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Abstract
Breast cancer (BC) is a widespread and lethal cancer affecting women world- wide. Early 
diagnosis plays a pivotal role in ensuring survival, as late detection can result in a fatal outcome. 
Convolutional neural networks (CNNs) have made significant contributions to the task of 
medical imaging modalities and have dis- played promise in addressing this challenge. Recently, 
the success of the vision transformer (ViT) architecture has encouraged the use of the attention 
mecha- nism in computer-aided diagnosis (CAD) tasks. However, the ViT is known for its 
data-intensive nature and a substantial number of parameters and needs power- ful computer 
resources when training, which often leads to the same performance compared to CNNs. These 
challenges are particularly evident in tasks involving medical image datasets with complex 
images and limited data. This problem- atic situation led to the suggestion three of low-weight 
parameter systems based on convolution and attention techniques: vision transformer base 
model (ViT), compact convolution transformers (CCT), and lightweight mobile vision trans- 
formers (MVIT). These systems are developed by using the BreakHis dataset, which includes 
images captured at different magnification levels (40x, 100x, 200x, 400x), for both binary and 
multi classification of breast cancer subtypes. These low-weight hybrid ViT-CNN networks 
operate directly on input patches and convolution layers, to improve feature extraction and 
attention layers to train patches in all networks. This approach results in lower training time 
and fewer parameters while achieving accurate breast tumors classification. The proposed 
method is based on splitting the input image into patches and then focusing them on the area of 
cancerous lumps, providing a sequence of linear embedding of these patches as input. Second, 
we applied a convolution layer directly to the histopathology input patches, with the fewest 
possible modifications. Finally, we train patches in all transformer encoder layers to evaluate 
the performance of the classification of breast subtypes. The performance accuracies of our 
suggested models are 98.64% for VIT, 96.99% for CCT and 97.52% for MVIT. Moreover, the 
proposed models were compared with state-of-the-art models using the same dataset. Our study 
demonstrates how convolution and attention mechanisms can minimize computational training 
resources and decision time, to develop high- performing computer-aided analyses for breast 
cancer diagnosis. The source codes are accessible at https://​github.​com/​abimo​uloud/​ViT-​CNN.
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1  Introduction

Breast cancer is one of the most common types of cancer in women worldwide, and it 
is expected to become the most common disease in the coming years. The impor- tance 
of early diagnosis is underscored by the strong correlation between the stage of diagnosis 
(tumor size) and survival rate [1]. According to data from The International Agency 
for Research on Cancer (IARC), it is estimated that breast cancer affected 2.3 million 
women worldwide in 2020, resulting in 7.8 million women having been diagnosed with 
breast cancer in the five years prior to the end of 2020. Manual med- ical diagnosis, while 
important, is time-consuming and places a substantial burden on pathologists. In addition, 
unskilled pathologists who misdiagnose diseased tissues are possible [2]. Although several 
imaging techniques, such as mammography, X-rays, ultrasound, and MRI, are used by 
pathologists for tumor detection, their applications are often costintensive, require skilled 
practitioners, and exhibit limited specificity. In addition, histopathology images can 
be very beneficial for early cancer treatment and are more sensitive for identifying and 
categorizing tissue [3] [4]. In clinical practice, the integration of deep learning techniques 
and computer-aided diagnostic methods pro- vides specialists and clinicians with more 
effective speed, efficiency, cost, and precise diagnostic outcomes [2] [5]. Thus, CNNs have 
a role in medical imaging tasks, including extracting features and classifying tumor lumps 
[6]. The CNN architecture consists of multiple layers, including convolutions, rectified 
linear activation functions (Re LUs), pooling layers, fully connected layers, and dropout 
layers. However, a notable limi- tation of CNNs is their inability to handle rotation and 
scale in variance inherently, necessitating techniques such as data augmentation, feature 
extraction, and encod- ing relative spatial information [7]. These challenges emerge due 
to using the entire breast image rather than focusing on The use of specific regions of 
interest (ROIs), has certain drawbacks. A vital issue that CNN- based deep learning models 
face is effec- tively localizing tumor regions [8]. The development of models capable of 
extracting features from extensive datasets is essential in medical image visual tasks, and 
both ViT and CNN face challenges in achieving satisfactory performance, especially when 
confronted with limited data availability and constrained computational resources for 
building robust neural networks[9].

Vision transformers based on encoder-decoder architecture have recently become the 
standard model for natural language processing (NLP) [10]. Under high-data regimes, 
CNNs have been replaced by ViTs in the computer vision domain, which can han- dle 
high-resolution images [11]. Moreover, the utilization of self-attention layers based on the 
attention mechanism by splitting the image input into various patches that are subsequently 
linearly embedded in medical imaging is one of the most critical research areas, and has 
attracted the attention of many researchers for examina- tion of their advantages, as well 
as, their functionality in diverse situations with the aim of early detection of breast cancer 
to limit its spread [9]. This approach offers distinct benefits. First, it excels in capturing 
long-range relationships among pixels within an image. Second, its adaptive modelling 
capability, driven by dynamic self- attention weight computations, empowers the network 
to emphasize pertinent image regions effectively [12]. This contributes to the enhancement 
of tumor identification and localization. Finally, the capacity of the attention mechanism 
to generate atten- tion maps provides crucial insight into specific areas of interest within 
an image [13]. The incorporation of this fundamental transformer approach presents a 
multitude of advantages compared to convolution methods [6]. Recently, there has been 
a surge of interest in hybridized Deep Neural Network-based frameworks for data analysis 
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[14]. Combine the advantages of CNN models with ViT architectures, particularly for high- 
performance analyses in cancer research. The aim is to address challenges associated with 
reducing the time and computational resources required for model training. This fusion 
approach holds promise for more efficient medical image diagnosis. [15].

In this paper, we propose hybrid networks and lightweight models aimed at exploit- 
ing the feature extraction capabilities of CNN layers and the attention mechanism of 
ViTs, to create models that excel in recognizing complex patterns revealing various 
cancer conditions, with low decision time and computing resources. necessary for the 
classification of histopathological images. To our knowledge, only a few studies have 
investigated the application of CNN-based vision transformer techniques in breast cancer 
classification using histopathological images. Our method is based on attention techniques 
to partition breast images into patches, focusing on the size of the patch in the tumor region 
to generate histopathological patches at different magnification levels, such as 40X, 100X, 
200X, and 400X, for efficient and accurate classification of breast cancer subtype cells and 
distinguishing them from healthy tissue cells. Addition- ally, this topic has been approached 
as binary classification in most previous research. Our suggested methodology for breast 
cancer diagnosis includes both binary and mul- ticlass classification, going beyond binary 
classification. This approach allows us to comprehensively address the complexities of sub-
cancer type detection and classifica- tion problems and provide more robust solutions. Our 
study makes four contributions to the literature as follows:

•	 We examined how well the current self-attention model could classify tumours (benign 
vs malignant).

•	 We used histopathological images with different factors for higher resolution to classify 
subtypes of breast cancer.

•	 We observed the possibility of using the vision transformer technique with convolu- 
tional neural network (CNN) for medical data analysis.

•	 The combination of Convolutional Neural Networks (CNN) and Vision Transformer 
(ViT) models aims to reduce computational resources and analysis time for classify- 
ing breast cancer in histopathological images, thereby facilitating fast and accurate 
decision-making.

•	 The mobile VIT model was explored as a novel approach to develop lightweight ViT 
models for real-time diagnostic applications.

It is imperative to underscore that our primary objective is not to attain state-of- the-art 
performance but to delve into the impact of leveraging ViT for classifying histopathology 
images, particularly in complex datasets. Furthermore, our approach is grounded in 
integrating attention techniques and convolution layers to classify histopathological 
images. paving the way for a novel approach with potentially enhanced performance in 
medical data analysis using computer-aided diagnosis.

