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Abstract
Monkeypox, a rare but potentially fatal viral disease, poses a significant public health chal-
lenge due to its potential for outbreaks and complications. Detectingmonkeypox lesions early
and accurately is vital to effectively manage and control the disease. This study introduces a
novel method for classifying monkeypox lesions, employing data augmentation methods and
a framework based on an ensemble of three transfer learning models called "SkinMarkNet".
The dataset used in this research consists of skin lesion images collected from the Kaggle
data repository, encompassing diverse demographics and lesion characteristics. This research
uses image data augmentation techniques to tackle the scarcity of annotated data. This aug-
mentation enriches the training dataset, thereby improving the model’s ability to perform
effectively. Moreover, the novelty of this research work lies in the usage of three popular
transfer learning models(Inception, Xception, and ResNet) for feature extraction and ensem-
ble learning. The SkinMarkNet achieves promising results showing an accuracy of 90.615%
for monkeypox lesion classification, outperforming traditional machine learning and deep
learning methods utilized in recent research works. In addition, thorough comparative anal-
ysis is done with machine learning models and contemporary approaches to validate the
efficacy of the proposed method. Overall, the findings underscore the potential of leveraging
advanced deep learning architectures and data augmentation strategies for improving mon-
keypox lesion classification, thereby facilitating early diagnosis and intervention in clinical
settings and public health surveillance efforts.

Keywords Bioinformatic · Technology in healthcare · Biomedical image data ·
Mpox detection · SkinMarkNet · Skin lesion detection

1 Introduction

Monkeypox, a member of the Orthopoxvirus genus and the Poxviridae family is a zoonotic
disease. Apparently, it is similar to other skin-related diseases like chickenpox, smallpox,
and measles [1]. Monkeys, Rodents, and other wild animals are the main sources of transfer
of this disease in humans. Humans become infected with monkeypox when they come into
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contact with infected animals through hunting, handling, or consumption of infected animal
meat. However, human-to-human transmission of monkeypox can also occur through close
contact with infected individuals. This happens when a person comes into contact with bodily
fluids or lesion material of an infected person [2]. This disease is more popular among men
rather than women. According to the World Health Organization (WHO), 53% male cases
are reported and 47% female cases are reported till now. Same in the case of age, monkeypox
targets all age groups but it mainly affects 21-30% of age group [3]. The virus now known as
monkeypoxwas first recognized in amonkey’s body in a laboratory in Copenhagen, Denmark
in 1958 [4]. The first case of monkeypox among humans was recorded during a campaign to
remove smallpox in the Democratic Republic of the Congo in 1970 [5].Monkeypox naturally
occurs in individuals living in or near humid rainforests in central and western Africa. This
disease is transferred throughmany resources, including direct contact with infected animals,
animal bites, respiratory droplets, and contact with bodily fluids such as those found in the
eyes, nose, or mouth [6].

The outbreak ofMonkeyPox has underscored the urgent need for effective diagnostic tools
to manage and contain its spread. Accurate and timely identification of MonkeyPox lesions
is critical for preventing outbreaks and ensuring appropriate medical intervention. Tradi-
tional diagnostic methods, though effective, are often labor-intensive and time-consuming.
Recent advancements in artificial intelligence, particularly deep learning, have demonstrated
significant potential in automating and enhancing diagnostic processes in dermatology [7,
8].

The primary treatment for monkeypox is vaccination; however, although FDA-approved
vaccinations are readily available, human use of them has not occurred in the United States
yet. Monkeypox is treated in other nations with vaccines meant to treat smallpox, such as
Tecovirimat, VIGIV, Cidofovir, and Brincidofovir [9]. Polymerase chain reaction (PCR) is
used to identify the monkeypox virus in humans [10]. For the classification of biomedical
pictures, numerous machine learning (ML) and deep learning (DL) algorithms are now in
use. Because of their increased capacity to learn and analyze complex data, the most recent
developments in deep learning, especially themultiple ConvolutionalNeural Network (CNN)
algorithms, have brought new developments to several fields of medical science [11].

