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Abstract
Attention deficit hyperactivity disorder (ADHD) is a critical neurodevelopmental disorder 
that needs to be diagnosed and treated early to lower the risk of related health issues. This 
research study uses a machine-learning (ML) classification model to provide a computer-
aided diagnosis method for ADHD subtypes namely ADHD-inattentive and ADHD-com-
bined. The brain tissue volume and phenotypic information of the children are used to train 
the ML classification model. The grey matter and white matter brain tissues are segmented 
from T1-weighted brain MRI of children using a modified fuzzy c-means clustering algo-
rithm. A novel thresholding and pixel-based volume calculation method generates volume 
for segmented tissues. The highest accuracy of 92.98% is achieved for classifying ADHD 
subtypes and typically developing (TD) with Extreme Gradient Boosting (XGBoost) clas-
sifier among the other ML classifiers. An interpretative approach provides the insight of 
the classification model and it predicts that medication status, intelligence quotient, gender, 
and grey matter volume that are used in this research are the key factors in distinguishing 
between ADHD subtypes and TD individuals. In conclusion, T1-weighted MRI brain tis-
sue volume of children can help healthcare providers diagnose ADHD and its subtypes 
along with the symptom-based diagnosis.

Keywords Attention deficit hyperactivity disorder · Brain tissue volume · Segmentation · 
Machine learning · Magnetic resonance imaging · Shapley additive explanations

1 Introduction

Children are greatly affected by the brain disorder known as Attention Deficit Hyper-
activity Disorder (ADHD) and it has significantly increased in recent years. The preva-
lence of ADHD in children of ages 3 to 12 is 7.6% and in teen of ages 12 to 18 is 5.6% 
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[1]. This disorder is a consistent pattern of impulsiveness, hyperactivity, and distrac-
tion that hinders normal functioning and development in the individual. It is categorized 
into three subtypes based on the Diagnostic and Statistical Manual of Mental Disorders 
[2]. Firstly, the predominantly inattentive (ADHD-I) subtype is primarily characterized 
by symptoms of inattention. Such individuals may appear to be daydreaming or forget-
ful and often have difficulty completing tasks or activities. Secondly, the predominantly 
hyperactive-impulsive (ADHD-H) subtype is primarily characterized by symptoms of 
hyperactivity and impulsivity. This type of child may engage in impulsive behaviors 
without considering the consequences. Finally, the combined (ADHD-C) subtype is 
characterized by inattention and hyperactivity/impulsivity symptoms. Individuals with 
ADHD-C exhibit a combination of the symptoms seen in the predominantly inattentive 
and predominantly hyperactive-impulsive. Using the ICD-10-CM, the 10th revision of 
the international classification of diseases, the ADHD subtype has two more categories 
known as unspecified type and other types along with the three subtypes [3].

ADHD individuals can exhibit varying degrees of symptom severity and impair-
ment. The symptoms appear in a variety of contexts, including at school, work, and 
home which interferes with functioning to meet the diagnostic criteria for ADHD [4, 
5]. Diagnosis and treatment of ADHD involve a complete assessment by a healthcare 
professional, who considers symptoms, history, and other appropriate factors. Individu-
als with ADHD can control their symptoms and improve their quality of life through a 
variety of intrusions, such as medication, behavioral therapy, and educational support 
[6, 7]. Symptoms have been the basis for the diagnosis of ADHD presently, which can 
change over time. Therefore, researchers are motivated to use brain imaging techniques 
to investigate such neurodevelopmental disorders. Recently, the investigation of brain-
related disorders has made excessive use of non-invasive imaging modalities [8–11]. 
The most widely used technique for neuroimaging analyses is magnetic resonance imag-
ing (MRI) as it provides scans with more details compared to other imaging techniques 
[12]. The important tissues in brain MRI are grey matter (GM) and white matter (WM) 
which play important roles in brain function [13]. Both tissues can contribute to the 
understanding of ADHD. However, GM is often the focus of research for ADHD.