We scope extends beyond the theoretical realm, aiming to provide practical advance- 
ments. It involves the development of lightweight neural networks based on self- attention 
convolution layers. These networks are designed to be seamlessly integrated into medical 
equipment, offering accurate performance and low decision time in real-time diagnosis. 
The paper is organized as follows: Section  2discusses breast cancer-related works 
employing the Breakhis dataset. Section  3 describes the proposed methods. Section  4 
describes the experimental results. Section  5 discusses the collected results. Section  6 
finally closes with the conclusion.
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1.1 � Related works

The development of Internet of Things (IoT)-based healthcare application services in 
the medical field is a crucial task. This requires several important factors, includ- ing the 
collection of data using body sensor networks (BASN)[16], and the secure transmission of 
this medical data, in order to use this data to develop deep neural net- work algorithms for 
diagnosis in real time [17]. CNNs are extensively used for medical image diagnosis across 
various imaging modalities, such as MRI, ultrasound, X-ray, and histopathological images. 
However, a notable limitation of CNNs is their inabil- ity to handle rotation and scale 
invariance inherently, as well as imbalanced datasets, necessitating techniques such as data 
augmentation, feature extraction, and encoding relative spatial information. Saeed Iqbal 
et al. [18] have addressed these challenges by proposing a framework that can adaptively 
self-learn using different image modalities, such as X-rays of chest abnormalities and breast 
cancer classification using histopatho- logical images, and skin lesions. They first apply 
preprocessing techniques and acquire both manual feature extraction techniques, using 
a Global–Local Pyramid Pattern (GLPP) based on Local Binary Pattern and radiomics 
features methodologies, and pertinent features based on pretrained CNNs. Then, they 
combine manual feature extraction and pretrained CNN models to enhance performance. 
More recently, deep learning techniques have been utilized for automatic diabetic 
retinopathy detection. Ghulam Ali et  al. [19]. proposed IR-CNN model (InceptionV3 
ResNet50 Convolutional Neural Networ) for diabetic retinopathy classification. The 
authors employed an end- to-end mechanism that utilizes both InceptionV3 and ResNet50 
for feature extraction from fundus images of diabetic retinopathy. The features extracted 
from both models are concatenated and input into the IR-CNN model for classification. 
To enhance the performance of the proposed model, authours used a preprocessing steps 
such as data augmentation techniques and histogram equalization intensity normalization 
to opti- mize image quality.

Several studies have investigated breast cancer classification using the Breast Cancer 
Histopathological Image (BreakHis) dataset, as summarized in Table  1, that address- 
ing the same topic as ours. Wang Pin et  al. [20] proposed an automatic classification 
method based on deep feature fusion and enhanced routing. They designed a novel net- 
work with two parallel channels capable of extracting capsule features and convolution 
features simultaneously. For deep feature fusion, they employed a novel fusion method that 
combines semantic features extracted by CNN with spatial features extracted by CapsNet 
into capsules. The fusion of semantic and spatial information resulted in enhanced features, 
further improving classification accuracy and stability.

Albashish Dheeb et al. [21] proposed a transfer learning approach based on the Visual 
Geometry Group’s 16-layer deep model architecture (VGG16) to extract high-level 
features from the BreaKHis dataset.Subsequently, various machine learning models, with 
a focus on Radial Basis Function Support Vector Machine (RBF-SVM) classifiers, were 
employed to address different Breast Cancer (BC) classification tasks, including both 
binary and multiclass classification involving eight classes. The authors removed the 
last fully connected layers in the VGG16 model. Following this, the extracted fea- tures 
were classified using a series of heterogeneity classifiers. This study demonstrates the 
effectiveness of utilizing the features extracted via the VGG16 transfer learning model in 
combination with polynomial and RBF SVM classifiers.

Al-Jabbar Mohammed et al. [22] presented a hybrid CNN system technique that com- 
bines AlexNet and GoogLeNet for feature extraction, followed by machine learning 
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using SVM to achieve precise classification. Fusion feature vectors were generated by 
integrating CNN with custom features. The authors proposed a method that hybridizes 
CNN (AlexNet and GoogLeNet) models to extract and classify features using the sup-
port vector machine (SVM). Consequently, all Breast Cancer (BC) datasets were diag-
nosed using both AlexNet + SVM and GoogLeNet + SVM. In the second pro- posed 
method, all BC datasets were diagnosed using an Artificial Neural Network (ANN) 
based on a combination of CNN features with handcrafted features extracted using the 
fuzzy colour histogram (FCH), local binary pattern (LBP), and gray level co-occurrence 
matrix (GLCM), collectively referred to as fusion features. Finally, the fusion features 
were fed into an ANN for classification.

Amin Muhammad Sadiq et  al. [23]. introduced the FabNet model, which leverages 
CNNs and integrates datasets from BreakHis and NCT-CRC-HE-100 at various mag- 
nification levels. The model adopts an accretive network architecture, amalgamating 
hierarchical characteristics to achieve a high level of classification accuracy. FabNet 
model proposes to learn fine-to-coarse structural and textural features of multiscale 
histopathological images through its accretive network architecture, which consolidates 
hierarchical feature maps to attain significant classification accuracy. The authors 
demonstrate that a lightweight network architecture with fewer parameters proposed leads 
to improved classification accuracy by incorporating deep and close integration, thereby 
finely combining features across layers and expanding upon the conventional convolutional 
neural network architecture.

Hao Yan et al. [24]. demonstrated a method based on gray-level co-occurrence matrix 
(GLCM) characteristics and deep semantic features. They used a pre-trained DenseNet201 
as the foundational model and applied support vector machines (SVM) to classify data by 
extracting deep semantic features from the last dense block’s con- volutional layer features, 
combined with three-channel GLCM features.

Srikantamurthy Mahati Munikoti et al. [25] present a hybrid model for classifying breast 
cancer subtypes, employing convolutional neural networks (CNN) and long short-term 
memory recurrent neural networks (LSTM RNN). The authors propose a hybrid CNN-
LSTM model comprising two main modules: the CNN input shape and an independent 
RNN module. The CNN passes through a pre-trained transfer learning model (Inception, 
ResNetV2, ResNet50) until it reaches the final convolutional layer, which contains the 
bottleneck features. Meanwhile, the independent RNN module con- sists of 2 LSTM layers. 
The outputs of both modules are merged using element-wise multiplication, and this output 
is then fed into the classification layer.

Mahmud M et al. [26]. employed transfer learning and deep feature extraction methods, 
utilizing AlexNet for additional fine-tuning. They modified pre-trained CNN mod- els 
AlexNet and Vgg16 for feature extraction and employed support vector machines (SVM) 
for feature classification.

Abunasser Basem et al. [27] proposed a deep learning model with additional fine- tuned 
deep learning models, including Xception, InceptionV3, VGG16, MobileNet, ResNet50, 
and BCCNN.

Simultaneously, ViTs have gained challenge in the realm of computer vision outper- 
forming CNNs in tasks that involve medical image classification [28]. For this task, in 
2021 Matsoukas Christos et al. [6] proposed investigating whether Vision Trans- formers 
(ViTs) could serve as viable replacements for CNNs in medical imaging tasks.

Their research aimed to determine that ViTs can achieve the same performance levels 
comparable to CNNs when working with small medical datasets.
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In 2022, Henry Emerald et al. [9] observed the application of transformer architec- tures 
across various imaging modalities in medical imaging. Their research focuses on a compara-
tive analysis of the performance of both architectures, exploring their strengths, weaknesses, 
and performance in various scenarios. However, their obser- vation revealed a deficiency in 
clear and detailed comparisons between transformer VIT and CNN counterparts. In 2023, 
He Kelei al. [29] aimed to highlight the applica- tions of transformers in medical image 
analysis. They underscored that many existing transformer-based approaches can be easily 
adapted to address a variety of medical imaging challenges with minimal modifications.

In recent studies, that focused on the combination of CNN and ViT models in breast 
cancer histopathological images classification, Sriwastawa Asmi et  al. [30]. proposed a 
comparison of eight Vision Transformer (ViT) models using BreakHis and IDC datasets 
for binary classification. Their experiments initially involved training the models from 
scratch. Subsequently, the models trained on the BreakHis dataset were considered pre-
trained models and then fine-tuned on the IDC dataset. In their exper- iments, the authors 
calculated evaluation metrics such as the number of epochs, the time taken to train the 
model, accuracy, the number of parameters in the model, speci- ficity, precision, recall, 
F1-score, and ROC-AUC score.

While previous studies have made significant progress in classifying breast cancer 
histopathological images, the need to achieve high performance and accuracy has led 
to the application of various preprocessing methodologies and techniques, such as the 
global–local pyramid model (GLPP), a fuzzy color histogram (FCH), local binary model 
(LBP), and gray level co-occurrence matrix (GLCM). Additionally, hybrid approaches 
integrating CNNs with LSTM and SVM classifiers, as well as transfer learning techniques 
using models like VGG16 and fine-tuning, were used.

