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Abstract
In some real-world visual recognition tasks, instances are generated according to certain
standards, which should serve as references during instance recognition. In this paper, we
propose a template-centric representation learning (TCRL) framework that uses these stan-
dards as templates during recognition. The TCRL framework aims to learn a feature space
where each instance is closely centered around its own template and away from the other
templates. Within TCRL framework, we propose a template-centric objective function and a
template-centric LDA layer, comprising two concrete models TDCNN and TDLDA. Exper-
iments show that our method is superior to other traditional classification methods. The code
will be made public after acceptance.

Keywords Template-centric representation learning · Template-centric LDA · Deep
learning · Visual representation

1 Introduction

In some real-world visual recognition tasks, instances are generated according to certain
standards. For example, directional arrows in road lanes, whose recognition is crucial for
intelligent traffic systems [1, 2], must adhere strictly to national standards during their pro-
duction process. These standards can be seen as templates that can serve as references during
recognition as seen in Fig. 1. The instance should be recognized as the class that best matches
a specific template. Similar tasks include handwritten character recognition. When we learn
to write characters, we always use standard printed fonts as references, which should also
serve as templates for recognition.

In fact, there exists a classical visual recognition technique refered template matching [3–
5]. In template matching, the objective to identify instances of a given template image within
another image by applying thresholding to specific similarity metrics. The most commonly
usedmetric is the sum-square-difference; however, it is limited in its ability to handle transfor-
mations beyond 2D translations. While alternative metrics like normalized cross-correlation
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Fig. 1 Templates and their instances. (a) shows a standard road marking of direction arrow from the Chinese
National Standard, and its instances acquired from different perspectives. (b) shows a standard printed number
6, and its handwritten instances

are robust in terms of signal strength, they may struggle to accommodate the intricate varia-
tions present in real-world scenarios.

On the other hand, instances generated from an identical template can undergo signifi-
cant transformations during construction and acquisition. Let’s consider directional arrows
on road markings as an example. While the production of arrow markings must adhere to
national standards, variations often occur during acquisition due to differences in perspec-
tive. As depicted in Fig. 1, when we examine a standard directional template, its instances
within images can exhibit significant disparities. These variations may arise due to diverse
acquisition purposes; for instances, lower perspectives for self-driving applications, higher
perspective for intelligent traffic guidance, or traffic violation detection.

In this paper, we seek a feature transformation space where instance recognition can
be achieved through similarity-based template matching. To achieve this, we require that
the feature representation in this space satisfies the following conditions: each instance is
close to its own template and relatively distant from other templates. For this type of feature
transformation, the extensive research on linear discriminant analysis (LDA) can offer many
insights.

Based on these findings, we aim to find a feature spacewhere different instances from each
template are closely clustered around that template while being far from the other templates.
To obtain such a feature representation, we combine DCNNs and LDA extensively and
propose a template-centric feature representation learning framework.Within this framework,
we introduce two different network models. Our contributions can be summarized in three
aspects:

• We propose a framework for template-centric representation learning. The objective
function encourages the network to learn feature representations that have minimal intra-
class variation relative to the template and maximal inter-class differences.

• We introduce two network models, TDCNN and TDLDA. They conduct feature learning
at different levels. The TDCNN model directly performs feature learning on the output
of DCNNs, while the TDLDA model adds an LDA layer after DCNNs to further refine
feature learning.

• We formulize the intra-class and inter-class scattering for template-centric representation
learning, and integrate hard-negative mining of template matching.

2 Related work

Our main objective is to learn a meaningful representation of the data and, through metric
learning, better measure the differences and similarities between samples during the training

123



Multimedia Tools and Applications

process, enabling the handling of tasks such as classification and clustering. The success of
deep learning in recent years depends not only on the algorithms themselves but also on the
representation of the data. Representation learning, as a crucial concept in machine learn-
ing [6], focuses on how to effectively extract information from complex data, eliminating
irrelevant details to better capture the structure and information inherent in the data, forming
features.Representation learning primarily includes various approaches such as supervised,
unsupervised [7], self-supervised [8], and weakly supervised [9]. Supervised learning meth-
ods often acquire stronger feature information compared to other unsupervised methods. Our
work specifically concentrates on the classification problem of datasets derived from fixed
templates. We use the templates as labels for supervised training, allowing the original data
to undergo nonlinear transformations and become a better representation of the data.