GM consists of neuronal cell bodies and is involved in information processing, cog-
nition, and decision-making [14]. The primary signs of ADHD, like decreased attention, 
impulse control, and executive functioning, are associated with the functioning of spe-
cific brain regions predominantly composed of GM. Therefore, studying GM can pro-
vide insights into the specific brain regions involved in ADHD-related difficulties. GM 
undergoes significant developmental changes throughout childhood and adolescence. 
During brain development, there is a process called synaptic pruning, where unnec-
essary or weak connections are eliminated, leading to a decrease in GM volume [15]. 
Research suggests that individuals with ADHD may experience atypical development 
of GM, potentially contributing to the symptoms observed in the disorder. By studying 
GM development, researchers can gain insights into the neural underpinnings of ADHD 
during critical periods of brain maturation. GM regions are rich in neurotransmitter 
receptors that are crucial for proper neural communication. Neurotransmitters like dopa-
mine, norepinephrine, and serotonin are implicated in neurological disorders [16], and 
alterations in their receptors within GM regions may contribute to ADHD symptoms. 
Studying GM allows researchers to investigate the relationship between neurotransmit-
ter systems and ADHD. GM alterations, such as differences in volume or density, may 
be associated with cognitive and behavioral impairments in ADHD. Identifying struc-
tural abnormalities in specific GM regions can provide insights into the neurobiological 
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basis of the disorder and potentially contribute to our understanding of its underlying 
mechanisms [17, 18].

WM abnormalities, such as alterations in microstructure or integrity, have been observed 
in individuals with ADHD [19]. These abnormalities may affect the efficient communica-
tion between different brain regions, potentially contributing to ADHD symptoms. How-
ever, the analysis of WM abnormalities is more complex and needs imaging modalities like 
diffusion tensor imaging (DTI) [20]. This inspired the investigation of typically developing 
(TD) and ADHD subtypes using the volume of both GM and WM tissues.

The main contributions of the study are:

 i. To introduce a computer-assistant diagnosis method based on a machine learning 
(ML) classification model for ADHD subtypes using children’s MRI and phenotypic 
information to help healthcare providers.

 ii. Automatic segmentation of the important brain tissues is implemented based on fuzzy 
c-means (FCM) clustering and thresholding.

 iii. The volume of the important brain tissues is calculated without the usage of online 
available tools.

 iv. A novel sampling method is implemented to balance the classes of the dataset known 
as conditional oversampling.

 v. Finally, an interpretative solution utilizing Shapley additive explanations (SHAP) is 
performed on the efficient ML-based multiclass classification model to find the most 
important features responsible for TD and ADHD subtypes (ADHD-I and ADHD-C) 
classification.

This article contains the following sections: Section  2 outlines the existing research 
works in ML-based ADHD classification. Section  3 discusses the suggested segmen-
tation of brain tissues from brain MRI and the subsequent volume calculation. The ML 
approaches used to predict or classify ADHD subtypes are detailed in the same section. 
The study’s findings and discussions are outlined in Sections  4 and 5, respectively. The 
research study concludes with the future direction and findings.

2  Related work

Several studies have utilized ML models to classify individuals with ADHD and TD using 
various data modalities and features. Some of the important existing works in the years 
2019 to 2023 are discussed in the following:

The authors introduced a random forest (RF) method in [21] that achieved an accuracy 
of 0.82(±0.09). Here, genetic and positron emission tomography (PET) imaging are uti-
lized to differentiate between individuals with ADHD and healthy controls. This study is 
constrained by the lack of external validation and a small sample size of 38 participants. 
The authors examined three classifiers: Adaptive Boosting (AdaBoost), RF, and Support 
Vector Machine (SVM) [22]. Here, Electroencephalogram (EEG) signals are recorded for 
children while they do a cognitive task. The highest accuracy of 84% was achieved with 
AdaBoost. The research study [23] utilizes continuous performance test (CPT) data to clas-
sify ADHD, employing RF and neural networks as ML models. The RF method attained an 
accuracy of 87%. The study is limited to using only standard CPT variable samples from 
clinically referred children with diagnosed ADHD and little patient information. The deep 
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forest approach introduced [24] is a tree-based ensemble method. One-dimensional func-
tional connectivity and three-dimensional amplitude of low-frequency fluctuations features 
extracted from functional MRI (fMRI) data are utilized here. The Kennedy Krieger Insti-
tute (KKI) imaging site of the ADHD-200 dataset had the best accuracy of 82.73%. The 
authors in [25] suggested a categorized system for ADHD by the SVM method. The fMRI 
functional connectivity characteristic is used for classification, achieving an average maxi-
mum accuracy of 86.43% for the Peking-2 imaging site in the ADHD-200 dataset. Three 
objective formulations in this scheme are based on the L1-norm. A dual subspace classi-
fication technique utilizing functional connection is introduced in [26]. Binary hypothesis 
testing is conducted on the ADHD_200 dataset here. This study is limited by the robust-
ness of the parameter setting and the small sample size of children with ADHD. The author 
suggested classifying ADHD using the Naïve Bayes machine learning algorithm with 
structural MRI (sMRI) data [27]. The proposed approach attained an accuracy of 84%. The 
researchers in [28] utilized volumetric characteristics and cortical thickness obtained from 
sMRI in their research. ADHD had greater GM volume than TD individuals in fifteen brain 
areas. The decrease in cortical thickness occurred in 27 brain areas. Five classifiers were 
utilized, with radial-based SVM and linear SVM achieving the highest accuracy of 75%.

