have made
significant contributions to disease diagnosis with the advancements in artificial intelli-
gence. It is possible to achieve classification results that surpass those of human experts
without explicitly describing the domain of features. As a result of using deep learning
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for mammogram-based breast cancer risk assessment, positive results have been obtained.
Machine learning and big data can improve screening test accuracy and optimize imaging
protocols.

Awotunde et al. [136] suggested combining rule-based feature selection algorithms
with deep learning algorithms to detect breast cancer. Breast cancer is one of the lead-
ing causes of death among women, and this study focuses on it. Deep learning (DL) and
expert systems are increasingly used in breast cancer diagnosis due to the importance of an
early and accurate diagnosis. With the help of a hybrid feature selection mechanism based
on rule-based DL-based models, the paper presents a model of breast cancer using DL-
based features. In this approach, irrelevant features are filtered out to improve diagnostic
accuracy. Testing and assessing the efficacy of the model was conducted on the Wisconsin
Breast Cancer Dataset (WBCD). With feature selection, the DL. model achieved a remark-
able diagnostic accuracy of 99.5%. Additionally, it identifies five key diagnostic features.
Through the use of diagnostic features that are relevant to breast cancer, the model is supe-
rior to current models in predicting the presence of breast cancer.

Martinez and Dongen [137] reported that deep learning algorithms can detect breast
cancer at an early stage. Research suggests deep learning can enhance breast cancer screen-
ing. Mammograms and ultrasounds are traditional methods of screening for breast can-
cer, but deep learning models analyze images for abnormalities. Nevertheless, this study
extends deep learning beyond image analysis. This article examines how deep learning can
be used to detect breast cancer using a diverse set of data. In addition to demographic data,
cancer risk information comes from international databases. The study involved 64 women
with breast cancer and 52 healthy women. To identify effective prescreening predictors,
this study was conducted. The performances of deep learning and traditional machine
learning were compared using k-fold Monte Carlo cross-validation experiments. Results
showed that a deep learning model fine-tuned with feature selection performed the best
at distinguishing between cancerous and non-cancerous patients. Thus, deep learning is
able to detect malignancies more accurately than traditional machine learning, reducing
the risk of late cancer detection. The performance metrics of deep learning also showed
lower prediction uncertainty. A deep learning algorithm may prove more cost-effective and
non-invasive than traditional imaging-based cancer screening when used for prescreening.
Furthermore, these algorithms can promote self-examination, mitigate the psychological
effects associated with false positives, and identify individuals who may need more inten-
sive testing. Additionally, it can reduce healthcare challenges and societal burdens associ-
ated with cancer treatment.

Xiong et al. [138] reported that deep learning-based transcription factor activity
can be used to stratify breast cancer patients. In this study, transcription factors play
an important role in gene expression and DNA epigenetic modification. It is crucial to
understand how cancer cells undergo genomic changes. The VIPER algorithm was used
in this study to identify the transcription factor activity profiles. The activity profile
was compressed using deep learning, specifically an autoencoder, to extract valuable
features that can be used to distinguish between two subtypes of breast cancer. In com-
parison with traditional methods based on transcription factor activity, deep learning
displayed enhanced prognostic capabilities. Additionally, the study developed a ceRNA
network for the subtypes identified and identified 11 master regulators for each cluster.
Multiple breast cancer datasets were used to validate the model’s efficacy, emphasiz-
ing its potential in prognosis prediction and hinting at its possible use in tailored breast
cancer treatments. The accuracy and area under the ROC curve of the deep neural net-
work developed using the derived features were 99.98% and 0.9663, respectively. Tumor
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immunogenicity and immune infiltration are closely related to these subtypes. Deep
learning provides insight into prognosis prediction and potential therapeutic approaches
for breast cancer subtypes, as well as improving our understanding of breast cancer
subtypes.

Kirelli et al. [139] proposed CNN-based deep learning for predicting the outcome of
NAC treatment in breast cancer. There are several convolutional layers that influence model
training success, in addition to the quality of the dataset and the dependent variable. In
order to evaluate CNN models’ performance in classifying pathological data, researchers
utilized standard pathological data. CNNs provided robust feature representations for deep
learning, leading to accurate predictions. Models are developed that accurately predicted
the Miller coefficient, tumor lymph node value, and axillary complete response, with accu-
racy rates of 87%, 77%, and 91%, respectively. Despite the large and diverse datasets in the
study, deep learning methods work well for interpreting pathological results, and assisting
in diagnosis, treatment, and prognosis. It suggests that deep learning and machine learning
could enhance the interpretation and management of healthcare data.