Obtaining a better representation of the data will greatly assist us in subsequent classifi-
cation or clustering tasks. Traditional machine learning methods are limited when dealing
with raw data; they require feature engineering to process and extract features before clas-
sification or clustering tasks [10]. In recent years, with the development of deep learning,
we can directly learn higher-level representations of data in classification tasks. Commonly
used softmax loss and its variants have significantly contributed to the success of deep neural
networks in classification tasks [11, 12]. However, softmax loss places excessive empha-
sis on the correctness of classification, whereas we aim to obtain representations based on
template features. Methods involving metric distance learning [13, 14] or triplet loss [15]
have been employed to learn powerful representations. These approaches focus on capturing
meaningful relationships between data points, which is particularly valuable for our objective
of better representing data based on template features.

We draw inspiration from some supervised traditional metric learning methods such as
LDA. The original LDA aimed to seek a linear projection that makes the transformed features
more intra-class coherent and inter-class separated. Recent research has tended to combine
this idea with powerful deep convolutional neural networks (DCNNs). Dofer et al. [16] com-
bine the feature representation of DCNNs with the linear projection of LDA by maximizing
the smallest eigenvalues, obtaining a low-dimensional feature space representation through
end-to-end training. Peng et al. [17] based on the same idea of maximizing inter-class dis-
tancewhileminimizing intra-class distance, propose a new loss function to optimizeDCNNs,
which outperforms the cross-entropy loss function. Bartan et al. [18] extendLDAusing neural
networks, and find the optimal two-layer neural network that embeds data points to optimize
the same discrimination criterion. Chang [19] combines LDAand the space-folding operation
of deep feedforward neural networks to achieve better classification.

To obtain better template representations, TCRL seeks a transformation from a high-
dimensional feature space to a lower dimension, where instances can better match their
templates. In [20] Yan et al. designed a direct computation of the similarity distance with
the target for matching. In [21], Cao et al. minimize the sum of squared L2 norms between
the predicted and ground truth vectors to find an optimal mapping function, ensuring that the
estimates are as close as possible to the target values for all training images. Furthermore,
there exist other studies on matching strategies. In [22], Wang et al. extract sub-centroids
from training samples to represent class distributions. This method interprets classification
decisions by testing the proximity of test data in the feature space to these sub-centroids.
In [23], Wang et al. proposed an algorithm encourages image (instance) representations to
be equivariant to geometric transformations, thereby achieving more robust instance-query
matching.
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3 Methodology

Given a set of templates {T1, T2, · · · , TC }, there can exist several various instances that are
mutated fromeach template. Suppose there are Ni instances {I(i)

1 , I(i)
2 , · · · , I(i)

Ni
} for template

Ti , i = 1, 2, · · · ,C . Let x(i)
j = f (I(i)

j ,�) ∈ R
D×1, be the hidden feature representation

produced by DCNNs for instance I(i)
j , and ti = f (Ti ,�) ∈ R

D×1 for template Ti , where
f (xi ,�) is a non-linear function representing DCNNs, and � model parameters.

3.1 Framework for template-centric representation learning

Here, we draw upon the extensive research achievements of LDA and combine them with
the significant advantages of DCNNs for feature representation. This combination allows us
to achieve template-centric feature representation learning. We aim for the learning of the
feature space to adhere to the following two principles: (i) Each instance of a class should
cluster around its own template distribution, and (ii) it should be distant from other templates,
as shown in Fig. 2.