ADHD and TD classification is commonly carried out through the use of EEG, PET, 
and MRI with ML techniques. EEG provides the highest accuracy than other imaging 
modalities. But, EEG may induce seizures in children and PET is an invasive technique. 
Thus, MRI is the ideal imaging technique for children due to its safety and non-invasive-
ness. This study uses sMRI instead of fMRI because of the limited availability of fMRI 
in developing countries. Another significant limitation of the aforementioned study is the 
classification between ADHD and TD is addressed, but not for ADHD subtypes. Addition-
ally, research on ADHD subtypes is few and mainly involves the use of EEG and fMRI 
[29–31]. Therefore, the proposed research will use sMRI to classify ADHD subtypes.

3  Materials and methods

This research is mainly to classify ADHD subtypes and TD efficiently using phenotypic 
information and volume of brain tissues obtained from T1-weighted MRI or sMRI of chil-
dren. In this section, we have discussed the dataset, brain tissue segmentation, brain tissue 
volume calculation, important ML algorithms, and the SHAP explanation method. Fig-
ure 1 shows the flow of the study.

3.1  Data description

Brain scans of children with ADHD and TD are gathered from the ADHD-200 dataset. 
There are 947 T1-weighted MRI and resting-state fMRI in the dataset, among which 585 
are TD and 362 are ADHD subjects. In the collection of eight imaging sites, we worked 
on T1-weighted MRI of children obtained from Peking University (PKU), KKI, New York 
University Child Study Center (NYU), and Oregon Health Sciences University (OHSU) 
imaging sites only as they contained both TD and ADHD subtypes along with complete 
phenotypic information. In the chosen imaging sites, there are 578 subjects of which TD 
are 318, 165 are ADHD-C, 90 are ADHD-I, and 5 are ADHD-H. The subjects utilized for 
the study are detailed in Table 1.
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The dataset repository also made preprocessed images available online by three different 
teams such as Athena, Neuroimaging Analysis Kit (NIAK), and Burner [32]. In this study, the 
Athena pipeline based on AFNI and FSL software packages is used. This preprocessing pipeline 

Fig. 1  Pictorial representation of the proposed study flow
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starts with the removal of non-brain tissues [33]. Then, a non-linear wrap is done between the 
skull-stripped image and the Montreal Neurological Institute (MNI) space [34] using linear 
transform and a non-linear registration procedure [35, 36]. The skull removed brain images 
and smoothed by a 6 mm full width at half maximum (FWHM) Gaussian shared outputs in the 
repository as compressed NifTI files are used as inputs to the brain tissue segmentation.

3.2  Proposed brain tissue segmentation and volume calculation

In this study, the GM and WM tissues from the T1-weighted MRI of the brain are seg-
mented using a novel method which is the combination of the Modified fuzzy c-means 
(MFCM) clustering technique, elbow method, and thresholding. The shape of the 
T1-weighted MRI is (197, 233, 189) which is in NifTI format and is converted to 189 
slices of the two-dimensional image with shape (197, 233) for giving as input to the clus-
tering process. The MFCM technique [37] is a variation of the standard FCM clustering 
algorithm. FCM is an unsupervised clustering algorithm that assigns membership degrees 
to each data point, indicating the degree of belongingness to each cluster. Here, additional 
modifications are introduced to enhance the clustering process. The optimum number of 
clusters is set based on the elbow method (see Fig. 2) instead of using the random values 
which is one of the drawbacks of existing FCM-based segmentation. The elbow method 
[38] is used to find the optimal number of clusters by analyzing the within-cluster sum of 
squares (WCSS) value, which is calculated using (1).