Deep learning, mainly the Convolutional Neural Network (CNN) model has presented
unlimited potential in the field of medicine. Stimulated by the structure and function of the
brain, artificial neurons in CNN take input, process it, and generate output, similar to the
human brain. In CNN, the input is the image pixels, and its hidden layers perform various
operations such as convolution, pooling, rectified linear units, and fully connected layers to
extract features from the image. SinceCNN is a feed-forward network, information flows only
in one direction. Due to limited datasets for monkeypox classification, a machine learning
approach called transfer learning is used to overcome this challenge. This technique uses
a large labeled dataset to train a deep neural network model, which can then be used as a
feature extractor for smaller datasets with limited labels [12].

Pre-trained models such as Inception-v3, Xception, and ResNet50 are commonly consid-
ered due to their exceptional performance in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). These models employ deep learning techniques, such as additional
classifiers, mapping identifiers, and smoothing using Rectified Linear Units (ReLu) [13].
To improve the accuracy of image classification for monkeypox, the individual pre-trained
models including Inception-v3, Xception, and ResNet50 were trained on the dataset. Each of
these models produced results for image classification. However, further enhancement in the
classification accuracy is done through ensemble method using all the trained models. This
ensemble method involves combining the results of each model and adding extra hidden lay-
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ers to obtain a final prediction. The proposed ensemble method produced satisfactory results,
indicating that the combined output of multiple models can lead to better performance in
image classification tasks [14].

In this context,we introduce "SkinMarkNet"This innovative approach leverages the power
of image data augmentation to enhance the training dataset, thereby improving the robustness
and accuracy of the predictive models. By employing a deep ensemble learning strategy,
SkinMarkNet integrates multiple deep learning architectures to capitalize on their strengths
and mitigate their weaknesses, resulting in superior predictive performance [15, 16]. This
method not only accelerates the diagnostic process but also provides a scalable and reliable
solution for MonkeyPox detection, addressing a critical gap in current healthcare practices.
Below are the main objectives of this proposed study:

1. Proposed a novel ensemble model “SkinMarkNet” incorporating the novelty of data
augmentation and extra hidden layers in achieving high accuracy for the classification of
chickenpox, monkeypox, measles, and normal skin marks.

2. The performance of the proposed model is compared with a light gradient boosting
machine (lgbm), random forest classifier (rfc), logistic regression (lr), and extra tree
classifier (etc).

3. To present the first study to achieve such precision in differentiating among these specific
skin-related conditions.

4. Addressed a critical research gap by focusing on accurately detecting monkeypox, unlike
other studies that typically concentrate on healthy and unhealthy skin.

Furthermore, the paper is divided as follows: Section 2 explains all past work related to
this research. Section 3 explains how we conducted the experiment, and Section 4 discusses
the results. In Section 6, we conclude this proposed research work, and in Section 5 we
describe the limitations of this work and suggest possible directions for future research.

2 Related work

Monkeypox, a significant public health concern in West and Central Africa, extended its
impact to the United States in 2003. The outbreak originated from contact with infected dogs
housed with imported dormice and Gambian pouched rats. Over 70 cases were recorded
in the US. Nigerian tourists contracted monkeypox in Israel, the UK, Singapore, and the
US on various occasions. In May 2022, monkeypox cases emerged in previously unaffected
countries. Ongoing studies aim to understand the disease’s epidemiology, vectors, and trans-
mission dynamics for effective control [13]. Previous studies focused on the classification of
monkeypox disease using deep learning techniques. To enhance the dataset, they collect skin
lesion images from open-source websites and employ data augmentation techniques along
with 3-k-fold cross-validation. The researchers evaluate the performance of pre-trained mod-
els, including VGG-16, ResNet50, and InceptionV3, for the classification of monkeypox and
other ailments. Among thesemodels, ResNet50 demonstrates the highest accuracy rate, mak-
ing it the model of choice for further analysis. ResNet50 achieves an average accuracy of
82.96%, while VGG-16 achieves 81.48%. By ensembling these three models, the authors
attain an accuracy of 79.26% [14].