For principle (i), we measure it using the squared sum of the Euclidean distances from
each instance within a class to its own template, as shown in the following equation:

sW =
C∑

i=1

Ni∑

j=1

‖x(i)
j − ti‖22. (1)

For principle (ii), we incorporate the concept of hard negative mining and design the
equation as:

sB =
C∑

i=1

Ni∑

j=1

min
l �=i

‖x(i)
j − tl‖22. (2)

To achieve template matching, we seek to maximize sB while minimizing sW, and we
use Fisher’s criterion as the objective function for template-centric representation learning,

Fig. 2 TCRL principles. Each instance is closely centered around its own template and away from the other
templates
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which is a Rayleigh quotient to be maximized, denoted as TCRL objective:

J (�) = sB
sW

=

C∑
i=1

Ni∑
j=1

min
l �=i

‖x(i)
j − tl‖22

C∑
i=1

Ni∑
j=1

‖x(i)
j − ti‖22

. (3)

Within this framework of template-centric representation learning, we have designed two
different convolutional neural network models as shown in Fig. 3: (1) Directly adding our
objective function to the DCNNs, requiring the feature output of DCNNs to satisfy the
above two principles; (2) Adding an LDA layer after DCNNs, projecting the learned DCNNs
features through a linear transformation in a new space to enforce the constraints of the two
principles. These two models are referred to as TDCNN and TDLDA, respectively.

3.2 TDCNN

To implement the TCRL framework, the most direct approach is to append the objective
function (3) after the DCNNs and require that the output features satisfy the two princi-
ples, as shown in Fig. 3. In this case, optimizing the objective function (3) is equivalent to
minizing the following loss function (4). This optimization can be directly achieved using
back-propagation in an end-to-end manner.

lTDCNN(�) =

C∑
i=1

Ni∑
j=1

‖x(i)
j − ti‖22

C∑
i=1

Ni∑
j=1

min
l �=i

‖x(i)
j − tl‖22

. (4)

This design contrasts with the classic DCNNs classification methods based on Cross-
Entropy loss (CE-DCNN). CE-DCNN has the following two issues: (1) CE loss does not
explicitly control the ratio of inter-class distance to intra-class distance, which can lead to
inter-class distances even smaller than intra-class distances. (2) The classifier trained with
CE loss can only recognize fixed categories and cannot extend to unseen categories. TDCNN
has advantages in both of these aspects compared to CE-DCNN.

Once the model is trained, we can use it to recognize test instance x. Due to the learning
of feature representations that make instances cluster around their own template and stay

Fig. 3 TCRL framework. The TCRL framework aims to learn a feature representation that satisfies the two
principles. One simple implementation is to directly add the template-centric objective function to DCNNs
(without the dashed box), while another is to insert a TC-LDA layer after DCNNs
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far from the other templates, we can use nearest-neighbour for classification. That is, we
recognize x as the category of its closest template.

argmin
i

‖x − ti‖22. (5)

3.3 TDLDA

3.3.1 Design of the LDA layer

In this scenario, a template-centric LDA layer (TCLDA) is added after the DCNNs to perform
linear projection of features, as shown in Fig. 3.

For an instance with DCNNs feature x, the final output feature becomes W�x. Conse-
quently, the (1) for principle (i) becomes:

sW =
C∑

i=1

Ni∑

j=1

‖W�x(i)
j − W�ti‖22

=Tr(W�SWW), (6)

where we denote the scattering matrix as

SW =
C∑

i=1

Ni∑

j=1

(
x(i)
j − ti

)(
x(i)
j − ti

)�
. (7)

The difference of (6) lies in the center. The conventional within-class scattering matrix is
computed around their class means, while the template-centric scattering is computed around
the target template.