Furthermore, recent works have proposed models combining CNNs with Vision 
Trans- former (ViT) models, which often have a high number of parameters and high 
complexity, requiring significant computational resources and long training times. This 
paper aims to fill these gaps by introducing hybrid lightweight CNN-ViT models. These 
models capitalize on the feature extraction capabilities of CNN layers and the attention 
mechanism of ViT while maintaining a lower number of parameters and shorter training 
times without applying any preprocessing techniques and training all models from 
scratch. Through meticulous comparisons with similar recent studies, the novelty and 
impact of the proposed methodology can be effectively established in the field of breast 
cancer histopathological image classification.

2 � Materials and methods

2.1 � Histopathological images

Histopathology is the microscopic examination of samples to determine the location and 
classification of cancer [31]. Histopathologists evaluate the regularities of cell shapes and 
tissue distributions visually during histological image processing to diag- nose cancer [32]. 
Nuclear pleomorphism, tubular development, and mitotic activity are the three criteria 
used to grade breast cancer [33]. Such histopathology studies have been widely used for 
cancer detection and classification to ascertain the the degree of malignancy and whether 
tissue areas are malignant [34].
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2.2 � Dataset

The BreakHis dataset introduced by Spanhol et al. [35]. is a public dataset available at [36]. 
The dataset contains a total of 7925 microscopic biopsy images, featuring 2,496 benign and 
5429 malignant breast tumors. Among benign breast tumors, there are four distinct histopa-
thology subtypes: adenosis (AD), fibroadenoma (FI), phyl- lodes tumor (PH), and tubular 
adenoma (TU). The malignant breast tumors (breast cancer) are classified into four subtypes: 
ductal carcinoma (DU), lobular carcinoma (LO), mucinous carcinoma (MU), and papillary 
carcinoma (PA) [37]. These images were captured at magnifications of 40 × , 100 × , 200 × , 
and 400 × , with a resolution of 700 × 460 pixels having 3-channel RGB (Red–Green–Blue) 
True Color representation, providing 24-bit color depth with 8 bits per color channel. Table 2 
details the number of benign and malignant image samples at each magnification level from 
the BreakHis dataset, while Fig. 1 provides sample images from this dataset.

2.3 � The proposed methods

This study employed several methods, including a self-attention transformer VIT model, 
a vision transformer based convolution CCT model, and a lightweight Mobile Vision 
Transformer model MVIT. These methods were utilized for binary and multiclass 
classification of breast histopathology subtype tissues.

Table 2   The BreakHis dataset by 
magnification level and class

MAGNIFICA-
TION LEVEL

400 ×  200 ×  100 ×  40 ×  TOTAL

Malignant 1232 1390 1437 1370 5429
Benign 604 623 644 625 2496
TOTAL 1836 2013 2081 1995 7925

Fig. 1   Images from the BreaKHis dataset
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2.3.1 � Vision transformer VIT

The self-attention vision transformers [11] were inspired by the original transformer 
model employed in natural language processing (NLP) [38]. In the vision transformer 
model, as presented in Fig. 2 and detailed in the algorithm 1. The input 2D image is 
represented as X ∈ RH×W×C , where H stands for height, W for width, and C for the 
number of channels. This mechanism based on split image into a sequence of image 
patches that are denoted as Nxp ∈ RN×P2C , with N demonstrated in Eq. 1.

and P being the patch size. Each patch is then flattened and projected into a higher- 
dimensional space D using a trainable linear projection, resulting in embedded patch 
images known as patch embedding. Additionally, a learnable class embedding Xclass 
is included in the sequence of embedded patches, serving as inputs for the transformer 
encoder block. The transformer encoder block employs a forward connection that 
com- bines the initial input with the output of multi-head attention. The combined 
output undergoes normalization and is processed through an MLP layer, which 
comprises a dense layer with dropout. The resulting outputs are then forwarded to the 
MLP head layer. Ultimately, the MLP head utilizes the output from the transformer 
encoder lay- ers to generate a probability distribution of labels, for the final prediction 
of the image class [30].

(1)N =
HW

P2

Fig. 2   Vision transformer self-attention classification architecture
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Algorithm 1   Vision Transformer (ViT)

The proposed ViT model is designed with specific parameters, as outlined in 
Table  3. By using a smaller patch size of 14 × 14, instead of the 16 × 16 patch size 
pro- posed in the original ViT paper, we aimed to enable more focused attention and 
better capture intricate details within the input patches. The decision to use 8 layers 
was made to strike a balance between model complexity and performance, resulting 
in optimal classification accuracy. The total number of parameters in our model is 
36376521, which were carefully optimized to ensure efficient training. These param- 
eter choices were selected to find the right balance between model performance and 
computational resource requirements. Overall, our design decisions for the ViT model 
focused on achieving attention efficiency, managing model complexity, and optimizing 
computational resources. These factors collectively contribute to the effectiveness of 
our proposed approach for breast cancer histopathological image classification.

Table 3   Details of vision transformer model variants

Model Image size size patch size Layers Heads parameters

Our proposed adapted VIT 224 × 224 14 8 4 36,376,521
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2.3.2 � Compact convolutional transformers CCT​

The self-attention mechanism in the Vision Transformer (ViT) model enables captur- ing long 
range dependencies within the histopathological images, which is crucial for identifying subtle 
patterns that indicate different breast cancer subtypes. However, ViT models are known for 
their data-intensive characteristics and considerable num- ber of parameters. Consequently, the 
performance improvements come at the cost of a large model size (due to the vision transformer 
layers), requiring substantial com- putational resources for model training. To minimize the 
complexity of ViT, we have chosen to use the CCT model. CCT leverages convolutional layers 
with an atten- tion mechanism, offering a complementary approach to feature extraction and 
spatial information processing. The application of convolutional layers can help multi-head 
attention layer in ViT to extract features with fewer layers, potentially leading to a more efficient 
and lightweight architecture. the proposed CCT model seeks to address the limitations of the 
data-intensive and computationally expensive ViT architecture, while maintaining the benefits 
of the attention mechanism for capturing long-range dependencies in histopathological images.

An overview of the compact convolutional transformer [15] architecture is detailed in 
Fig. 3, and detailed in the algorithm 2. The most significant modification in the model is 
the replacement of the patch and embedding block in VIT with a basic con- volution block 
that includes a standard structural convolution, ReLU activation, and a max pool layer. 
Given a picture with the following dimensions x ∈ RH×W×C

Furthermore, by using this convolution block, the model gains flexibility over a model like 
ViT by not being restricted to input resolutions strictly divisible by the predefined patch size. 
Additionally, the convolution and max pool procedures can overlap, which could improve per-
formance by infusing inductive biases. This permits the model to retain local spatial informa-
tion. In this study, we used CCT architecture model with 2 transformer encoder layers, 2 MLP 
heads, and 2 convolution layers with a 3 × 3 kernel size.

(3)x0 = MaxPool(ReLU(Conv2d(x)))

Fig. 3   Architecture of compact convolutional transformers
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Algorithm 2   Compact Convolutional Transformer (CCT)

The CCT model parameters are shown in Table 4. The objective was to reduce the number 
of parameters compared to the standard ViT model Table 3. In the CCT model, we utilized 2 
convolutional layers, which can effectively replace the 6 trans- former layers required in the 
original ViT architecture. This design choice allowed us to use just 2 attention layers, resulting 
in a significant reduction in the overall model complexity. The total number of parameters in the 
CCT model is 407 M, which was carefully optimized to balance performance and computational 
efficiency. This param- eter count is substantially lower than the parameter-intensive ViT model, 
while still maintaining competitive classification accuracy.

2.3.3 � The mobile vision transformer MVIT

Despite the potential advantages of the CCT model in combining CNN and ViT lay- ers, it also 
has some complications, such asrequire extensive data augmentation and regularization to avoid 
overfitting, difficulty handling complex data, and long training times. To address these limitations, 
the lightweight mobileViT (MVIT) model is chosen for its lightweight design, enabling efficient 
processing of large-scale histopathologi- cal images while maintaining competitive performance 

Table 4   Details of the compact 
convolutional transformer model 
variants

Model Conv-Layers Attention-Layers Heads kernel size Params

CCT​ 2 2 2 3 × 3 407 M
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to optimize and integrate into task-specific networks. By leveraging the advantages of lightweight 
CCT and attention mechanism of ViT, the MVIT model aims to strike a balance between model 
complex- ity and classification performance, making it a promising approach for effective and 
efficient classification of histopathological images of breast cancer.