The study incorporated the Xception transfer learning model and employed additional
techniques such as Grad-Cam and LIME. Furthermore, a community approach was devel-
oped using both the Xception model and the DenseNet model. By leveraging this proposed
ensemble approach, the researchers evaluated the performance scores on a publicly available
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dataset. After careful analysis of the experimental outcomes, the study achieved commend-
able results with an average precision of 85.44%, a recall of 85.47%, an F1 score of 85.40%,
and an accuracy of 87.13%. These metrics demonstrate the effectiveness of the ensemble
method and highlight its ability to accurately classify monkeypox and distinguish it from
other diseases [17].

In another research study, a thorough evaluation and initial probability assessment of five
pre-trained deep learning methods were conducted, along with the integration of a convo-
lutional block attention mechanism (CBAM) and dense layers. The primary objective was
to categorize monkeypox infection accurately using skin lesions as the basis. The Monkey-
pox Skin Lesion Dataset (MSLD) is employed for training and evaluating the models. By
integrating the CBAM module, which incorporates both channel and spatial attention, the
projected system effectively emphasizes significant feature maps and concentrates on inter-
channel needs within the affected sections of the image. Their projected model demonstrates
promising classification performance, achieving a validation accuracy of 83.89%, utilizing
the Xception-CBAM-Dense layer architecture [18].

This study involved the creation of the Monekypox2022 image dataset, followed by the
proposal of an altered VGG16 model through two distinct experiments. The recommended
altered VGG16 model achieved an accuracy of 97% in the first study, and 88% in the second
study, particularly during classifying monkeypox patients. The researchers also discussed the
application of Local Interpretable Model-Agnostic Explanations (LIME) for feature extrac-
tion and prediction with their model [19].

This Study conducted an investigation using the MSLD dataset, where they examined the
performance of various pre-trained deep learning models. Their findings indicated that the
MobileNetV2 and EfficientNetB0 models delivered noteworthy results. Building upon these
outcomes, the researchers proceeded to develop a mobile application for the categorization
of monkeypox disease. To ensure efficient deployment, they converted the whole model into
a TensorFlow lite model, which was further enhanced with metadata [20].

2.1 Most relevant state of the art related works

Monkeypox Detection Using Transfer Learning on Convolutional Neural Networks
Researchers have explored the use of transfer learning on pre-trained convolutional neural
networks (CNNs) to classify monkeypox lesions from skin images [21]. The study utilized
various pre-trained models like VGG16, ResNet50, and InceptionV3, fine-tuning them on
a monkeypox image dataset. The results demonstrated that transfer learning can effectively
identifymonkeypoxwith high accuracy, highlighting the potential of CNNs in dermatological
disease classification.

Automated Diagnosis of Monkeypox from Clinical Images Using Deep Learning
This research focused on developing a deep learning-based automated diagnostic tool for
monkeypox [22]. The authors designed a deep CNN architecture specifically tailored for
monkeypox detection. By training the model on a labeled dataset of monkeypox and other
skin conditions, the study achieved high sensitivity and specificity, proving the efficacy of
deep learning in distinguishing monkeypox from similar diseases.

Ensemble Learning Techniques for Monkeypox Disease Classification
This paper investigates the use of ensemble learning techniques, such as Random Forest,
Gradient Boosting Machines, and Voting Classifiers, to improve the accuracy of monkeypox
diagnosis [23]. By combining the predictions of multiple classifiers, the ensemble approach
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showed improved performance over individual models, suggesting that ensemble methods
can enhance the robustness and reliability of monkeypox classification systems.

Using Deep Learning to Enhance Early Detection of Monkeypox Outbreaks
In this study, researchers employed recurrent neural networks (RNNs) and long short-term
memory (LSTM) networks to analyze time-series data related to monkeypox outbreaks [24].
By integrating epidemiological data and clinical reports, the deep learning models could pre-
dict potential outbreak hotspots, enabling timely interventions and better resource allocation.