Using deep learning, Zhao et al. [140] analyzed multiple molecular markers and prog-
nostic factors for triple-negative breast cancer. The authors developed a deep learning
model using a multi-omics dataset on TNBC (N=425), which N is number of cases, to
predict molecular features, subtypes, and prognoses. To decompose tissues on WSIs, a neu-
ral network was used, and then a second network was trained on specific tissue types for
diverse predictions. Molecular features that were investigated include somatic mutations,
copy number changes, germline mutations, metabolic pathways, and immunotherapy bio-
markers. All three molecular features predicted by the framework were successful: somatic
mutation of PIK3CA, germline mutation of BRCA2, and expression of PD-L1. Moreo-
ver, the AUC values for the basal-like immune-suppressed, immunomodulatory, luminal
androgen receptor, and mesenchymal-like subtypes of TNBC were 0.84, 0.85, 0.93, and
0.73, respectively. The morphological patterns revealed heterogeneity in TNBC. Moreo-
ver, a neural network stratified patients based on image features and clinical data (log-rank
P <0.001). Models and prediction frameworks were externally validated on 143 cases of
TNBC from TCGA (N=143), which N is number of cases, and were robust to changes
in patient populations. The team created an online platform to deploy and modularize the
framework, validate models, and enable real-time predictions for future cases.

Jadoon et al. [141] proposed a multi-modal ensemble classification approach for predict-
ing survival in human breast cancer based on deep learning. This study aims to improve
breast cancer prognosis and identifying novel prognostic factors by utilizing ensemble deep
learning techniques. Models based on heterogeneous stacking are constructed by extract-
ing features, stacking them, and then classifying them. In addition to using multiple deep
learning models for extracting features from various data modalities, this model outper-
forms existing benchmarks for breast cancer prognosis. This study may contribute to new
prognostic tools and treatment strategies for breast cancer patients due to its clinical signifi-
cance. This model combines individual neural networks to extract features from a variety
of data types, such as clinical data, gene expression data, and CNV data, with 97% accu-
racy. In order to use the model in clinical decision-making, it needs to be further validated
and integrated with other sources of information. This flexible approach permits the use of
different algorithms and incorporating more data modalities to predict other diseases.

Arya and Saha [142] proposed deep-learning-based stacked ensemble models for multi-
modal classification of human breast cancer prognosis. This study proposes deep learning-
based predictive models to enhance breast cancer prognosis prediction. A convolutional
neural network is used for feature extraction in the first stage, and this extracted feature is
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used as input to the stack-based ensemble model in the second stage. According to various
metrics, the model performs better than existing approaches.

Guan et al. [143] identified potential targets of endocrine-disrupting chemicals causing
breast cancer using ToxCast and deep learning. A deep learning model was used to predict
the molecular toxicity of 47 endocrine-disrupting chemicals (EDCs) linked to breast cancer
that had never been tested by the ToxCast program of the US-EPA before. With the help of
SMOTE technology, 275 multi-layer perceptron (MLP) neural network models were cre-
ated, ranging from 56.5% to 99.9% accurate on average. The toxicity of untested EDCs
was determined by 142 models that were more than 90% accurate. Six potential targets of
breast cancer-related EDCs have been identified, including MYC, PLAUR, and HIF1A.

6.6.1 Datasets

This section provides a detailed overview of several key datasets used in Sect. 6.6. Each
dataset is unique in its scope, making them essential resources for developing and testing
diagnostic algorithms and advancing the field of medical research. Below are the details of
well-known datasets, along with the highest accuracy levels achieved by algorithms utiliz-
ing these datasets.

e There are 569 samples in the Wisconsin Breast Cancer (WBC) dataset [144], 357
samples representing benign cases and 212 samples representing malignant cases.
This dataset contains 11 integer-valued attributes that describe various characteristics
of breast cancer cases. It is widely used to determine whether a breast cancer case is
benign or malignant by machine learning models, making it a valuable resource for
medical data scientists. The highest accuracy achieved by algorithms in this review uti-
lizing this dataset is 99.9%.

e The METABRIC (Molecular Taxonomy of Breast Cancer International Consor-
tium) dataset [145] is a significant resource for the study of breast cancer genomics and
transcriptomics. It consists of a comprehensive collection of over 2,000 clinically anno-
tated primary fresh-frozen breast cancer specimens from tumor banks in the UK and
Canada. The dataset is divided into two main cohorts: a discovery set of 997 primary
tumors and a validation set of 995 tumors. These cohorts were carefully assembled
to ensure a representative sample of the breast cancer population, facilitating robust
genomic and transcriptomic analyses. The primary focus of the METABRIC dataset
is to integrate genomic and transcriptomic data to identify novel subgroups of breast
cancer with distinct clinical outcomes. By combining copy number and gene expres-
sion profiles, researchers aimed to uncover the molecular drivers of breast cancer and to
stratify patients into clinically relevant subgroups. The study revealed that 40% of genes
were associated with either inherited variants (such as single nucleotide polymorphisms
and copy number variants) or acquired somatic copy number aberrations (CNAs),
which played a significant role in influencing gene expression. One of the key findings
from the METABRIC dataset is the identification of several novel subgroups with dis-
tinct genomic characteristics and clinical prognoses. For example, a high-risk subgroup
characterized by cis-acting alterations on chromosomes 11q13/14 was identified, which
was predominantly composed of estrogen receptor-positive tumors with poor prognosis.
Additionally, a subgroup devoid of CNAs was found, which exhibited a favorable prog-
nosis and was associated with an adaptive immune response driven by TCR deletions.
These findings highlight the importance of integrating multiple genomic data types to
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Fig.20 Showing the process of generating the METABRIC dataset

achieve a more nuanced understanding of breast cancer heterogeneity. The METABRIC
dataset also emphasizes the impact of specific genomic regions on breast cancer pathol-
ogy. For instance, the study highlighted the roles of ZNF703, a driver gene specific to
the luminal B subtype, and other significant alterations such as deletions in PPP2R2A,
MTAP, and MAP2K4. These genomic insights provide a comprehensive framework for
understanding the molecular underpinnings of breast cancer and have implications for
developing targeted therapeutic strategies. Overall, the METABRIC dataset serves as a
valuable resource for the breast cancer research community, offering detailed molecular
portraits that can inform both clinical practice and future research directions. The high-
est accuracy achieved by algorithms in this review utilizing this dataset is 97%.