Due to the inclusion of TCLDA layer, the (2) for principle (ii) becomes:

sB =
C∑

i=1

Ni∑

j=1

‖W�x(i)
j − W�t

g(x(i)
j )

‖22

=Tr(W�SBW). (8)

Similarly, we denote the scattering matrix as

SB =
C∑

i=1

Ni∑

j=1

(
x(i)
j − t

g(x(i)
j )

)(
x(i)
j − t

g(x(i)
j )

)�
. (9)

where
g(x(i)

j ) = argmin
l �=i

‖x(i)
j − tl‖22. (10)

finds the nearest template from those not the target. The conventional between-class scattering
matrix is class-wise, and measures the scattering of two class mean vectors. While (8) is an
instance-to-templatematrix, andmeasures scattering of each instance around the nearest non-
target template.We call it min-neg scattering and validate its effectiveness in the experiments.
Then, Fisher’s criterion is employed as the objective function for TCLR, which is a Rayleigh
quotient (3) to be maximized. The objective function (3) for TCLR takes a specific form
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when using the TDLDA network structure, denoted as:

J (�,W) = sB
sW

= Tr(
W�SBW
W�SWW

). (11)

When � is fixed, it is easy to verify that the column vectors of optimal W are the eigen-
vectors of S−1

W SB corresponding to the C-1 eigenvalues. For more derivation details, please
refer to [24, 25].

3.3.2 Optimization target

When � is fixed,W has closed-form solution in the optimization of (11). In order to better
integrate LDA with deep learning, and optimize θ and W simultaneously, we need to refor-
mulate the optimization target. Assume vi is an eigenvector of matrix S−1

W SB and ei is the
corresponding eigenvalue. Each eigenvalue ei quantifies the separation degree of samples in
the direction of its corresponding vector vi . Therefore, to combine the TCLDA layer with
DCNNs, the optimization target should focus on individual eigenvalues. To avoid trivial solu-
tions, following the literature [16], we set the optimization target to maximize the smallest k
eigenvalues among all C-1 eigenvalues, as shown in the formula:

max
�

1

k

k∑

i=1

ei wi th{e1, · · · , ek} = {e j |e j < min{e1, · · · , eC−1} + ε}. (12)

This objective function ensures that the TDLDA model, which combines DCNNs and
LDA, can be trained in an end-to-endmanner. The intuitive interpretation of this optimization
objective is to learn the network parameters of DCNNs to obtain feature representations that
are as separable as possible in all dimensions.

3.3.3 Decision phase

After the model has been trained, we now describe how to use it for prediction. Assuming
there are Nt test samples, the features obtained after passsing through DCNNs are denote as
Xt = {x1, · · · ,xNt } ∈ R

D×Nt . For the linear projection matrix of the TCLDA layer, we use
all training samples to calculate it to obtain a stable estimate. Specifically, we calculate S−1

W SB
using the features obtained from all training samples after passing through DCNNs, and then
obtain its feature vectors to form the projectionmatrixW = {v1,v2, · · · ,vC−1} ∈ R

D×(C−1).
Assuming the mean vectors for each class of training samples after DCNNs are denoted as
mi , we can then obtain the matrix M = {m�

1 ,m�
2 , · · · ,m�

C } ∈ R
C×D . For the test samples

Xt , their distances relative to the linear decision hyperplanes are calculated as:

d = X�
t T

� − 1

2
diag(M T�), T = MWW� ∈ R

C×D. (13)

where, T represents the normal vectors of the decision hyperplanes. Finally, by applying the
logistic function and normalizing, we obtain the probabilities of the samples belonging to
each class and classify the samples into the class with the highest probability.

3.3.4 Hybrid center

When the instances mutated severely, it is hard to make them centered around the template.
We figure out another solution to adjust the projection center by a fraction of the class mean,
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and set it to
t′
i = (1 − α)mi + αti . (14)

Note that (14) is a weighted sum of the class mean and the template. With the definition
of the new center, the scattering matrices of (7) and (9) become

S′
W =

C∑

i=1

Ni∑

j=1

(
x(i)
j − t′

i

)(
x(i)
j − t′

i

)�
, (15)

S′
B =

C∑

i=1

Ni∑

j=1

(
x(i)
j − t′

g(x(i)
j )

)(
x(i)
j − t′

g(x(i)
j )

)�
, (16)

where g(x(i)
j ) finds the nearest negative center:

g(x(i)
j ) = argmin

l �=i
‖x(i)

j − t′
l‖22. (17)

When α takes 0, themi reduces to class mean that arises in the conventional LDA, and the
projection benefits classification.When α takes 1, themi becomes ti , and the projection aims
for template matching. The hybrid center of (14) helps the template matching by integrating
the class information. It is useful especially when the instances mutation is severe. We will
demonstrate its effectiveness with DCNNs in the experiments.