Machine Learning Approaches for the Classification of Monkeypox and Other
Poxviruses
This article presents a comparative study of various machine learning algorithms, including
Support Vector Machines (SVM), k-nearest Neighbors (k-NN), and Decision Trees, for the
classification of monkeypox and other poxviruses [25]. The study provided insights into the
strengths and limitations of each algorithm, concluding that SVMs with radial basis function
kernels achieved the best performance in distinguishing monkeypox from other poxvirus
infections.

3 Materials andmethods

This section presents the source of the dataset, techniques employed to augment the dataset,
explains the utilized transfer learningmodels, a detailed explanation of the proposedmethod-
ology accompanied by a figure, individual evaluations of the models by using matrices, and
the subsequent evaluation of the proposed “SkinMarkNet” model.

3.1 Dataset

The dataset for this study on monkeypox skin lesion detection was sourced from Kaggle.
Specifically, we accessed the monkeypox dataset repository, which includes a collection
of biomedical images related to monkeypox disease [26]. We acknowledge and cite the
repository owner for making this dataset publicly available on Kaggle. The dataset includes
four types of classes chickenpox, measles, monkeypox, and normal. Each class contains a
different number of images. The dataset contains a total of 770 images. First of all the dataset
was preprocessed to ensure consistency and remove any irrelevant or corrupted images,
adjusting the size of the images, balancing images in each class, making sure the pixel values
are in a standard range 224×224 and in RGB format, and even adding some variations to
the images to make the dataset more diverse. All these steps were aimed at getting the image
data ready for training my transfer learning models (Tables 1 and 2).

Table 1 Details of the dataset

Dataset Details

Dataset Source https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset

Dataset name Monkeypox skin image dataset (MSID)

Availability This dataset is available publically

Collection source This dataset is collected from internet-based sources

Total classes This dataset contains 4 classes chicken pox, measles, monkeypox, and normal

Total images 770
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Table 2 Splitting dataset Data Split Data Split Values

Training data 539

Validation data 154

Testing data 77

Total 770

The preprocessed dataset is split into three subsets in the following steps: training, val-
idation, and testing. Approximately 70% of the dataset is set aside for training, 20% for
validation, and 10% for testing, as per the amended split ratio. The model is trained on the
training set; the validation set helpswith hyper-parameter tuning and performance evaluation;
and the testing set is used to test the performance of the finished model.

As we already stated we have a limited dataset of monkeypox disease and to overcome
the shortage of data, we expand the raw data using a data generator. In this step, data aug-
mentation was implemented using the ImageDataGenerator class from the Keras library. The
dataset exhibited class imbalance, with measles and chickenpox classes having fewer images
compared to monkeypox and normal classes. To address this, data augmentation techniques
were applied only to the measles and chickenpox classes. By augmenting these two classes,
additional variations were created, increasing their sample size and balancing the dataset. The
augmented images along with the original images were used to create a more representative
and balanced dataset for training the model. Now we have 1172 images after data augmen-
tation. Table 3 represents augmented data. This combination gave us two sets of augmented
data, making the utilized dataset more diverse and better equipped for the training of machine
and transfer learning models effectively. Figure 1 represents all 4 classes of the dataset.

3.2 Machine learningmodels for monkeypox classification

In this section, we provide a brief description of the machine learning classification methods
utilized in the study, along with details on the calibration process of the classifier. The
following machine learning techniques were employed in the current study, chosen for their
widespread use in classification tasks. All models were implemented using scikit-learn.

3.2.1 Light gradient boosting machine

LightGBM is a swift, efficient, and distributed gradient-boosting structure DT-embedded
algorithm. LightGBM is extensively employed in boosting algorithms across multiple ML
tasks like classification, ranking, and regression [27, 28]. Boosting methods yield a powerful

Table 3 Class-wise details of
original and augmented dataset

Classes Original Data Augmented Data

Chickenpox 107 300

Monkeypox 279 279

Measles 91 300

Normal 293 293

Total 770 1172
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Fig. 1 Dataset examples of multi-class images

learning model by combining multiple weak ML algorithms. Through successive iterations,
the importance of misclassified data points is enhanced while that of correctly classified
diminished by such boosting algorithms. A greater intention is ensured by this iterative
process to the misclassified classifier in the subsequent training sessions. Eventually, all
individual ML models are linearly united, with adjustments made to the combined model
weights based on the classifiers’ error rates.