The METABRIC (Molecular Taxonomy of Breast Cancer International Consortium)
dataset is one of the most frequently used datasets in this category. Figure 20 provides a
comprehensive overview of the process involved in creating this dataset. The subsequent
section discusses various models and their performance outcomes using this dataset.

6.6.2 Model accuracy comparison on the METABRIC dataset

In the classification and prognosis of breast cancer using the METABRIC dataset, state-
of-the-art (SOTA) models excel by integrating multimodal data via sophisticated deep
learning architectures. With 91.2% accuracy, Kayikci and Khoshgoftaar [135] proposed a
gated attention multimodal deep learning model. It utilizes gated attention mechanisms and
convolutional neural networks (CNNs) to dynamically focus on the most relevant features
and capture complex spatial patterns in the data, resulting in a high level of effectiveness
when processing diverse genomic and clinical inputs. Using multiple deep learning mod-
els, Jadoon et al. [141] achieved a remarkable accuracy rate of 97%. In this method, more
than one DL model is trained on different aspects of the dataset, and their outputs are com-
bined to leverage the strengths of each, resulting in highly generalized and accurate predic-
tions. Arya and Saha [142] proposed Deep-Learning-Based Stacked Ensemble Models that
reduce variance and bias by stacking multiple deep learning models in a hierarchical man-
ner to achieve 88.1% accuracy, but their lower accuracy indicates a need to improve model
integration or feature selection in order to match the higher performance of other SOTA
methods. Based on the complexity of the data and the sophistication of the models used,

@ Springer



Multimedia Tools and Applications

Model Accuracy Comparison on METABRIC Dataset

1
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Fig.21 Comparison of model accuracy on the METABRIC dataset

the performance of machine learning models differs greatly on the METABRIC dataset.
With an accuracy of 91.2%, gated attentive multimodal deep learning effectively integrates
diverse data types, emphasizing relevant features through gated attention. Gene expression
data with complex spatial relationships can be captured with its use of CNNs. Although the
model is highly effective, there may still be some challenges in fully capturing the nuances
of multimodal data given its accuracy. Furthermore, heterogeneous stacking achieves a
remarkable 97% accuracy, illustrating its superior ability to generalize across different data
modalities. Combining different deep learning models that excel at different aspects of a
dataset has the advantage of high performance. Stacking of models provides a rich, com-
plementary set of information, resulting in a highly accurate and robust prediction system.
However, compared to the other SOTA models, the deep-learning-based stacked ensemble
model, with 88.1% accuracy, fails to meet expectations. Many factors could contribute to
this, such as the choice of base models, the method of combining their outputs, or even
the specifics of feature engineering. As a result of the slightly lower accuracy, the model
may not use the full potential of the multimodal data or integrate the model outputs as
effectively as heterogeneous stacking. Overall, the performance disparities between these
models illustrate the importance of model architecture, data integration strategies, and cap-
turing complex relationships within datasets. Due to its richness, the METABRIC dataset
lends itself well to advanced machine learning models to explore and improve breast can-
cer prognosis. Figure 21 shows the different model accuracies for this dataset.

6.6.3 Model accuracy comparison on the Wisconsin dataset

Several state-of-the-art (SOTA) models have been developed using machine learning
in breast cancer diagnostics to improve prediction accuracy and reliability. Deep learn-
ing approaches, such as Convolutional Neural Networks (CNNs) and ensemble meth-
ods, have demonstrated significant success in machine learning applications. In order to
ensure early detection of breast cancer and to plan treatment accordingly, high accuracy,
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Model Accuracy Comparison on Wisconsin Dataset
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Fig.22 Comparison of model accuracy on the Wisconsin dataset