Table 1  Description of subjects by site obtained from the ADHD-200 dataset

Imaging Site Gender Age range Medication status TD ADHD Total

Medica-
tion Naive

Not Medica-
tion Naïve

Not available

KKI Female 8–13 29 8 0 27 10 37
Male 8–13 39 7 0 34 12 46

NYU Female 7–18 61 3 12 51 25 76
Male 7–18 70 25 50 48 97 145

OHSU Female 7–12 29 2 5 25 11 36
Male 7–12 30 6 7 17 26 43

PKU Female 8–16 49 1 0 45 5 50
Male 8–17 119 25 0 71 73 144

Fig. 2  Process to choose the optimal number of cluster value
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Where distance(PiCj)2 is the sum of the squared distances between each data point 
and its centroid within cluster j. This distance can be calculated using a method known as 
Euclidean distance.

For segmenting brain tissues, the MFCM method uses spatial and grey-level interactions 
with the center pixel. To distinguish unreliable and reliable neighbors, the center pixels neigh-
boring pixels perform an adaptive local window filtering which results in a filtered image that 
is then constructed using newly generated intensity values derived from those reliable neigh-
bors. Then, the intensity histogram of the filtered image will be used to instantly cluster. Finally, 
thresholding is applied to extract the GM and WM from the clustered output brain image. The 
total pixels for the extracted GM and WM are calculated and the equivalent values in cubic cen-
timeters are estimated. Similarly, the volume of GM and WM is calculated in the frontal lobe 
of the subjects by cropping the segmented images. In addition to other phenotypic data that are 
already provided with the dataset, such as age, gender, full intelligence quotient (full IQ), and 
medication status for each subject, the following features are added: GM volume on the whole 
(GMV), GM volume in the frontal lobe (GMV_F), WM volume on the whole (WMV), and 
WM volume in the frontal lobe (WMV_F). The data frame with all these features is further 
trained with the ML algorithm. The steps involved in obtaining the brain tissue volume are pro-
vided in Algorithm 1. The mathematical equations involved in the segmentation and volume 
calculation of brain tissues are given in the following:

1. Deviation σk from the median value within Nk is given by (2),

Where xp is pixel p intensity level in Nk,xk is the intensity value of the median, nk is the 
count of pixels in Nk. When xp – xk is larger compared to σk then pixel p is unreliable and if 
lesser p is reliable.

2. Window weight coefficients, Ckp is given by (3),

Where Np represents the reliable neighboring set.

3. The spatial term (Ckp _ s) and grey level term (Ckp _ g) are defined by (4) and (5),

(1)WCSS =
∑
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distance
(
PiCj

)2
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)2
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Where dkp _ s is the spatial Euclidean distance calculated for pixels k and p, xk is the 
center pixel intensity, λg is the grey level effect factor, and σkp _ g is the intensity devia-
tion from the center pixel in Np.Ckp _ g.

4. The ξk gives the filtered intensity of the center pixel and it is calculated using (6),

5. Enhanced FCM (EnFCM) algorithm [39]:
The objective function (Js) is given by (7),

Where w is a weighting exponent, viis the ith cluster original value, uik is the fuzzy 
membership of the kth pixel in cluster I, and γk is the number of voxels from the whole 
stack of slices.

6. The parameters uik and vi values are found such that the Js is the lowest. Thus, the 
Lagrange multiplier can be used to rewrite (7) and it is given by (8),

Taking the derivative of Ls regarding uik and then vi, and also equating to 0, we get 
(9) and (10):

7. Using the threshold method, specific brain tissues can be extracted from T1-weighted 
MRI scans. Here, we may accurately extract the GM and WM tissues by selecting a 
threshold value (T) between 30 and 100. When T is taken below 30, we are unable to 
retrieve GM or WM pixels accurately; whereas, when T is taken above 100, no brain 
tissue pixels are retrieved.

 (i) To extract GM, we choose high intensity (i.e., x = 255) when x > T and x < 200, and 
otherwise x = 0
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 (ii) To extract WM, we choose high intensity (i.e., x = 255) when x > T and x > 150, and 
otherwise x = 0

8. Brain tissue volume is calculated from the obtained total pixels or voxels of extracted 
GM or WM. The volume of brain tissues is given by (11),

Where T is the total pixel of GM or WM and S is the slice thickness (S = 1.3  mm). 
The pixel-to-centimeter (cm) conversion is done with the condition, cm = T*(2.54/Dots Per 
Inch).

Algorithm 1 Algorithm of proposed brain tissue segmentation and volume calculation.