3.2.2 Random forest classifier

Being an ensemble learning procedure, RF is very proficient at both regression and classifica-
tion tasks [29, 30]. It harnesses the collective strength of numerous decision trees alongside
a technique called Bootstrap and Aggregation, or bagging. This approach involves randomly
selecting rows and features from the dataset to generate sample datasets for each tree a pro-
cess known as Bootstrap. Subsequently, the Aggregation step consolidates the predictions
of all individual trees to yield the ultimate results. While RF constructs multiple decision
trees and averages their predictions, methods like gradient boosting (GB) and XGBoost build
models sequentially to rectify the errors of preceding models. RF demonstrates proficiency
with unseen data, exhibits reduced susceptibility to overfitting, and maintains computational
efficiency.

3.2.3 Logistic regression

LR is a performance-enhancing combined multiple RF and AdaBoost-like classifiers type of
ensemble learning using an iterative ensemble approach. Consequently, a strong classifier is
constructed by it [31, 32]. LR identifies the correlation between the categorical dependent
and various independent variables. Additionally, it computes the posterior probability p by
fitting the data into the logistic function of an event. The classifier’s weights and sample
training are fixed in each successive iteration aimed at boosting the basic underlying concept
to correctly ascertain the target class of the provided data. LR’s classification y∗ is illustrated
as follows

y∗ = ln(
p

1 − p
) (1)

3.2.4 Extra trees classifier

Extremely randomized trees or extra trees, are part of the ensemble learning procedures
category, similar to RF, where multiple individual DT results are aggregated [33, 34]. ETs
are superior in performance in comparison to RF algorithms. The baseline difference between
ET Regressor and RF is the utilization of bootstrap aggression, which is used by RF while

123



Multimedia Tools and Applications

ET doesn’t. Instead, it uses the entire training dataset to construct its DTs. ET Regressor,
instead of determining the best-split point after all features are taken into consideration,
selects features’ subset randomly, and eventually a random split point is selected. Overfitting
in the model is mitigated by reducing the variance aided by this added randomness. The
benefits of ET regressor are proven when datasets are high-dimensional and computational
efficiency is a priority.

3.3 Transfer learningmodels

The simple indication behind transfer learning is to train a deep neural network on a large
dataset, and then use this pre-trained model as a feature extractor for a smaller dataset with
limited labeled data [35]. By doing this, we speed up the recognition process and achieve
faster progress when modeling the new and different tasks. Moreover, since the pre-trained
model has already learned many features that are beneficial for various tasks, we reduce the
number of parameters needed to train the model and only train the last few layers of the
model on the smaller dataset. This research aims to progress the accuracy and efficiency of
image classification and we achieve this using an ensemble method. Specifically, we train
three of the latest CNN models individually on the dataset and evaluate their accuracy on
testing data. After examining the accuracy of each model, we combine them to create a more
accurate and efficient ensemble model.

In this study, we used three pre-trained models, namely Inception-v3, Xception, and
ResNet50, as feature extractors in the ensemble model. The idea was to leverage the strengths
of each model to improve the overall performance of the ensemble model. The hyperparam-
eter details of all transfer learning models are shown in Table 4.

Table 4 Hyperparameters of
Inception, ResNet, Xception, and
Ensemble via Voting Classifier

Model Hyperparameter Value

Inception Learning Rate 0.001

Batch Size 32

Optimizer Adam

Epochs 50

Dropout Rate 0.5

ResNet Learning Rate 0.0001

Batch Size 64

Optimizer SGD

Epochs 100

Weight Decay 0.0005

Xception Learning Rate 0.0002

Batch Size 32

Optimizer RMSprop

Epochs 75

Dropout Rate 0.3

Voting Classifier
(Ensemble)

Classifiers Inception, ResNet,
Xception

Voting Type Soft

Weights [0.33, 0.33, 0.34]
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3.3.1 Individual models

Inception-v3: Inception-v3 builds upon the foundations of Inception-v2 and introduces var-
ious enhancements to achieve superior efficiency in image recognition tasks. It employs a
strategy of factorizing 55 convolutions into two smaller 33 convolutions, leading to faster
calculation [36].