For this task, MobileViT [39](or MVIT) displays stronger task level generaliza- tion features 
than light-weight CNN models (MobileNetv1[40], MobileNetv2[41], MobileNetv3[42]). As 
shown in Table 5, the main components of the MViT architec- ture are a stride 3 × 3 Depth-wise 
convolution 2D layer and Swish as an activation function, followed by the MobileNetv2 (or MV2) 
block and the MVIT block and 1 × 1 convolution for modifying the number of channels.

The MV2 blocks in the MViT network play a crucial role in down-sampling by extracting 
local features from the input image feature x ∈ R

H×W×C , where R repre- sents the set of real 
numbers. Here, x is a three-dimensional tensor with dimensions H, W, and C, representing 
the height, width, and number of channels of the ten- sor, respectively. The process involves 
expanding the low-dimensional compressed data into higher dimensions and filtering the data 
with depth-wise separation. This structural design employs compact tensor data in the reasoning 
process, which subse- quently reduces the demand for embedded hardware for main memory 
access, leading to improved reaction performance [43].

The MVIT block, on the other hand, is divided into three components: the local 
information coding module, the global information coding module, and the feature fusion 
module. The feature tensor is then projected into a high dimensional space XL ∈ RH×W×d , 
where d represents the number of dimensions, and d > C. This tensor XL is passed through 
the Global Representation module. Figure 4 depicts its structure and detailed in algorithm 3.

Following that, XUnfold is fed into L-stacked Transformers for global information encoding, 
where the attention mechanism is used to compute inter-column pixel atten- tion, yielding 
XG ∈ RP×N×d (P = wh is the number of pixels in the patch with height h and width w, and N is 
the number of patches).

Finally, the Fold operation is used to generate XF ∈ RH×W×d , which is the same size as 
XL. Because each pixel in the Transformer’s output contains information from all pixels 
in the input feature map, the receptive field can be expanded to H W, MVIT block may 
fully extract image feature information using this approach with less parameters [44].

Table 5   The general structure of MobileViT

Layer Output size Output stride Repeat XXS XS XS

Image 256 × 256 1
Conv-3 × 3, ↓ 2 128 × 128 2 1 16 16 16
MV2 1 16 32 32
MV2, ↓ 2 64 × 64 4 1 24 48 64
MV2 2 24 48 64
MV2, ↓ 2 32 × 32 8 1 48

(d = 64)
64
64 (d = 96)

96
96 (d = 144)MobileViT block (L = 2) 1

MV2, ↓ 2 16 × 16 16 1 64
64 (d = 64)

80
80 (d = 120)

128
128 (d = 192)MobileViT block (L = 2) 1

MV2, ↓ 2 8 × 8 32 1 80 96 160
160 (d = 240)
640

MobileViT block (L = 3)
Conv-1 × 1

1 80 (d = 96)
320

96 (d = 144)
384

Global pool
Linear

1 × 1 256 1 1000 1000 1000

Nerwork Parameters 1.3 M 2.3 M 5.60 m
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3 � Experiment and results

3.1 � Dataset splitting

This paper aimed to use histopathological images at different magnifications. The 7925 
microscopic biopsy images that made up the study’s dataset were divided into four groups 
based on their magnification 40 × , 100 × , 200 × , and 400 × . In binary classifi- cation, 
which was divided into two classes for each magnification level of malignant.

Fig. 4   MobileVit block architecture

Algorithm 3   Mobile Vision Transformer (MVIT)



Multimedia Tools and Applications	

1 3

and benign tumours. The multiclassification task involves classifying images into eight 
subtypes of tumors (AD, DU, FI, LO, MU, PA, PH, and TU) for each magnification level. 
The dataset was split into 80% for the training phase, while the remaining 20% were used 
for testing. Furthermore, within the training set, a further division was made, with 80% 
allocated for the training process, and the remaining 20% allocated for validation to ensure 
that the model was not overfiting. The models were developed in a computer workstation 
HP Z8 G4:

•	 Memory (RAM): 96.00 GB
•	 Processor: Intel(R) Xeon(R) Silver 4108 CPU @ 1. 80 GHz 1. 80 GHz.
•	 Graphic Processing Unit: (GeForce RTX 2080 Ti, GeForce RTX 3090)
•	 System type: 64-bit operating system, × 64 processor.
•	 Python 3.11 programming language.

Subsequently, all codes executions were carried out utilizing the execution environ- 
ments provided by Google Colab Pro.

3.2 � Dataset preprocessing

In this work, we carefully considered the hyperparameters to strike an optimal balance 
between models performance and computational complexity. However, practically, the 
selection of input image sizes and patch sizes plays a crucial role in the performance 
and efficiency of vision transformer architectures. For the CCT and MobileViT MVIT 
models, we followed the original Transformer (ViT) method by Vaswani et  al. [11], 
resizing input histopathological images to 256 × 256 input image into 16 × 16 patches 
yielded 256 input patches. This patch size, combined with convolutional feature extrac- 
tion techniques employed in these models, demonstrated high performance results. 
However, for our proposed self-attention ViT model, we opted for a smaller patch size 
of 14 × 14 while splitting input images of 224 × 224 pixels, which also yielded 256 input 
patches, the same as the CCT and MVIT models. The rationale behind the 14 × 14 patch 
size is that it allows the transformer encoder’s attention mechanism to oper-ate more 
efficiently and capture intricate details within each patch’s pixels. Although smaller patch 
sizes increase the number of patches and computational complexity, we found that the 
14 × 14 patch size provided an optimal trade-off between performance and computational 
efficiency for the proposed self-attention ViT model. Additionaly, it is essential to 
note that the BreakHis dataset is imbalanced. Addressing this imbal- ance is crucial to 
developing a robust and unbiased classification model, especially in the medical field. 
Failure to balance the dataset can result in poor generalization and a higher likelihood of 
misclassification, particularly for minority classes. Misclassifying minority classes can 
have more severe consequences in a medical context, as these often represent patients at 
higher risk. To solve this problem, first, one of the common approaches to mitigate data 
scarcity is by applying the data augmentation technique. This approach aligns with the 
idea that pathologists can interpret breast histopathol- ogy images from different angles, 
sizes, and orientations with sizes detailed in Table  6. Second, for multiclassification 
tasks, we use a three-K-fold cross-validation training strategy. The hyperparameter 
values used for training are detailed in Table 7, while Fig. 5 illustrates the block diagram 
of our experimental approach.
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Table 6   Data augmentation 
technique

Data Augmentation Technique Value

Rotation range 5
Width shift range 0.1
Height shift range 0.1
Zoom range 0.001
Fill mode 0.001

Table 7   Hyperparameter Hyperparameter Value

Batch size 16 32 64
Number of epochs 70 80 90
Optimizer Adam
Loss function Binary Cross-entropy 

Categorical Cross-
entropy

Fig. 5   Breast cancer diagnosis block diagram
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3.3 � Evaluation metrics

The systems’ performance was assessed using accuracy, precision, sensitivity, speci- ficity, 
AUC, F1 score, Total Training Time in second and Average Training Time per epoch. The 
variables in these equations were obtained from the confusion matrix generated by the 
systems. The confusion matrix provides information on correctly classified images (True 
Positives [TP]are classified correctly as malignant breast can- cers tumors and True Negatives 
[TN] are classified correctly as benign breast cancers tumors and False Positives [FP]are 
benign tumors classified as malignant breast can- cers tumors and False Negatives [FN]are 
malignant tumors classified as benign breast cancers tumors) [45], The Equations are detailed 
as follows:

3.4 � Results

This section presents the results of various experiments conducted using the pro- posed 
vision transformer models. The experiments are organized into binary and multi-
classification tasks in order to address the research questions.

(3)Accuracy(%) =
TP + TN

TP + TN + FP + FN

(4)Sensitivity(%) =
TP

TP + FN

(5)Precision(%) =
TP

TP + FN

(6)Specif icity(%) =
TN

TN + FP

(7)F1score(%) =
2 × [Precision × Recall]

Precision × Recall

(8)AUC(%) =
Sensitivity

Specif icity

(9)Total − Training − Time(S) = endtime − start − time

(10)Avg − Training − Time − per − epoch =
Total_Training_Time

Num_epochs
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3.5 � Experiment 1: RQ1. How can we employ a highly efficient and accurate 
technique to utilise vision transformer models for early breast cancer 
diagnosis? as follows.