sensitivity, and specificity must be achieved. In processing complex patterns within
a dataset, deep learning models, especially those utilizing CNNs and ensemble tech-
niques, have demonstrated remarkable performance. For instance, Sharma et al. [134]
employed the snapshot ensemble deep learning approach, which achieved an accuracy
of 86.6%, which takes multiple snapshots of the model at different stages of training
to form an ensemble, thus capturing diverse representations of the data and improv-
ing robustness. Awotunde et al. [136] have proposed rule-based Al models that have
enhanced the accuracy of deep learning to 99.9%. The high accuracy indicates the mod-
els’ ability to learn intricate relationships within data. Model interpretability and reli-
ability are enhanced by the rule-based component, which adheres to predefined rules.
As a result of the inherent complexity and design of each model, the performance of
machine learning models on the Wisconsin Breast Cancer dataset varies. Though snap-
shot ensemble deep learning achieves 86.6% accuracy, its ability to capture global data
distributions and variability may limit its ability to accurately capture all nuances of
the dataset. Typically, ensembles combine weak learners to create a stronger one, but
snapshot methods might not exploit model diversity to its full potential, leading to
lower accuracy. However, the rule-based ANN model achieves a near-perfect accuracy
of 99.9%, demonstrating the effectiveness of deep learning architectures in identifying
and learning from complex patterns in medical data. Its high performance can be attrib-
uted to its ability to capture nonlinear relationships and its versatility in adapting to
various dataset features. For critical applications like cancer diagnosis, rule-based logic
enhances its robustness and interpretability. Nonetheless, the model may not generalize
as well to unseen data when it performs exceptionally well on the training data, such as
99.9% accuracy. Predictive systems that are highly accurate and generalizable are essen-
tial in a medical context to avoid misleading diagnoses. As a result of the performance
disparities among models, selecting the right algorithm and validation strategy is cru-
cial to achieving optimal results in the detection of breast cancer using Wisconsin data.
Figure 22 shows the different model accuracies for this dataset.
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Number of Publications per Journal by Year

ScienceDirect Taylor & Francis Springer

20
= 2023
m 2022

Number of Publications
1)

0

Journal

Fig. 23 Evolution of deep learning publications in breast cancer detection (2022-2023) across leading aca-
demic publishers

7 Analytical discussion

Deep learning approaches are explored in this comprehensive review of breast cancer
detection with deep learning. In this review, the literature is systematically examined, pro-
viding an analytical perspective. Additionally, the review examines various deep learning
applications in the context of breast cancer detection and develops a taxonomy and param-
eter analysis of them. There has been a critical analysis of research in the field of deep
learning and how it can be applied to early detection and diagnosis of breast cancer.

7.1 Analyze based on the year and publisher

Figure 23 illustrates a notable trend in the publication of articles related to breast cancer
detection using deep learning across various academic platforms between 2022 and 2023.
It is identified that Springer is the leading publisher, with its articles decreasing from 19 in
2022 to 14 in 2023. ScienceDirect is closely following, with 15 articles produced in 2022
and 11 in 2023. However, IEEE and Taylor & Francis maintain lower publication rates
in this research area. Over the past two years, the ACM has published only one article.
Springer and ScienceDirect are emerging as key disseminators of research in breast cancer
detection using deep learning techniques. Developing computer science to address critical
health problems is a growing trend in interdisciplinary research.

In Fig. 24, the most prominent keywords pertain to breast cancer and deep learning, indi-
cating strong and broad interest in this topic. Deep learning research focuses specifically on
convolutional neural networks, emphasizing their importance. Furthermore, there is notice-
able attention paid to broader machine learning concepts such as transfer learning and
general machine learning techniques, suggesting an exploration of varied computational
approaches. In addition to infrared thermography, feature extraction, prognosis prediction,
segmentation, and ultrasound imaging, there are a variety of imaging methodologies and
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Fig.24 The frequency. analysis Ultrasound imaging
of keywords in the reviewed Metaheuristic algorithms
articles Triple-negative breast cancer
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techniques being explored. There are also terms such as microwave ultra-wideband, MR
imaging, and radiomics, as well as specific breast cancer types, including triple-negative
breast cancer, and imaging modalities such as MRI and computed tomography. Within the
broader topic, these are niche but vital areas of research. Moreover, current studies include
metaheuristic algorithms, auto-segmentation, and subtype analysis. The keyword distribu-
tion illustrates a research landscape that combines diverse methodological approaches and
utilizes advanced computational techniques to address breast cancer detection challenges.
Imaging and diagnosis applications of deep learning are a testament to the field’s evolution
and its potential for breakthroughs in the future.

7.2 Analyze based on the type of imagining

The realm of breast cancer detection research is inherently intertwined with the selection
of imaging modalities. In this section, an examination is conducted on the distribution of
articles among various imaging techniques to elucidate dominant patterns. Figure 25 offers
a visual depiction of this analysis, presenting the number of articles associated with each
imaging modality. This graphical presentation serves as a pivotal reference point for delv-
ing into the nuanced insights derived from the survey.

Based on Fig. 25 It turns out that mammographic imaging has been extensively
explored, with the highest number of articles. In this way, it demonstrates its effectiveness
and established role in breast cancer screening and diagnosis. Ultrasound Imaging is also
a significant focus, but is less prominent than mammography, indicating its relevance as a
non-invasive and accessible diagnostic tool. MRI and CT imaging, with fewer articles, are
used for more detailed and complex diagnostic scenarios. Microscopic and histopathologi-
cal imaging are also receiving considerable attention. As a result, a microscopic approach
to detection is more important when understanding and diagnosing breast cancer than
other imaging methods. In the field of thermographic imaging, there are fewer articles,
which may indicate its niche or emerging status. The category labeled "Others" indicates a
diverse range of alternative or less common techniques being explored, showing the field’s
openness to innovative approaches and methodologies.