3.3.2 ResNet50

Residual learning, a key concept in ResNet, aims to address these challenges by learning
residual mappings. ResNet models typically utilize ReLU activations. ResNet50, a variant
of Residual Network, comprises 50 layers [37].

3.3.3 Xception model

The Xception model is a CNN architecture that gained recognition as an "extreme inception"
approachwith a total of 36 convolutional layers. Themotivation behind selecting theXception
procedure stems from its exceptional effectiveness and impressive performance documented
in prior research [38, 39] in addressing the COVID-19 detection problem, leveraging its
proven capabilities in this domain helped us in this study.

3.4 Proposed ensemblemodel (SkinMarkNet)

In this proposed methodology, we have integrated the feature representations of three dis-
tinct deep convolutional neural networks (dCNNs) Inception-v3, Xception, and ResNet50.
Each of these models has been trained and evaluated independently on the above-mentioned
dataset using standard hyperparameters, including a batch size of 32 and a learning rate of
1 × 10−4, over 100 epochs. However, we have taken a step further by creating an ensemble
model that combines the strengths of all three models. By merging the feature representa-
tions extracted from Inception-v3, Xception, and ResNet50. The ensemble model aims to
capture a wide range of image characteristics and patterns. This ensemble model harnesses
the unique capabilities of each model in recognizing different aspects of the images, such as
intricate details, complex structures, and global context. To construct the ensemblemodel, we
aggregate the predictions from each model and make a final decision based on a combination
of their outputs by using a concatenation ensemble approach. To further optimize results
and attain high accuracy, and uniqueness of this research, additional hidden layers were
introduced. These hidden layers, unlike those found in previous research, intricately analyze
images. This modification enhances the ensemble model, named SkinMarkNet enabling it
to easily and accurately differentiate among the four classes of diseases, achieving notable
success in obtaining high accuracy The high accuracy attained by the proposed model is a
result of the collective intelligence and complementary strengths of the constituent models.
By adopting this ensemble approach, we aim to boost the whole performance and robustness
of the classification system. By integrating Inception-v3, Xception, and ResNet50 models,
we capitalize on their distinct advantages and strive to attain superior accuracy in this image
classification task compared to using any single model in isolation. Figure 2 represents the
proposed methodology.
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Fig. 2 Proposed Methodology

3.5 Evaluation parameters

The evaluation of the deep learning models encompasses metrics such as recall, precision, F1
score, and accuracy. Given the binary classification nature of this study, the assessment also
involves the use of a confusion matrix. This matrix serves as a tabular tool for delineating
the model’s performance in classifying test data.

Accuracy = T P + T N

T P + T N + FP + FN
(2)

Precision assesses the ratio of correctly predicted positive instances to the total instances
predicted as positive. The highest achievable precision score for amodel is 1, while the lowest
is 0.

Precision = T P

T P + FP
(3)

Recall, also known as true positive rate (TPR) or sensitivity, signifies the classifier’s
capability to correctly identify all positive samples. It is computed as the ratio of TP (True
Positives) divided by the sum of TP and FN (False Negatives). The highest possible recall
score for a model is 1, with a minimum score of 0.

Recall = T P

T P + FN
(4)

The F1 score, sometimes referred to as the FMeasure, represents the trade-off between pre-
cision and recall. It illustrates the balance between these two metrics, with a model achieving
a maximum F1 score of 1 and a minimum of 0.

F1score = 2 × Precision × Recall

Precision + Recall
(5)
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Table 5 System configuration for
models experimentation

Parameters Configuration

Processor Intel(R) Core(TM) i5-5300U

Clock speed 2.30 GHz

RAM 8.00 GB

GPU Intel® HD Graphics 5500

Tools Gpu and Google Colab

Language Python3

4 Results and experiments

This proposed methodology integrates feature representations from three CNN models
Inception- v3, Xception, and ResNet50. Each model is trained and evaluated independently
on the dataset. We create an ensemble model by merging their feature representations to cap-
ture a wide range of image characteristics and patterns. The ensemble model combines the
strengths of each model to achieve higher overall accuracy. We aggregate their predictions
through a concatenation ensemble approach to make the final classification decision. The
addition of extra hidden layers makes this ensemble model more unique and effective. This
ensemble approach enhances performance and robustness compared to using a single model.
The experiment is conducted on the system mentioned in Table 5.