4 Experiments

4.1 Datasets

We assess the performance of our methods by experimenting on our arrow marking dataset
[26], MNIST [27], CIFAR-10 [28] and STL-10 [29].

The arrowmarking dataset contains a total number of 12,408 imageswith size of 450×600
pixels, which are manually generated from 11 categories of direction arrows present in
Chinese National Standards GB5768.3-2009 and GB51038-2015. The dataset is randomly
divided into train-val set with 9933 images, and test set with 2475 images.

MNIST,CIFAR-10 andSTL-10 are three standard benchmark datasets.MNIST is a bench-
mark dataset of handwritten numbers with a size of 28x28 from 0 to 9. The dataset includes
60000 images as a train-val set and 10000 images as a testing set. CIFAR-10 dataset, contain-
ing 60,000 color images across ten classes, has become a widely-used benchmark dataset in
the computer vision community. The dataset consists of 32x32 pixels natural images and we
divide it into 50000 train-val samples and 10000 test samples. STL-10 is a larger-scale dataset
which consisting of ten classes compared to CIFAR-10. Each class contain 500 images of
96x96 pixels, resulting in a total of 5000 images including 4000 images for train-val and
1000 images for test.

4.2 Experimental setting

Templates for datasets In the framework of TCRL, templates are needed as references. For
arrowmarking dataset, we use the direction arrow in ChineseNational Standards as templates
as shown in Fig. 4. For MNIST, we use standard printed fonts of digits as templates as shown
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Fig. 4 Standard direction arrow templates

in Fig. 5. We also test different printed fonts, such as SimSun, Arial, Times and so on. For
general image datasets without explicit templates, a randomly selected instance is set as the
template for its category as illustrated in Fig. 6(a) and (b).

DCNNs Architecture We choose Resnet18 [30] as our DCNNs backbone and make some
modifications to it. Different inputs are adjusted based on the specific datasets. Also dropout
layer is added to prevent overfitting and batch normalization is helped to increase convergence
speed during training. As depicted in Table 1, Model A applied to CIFAR-10 and arrow
marking dataset, while for MNIST, we choose Model B, and for STL-10, we choose Model C.

Other settings Batch size is set to 1024. The stochastic gradient descent is adopted with
an initial learning rate of 0.001, weight decay of 0.0005 and a momentum of 0.9. All of
the hyper-parameter in our method are tuned on validations set. We did not use any data
augmentation. The algorithms are implemented using PyTorch [31].

4.3 Results and analysis

Ablation study In order to validate the effect of each component in TCRL, we perform
ablation study on arrow dataset. Within the TCRL framework, we proposed two concrete
models TDCNN and TDLDA. Compared to TDCNN, TDLDA includes an extra TC-LDA
layer. As seen in Table 2, TDLDA performs better than TDCNN, proving the effectiveness
of the TC-LDA layer. In the TC-LDA layer, we proposed an instance-to-template scattering

Fig. 5 Templates of MNIST in different Fonts. (a) SimSun (b) KaiTi (c) Arial (d) Calibri (e) Times
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Fig. 6 Randomly selected templates from CIFAR-10 and STL-10

Table 1 Different DCNNs

Layer ModelA ModelB ModelC

Input 32x32 28x28 96x96

Conv1.x [3x3, 64]x1 [3x3, 64]x1 [3x3, 64]x1

BN BN-ReLu BN-ReLu BN-ReLu

pool_1 2x2 max pool stride 2 2x2 max pool stride 2 2x2 max pool stride 2

Conv2.x [3x3, 64]x2-Dropout [3x3, 64]x2 [3x3, 64]x2

Conv3.x [3x3, 128]x2-Dropout [3x3, 128]x2-Dropout [3x3, 128]x2-Dropout

Conv4.x [3x3, 256]x2-Dropout [3x3, 256]x2 [3x3, 256]x2-Dropout

Conv5.x [3x3, 512]x2-Dropout [3x3, 512]x2-Dropout [3x3, 512]x2-Dropout

pool_2 Global-avragepool [1x1] Global-avragepool [1x1] Global-avragepool [1x1]