Figure 26 provides a comprehensive overview of the diagnostic performances associ-
ated with different imaging modalities in the context of breast cancer detection using deep
learning techniques. The analysis indicates distinct success rates and efficiencies among
modalities.
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Figure 26 shows the accuracy percentages of various imaging techniques for breast
cancer detection using deep learning. The techniques compared include Mammogram,
Ultrasound, MRI and CT, Thermal, and Histopathological and Microscopic. For each
method, there is a clear range of accuracy, with medians, quartiles, and outliers indicat-
ing central tendency and variability. The accuracy of mammograms and histopathologi-
cal and microscopic techniques varies based on conditions and implementation. It seems
that although mammograms are often reliable, some cases or datasets result in significantly
lower accuracy than the median of 95%, with some outliers as low as 60%. Microscopic
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Fig. 27 Comparative diagnostic performance of imaging modalities in deep learning-based breast cancer
detection

and histopathological methods, on the other hand, exhibit high median accuracy and a wide
distribution, with numerous outliers on both ends, indicating an inconsistent interpreta-
tion pattern or differences in sample quality. There are differences between other imaging
techniques. There is a significant difference in median accuracy between ultrasound and
thermal imaging, particularly with ultrasound, which clusters tightly around high accu-
racy values. Even though thermal imaging shows high median accuracy, it also shows a
broader range without extreme outliers, suggesting reliability with occasional variances.
Even though MRI and CT are advanced imaging modalities, they show a lower median
accuracy and a wide interquartile range, suggesting resolution limitations or interpretation
challenges specific to these modalities. It is possible to attribute the distinct performance
levels across these techniques to the inherent capabilities of each imaging method to cap-
ture specific aspects of breast tissue, the quality of the image data, and the efficiency with
which deep learning models are used to interpret the images.

Figure 27 shows the performance metrics of different imaging categories used for breast
cancer detection using deep learning. These metrics include Average Accuracy, Average
Sensitivity, Average Specificity, and Average AUC. Its superior performance in detecting
breast cancer is evident from the high average accuracy (96.59%) and average AUC (96%)
among imaging techniques. Due to the ability of thermal imaging to detect temperature
variations associated with cancerous tissues, deep learning models are able to leverage
this unique diagnostic feature. Both mammography and ultrasound imaging perform well,
especially in terms of average sensitivity (90.63% for mammography and 91.99% for ultra-
sound) and average specificity (92.02% for mammography). In addition to its high specific-
ity, mammography is effective in identifying non-cancerous cases, reducing the possibility
of false positive results. Due to its high sensitivity (93.09%) and accuracy (93.09%), ultra-
sound imaging is a reliable diagnostic tool that can diagnose dense breast tissues as well as
abnormalities. The average sensitivity (61.60%) and specificity (81.60%) of MRI and CT
imaging are generally low, suggesting that certain types of breast cancer features cannot
be captured accurately or that the quality of the images may be variable. Histopathological
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and microscopic imaging exhibit strong specificity (93.5%) but lower accuracy (84.72%),
possibly due to challenges with sample preparation and interpretation. The differences
between these imaging techniques emphasize the importance of choosing the appropriate
technique for the diagnostic requirement based on each modality’s strengths.

7.3 Analyze based on the deep learning algorithms

Within the scope of this section, an in-depth analysis is conducted on the application of
deep learning algorithms in breast cancer detection. The objective is to discern the preva-
lence and effectiveness of well-known deep learning methods and architectures. In Fig. 28,
the distribution of articles across these notable algorithms is visualized, offering insights
into research trends and preferences.

As shown in Fig. 28, Convolutional Neural Networks (CNNs) stand out as the most
commonly used architecture. Medical imaging data can be analyzed effectively with their
help because of their effectiveness in image recognition and classification tasks. Even
though ResNets and their variants are less prominent than CNNs, they remain significant.
Their ability to address issues such as vanishing gradients makes them a valuable tool in
complex image analysis. Despite being less frequently mentioned, DenseNet Architec-
tures are becoming more popular. As a result of their unique connectivity pattern, which
promotes feature reuse, they can be particularly useful in medical imaging when subtle
features are essential. In addition to ensemble and hybrid models, the research commu-
nity is interested in combining different models and techniques for greater accuracy and
robustness. Performance is often enhanced by leveraging the strengths of various architec-
tures. It may not be extensively discussed, but Deep Learning Radiomics (DLR) focuses on
extracting quantitative features from medical images utilizing deep learning. The presence
of other architectures and techniques also suggests continuous innovation and experimenta-
tion in the field, indicating that researchers are exploring a wide range of methods to find
breast cancer detection solutions.
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Fig.29 An overview of open issues and future research directions

8 Future research directions

The field of breast cancer diagnosis using deep learning remains subject to several open
issues and possible directions for future research. It is imperative to address these issues
in order to advance the technology to a point where it can be used safely and effectively in
clinical practice. Figure 29 provides an overview of these future research directions.

e Integration of histopathological and radiological data
Deep learning models can enhance diagnostic accuracy by incorporating histopatho-
logical and radiological data to provide a more comprehensive understanding of breast
cancer characteristics. A combination of tissue pathology and imaging modalities may
lead to better diagnostic outcomes and improved patient care.