The results obtained from these models demonstrated their effectiveness in tackling the
image recognition task on the monkeypox dataset. The models showcased high accuracy,
precision, recall, and F1 scores, indicating their ability to correctly classify and recognize
images. The experiments confirmed the suitability of these models on this dataset and high-
lighted their potential for accurate image classification tasks. We used 100 epochs to train
the model and to improve accuracy. The results of this study showcase the performance of
this proposed ensemble model paralleled to each model individually trained and evaluated
on the same dataset

Table 6 shows that the individualmodels, ResNet50, Inception-v3, andXception, achieved
accuracies of 36-61%, 82-85%, and 82-84% respectively. While LGBM, RFC, LR, ETC per-
formance is much better when compared with individual transfer learning models. The best
accuracy is obtained by ETC which is 75%. The second best-performing machine learn-
ing model is RFC with 72% of accuracy. However, the ensemble model ‘SkinMarkNet”
demonstrated significantly improved performance with an accuracy of 89- 90%, showcasing

Table 6 Comparison of all
transfer learning, machine
learning, and proposed model
results (in %)

Model Accuracy Recall Precision F1-Score

LGBM 64 57 61 59

RFC 72 65 67 66

LR 68 63 63 63

ETC 75 68 73 71

ResNet50 61 42 38 36

Inception-v3 84 84 85 84

Xception 83 82 83 82

SkinMarkNet 90 89 90 89
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Fig. 3 Proposed model training and validation accuracy

its effectiveness in enhancing classification accuracy. ResNet50 doesn’t perform as well as
Xception, InceptionV3, and the ensemble model and this could be because ResNet50 has
a simpler design. Its simplicity might make it struggle to understand and capture detailed
features in the pictures. In comparison, the other models and the combined ensemble model
seem to do a better job in this regard.

Figure 3 illustrates the accuracy of models. The accuracy of the proposed model was
initially low at epoch 1, but it steadily increased as the epochs progressed. This trend suggests
that the model was effectively trained and demonstrated improved performance on the testing
dataset as the accuracy increased over time.

Figure 4 shows the training and testing loss models. The models exhibited high training
and testing loss initially at epoch 1, which gradually decreased as the number of epochs
increased. This trend indicates that the models were effectively trained and performed well
on the testing dataset, as the loss decreased over time. In this case, the ensemble model stands
out with the highest average values, indicating superior performance in terms of accuracy,
recall, precision, and F1 score. ResNet50 demonstrates the lowest average values among the
models, suggesting a relatively lower performance. It is important to consider these average
values alongside the precise requirements and purposes of the classification task to assess
the effectiveness of the models.

5 Limitation of current work

The limitation of this proposed study is the use of a small amount of information about
monkeypox, which may not be enough to apply the judgments to a bigger population. Addi-
tionally, this proposed study didn’t consider the different ways (angles, color of different

Fig. 4 Proposed model training and validation loss
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skin, etc.) that monkeypox can look on the skin, which could make the model less accurate
when faced with real-life cases. Moving forward, future work in this research area could
encompass several avenues. Firstly, expanding the dataset through collaborations with med-
ical institutions and organizations could enhance the robustness and generalizability of the
trainedmodels. Furthermore, integrating other forms of data, such as patient demographics or
clinical records, could provide amore comprehensive approach to diagnosing andmonitoring
the disease.

5.1 Ways of implementation of the proposed framework in real-world environment

Deploying SkinMarkNet in a real-world environment involves several steps and considera-
tions to ensure its effectiveness, reliability, and accessibility. Here are possible ways to deploy
such a system:

1. Cloud-Based Deployment

1.a Cloud Service Providers:
– Use cloud platforms like AWS, Google Cloud Platform (GCP), or Microsoft
Azure.