Read the preprocessed T1-weighted brain MRI

Initialize:
Number of clusters = 3 (based on the elbow method),
Fuzziness degree (m) = 2,
Number of iterations=100,
The threshold value for convergence (ε)=0.05,
Window size = 5×5, 
Neighbor effect = 2.15, and
Threshold (T)= 50

Ensure: Deviation from median value to find reliable and unreliable pixels is calculated using (2)

The window weighting coefficient is computed from (3), (4), and (5)

Apply the adaptive local window filter and obtain the filtered image

Count the filtered image’s intensity histogram using (6)

Cluster the filtered image based EnFCM algorithm’s intensity histogram using (8), (9), and (10)

Apply the threshold method for the clustered output image to get the grey matter and white matter tissues 

Calculate the total number of pixels for the tissues

For grey matter pixel calculation
start
if x>T and x<200, then
x=255
else
x=0
end
For white matter pixel calculation
start
if x>T and x>150, then
x=255
else
x=0
end
Obtain the brain tissue volume in cubic centimeters using (11)

3.3  Machine learning algorithms

ML algorithms are computational techniques that find the desired outputs from the inputs 
by learning relevant data. Recently, ensemble ML has been the preferred technique as the 

(11)Volume,V = T × S
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main goal is to combine a set of state-of-the-art ML models to achieve better performance 
and reliability [40].

Some important ML algorithms utilized in the research are discussed: Gaussian Naïve 
Bayes (GNB) is a probabilistic classifier that applies Bayes’ theorem under the assumption of 
feature independence. It is suitable for multiclass classification but it is constrained by issues 
like the zero frequency problem and potential errors in estimation under specific conditions. 
Bagging is an ensemble learning technique designed to enhance the stability and precision 
of machine learning systems. The process involves generating various subsets of the initial 
dataset using sampling with replacement, training individual base models on each subset, 
and combining their predictions to get a final prediction. The decision tree is typically the 
primary model employed here. Random Forest (RF) is an ensemble learning technique that 
leverages the power of many decision trees to attain high accuracy and flexibility in a variety 
of ML tasks. It is commonly utilized and appropriate for both classification and regression 
tasks. Extra Trees is a variation of RF that adds extra unpredictability throughout the tree con-
struction process. It is particularly useful when computational resources are limited, or when 
reduced variance and faster training times are desired. Gradient Boosting (GB), AdaBoost, 
and eXtreme Gradient Boosting (XGBoost) are ensemble learning methods that progressively 
merge weak learners to form a strong learner. Adaboost functions by iteratively training a 
sequence of weak learners on adaptively adjusted versions of the dataset. The algorithm gives 
more weight to misclassified instances, enabling succeeding weak learners to focus more on 
challenging cases. Each weak learner is trained on a subset of the data, and their predictions 
are combined using a weighted sum to obtain the final prediction. GB builds an ensemble 
of decision trees sequentially, with each tree learning to correct the mistakes of its predeces-
sors. It optimizes a loss function instead of instance weights like Adaboost. XGBoost is an 
optimized implementation of GB with several enhancements aimed at improving speed and 
performance. It employs a more regularized model formalization to control overfitting and 
has advanced features such as tree pruning, handling missing values, and parallel computing. 
Voting ensembles combine predictions from multiple independent models by taking a major-
ity vote for the classification task. The three models used are SVM, logistic regression, and 
decision tree. Each ML algorithm possesses unique strengths and is applicable in various situ-
ations. Therefore, it is crucial to test them out and select the one that aligns best with the par-
ticular problem and dataset.

3.4  Classification of ADHD subtypes using ML algorithms

In multiclass classification, the data preprocessing and balancing of the dataset are very sig-
nificant for the ML model to work efficiently. The basic data preprocessing of ML such as the 
removal of null values and outliers is done and then the sampling method is used to balance the 
dataset. The dataset now includes 489 subjects, of which 306 are for TD, 94 are for ADHD-
C, and 89 are for ADHD-I, following data preparation and the removal of the extremely rare 
ADHD-H subtype subjects. Then, the novel sampling method called conditional oversampling 
is applied. The oversampling is a data augmentation method used for dealing with imbalanced 
datasets. Firstly, the count of the samples for each class is calculated. Then, the highest count 
of the class is fixed as the threshold. Finally, the minority class is doubled or tripled to match 
the highest count of the sample. Following the data preprocessing and balancing of the data-
set, the total number of data has been augmented to 855, which is then given to the ML algo-
rithms. The parameters and hyperparameters of the proposed study are given in Table 2. Some 
of the important hyperparameters of the XGBoost classifier are varied. The learning_rate is 
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varied between 0.01 to 0.2, colsample_bytree and subsample is varied from 0.5 to 1, and max_
depth varied from 3 to 10. To determine the optimal values for hyperparameters, a grid search 
tuning method is performed over the specified ranges.