¢ Enhanced model explainability
It is crucial to develop methodologies for enhancing the explainability of deep learn-
ing models for breast cancer diagnosis. Interpretability of models is essential for gain-
ing clinicians’ trust and integrating them into clinical workflows. The use of explain-
able AI (XAI) methods can help clinicians gain confidence and acceptance of models.

¢ Dynamic learning from longitudinal data
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In order to better understand breast cancer’s evolving nature, dynamically learn-
ing models will be developed using longitudinal patient data, which will identify
biomarkers and treatment response patterns. Long-term patient outcomes can be
improved by such models, which enhance personalized treatment plans.

e Adversarial robustness in breast cancer imaging
Maintaining model reliability in clinical scenarios requires analyzing adversarial
attacks on breast cancer imaging models. In order to deploy these models safely in
clinical settings, robustness against maliciously crafted inputs is crucial.

e Personalized risk stratification
Breast cancer management can be improved by developing personalized risk strat-
ification strategies based on a patient’s unique clinical, genetic, and imaging data. A
more effective monitoring and treatment plan can be achieved by customizing risk
assessment models according to individual profiles.

e Integration with genomic data
Deep learning models and genomic data can be integrated to understand the
molecular mechanisms underlying breast cancer. Developing targeted treatments and
improving diagnostic accuracy can be achieved through this integration.

e Advanced data augmentation techniques
Data augmentation techniques can be developed and evaluated in order to enhance
the generalization of breast cancer imaging datasets. Large, diverse datasets are
especially important in scenarios where data augmentation is difficult.

e Real-time decision support systems
Real-time decision support systems can streamline clinical workflows and expe-
dite patient care in breast cancer diagnosis. Clinical practice can benefit significantly
from algorithms that provide immediate feedback during diagnostic procedures.

e Transfer learning across breast cancer subtypes
Model performance can be improved by exploring transfer learning techniques
across breast cancer subtypes. In order to improve the accuracy and robustness of
models for all breast cancer subtypes, it is critical to utilize knowledge from well-
represented subtypes.

¢ Dynamic adaptation to temporal changes
Models must be dynamically adapted to changes in breast cancer characteris-
tics over time for accurate prognostic assessments and treatment plans. Long-term
patient management can be enhanced by considering tumor morphology and behav-
ior over time.
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e Ethical considerations in model deployment
A fair and equitable breast cancer diagnosis requires an assessment of the ethical
implications of deep learning models. It is vital for ethical deployment of these mod-
els to address biases caused by data imbalances.

e Long-term clinical impact assessment
The integration of deep learning models into breast cancer diagnostic workflows
is essential for long-term evaluation of their clinical impact. These technologies are
more likely to be adopted into clinical practice if their effectiveness, resource utiliza-
tion, and patient outcomes are evaluated.

9 Conclusion

In order to enhance early detection and treatment outcomes of breast cancer, advances
in diagnostic methodologies are necessary. As part of our survey, we review a diverse
range of articles in order to investigate imaging modalities, deep learning algorithms,
and publication trends in this critical field of medical research. In this paper, we have
categorized and analyzed various imaging techniques, with a particular focus on ultra-
sound imaging’s role in improving diagnostic accuracy. The prevalence and effec-
tiveness of convolutional neural networks (CNNs) and their variants in breast cancer
detection have been highlighted. We found that ultrasound imaging greatly enhances
sensitivity and specificity, leading to a high level of diagnostic accuracy. Additionally,
CNNs and their variants are widely used for image analysis in deep learning algorithms.
Increasing numbers of publications in this area reflect technology and medicine’s rap-
idly evolving nature. Although these findings are promising, the review acknowledges
inherent limitations. There are theoretical limitations in model robustness, generaliz-
ability, evaluation metrics, algorithmic complexity, transparency, scalability, and repro-
ducibility. Practical limitations include data quality and availability, computational
resources, clinical validation, regulatory approval, and integration into clinical work-
flows. To improve breast cancer diagnosis and patient outcomes, it is crucial to address
these challenges.

By identifying key challenges and examining the current landscape, this survey prepares
the ground for future advancements in breast cancer detection. The integration of computer
science and healthcare is essential to overcome theoretical and practical limitations, ena-
bling deep learning to improve diagnostic accuracy and patient care to its full potential.

9.1 Limitations

Despite the fact that this survey provides a broad understanding of the current state of
breast cancer detection using deep learning, it is also important to acknowledge that the
reviewed studies have inherent limitations. It is essential to understand these limitations
in order to guide future research and to improve the practical applicability of deep learn-
ing models in clinical settings. A broad classification of limitations can be made based on
theoretical and practical aspects, with each presenting its own challenges.
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9.1.1 Theoretical limitations

Deep learning approaches have theoretical limitations concerning model design, algorithm
performance, and conceptual frameworks. Current technologies and methodologies often
have inherent limitations that make it impossible to develop robust, adaptable, and general-
izable models.

Model robustness and generalizability

The datasets used for training deep learning models heavily affect their performance.
The current models often rely on specific datasets that do not reflect the full spectrum of
clinical variability, potentially leading to biased results and reduced generalizability. The
generalization of models trained on limited datasets may fail, especially in diverse clinical
settings. This specificity can lead to biases that limit the applicability of these models to
larger populations of patients. As well as overfitting, deep learning models perform poorly
on new data if they’re trained on small or homogeneous datasets. Clearly, more diverse and
comprehensive datasets are needed.