3.5.1 � Binary classification

The proposed vision-transformer models performed well for binary classification 
(benign or malignant) of histopathological breast cancer images, as shown in Table 8. 
All three models used were based on vision transformers, and convolution architectures 
performed consistently across all the performance metrics. As a result, the proposed 
models achieved high accuracy, precision, sensitivity, specificity, AUC, and F1 score 
at different magnifications on the Brekhis dataset. This provides strong evidence that 
vision transformer can be used to effectively improve DL approaches for obtaining 
breast histopathology images, thereby improving early diagnosis techniques for breast 
cancer.

3.5.2 � Multi classification

One of the primary objectives of this paper was to enhance the performance specif- ically 
in the classification of breast cancer subtypes after binary classification. to investigate 
the performance of the proposed transformer models in multi classification tasks across 
the entire dataset, encompassing different magnification levels, including 40 × , 100 × , 
200 × , and 400 × . A three K-fold cross-validation technique is used to obtain the multi 
classification results. This evaluation approach ensures robustness and reliability in 
the assessment of models performance across different magnification levels. The best 
performances of the proposed systems are presented in Table 9.

The results obtained from the first experiment indicate that the vision transformer 
significantly enhances the strong performance of deep learning approaches in medical 
image analysis and breast cancer diagnosis.

Table 8   Binary classification Performances metrics for the different models at various magnifications

Magnification Accuracy Precision Sensitivity Specificity AUC​ F1 score

VIT 400X 98.56% 98.35% 98.35% 99.47% 98.45% 98.56%
200X 97.87% 98.70% 98.70% 99.85% 98.27% 97.87%
100X 94.66% 95.18% 95.18% 98.77% 94.91% 94.66%
40X 96.50% 95.88% 95.88% 99.34% 96.18% 96.50%

CCT​ 400X 93.12% 93.12% 85.95% 97.38% 93.12% 93.12%
200X 94.33% 95.68% 87.2% 96.63% 95.0% 94.33%
100X 92.26% 93.52% 83.09% 95.52% 92.88% 92.26%
40X 97.81% 97.81% 95.2% 98.93% 97.81% 97.81%

MOBILE VIT 400X 92.03% 89.91% 89.91% 97.17% 90.85% 92.03%
200X 96.91% 97.32% 97.32% 99.69% 97.11% 96.91%
100X 92.00% 92.49% 92.49% 97.03% 92.24% 92.00%
40X 94.33% 93.34% 93.34% 98.30% 93.81% 94.33%
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3.6 � Experiment 2: RQ2. Is it feasible to combine convolution techniques with vision 
transformers to develop more streamlined approaches for medical data 
analyses? as follows.

3.6.1 � Binary classification

Table 10 shows the best performances of three different models (VIT, CCT and MVIT) for 
a binary classification task. The performance measures calculated are accuracy, precision, 
sensitivity (recall), specificity and F1 score. Plus, total training time for each model.

•	 Accuracy: The accuracy metric represents the overall ability of the models to cor- rectly 
classify the binary samples. The results show that the VIT model achieves the highest 
accuracy at 98.64%, indicating it has the best overall classification per- formance. The 
MVIT model follows closely with an accuracy of 97.52%, while the CCT model has 
the lowest accuracy at 96.99%.

Table 9   Multi classification performance metrics for the different models at various magnifications

Magnification Accuracy Precision Sensitivity Specificity AUC​ F1 score

VIT 400x 89.29% 89.53% 89.29% 98.2% 97.02% 89.03%
200x 90.86% 90.93% 90.86% 98.44% 96.8% 90.73%
100x 91.88% 92.1% 91.88% 98.64% 94.13% 91.81%
40x 94.8% 94.97% 94.8% 99.14% 97.73% 94.79%

CCT​ 400x 75.79% 74.58% 75.79% 95.93% 93.74% 73.77%
200x 76.80% 77.63% 76.80% 95.90% 94.21% 74.34%
100x 83.51% 83.39% 83.51% 97.22% 97.08% 83.02%
40x 84.63% 84.8% 84.63% 97.4% 97.1% 84.4%

MOBILE-VIT 400x 86.77% 86.21% 86.77% 97.71% 96.87% 86.18%
200x 83.96% 84.46% 83.96% 97.17% 97.37% 83.49%
100x 86.34% 86.54% 86.34% 97.73% 96.44% 85.98%
40x 87.84% 87.9% 87.84% 97.97% 98.01% 87.55%

Table 10   Best performance in 
binary classification for each 
model

Model VIT CCT​ MVIT

Accuracy 98.64% 96.99% 97.52%
Precision 98.56% 97.81% 96.91%
Sensitivity 98.35% 97.81% 97.32%
Specificity 98.35% 95.2% 97.32%
AUC​ 99.47% 98.93% 99.69%
F1 score 98.45% 97.81% 97.11%
Best Magnification 400 ×  40 ×  200 × 
Total Training Time (s) 521.03 5796.42 3218.72
Avg. Training Time per Epoch (s) 6.51 64.40 35.76
Total parameters 36,376,521 407,107 1,488,722
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•	 Precision: Precision measures the proportion of true positive predictions out of all posi-
tive predictions made by the model. The ViT model exhibits the highest preci- sion 
at 98.56%, suggesting it has the lowest false positive rate and can make the most reli-
able positive predictions. The CCT model follows with a precision of 97.81%, and the 
MVIT model has the lowest precision at 96.91%.

•	 Sensitivity: This metric represents the proportion of true positive samples that are 
correctly identified by the model. The VIT model achieves the highest sensitivity at 
98.35%, indicating it can successfully detect the most positive samples. The CCT 
model has the second-highest sensitivity at 97.81%, outperforming the MVIT model at 
97.32%.

•	 Specificity: Specificity measures the proportion of true negative samples that are cor-
rectly identified by the model. The VIT model demonstrates the highest speci- ficity at 
98.35%, meaning it can accurately detect negative samples. The MVIT model has the 
second-highest specificity at 97.32%, while the CCT model has the lowest specificity at 
95.2%.

•	 AUC: The Area Under the Receiver Operating Characteristic (ROC) Curve is a com-
prehensive performance metric that measures the overall discriminative ability of the 
model. The MVIT model has the highest AUC at 99.69%, suggesting it has the best 
trade-off between true positive rate and false positive rate among the three models. The 
VIT model follows with an AUC of 99.47%, and the CCT model has the lowest AUC at 
98.93%.

•	 F1-score: The F1-score is the harmonic mean of precision and sensitivity, providing 
a balanced evaluation of the model’s performance. The ViT model demonstrates the 
highest F1-score at 98.45%, indicating a good balance between precision and recall. 
The CCT model also exhibits a high F1-score of 97.81%, outperforming the MVIT 
model at 97.11%.

•	 Total Training Time: The total training time metric provides insights into the compu-
tational efficiency of the models. The VIT model has the shortest total training time at 
521.03 s, suggesting it is the most computationally efficient among the three models. 
The MVIT model has the second-shortest total training time at 3218.72  s, while the 
CCT model has the longest total training time at 5796.42 s.

•	 Average Training Time per Epoch: The average training time per epoch metric reflects 
the convergence speed of the models during the training process. The VIT model has 
the shortest average training time per epoch at 6.51  s, indicating it converges faster 
compared to the CCT model at 64.40 s and the MVIT model at 35.76 s.

•	 Total Parameters: The total parameters metric represents the complexity of the models. 
The CCT model has the fewest total parameters at 407,107 suggesting a more compact 
and efficient architecture compared to the ViT model with 36,376,521 parameters and 
the MVIT model with 1,488,722 parameters.

Figure 6 illustrates the confusion matrices for binary classification at 400 × mag- nifi-
cation. The high number of true positives (TP: 245) and true negatives (TN: 118) in the 
ViT model indicates its superior performance in distinguishing between malig- nant and 
benign samples. MobileVIT also performs well, with (TP: 238) true positives and (TN: 
101) true negatives. Conversely, the CCT model shows a higher number of false posi-
tives (FP: 17), suggesting that it may be more prone to misclassifying benign samples as 
malignant.
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Figure  7 presents the confusion matrices for binary classification at 200 × magni- fication 
using the VIT, MobileVIT, and CCT models. The VIT model continues to exhibit excellent 
performance, with a high number of true positives (TP: 273) and true negatives (TN: 124), 
indicating its ability to accurately classify both malignant and benign samples at this magnification 
level. The MobileVIT model also demonstrates strong results, with (TP: 272) true positives and 
(TN: 121) true negatives, although it has slightly more false positives (FP: 4) and false negatives 
(FN: 6) compared to the VIT model. In contrast, the CCT model shows a higher tendency toward 
misclassifi- cation, with (FP: 16) false positives, suggesting it may be more prone to incorrectly 
labeling benign samples as malignant, and it has (FN: 12) false negatives, indicating a higher 
rate of misclassifying malignant samples as benign compared to VIT and MVIT models at this 
magnification level.