The efficient ML model is interpreted using Shapley additive explanations (SHAP) [41]. 
Shapley values are computed from coalitional game theory using the SHAP approach. It spec-
ifies the explanation given by (12),

Where g represents the explanation model, z′ ϵ {0, 1}M represents the coalition vector 
or simplified features, M represents the maximum coalition size, and ϕj ϵ R is the feature 
attribution for a feature j, the Shapley values.

To compute Shaley values, simulate some feature values present and some feature val-
ues absent. If all feature values are present, then (12) can be simplified and given by (13),

By calculating the contribution of each feature to the prediction, SHAP seeks to explain 
the prediction or classification of an instance or a class.

The experimental environment is a PC with 11th Gen Intel(R) Core(TM) i5-1135G7 
@ 2.40GHz, 2.42 GHz, 16.0 GB RAM, an operating system of 64-bit, and a processor of 
×64. The classification models were implemented using Python 3.10 software. The Python 
libraries used in the study are Scikit Learn, Seaborn, Matplotlib, NumPy, and Pandas. Fur-
ther, the SHAP version 0.42.1 was used for classification interpretation.

4  Results

The volume calculation of GM and WM is made using 189 segmented slices from the 
preprocessed T1-weighted MRI. Figure 3 depicts each step in the proposed segmentation 
for slice number 91. The input image (see Fig. 3(a)) is initially filtered using an adaptive 
local window filter which eliminates noise, outliers, and unnecessary blur to get the filtered 
image (see Fig. 3(b)). Then, the filtered image is divided into three clusters (see Fig. 3(c)): 
blue for GM, yellow for WM, and dark blue for the third cluster, which is for the cerebro-
spinal fluid and background. The needed tissue is then extracted from the clustered image 
using thresholding. The thresholded GM and WM from the clustered image are shown in 
Figs. 3(d) and 3(e).

4.1  Analysis of the TD and ADHD subtypes in children

The data analysis of the children in the age group of 7 to18 with ADHD-C, ADHD-I, and 
TD is performed based on eight features such as medication status, gender, full IQ meas-
ured by Wechsler abbreviated scale of intelligence (WASI), GMV, WMV, GMV_F, and 
WMV_F. From Fig. 4(a-d), we observe that there are no significant variations of brain tis-
sue volume between TD and ADHD but there is a variation among subtypes. On average, 

(12)g
(
z�
)
= �0 +

M∑
j=1

�jz
�
j

(13)g
(
z�
)
= �0 +

M∑
j=1
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we find that ADHD-I children’s GMV is 1.9% higher compared to ADHD-C children, 
the ADHD-C children’s WMV is 1.7% higher than ADHD-I children, and in the case of 
GMV__F of ADHD-I is 1.4% higher than ADHD-C children. The difference in average 
WMV_F is not signification among the subject diagnoses. Figure 4(e) shows that the full 
IQ of ADHD-I subjects is affected highly compared to ADHD-C subjects.

4.2  Analysis of the TD and ADHD subtypes with brain tissue volume based 
on medication status and gender

In statistics, the standard deviation is an important term. It is defined as a measure of the 
dispersion from the mean value and is given by (14),

Where σ represents the population standard deviation, n represents the number of sam-
ples in the population, xi represents ith observation in the population, and μ represents the 
population mean. The values of mean and standard deviation for the subject’s volume of 
brain tissues calculated are given in Tables 3 and 4.

From Table 3, the analysis of TD and ADHD subtypes can be done based on medica-
tion status. Children of ADHD-C have a greater average GMV compared to ADHD-I and 
TD for both medicated and non-medicated. However, we find that TD with medication has 
2.36% higher GMV than not-medicated children, and in the case of ADHD-C and ADHD-I 

(14)� =

√√√√1

n

n∑
i=1

(
xi − �

)2

Table 2  Parameters and hyperparameters of the proposed study

Train size 684

Test size 171
Random state 1
Cross-validation
Stratified K-Fold n_split: 20, random_state: 1, shuffle: True
ML classifiers
Bagging max_features: 8, n_estimators: 100, base_estimator: DecisionTreeClassifier()

random_state: 42, base_estimator__min_samples_leaf: 1,
base_estimator__min_samples_split: 2