Evaluation metrics

There are no standardized evaluation metrics, which makes it difficult to compare results
across studies. The development of universally applicable models and the comparison of
different approaches require consistent metrics. In the absence of standardized metrics, it
is difficult to compare and validate different approaches, making it difficult to develop uni-
versally applicable and reliable models.

Algorithmic complexity and transparency

Despite the complexity of deep learning models, particularly CNNs, clinical acceptance
is limited due to transparency and interpretability challenges. Deep learning models can be
very complex, making their decision-making processes difficult to understand. Clinicians
need to understand how a model comes up with its conclusions in order to trust and accept
it. For increasing clinical trust and acceptance, Explainable Al methods (XAI) are crucial
for providing insights into model decisions.

Scalability and reproducibility

It is critical to ensure that deep learning models can be applied across a variety of settings
and populations in order for them to be widely adopted. It is common to develop and test
models in controlled environments, however, their scalability to a variety of clinical settings
remains uncertain. Models must be scalable in order to be effective. The ability to repro-
duce results across different studies and datasets is also crucial to validating models. Clini-
cal applications relying on deep learning models may suffer from reproducibility issues.

9.1.2 Practical limitations

In clinical environments, deep learning models face real-world challenges when imple-
menting and deploying them. For models to be effective and reliable, high-quality data,
standardized protocols, and seamless integration into clinical workflows are essential.
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e Data quality and availability

It is essential to have access to high-quality, annotated datasets when training deep
learning models. The lack of such datasets, however, creates significant barriers to
progress. Training and validating models effectively require high-quality annotated
datasets. Large-scale annotated datasets are scarce, making collaborative efforts to
create and share them essential for the development of robust models. In diverse
clinical settings, imaging techniques and equipment can vary widely, making it chal-
lenging to develop models that will perform consistently. Imaging protocols can be
standardized to mitigate this problem.

e Computational resources and infrastructure

In resource-constrained settings, deep learning models can be prohibitively expen-
sive to develop and deploy. There are some research and clinical environments where
deep learning models cannot be trained due to a lack of computing power. In order
to develop and refine these models, high-performance computing infrastructure is
essential. To ensure deep learning models can be deployed efficiently and scalable
in real-world settings, substantial computational resources and infrastructure are
required.

e (linical validation and regulatory approval
It is challenging to move from research to clinical practice without rigorous vali-
dation, regulatory approval, and seamless integration into existing healthcare work-
flows. The adoption of Al models in clinical settings requires rigorous validation
and regulatory approval. As a result, models are safe for use in patient care and meet
clinical standards. It can be challenging to navigate the regulatory landscape for Al
in healthcare, posing a significant barrier to clinical adoption.

¢ Integration into clinical workflows

Successful adoption of AI models requires seamless integration into existing
healthcare workflows. It is important for models to complement and enhance current
practices rather than complicate them. Integrating AI models seamlessly into exist-
ing clinical workflows is imperative for their practical implementation, as disrupt-
ing established practices can hinder adoption and reduce their perceived value. The
use of Al tools by clinicians requires adequate training. It is crucial for a successful
implementation to build trust, ensure user acceptance, and demonstrate model reli-
ability.

In spite of the challenges outlined, this survey provides valuable insight into the
changing landscape of breast cancer detection, paving the way for future develop-
ments in this crucial intersection between technology and healthcare. Deep learning
can be fully harnessed to improve breast cancer diagnosis and outcomes with continued
research to address these limitations. Computer science and healthcare are convergent
fields that hold great promise for improving diagnostic accuracy and patient care, but
overcoming theoretical and practical limitations will be key.
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9.2 Advances and obstacles in deep learning-based breast cancer detection

In recent years, deep learning has gained popularity in the area of breast cancer detection
and diagnosis, with numerous papers proposing methods, models, and algorithms aimed at
improving detection, classification, and prognosis accuracy. The advantages and disadvan-
tages of cutting-edge technologies will be discussed.

Cutting-edge advancements:

e Improved Detection Accuracy: Medical images such as mammograms, ultrasounds,
and MRIs can be detected using deep learning techniques, particularly convolutional
neural networks (CNNs). In this way, these models can identify subtle patterns and
abnormalities that might go unnoticed by radiologists, leading to a more accurate and
earlier diagnosis.

e Personalized Medicine: Personalized treatment plans can be developed by analyzing
large datasets of patient records, genetic information, and medical images. Different
tumor characteristics, genetics, and responses to treatment can be accounted for in
these models, which can aid in tailoring treatments to improve outcomes.

e Automated Image Analysis: Healthcare professionals can save time and potentially
reduce human error by automating the process of analyzing medical images with deep
learning algorithms. Automation can result in faster diagnosis and treatment planning,
especially when resources are limited and radiologists are scarce.

e Integration with Multi-Modal Data: A comprehensive understanding of breast cancer
can be gained through deep learning, which integrates diverse data sources including
imaging, genomic, and clinical records. Research can uncover hidden relationships and
biomarkers by combining data from different modalities.

e Transfer Learning and Pretrained Models: The transfer learning method allows
researchers to fine-tune deep learning models trained on large datasets (e.g., ImageNet)
for specific tasks in breast cancer detection and diagnosis. As a result, model develop-
ment can be accelerated and performance improved, particularly when limited labeled
medical imaging datasets are available.