FC 64 64 128

a BN: Batch Normalization
b ReLu: Rectified Linear Activation Function
c FC: Fully Connected Layer

Table 2 Ablation experiment min-neg hybrid-center top-1 score

TDLDA � � 99.96

� 99.88

� 99.84

TDCNN 99.76
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Table 3 Accuracy on benchmark
datasets with DCNNs

Method MNIST(%) CIFAR-10 (%) STL-10(%)

CE-DCNN 99.59 91.17 80.13

Triplet Loss [15] 99.65 90.96 79.79

Center+Softmax [11] 99.62 91.25 80.67

DLDA [16] 99.71 91.80 81.40

I2CS [17] 99.71 91.34 80.33

TDCNN 99.72 92.10 81.43

TDLDA 99.73 92.80 81.65

matrix with hard-negative mining (min-neg), and hybrid-center adjustment. The ablation
study in Table 2 shows their effectiveness.

Comparison with other methods We compare TCRL with other classification methods,
including DCNNs with Cross-Entropy loss (CE-DCNN), Triplet Loss [15], Center+Softmax
[11], DLDA [16], and I2CS [17]. Both models within TCRL framework outperform the
baselines on all of the datasets as shown in Table 3. In addition, TDLDA performs better than
TDCNN, demonstrating once again the effectiveness of the TC-LDA layer.

Following [22], we also tested several state-of-the-art backbones including both DCNNs
and transformer in TCRL. All of them yield promising results as shown in Table 4. DNC [22]
represents class distributions using sub-centroids derived from training samples, whereas
we use templates as centroids to represent class distributions. Thus we also compare TCRL
framework with DNC, and the results are comparable, as demonstrated in Table 5.

Visualization To analyze the reasons for the good performance, we visualize the learned
feature representation for test set of MNIST in Fig. 7. Compared to CE-DCNN, the feature
representation learned by TDLDA has greater inter-class variation and higher intra-class
compactness, and therefore has better discriminability.

Evaluationon template selection For the recognition of handwritten digits,we used printed
digits as templates. However, printed digits also have different fonts, such as SimSun, Arial,
Times, and so on.Another scenario is some general image datasetswithout obvious templates,
such as CIFAR-10 and STL-10. We previously used a random image from each class as the
template for that class. Since original LDA chooses the class mean as the projection center,
we can select the image instance closest to the class mean as the template and compare it with
random template. Please note that in this comparison, we used pure templates as the center
rather than hybrid centers, i.e., setting the α value to 1, which allows for a better comparis-
on of the effects of different templates. As can be seen from Table 6, there are only minor

Table 4 Test with different
backbones on CIFAR-10

Method Backbone Params top-1 top-5

Swin [32] Swin-T 105.47M 91.17 98.76

Swin+TDLDA 105.45M 92.19 98.85

ResNet [30] ResNet18 42.70M 91.77 98.44

ResNet+TDLDA 43.81M 92.10 98.67

ResNet [30] ResNet50 155.96M 95.57 99.16

Resnet+TDLDA 155.97M 95.68 99.52
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Table 5 Comparison with DNC
[22] on CIFAR-10

Method Backbone Params top-1

ResNet ResNet50 155.96M 95.57

DNC-ResNet 23.50M 95.78

ResNet+TDCNN 155.96M 95.61

Resnet+TDLDA 155.97M 95.68

Fig. 7 Illustration of featuer representation in TDCNN, TDLDA and Softmax Loss. (a) TDLDA feature
representation, (b) CE-DCNN feature representation

Table 6 Accuracy on different
fonts of numbers

Train Acc(%) Test Acc(%)

Airial 99.96 99.67

Calibri 99.97 99.65

Times 99.99 99.72

KaiTi 99.92 99.46

SimSun 99.90 99.44

We compare with different templates by using template-centric
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Table 7 Accuracy on choice of
different templates

Methods Train Acc(%) Test Acc(%)

STL-10 Ran 99.97 81.65

CM 99.96 81.63

CIFAR-10 Ran 99.98 92.80

CM 99.97 92.77

a Ran means choose random instance from dataset as a template
b CM means choose instances closest to the class mean as a template

differences in the recognition results when using different font types as templates, and good
recognition results can be obtained. For datasets such as CIFAR-10 and STL-10, randomly
selected templates are comparable to those with mean-specified templates in Table 7.