RF n_estimators: 100, random_state: 42, min_samples_leaf: 1, min_samples_split: 2
Extra Trees n_estimators: 100, max_features: 8, random_state: 42, min_samples_leaf: 1, min_

samples_split: 2
AdaBoost n_estimators: 100, learning_rate: 1
GB n_estimators: 100, random state: 42, max_depth: 3, validation_fraction: 0.1, learn-

ing_rate: 0.1 subsample: 1.0, min_samples_leaf: 1, min_samples_split: 2
XGBoost objective: ‘multi:softprob’, booster: ‘gbtree’, colsample_bytree: 0.8, gamma: 0, learn-

ing_rate: 0.15, max_depth: 10, min_child_weight: 1, random_state: 42, subsample: 
0.5, seed: 1

Voting estimators: [(‘Logistic’, LogisticRegression(solver = ‘liblinear’)),
(‘Tree’, DecisionTreeClassifier()), (‘SVM’, SVC())],
voting: ‘hard’
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medicated children have approximately 2% lower GMV than not-medicated children. The 
WMV of ADHD-I medicated children on average was 1.7% higher compared to ADHD-C 
and 4.1% higher compared to TD children. There are no significant variations of GMV_F 
and WMV_F seen among the ADHD subtypes children.

From Table 4, children with ADHD subtypes are analyzed based on gender. The GMV 
on the whole in male ADHD-I children is 3.43% lower compared to children of female 
ADHD-I. However, in the case of ADHD-C males have 1.6% GMV lower than female 
children and TD male has 3% higher GMV than females. In male subjects, the GMV of 
ADHD-C is 3% higher than TD and 2.3% higher than ADHD-I. The WMV of ADHD-I 
male children is approximately 2% higher compared to ADHD-C and TD but, in female 
subjects, the WMV has no significant variation. There is no significant variation in 
GMV_F and WMV_F for both genders and among the classes or diagnoses.

4.3  Classification of TD and ADHD subtypes

A total of 85 subject records are removed due to null values and outliers. Then, we found 
that the ADHD-H subtype contained only 3 subjects. Hence, we limited our classification 
model to work on ADHD-C, ADHD-I, and TD. The dataset subjects increased to 918 sub-
jects after augmentation. These subjects with eight features were divided with a split of 
20% and 80% for testing and training datasets respectively. Accuracy (A), precision (P), 
recall (R), and f1-score (F) are the metrics used for evaluating the classification model [42].

Where, TPTD – predicted as TD for actual TD subjects, TNTD– predicted as not TD for 
not TD subjects i.e. addition of  TPADHD-C,  EADHD-I/ADHD-C,  EADHD-C/ADHD-I, and  TPADHD-I, 
 FPTD – predicted as not TD but TD subjects i.e.  EADHD-C/TD and  EADHD-I/TD,  FNTD – pre-
dicted as TD but not TD subjects i.e.  EADHD-C/TD and  EADHD-I/TD. The dataset has three 

(15)A =
TPTD + TNTD

TPTD + FPTD + TNTD + FNTD

(16)P =
TPTD

TPTD + FPTD

(17)R =
TPTD

TPTD + FNTD

(18)F =
2 × (P × R)

P + R

Fig. 3  (a) Input T1-weighted MRI (slice-91) (b) Filtered image (c) Clustered image (d) GM thresholded 
image (e) WM thresholded image
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Fig. 4  Analysis of subject diagnosis with (a) GMV in  cm3, (b) WMV in  cm3, (c) GMV_F in  cm3, (d) 
WMV_F in  cm3, and (e) Full IQ
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classes, so the multiclass classification approach is used. For TD, the performance met-
rics can be calculated using (15), (16), (17), (18) and the confusion matrix is shown in 
Fig. 5. Similarly, the metrics for ADHD-I and ADHD-C subjects are calculated. Table 5 
presents the values of the performance metrics acquired through the implementation of 
ML methods for classification. Here, the XGBoost is classifying the dataset with the high-
est model accuracy of 92.98%. The dataset used in the study is highly complex and has 
non-linear relationships between features and the target variable. Therefore, algorithms like 
GNB, GB, and Voting classifiers are not performing well. In Fig. 6, the confusion matrix 
obtained by the XGBoost classifier is shown.

Cross-validation is a crucial stage in the ML process that reduces the impact of data var-
iability and provides a more accurate estimate of the models’ performance, assisting in the 
development of strong, generalizable models. When choosing and evaluating models for 
implementation in the real world, cross-validation is an established procedure. An exten-
sion of the common cross-validation method, Stratified K-Fold (SKF) cross-validation [43] 
is applied in this study. The cross-validation score of each ML method is shown in Fig. 7. 
The highest cross-validation score of 0.9297 is attained by the XGBoost classifier.