– Benefits: Scalability, flexibility, and the ability to handle large amounts of data
and traffic.

1.b Machine Learning Services:
– Utilize cloud-based ML services such as Amazon SageMaker, Google AI Plat-
form, or Azure Machine Learning.

– These services provide tools for training, deploying, and managing machine
learning models.

1.c APIs and Microservices:
– Develop RESTful APIs or microservices that encapsulate the model’s prediction
logic.

– Deploy these APIs on cloud-based infrastructure to allow remote access.

2. On-Premises Deployment

2.a Local Servers:
– Deploy the system on local servers within a hospital or research institution.
– Benefits: Data privacy and control over the infrastructure.

2.b Edge Devices:
– Deploy models on edge devices such as GPUs or TPUs that are close to the data
source (e.g., hospital imaging equipment).

– Benefits: Reduced latency and real-time processing capabilities.

3. Mobile and Web Applications

3.a Mobile Apps:
– Develop a mobile application that can capture images, process them locally, or
send them to a server for analysis.

– Use frameworks like TensorFlow Lite or Core ML for deploying the model on
mobile devices.

3.b Web Applications:
– Develop a web-based interface where users can upload images for analysis.
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– The backend system, hosted on a server or cloud, processes the images and
returns predictions.

4. Integration with Healthcare Systems

4.a Electronic Health Records (EHR):
– Integrate the system with existing EHR systems to streamline the workflow for
healthcare providers.

– Automatically import and analyze patient images and update their records with
predictions.

4.b PACS Integration:
– Integrate with Picture Archiving and Communication Systems (PACS) used in
medical imaging.

– This allows seamless access to medical images and integration with the diag-
nostic workflow.

6 Conclusion and future work

In conclusion, this research addresses the critical challenge of identifying monkeypox from
the same skin-related diseases chickenpox and measles. The scarcity of data for this disease
motivated us to employ advanced deep-learning methods. We expanded the dataset using
data augmentation methods to overcome the inadequate availability of data. Utilizing trans-
fer learning models further addressed the data scarcity challenge. The task of differentiating
monkeypox skin marks from those of similar conditions like smallpox, chickenpox, and
measles was tackled by employing multiple deep convolutional neural networks (dCNNs).
These CNNs, categorized into four distinct classes, demonstrated their effectiveness in learn-
ing and distinguishing between each class. However, the individual outputs of the deep CNNs
were insufficient for accurate differentiation among the four classes. Toovercome this, ensem-
ble learning techniques were employed, and a noteworthy addition of extra hidden layers
after the concatenation ensemble approach was introduced. This novel enhancement marked
a significant milestone in the architecture of this ensemble model, named "SkinMarkNet"
contributing to its improved accuracy. Evaluation using establishedmetrics Precision, Recall,
F1-score, and accuracy demonstrated the effectiveness of SkinMarkNet achieving a remark-
able 90%accuracy in distinguishing among the four specific skin-related classes. Importantly,
this research stands out as the first study where an ensemble model has attained such high
precision, surpassing the conventional focus on healthy and unhealthy skin conditions. The
possible future work direction of this research work is deploying the developed ensemble
system in real-world scenarios and evaluating its performance under varied conditions would
be pivotal in validating its effectiveness and practicality in healthcare settings. This could
involve conducting large-scale clinical trials or implementing the system in healthcare facili-
ties to assess its impact on early detection and prevention of monkeypox outbreaks (Table 7).

Abbreviations

The following abbreviations are used in this study.
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Table 7 Abbreviation table Abbreviation Description

WHO world health organization

PCR polymerase chain reaction

CNN Convolutional Neural Network

ML Machine learning

ILSVRC ImageNet large scale visual recognition challenge

ReLu Rectified linear unit

DNN Deep Neural Network

LGBM Light Gradient Boosting Machine

MSLD monkey skin lesion dataset

RF Random Forest

VGG Visual Geometry Group

LIME Local Interpretable model-agnostic explanations

ETC Extra tree classifier

LR Logistic regression
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