Figure 8 illustrates the confusion matrices for binary classification at 100 × mag- nification 
using three different models: VIT, MobileVIT, and CCT. The VIT model demonstrates 
exceptional performance, with a high number of true positives (TP: 282) and true negatives 
(TN: 128), indicating its effectiveness in accurately classifying both malignant and benign 
samples at this magnification level. The MobileVIT model also exhibits promising results, 
with (TP: 277) true positives and (TN: 123) true negatives, albeit with slightly more false 

Fig. 6   The confusion matrices for classifying benign and malignant cancer types using VIT, and Mobi-
leVIT, and the CCT model, applied to the Brekhis images dataset at a 400 × magnification

Fig. 7   The confusion matrices for classifying benign and malignant cancer types using VIT, and Mobi-
leVIT, and the CCT model, applied to the Brekhis images dataset at a 200 × magnification

Fig. 8   The confusion matrices for classifying benign and malignant cancer types using VIT, and Mobi-
leVIT, and the CCT model, applied to the Brekhis images dataset at a 100 × magnification
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positives (FP: 13) and false negatives (FN: 16) com- pared to the VIT model. However, the 
CCT model shows a higher tendency toward misclassification, with (FP: 23) false positives, 
suggesting it may be more prone to incorrectly labeling benign samples as malignant, and it 
has (FN: 19) false negatives, indicating a higher rate of misclassifying malignant samples as 
benign compared to the other two models.

Figure 9 presents the confusion matrices for binary classification at 40 × magni- fication. 
The VIT model continues to demonstrate strong performance, with a high number of true pos-
itives (TP: 269) and true negatives (TN: 117), indicating its ability to accurately classify both 
malignant and benign samples at this magnification level. The MobileVIT model also exhibits 
promising results, with (TP: 266) true positives and (TN: 112) true negatives, although it has 
slightly more false positives (FP: 13) and false negatives (FN: 8) compared to the VIT model. 
In contrast, the CCT model shows a higher tendency toward misclassification, with (FP: 6) 
false positives and (FN: 6) false negatives, suggesting it may struggle more with accurately 
classifying samples at this magnification level compared to the other two models.

Figure 10 shows the ROC curves representing the best performance of each model for 
classifying benign and malignant subtypes. A comparison of these ROC curves shows 
that our Vit Proposed model yields good classification performance (Benign = 99% 
Malignant 99%). Additionally, using the transformer-based convolution CCT model also 
delivers a significant classification performance (Benign = 98% Malignant 99%). However, 
the classification performance is higher substantially improved in the MVIT model with 
(Benign = 100% Malignant 100%).

3.6.2 � Multi classification

Table 11 shows the best performances of three different models (VIT, CCT and MVIT) for 
a multi classification task.

Fig. 9   The confusion matrices for classifying benign and malignant cancer types using VIT, and Mobi-
leVIT, and the CCT model, applied to the Brekhis images dataset at a 40 × magnification

Fig. 10   Illustration of ROC curves of Vision transformers, Mobile vision transformers, and Compact vision 
transformer with best magnification level
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•	 Accuracy: The VIT model achieves the highest accuracy at 94.80%, indicating it has the best 
overall classification performance among the three models. The MVIT model follows closely 
with an accuracy of 87.84%, while the CCT model has the lowest accuracy at 84.60%.

•	 Precision: The VIT model exhibits the highest precision at 94.97%, suggesting it has 
the lowest false positive rate and can make the most reliable positive predictions. The 
MVIT model follows with a precision of 87.90%, and the CCT model has the lowest 
precision at 84.80%.

•	 Sensitivity: The VIT model achieves the highest sensitivity at 94.80%, indicating it can 
successfully detect the most positive samples across the multiple classes. The MVIT 
and CCT models both have a sensitivity of 87.84%, 84.63%, which is lower than the 
VIT model.

•	 Specificity: The VIT model demonstrates the highest specificity at 99.14%, meaning it 
can accurately detect negative samples. The MVIT model has the second-highest speci-
ficity at 97.97%, while the CCT model has the lowest specificity at 97.40%.

•	 F1-score: The VIT model achieves the highest F1-score at 94.79%, indicating a strong 
trade-off between precision and sensitivity. The MVIT model follows with an F1-score 
of 87.55%, and the CCT model has the lowest F1-score at 84.40%.

•	 Best Magnification: The Best Magnification column shows the optimal magnification 
level for each model. All three models have a Best Magnification of 40x.

Figure 11 illustrates the confusion matrices generated during the multi- classification 
task for distinguishing between adenosis (AD), ductal carcinoma (DU) fibroadenoma (FI), 
lobular carcinoma (LO), mucinous carcinoma (MU),), papillary carcinoma (PA), phyl-
lodes tumour (PH), tubular adenoma (TU) types respectively, at 400 × magnification. The 
VIT model demonstrates reasonably high accuracy across most classes, with notable true 

Table 11   Best performance in 
Multi classification for each 
model

Model VIT CCT​ MVIT

Accuracy 94.80% 84.60% 87.84%
Precision 94.97% 84.80% 87.90%
Sensitivity 94.80% 84.63% 87.84%
Specificity 99.14% 97.40% 97.97%
AUC​ 97.73% 97.1% 98.01%
F1 score 94.79% 84.4% 87.55%
Best Magnification 40x 40x 40x

Fig. 11   Confusion matrices at the 400 × magnification level of multi classification
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positives for adenosis, fibroadenoma, lobular carci- noma, and tubular adenoma. However, 
it struggles to distinguish ductal carcinoma from mucinous carcinoma and tubular ade-
noma. The MobileVIT model exhibits sim-ilar performance, with high true positives for 
fibroadenoma and tubular adenoma, but confuses ductal carcinoma with mucinous carci-
noma and phyllodes tumor. The CCT model tends to misclassify more samples across vari-
ous classes. While it cor- rectly identifies some fibroadenoma and tubular adenoma cases, 
it shows higher false positives for ductal carcinoma and phyllodes tumor, suggesting lower 
overall accuracy compared to the other two models for this multi classification task.

Figure 12 presents the confusion matrices for multi-class classification at 200 × magnification 
across the three models: VIT, MobileVIT, and CCT. The VIT model shows high true positives 
for adenosis and reasonably accurate classification of other classes like fibroadenoma and 
lobular carcinoma. However, it struggles with distin- guishing ductal carcinoma from mucinous 
carcinoma. The MobileVIT model exhibits similar performance, accurately classifying adenosis 
and fibroadenoma but confusing ductal carcinoma with mucinous carcinoma. The CCT model 
demonstrates lower over- all accuracy, with higher mis-classifications across multiple classes, 
suggesting it may be less effective at this magnification level for multi-class classification 
compared to VIT and MVIT models.

Figure  13 shows the confusion matrices for multi-class classification at 100 × mag- 
nification across the VIT, MobileVIT, and CCT models. The VIT model accurately classifies 
adenosis and fibroadenoma but struggles with ductal carcinoma, confusing it with mucinous 
carcinoma. MobileVIT performs similarly, correctly identifying adeno- sis and fibroadenoma 
but misclassifying ductal carcinoma as mucinous carcinoma. The CCT model Wexhibits 
lower overall accuracy, with higher mis-classifications across multiple classes, indicating 
potential challenges in distinguishing lesion types at this magnification level compared to the 
other models.

Fig. 12   Confusion matrices at the 200 × magnification level of multi classification

Fig. 13   Confusion matrices at the 100 × magnification level of multi classification
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Figure  14 displays the confusion matrices for multi-class classification at 40x mag- 
nification across the three models: VIT, MobileVIT, and CCT. The VIT model shows high 
accuracy in classifying adenosis and fibroadenoma, but confuses ductal carci- noma with 
mucinous carcinoma. MobileVIT performs well in identifying adenosis and fibroadenoma, 
but also misclassifies some ductal carcinoma cases as mucinous carcinoma. The CCT 
model exhibits lower overall performance, with higher mis- classifications across multiple 
classes, suggesting potential challenges in accurately distinguishing lesion types at this 
magnification level compared to the other two models.