Detection of samples from unseen classes As we know, the linear discriminator, trained
using softmax loss and its variations, always assigns a label to any incoming samples. Conse-
quently, softmax loss is ineffective in addressing open-set problems, where incoming samples
may belong to unknown classes. However TCRL distinguishes whether a sample belongs to
an unseen class. To demonstrate this only digits 0 to 8 from the MNIST dataset were used
to train Model B. Then we visualize the feature representation in the training set which is
depicted in Fig. 8. As demonstrated in Fig. 8, each class boundary is clearly separated from
the boundaries of other classes, making it straightforward to distinguish samples of the digit
9, which was not encountered during training. There is anothe interesting phenomenon, the
digit 9 are nearest to the digit 6, 7 and 3, which shows that the network trained by TCRL have
learned some intrinsic invariants. All of this implies that TCRL is promising for handling
open-set problems.

Fig. 8 Feature representation with unseen classes
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Fig. 9 Arrow marking dataset from real-world

Real-word application potential In order to explore the potential of TCRL in various real-
world tasks, we first apply it to the recognition of actual road arrows. For each of the 11
types of road directional arrows, we collected 20 real images, totaling 220 images to form a
test set, as shown in the Fig. 9. Using the model trained on the synthesized arrow marking
dataset [26], we test on the actual road arrows, and achieve satisfactory results as presented
in the Table 8. This demonstrates the potential for practical applications in the field of road
arrow sign recognition.

Table 8 Top-1 classfication
accuracy on some real-world
datasets

Dataset Method Params top-1

AMD TDCNN 42.70M 92.70

TDLDA 42.71M 93.75

YFD citegross2005face TDCNN 42.69M 99.77

TDLDA 42.70M 99.80

a YFD means Yale Face Dataset
b AMD means Arrow Marking Dataset
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Fig. 10 The performance curve of the model for different values of k

To explore broader application domains, we conducted experiments of facial recognition
on the Yale Face Database(YFD) [33]. The YFD contains 165 images from 15 subject, and
there are 11 images of each subject with different facial expressions or configurations. The
robust results obtained in Table 8 therein underscore the promising prospects for extending
our model’s applicability into domains such as facial recognition.

Study of hyperparameters TCRL has two hyperparameters ε and α, whose values are
determined through cross-validation on a validation set in above experiments. We now study
the sensitivity of TCRL to these two hyperparameters. The variation of hyperparameter ε

directly affects the value of k, as shown in the optimization (12). We compared the results
under different values of k.As shown in the Fig. 10, it has a significant impact on the per-
formance of the model. In practical applications, we recommend using cross-validation to

Table 9 Choice of hybrid center
α on arrow marking dataset

Hybrid Center Train Acc Test Acc

α=0.1 99.9 99.36

α=0.3 100 99.76

α=0.5 100 99.76

α=0.7 99.9 99.38

α=0.9 99.28 99.19

M_center 99.91 99.36

T_center 99.34 99.19

a M_center means mean center where α=0
a T_center means template center where α=1
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determine the optimal value of k. As for the hyperparameter α, we tested various possible
values in Table 9. The variation of hyperparameter α has little effect on the performance of
the model, indicating that TCRL exhibits strong robustness to this hyperparameter.