Dark sides and challenges:

e Data bias and generalization issues: Data sets that are biased or unrepresentative
may result in discrepancies in diagnosis and treatment recommendations across demo-
graphic groups. In order to address these biases and improve model generalization,
diverse and representative training data must be provided.

e Interpretability and transparency: The process of understanding how deep learning
models reach specific predictions is often described as a "black box." Interpretability
is an issue that can undermine trust and acceptability among healthcare professionals
and patients, especially in critical medical decision-making situations. The goal of deep
learning systems is to increase transparency and explain model predictions.

e Opverfitting and robustness: Overfitting can occur with deep learning models, espe-
cially when data is limited or noisy. When overfitting models are applied to unseen
data, they won’t perform well, resulting in inaccurate predictions in real-life situations.
In clinical practice, robustness and generalization capability are essential.
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Ethical and legal concerns: In healthcare, deep learning raises a variety of ethical and
legal considerations, such as patient privacy, consent, and liability. To protect patient
privacy and rights, HIPAA (Health Insurance Portability and Accountability Act) and
GDPR (General Data Protection Regulation) compliance is essential.

Integration with clinical workflow: Deep learning models are challenging to integrate
into existing clinical workflows due to factors such as compatibility with medical imag-
ing systems, regulatory approval processes, and healthcare provider acceptance. Deep
learning tools must be seamlessly integrated and have user-friendly interfaces in order
to be adopted and used in clinical practice.

To maximize the potential of deep learning for improving patient outcomes and health

care delivery, addressing the associated challenges and ethical considerations is paramount
to achieving its full potential. It is essential that researchers, clinicians, policymakers, and
industry stakeholders collaborate to navigate the complexities and ensure that deep learn-
ing is used responsibly and effectively in breast cancer treatment.

9.3 Leveraging deep learning for enhanced breast cancer management

Breast cancer remains one of the most prevalent and deadly forms of cancer affecting
women worldwide. Recent advancements in deep learning, a subset of artificial intelli-
gence (Al), have shown significant promise in transforming breast cancer diagnosis, treat-
ment, and overall patient management. This section explores how deep learning can further
enhance the performance and outcomes in breast cancer management.

Fine-grained subtype classification: The use of deep learning techniques has the
potential to enhance the classification of breast cancer subtypes based on molecular
profiles, histopathological characteristics, and clinical characteristics. Research groups
can identify subtle molecular signatures associated with breast cancer subtypes by ana-
lyzing multi-omics data (e.g., genomics, transcriptomics, proteomics). Finer-grained
classification can improve patient stratification and prognosis prediction for targeted
therapies.

Early detection and risk assessment: Incorporating clinical records, imaging data,
and genomic data into deep learning algorithms can enhance risk assessment models.
Deep learning models can detect early signs of breast cancer development and predict
individual risk trajectories using longitudinal data and temporal patterns. Detection and
assessment of breast cancer early can enable timely interventions, such as screenings,
lifestyle adjustments, and preventive measures.

Drug discovery and therapeutic response prediction: Drug discovery and develop-
ment can be facilitated through deep learning approaches in breast cancer research.
With deep learning models, drug-target interactions, drug efficacy, and adverse effects
can be predicted with unprecedented accuracy based on large-scale biomedical datasets
and chemical libraries. As well, deep learning techniques like generative adversarial
networks (GANs) can generate synthetic data to augment limited experimental datasets
and accelerate preclinical drug screening. Additionally, deep learning facilitates per-
sonalized treatment strategies based on molecular profiles, clinical characteristics, and
treatment histories.

Radiogenomics and radiomics integration: By integrating radiomic features
extracted from medical images with genomic data, deep learning can uncover imaging-

@ Springer



Multimedia Tools and Applications

genomic associations in breast cancer and identify biomarkers. Deep learning mod-
els can be used to reveal underlying biological mechanisms, tumor heterogeneity, and
treatment response by analyzing imaging phenotypes and genetic signatures. It is also
possible to use radiogenomics to guide image-guided biopsies, treatment planning, and
monitoring of therapeutic response in breast cancer patients.

¢ Cross-domain knowledge transfer: Breast cancer research can be advanced through
the use of deep learning models trained on diverse datasets from related domains (e.g.,
pathology, oncology, bioinformatics). Transfer learning reduces the need for large
annotated datasets and accelerates model development by allowing pretrained models
and feature representations to be reused across a variety of tasks and datasets. In order
to address complex challenges in breast cancer detection, diagnosis, and treatment,
interdisciplinary research communities can collaborate.

Overall, deep learning has immense potential to advance our understanding of breast
cancer, improve diagnostic accuracy, guide treatment decisions, and ultimately, improve
patient outcomes. Deep learning can transform breast cancer prevention, diagnosis, and
treatment by embracing interdisciplinary approaches, integrating heterogeneous data, and
fostering collaborative partnerships.
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