Figure 15 shows the ROC curves representing the optimal performance of each model 
for the multi classification of breast cancer sub types.

Within this section, our focus centred on addressing the second research question, leading 
to the derivation of several insightful observations. Our analysis delved into the examination of 
confusion matrices generated during both binary and multi clas- sification tasks. Concurrently, 
we scrutinized the ROC curves presented in Fig.  10, for binary classification, and Fig.  15, 
for multi classification. Intriguingly, Our findings underscore the significance of integrating 
convolutional and transformer techniques within the MVIT and CCT models. Notably, while 
previous studies have predomi- nantly focused on binary classification and used different 
preprocessing techniques and training on pre-training models, our work delves into multi 
classification using the BreakHis dataset without preprocessing techniques and training from 
scratch. This approach allows our model to concentrate on specific regions, thereby enhancing 
its ability to capture crucial features from patches and ensure stable training. As a result, we 
achieve better performance with fewer parameters and basic augmentation, leading to lower 
computational complexity problem in the vision transformer model.

Fig. 14   Confusion matrices on the 40 × magnification level of Multi-classification

Fig. 15   Illustration of ROC curves of Vision transformers, Mobile vision transformers, and Compact vision 
transformer with best magnification level in multi classification
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3.7 � Experiment 3: RQ3. Should we consider transitioning to vision transformer 
models, or is it more prudent to continue with CNNs? as follows

In this section, our attention is directed towards addressing the third research ques- 
tion, encompassing two distinct parts. The first part involves a comprehensive analysis 
of results, drawing insights from the two previous research questions. Our objective is 
to integrate the VIT model against the CCT and MVIT models, providing a holis- tic 
understanding of how effective the amalgamation of transformer and convolution 
architectures is. The second part of our exploration seeks to evaluate whether the 
combined use of VIT and CNN architectures is a proposed approach. This assessment 
serves as a pivotal consideration in determining the feasibility of transforming vision 
transformer models.

The evaluation metrics presented in Table  10 offer a comprehensive overview of 
the performance assessment for the proposed models in binary classification tasks. 
The superior performance of the ViT model at the 400 × magnification level is remark- 
able. This suggests that the ViT architecture is particularly well suited to capturing the 
complex visual features and patterns present in high-resolution histopathological images, 
leveraging its powerful attention mechanism to discern subtle tumor-related signals. In 
contrast, the CCT model, while achieving competitive results at 40 × mag- nification, 
exhibited slower training time compared to the MobileViT and ViT models. That shows 
the convolution layers used in this model don’t show the same performance to capture 
the complex visual features and patterns present in high-resolution images like ViT. This 
trade-off between performance and training efficiency is an important consideration, as 
the ability to train models with limited computing resources is a cru- cial requirement 
for practical clinical deployment. On the other hand, the MobileViT model demonstrated 
the best performance at 200 × magnification, outperforming the CCT and close to the Vit 
model. This finding indicates that MobileViT combination of Depth-wise convolution 
2D layers and Swish as an activation function and atten- tion mechanisms is effective 
in extracting features from medium-resolution images while maintaining a more 
efficient and lightweight architecture than that of ViT. The differences in performance 
between different magnification levels highlight the impor- tance of evaluating model 
performance under various imaging conditions. The optimal model architecture may 
vary depending on the structure of the neural network and the available image resolution 
of the histopathological images.

Notably, the evaluation of the models in the multi-classification task, as shown in 
Table  11, reveals that all models achieved their best accuracy at the 40 × magnifica- 
tion level. The rationale for this observation can be attributed to the limited number 
of samples and lower resolution in other magnifications, resulting from the problem 
of limited data available for multi classification. This sparsity of data may not have 
provided enough information for models to effectively extract features from high- 
resolution magnifications. In this context, the results suggest that both CNNs and ViTs 
have limitations in analyzing complex medical data, particularly in multi-classification 
tasks when the number of samples is limited. The performance of these models 
appears to be constrained by insufficient training data, which hinders their ability to 
capture the intricate visual patterns and subtle cues present in the high-resolution 
histopathological images.
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3.8 � Experiment 4: Models development and implementation for real‑world clinical 
settings.

Explainable artificial intelligence (EXAI) is a technique for AI-enabled diagnosis and anal-
ysis, enabling result tracing and model improvement in healthcare through feature extrac-
tion for model explainability and interpretability. EXAI provides a framework to under-
stand and predict the behavior of ML/DL models. It finds applications in var- ious domains, 
including clinical support systems, disease detection and classification, medical image seg-
mentation, and robotic-assisted surgery in healthcare [46]. Assess- ing the generalizability 
and applicability of EXAI and these deep learning models in real-world clinical settings 
is crucial for their successful adoption and implementation in healthcare tasks. Validating 
their ability to provide accurate decisions in practical clinical environments is essential for 
realizing the potential of these models to improve patient care and decision-making [47]. 
One of the main interests in computer health diagnosis is the”Internet of Medical Things” 
(IoMT). The IoMT encompasses all elements of healthcare-related objects, sensors, and 
devices. It allows for remote mon- itoring and treatment of patients through the intercon-
nection of intelligent devices and applications that gather, transmit, and analyze medical 
data and signals without human involvement. The Internet of Medical Things (IoMT) is a 
subset of the Inter- net of Things (IoT) that specifically deals with the integration and inter-
operability of medical equipment [48]. Moreover, it offers exceptional prospects for gather-
ing, exam- ining, and sharing medical data, revolutionizing the provision of healthcare ser-
vices. Medical care has become more individualized and precise in the Internet of Medical 
Things (IoMT) age. The integration of hardware accelerators like field-programmable gate 
arrays (FPGAs) or application-specific integrated circuits (ASICs) tailored for efficient 
inference could mitigate the computational resource constraints in clinical settings based 
on IoMT. To this end, we developed a web interface using the Gra- dio platform, which 
enables seamless integration and evaluation of our trained Vision Transformer model in a 
real-world clinical environment, as shown in Fig. 16. The main concept behind this inter-
face is to provide an easy-to-use platform for pathol- ogists to analyze breast cancer histo-
pathology images and obtain relevant diagnostic information. The interface workflow is as 
follows:

•	 The pathologist-user uploads a test image of a breast tissue sample.
•	 The trained Vision Transformer model analyzes the uploaded image.
•	 The model predicts the class of breast tumor present in the image.
•	 The prediction results are presented in two forms: Predicted Class: This indicates the 

specific subtype of breast cancer from the eight classes the model was trained on. 
Tumor Type: This classifies the tumor as either benign or malignant class.

•	 Finaly,the user can download a medical report in a text file format, which includes the 
Image ID, Predicted Class, and Tumor Type, providing a comprehensive summary of 
the analysis.

Currently, the growing prevalence of the Internet of Medical Things (IoMT) environ- 
ment can be primarily attributed to its effective data management, remote patient monitor-
ing, and the integration of networked medical devices (NMDs) for facili- tating informed 
decision-making and supporting pathologists in the diagnosis and management of breast 
cancer.