5 Conclusion

Inspired by the existence of templates in real-word recognition tasks, we propose a template-
centric representation learning framework in this paper. The framework aims to learn a
feature representation that makes each instance closely centered around its own template and
away from other templates. We propose a template-centric representation learning objective
function and a template-centric LDA layer, which can be combined with DCNNs learning in
an end-to-end manner. Moreover, we explore various ways of constructing templates.
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10. Kaya M, Bilge HŞ (2019) Deep metric learning: a survey. Symmetry 11(9):1066
11. WenY,ZhangK, Li Z,QiaoY (2016)Adiscriminative feature learning approach for deep face recognition.

In: Computer Vision – ECCV 2016, pp 499–515
12. Liu W, Wen Y, Yu Z, Yang M (2016) Large-margin softmax loss for convolutional neural networks.

Preprint arXiv:1612.02295
13. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and

clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–
823

123

https://doi.org/10.1109/ITSC.2015.310
https://doi.org/10.1002/9780470744055
http://arxiv.org/abs/2308.01578
http://arxiv.org/abs/1612.02295


Multimedia Tools and Applications

14. Weinberger KQ, Saul LK (2009) Distancemetric learning for largemargin nearest neighbor classification.
J Mach Learn Res 10(2)

15. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and
clustering. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 815–823.
https://doi.org/10.1109/CVPR.2015.7298682

16. Dorfer M, Kelz R, Widmer G (2016) Deep linear discriminant analysis. In: Bengio Y, LeCun Y (eds)
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings

17. PengH,YuS (2021)Beyond softmax loss: Intra-concentration and inter-separability loss for classification.
Neurocomputing 438:155–164

18. Bartan B, Pilanci M (2022) Neural fisher discriminant analysis: optimal neural network embeddings in
polynomial time. In: International conference on machine learning, pp 1647–1663. PMLR

19. ChangC-C (2023) Fisher’s linear discriminant analysis with space-folding operations. IEEETrans Pattern
Anal Mach Intell

20. Yan L, Wang Q, Ma S, Wang J, Yu C (2023) Solve the puzzle of instance segmentation in videos:
a weakly supervised framework with spatio-temporal collaboration. IEEE Trans Circuits Syst Video
Technol 33(1):393–406. https://doi.org/10.1109/TCSVT.2022.3202574

21. Cao Z, Chu Z, Liu D, Chen Y (2020) A vector-based representation to enhance head pose estimation
22. Wang W, Han C, Zhou T, Liu D (2023) Visual recognition with deep nearest centroids. In: The eleventh

international conference on learning representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net, ???

23. Wang W, Liang J, Liu D (2022) Learning equivariant segmentation with instance-unique querying. Adv
Neural Inf Process Syst 35:12826–12840

24. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press
25. Boroujeni FR, Wang S, Li Z, West N, Stantic B, Yao L, Long G (2018) Trace ratio optimization with

feature correlation mining for multiclass discriminant analysis. In: Proceedings of the thirty-second aaai
conference on artificial intelligence, New Orleans, Louisiana, USA, February 2-7, pp 2746–2753

26. Wang L, Liu Q (2022) Discriminant distance template matching for image recognition. Mach Vis Appl
33(6):91

27. LeCun Y (1998) The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/
28. Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. UnpublishedManuscript

40(7):1–9
29. Coates A, Ng A, Lee H (2011) An analysis of single-layer networks in unsupervised feature learning. In:

Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 215–223.
JMLR Workshop and Conference Proceedings

30. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 770–778

31. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L
et al (2019) Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process
Syst 32

32. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical
vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on
computer vision, pp 10012–10022

33. Gross R (2005) Face databases. Handbook of face recognition, 301–327

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/TCSVT.2022.3202574
http://yann.lecun.com/exdb/mnist/

	Template-centric deep linear discriminant analysis for visual representation
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Framework for template-centric representation learning
	3.2 TDCNN
	3.3 TDLDA
	3.3.1 Design of the LDA layer
	3.3.2 Optimization target
	3.3.3 Decision phase
	3.3.4 Hybrid center


	4 Experiments
	4.1 Datasets
	4.2 Experimental setting
	4.3 Results and analysis

	5 Conclusion
	Acknowledgements
	References