	 Multimedia Tools and Applications

1 3

4 � Discussion

In this study, we explored how ensemble vision transformer models, VIT, CCT, and 
MVIT, can be used to effectively classify breast cancer from histopathological images 
at different magnifications (40 × , 100 × , 200 × , and 400 ×), for binary and multi classi- 
fication of breast cancer subtypes. Our experiments show that the VIT model achieves 
a binary classification accuracy of 98.64% with a training time of 521.03 s. To enhance 
this approach, we introduce ViT-based convolution models lightweight MobileVIT and 
CCT, which achieve test accuracies of 97.52% and 96.99%, respectively, with training 
times of 3218.72 and 5796.42  s, respectively. In multi classification tasks, the VIT 
model demonstrates notable proficiency with an accuracy of 94.80%, highlighting its 
effectiveness in accurately classifying instances across mul- tiple classes. However, the 
lightweight MobileVIT and CCT systems achieve slightly lower accuracies of 87.84% 
and 84.63%, respectively. Comparative analysis reveals insights into the strengths and 
weaknesses of each model in multi classification tasks. Our research suggests that vision 
transformer models benefit from the integration of convolution blocks. The combination 
allows for the acquisition of global informa- tion from convolution layers and thorough 
feature analysis in each patch through the deep self-attention mechanism. The proposed 
self-attention ViT outperforms the CCT and MobileViT models due to its smaller 
14 × 14 patch size. This smaller patch size enables the transformer encoder’s attention 
mechanism to extract features from patch pixels to operate more efficiently. Empirical 

Fig. 16   Web Interface of breast cancer Image Classification
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experiments demonstrated that the selected patch sizes provided an optimal trade-off 
between performance and compu- tational efficiency for each model architecture. The 
16 × 16 patch size used in CCT and MobileViT allowed efficient feature extraction 
while maintaining high accuracy. However, the 14 × 14 patch size in the adapted ViT 
model, combined with its 8 lay- ers and higher number of parameters (36,376,521), 
leveraged the attention mechanism more effectively to capture intricate details, leading 
to improved overall performance. The selection of patch size aimed to strike a balance 
between computational efficiency and model performance. Smaller patch sizes, such as 
14 × 14, increase the number of patches, potentially enhancing the capture of features 
details but also increasing com- putational complexity. Conversely, larger patch sizes 
like 16 × 16 reduce the number of patches, which may sacrifice some detail but improve 
computational efficiency.

Despite its superior performance, ViT has several drawbacks, such as being data 
intensive and computationally expensive due to its large architecture and large num- ber 
of parameters (36,376,521). MVIT and CCT, on the other hand, training with 1,488,722, 
and 407,107 parameters is less computationally complex than training with VIT. It also 
shows promising results in merging convolution layers with the attention mechanism. 
However, further performance improvement is needed to reduce training time and 
improve the accuracy of multi classification. One drawback of combining attention and 
convolution layers is the extended training time, as seen in the CCT model. To address 
this, we introduced the lightweight MobileVIT method, which substantially reduces the 
training time to 3218.72  s while achieving higher accuracy than CCT. The proposed 
lightweight MobileVIT method exhibited superior performance in terms of results and 
lower computational cost and achieved the same performance as the VIT and CCT 
models for breast tumor histopathology image clas- sification. The main reason for this 
difference in performance is its architecture, which was inspired by a lightweight CNN, 
3 × 3 Depthwise convolution 2D layer and Swish as an activation function, followed by 
MobileNetv2 blocks and Mobile-ViT blocks. Using this method, MobileViT achieves 
better performance with fewer parameters and basic augmentation, thereby providing 
less computational complexity, making it preferable when combined transformer and 
convolution layers.

Compared with previous studies, our approach yields significantly improved results, 
indicating the successful fusion of Vision Transformers (ViTs) and Convolutional 
Neu- ral Networks (CNNs) in identifying breast tumors in histopathological images 
using BreakHis dataset, especially in lightweight vision transformer models. First, 
when we compare our outcomes with studies [20–26], that were based on fea- ture 
extraction by CNN filters, preprocessing steps, and deep learning approaches that 
prevent overfitting (such as transfer learning, data augmentation, and SVM classifiers), 
it is evident that we had superior outcomes when training our models from scratch 
without preprocessing steps. Second, even when compared to studies [30], based on 
ViT models, our results surpass previous findings. The MaxVIT model, which was 
considered the best model in that study, achieved an accuracy of 91.57% and increased 
to 92.12% after fine-tuning with 8.83  h of training time and 79,213,918 number of 
parameters. In comparison, our outcomes exceed these results. We conducted a results 
comparative of our approach against models presented in previously published studies 
and observed that our method yielded the best performance results, as evidenced in 
Table 12. Finally, it is important to discuss the limitations of our proposed approach, 
as well as how these limitations might affect the ability to apply it successfully in 
practical clinical applications.
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•	 While though we used a powerful GPU for training the models, implementing these 
systems for practical applications in standard medical computer-aided diagnosis (CAD) 
tools may be challenging because such powerful computing resources are often una-
vailable in clinical environments. This limitation could potentially cause a decrease in 
real-time diagnostic accuracy when running the models on less capable hardware.

•	 Validate that the models are robust to various factors like image artifacts, noise, and 
variations in medical imaging protocols across different magnification levels is crucial 
for reliable real-time diagnosis using our proposed approach.

•	 While we used a sizeable BreakHis dataset, the imbalance in the number of benign and 
malignant samples at each magnification level, as shown in Table  2, created certain 
limitations, particularly for the task of classifying eight different subtypes of breast 
cancer. This imbalance could bias the model towards classifying malignant cases more 
accurately.

•	 The general evaluation of the confusion matrices for the multi-classification task, as 
shown in Figs. 11, 12, 13, and 14, revealed that the models exhibited a bias towards 
the malignant ductal carcinoma (DU) class. This can be explained by the high number 
of samples in this class compared to the limited number of samples in other classes, 
resulting from the lack of available data for the multi-classification task. When working 
with limited or imbalanced datasets, the models may struggle to generalize effectively, 
leading to overfitting and mis-predection.

The results of our proposed systems suggest that both convolutional neural networks 
(CNNs) and vision transformers (ViTs) have limitations in analyzing complex medical 
data, particularly for multi-classification tasks when the number of samples is limited.

5 � Conclusions

We have presented an ensemble of three vision transformer models based on self- attention 
and the attention-convolution approach for breast cancer classification using histopatho-
logical images from the BreaKHis dataset. The VIT model was superior at 400× magnifi-
cation. The MVIT and CCT models were superior at 200× 40× magnification, respectively 
without using any pre-processing image processes. Con- sequently, we found that the light-
weight Mobile vision transformer model provides superior performance with less compu-
tational complexity. Therefore, the promising results demonstrate that Vision Transformers 
are strong and better with CNN for building high-performing deep attention-convolution 
models in the medical image field. We summarize our experiments as follows:

•	 The transformer self attention model does not provide many advantages compared to 
CNNs because it is more complex.

•	 The hybrid attention convolution approach can offer a new approach that harnesses the 
benefits of both techniques in medical vision diagnosis.

•	 Lightweight attention convolution models present a promising solution for medical 
applications with limited training data and computational GPU resources.
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In conclusion, the findings of our research will serve as a foundation for future inves- 
tigations aimed at enhancing breast tumor type classification outcomes. This will contrib-
ute to the development of more precise Computer-Aided Diagnosis (CAD) systems for 
breast cancer. Future work will focus on several key areas:

•	 Real-time diagnostic interfaces: Explore the integration of user-friendly interfaces and 
software tools for real-time application of the models in clinical settings. We plan to 
deploy the models on embedded hardware like Raspberry Pi, NVIDIA Jetson Nano, 
and FPGAs for on-device inference and low-latency real-time analysis. These compact, 
low-power solutions can enable point-of-care diagnosis in resource-limited settings.

•	 Adaptability to other cancers: Investigate the adaptability of the proposed models to 
other cancers, such as lung and prostate cancers. This will involve retraining the mod-
els on new datasets and evaluating their performance across different cancer types, 
and extend the models to detect and classify cardiovascular conditions using imaging 
modalities like MRI, CT scans,mammography and echocardiograms.

•	 Reducing computational complexity: Investigate approaches such as model quantiza-
tion, pruning, and knowledge distillation to reduce the computational complexity and 
memory footprint of the proposed models, enabling their adaptation for use in mobile 
applications and enabling point-of-care diagnostics, especially in resource-limited set-
tings.

•	 Model refinement and clinical deployment: Further refine the model’s performance, 
integrate with electronic health record systems, and ultimately deploy in actual clinical 
settings under the supervision of healthcare professionals.

•	 Multi-view medical scan analysis: Consider different views of a medical scan image for 
a comprehensive final decision, taking into account other organs besides the breast.

•	 Dataset balancing and noise removal: Enhance the dataset by adding more databases, 
employing noise removal techniques, and leveraging diffusion models and GANs to 
synthesize realistic medical images for data augmentation. This can improve model 
performance, robustness, and generalization, while mitigating class imbalance and 
overfitting.

•	 Lightweight CNN-ViT models: Explore the integration of lightweight CNN-ViT 
(Convolutional Neural Network-Vision Transformer) models based on tokenization 
techniques and lightweight vision language models (LVLMs) for medical applications 
with limited training data and computational GPU resources.

By addressing these areas, we aim to advance the development and practical appli- cat-
ion of deep learning models in medical diagnostics, ultimately improving patient outcomes 
and supporting healthcare professionals in their decision-making processes.
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