By utilizing the SHAP for the effective classification model, the important features 
responsible are identified. Figure  8 shows the average impact of each feature on model 
output magnitude. Here, TD subjects belong to class 0, ADHD-C subjects belong to class 
1, and ADHD-I subjects belong to class 2. The age and medication status of the subjects 
have the highest impact on the classification of ADHD-I and TD respectively. The subject’s 
GMV, GMV_F, WMV_F, and medication status have major effects on the ADHD-C clas-
sification. Figure 9 illustrates the order of features from high to low value having an impact 
on the classification model. It indicates that the top four features by which ADHD subtypes 
and TD children are classified are medication status, full IQ, gender, and GMV.

5  Discussions

This work uses a novel method to generate brain tissue volume, and the computed volumes 
were combined with the subject’s phenotypic information. In previous research, toolboxes 
were used to analyze brain volume to distinguish between TD and ADHD. However, not all 
operating systems are supported by these toolboxes. Therefore, the volume of brain tissues 
is calculated in the proposed study using an algorithm. The average GM and WM vol-
umes of the subjects calculated are 856.0368cm3 and 557.9337cm3 respectively. We find 

Table 4  Volume of brain tissues based on gender

Gender Diagnosis Mean ± Standard deviation

GMV
(in cm3)

GMV_F
(in cm3)

WMV
(in cm3)

WMV_F
(in cm3)

Female TD 694.5558 ± 32.77269 273.3348 ± 16.28101 433.2136 ± 38.61925 139.9941 ± 12.54609
ADHD-C 706.0086 ± 42.92489 274.4694 ± 20.17957 430.0528 ± 35.12515 140.1458 ± 10.19224
ADHD-I 702.4973 ± 39.92387 279.3382 ± 17.39747 430.6523 ± 48.49486 140.7048 ± 15.46214

Male TD 673.6645 ± 47.1141 266.258 ± 19.21021 453.0657 ± 52.9375 145.8911 ± 16.5636
ADHD-C 694.7299 ± 43.97543 278.2614 ± 17.23729 452.2528 ± 54.20819 146.0432 ± 14.77271
ADHD-I 678.4155 ± 49.92904 272.624 ± 21.08711 463.3309 ± 52.18926 144.3756 ± 15.77525



Multimedia Tools and Applications 

1 3

that these values are similar to the values given in BIC Template Brain [44]. In most of 
the existing research [45–49], voxel-based morphometry (VBM) is used which is a com-
mon technique to analyze volumetric differences across the entire brain. Nevertheless, it 
is questioned because of potential confounds. In [50], the author has done an analysis of 
VBM and manual regions of interest. Here, they identified that VBM was correctly identi-
fying only a few brain regions. Also, suggested that both methods measure the same effects 

Fig. 5  Confusion matrix for TD, 
ADHD-C, and ADHD-I

TRUE CLASS

P
R

E
D

IC
T

E
D

C
L

A
S

S TD ADHD-C ADHD-I

TD TPTD EADHD-C/TD EADHD-I/TD

ADHD-C ETD/ADHD-C TPADHD-C EADHD-I/ADHD-C

ADHD-I ETD/ADHD-I EADHD-C/ADHD-I TPADHD-I

Table 5  Comparison of ML methods for ADHD subtypes and TD classification

Method Performance metrics Diagnosis Model Accuracy

TD ADHD-I ADHD-C

Random forest precision 0.9333 0.8573 0.9354 90.64%
recall 0.7636 1.0000 0.9508
f1-score 0.8400 0.9243 0.9430

Bagging precision 0.9333 0.8461 0.9508 90.64%
recall 0.7636 1.0000 0.9508
f1-score 0.8400 0.9166 0.9508

XGBoost precision 0.9387 0.9166 0.9355 92.98%
recall 0.8363 1.0000 0.9508
f1-score 0.8846 0.9565 0.9431

Adaboost precision 0.6406 0.6071 0.7058 64.91%
recall 0.7454 0.6181 0.5901
f1-score 0.6890 0.6126 0.6428

GB precision 0.8400 0.8474 0.8871 85.96%
recall 0.7636 0.9090 0.9016
f1-score 0.8000 0.8772 0.8943

Voting precision 0.4444 0.7894 0.9200 59.06%
recall 0.8727 0.5454 0.3770
f1-score 0.5889 0.6451 0.5349

GNB precision 0.5404 0.6059 0.4576 50.88%
recall 0.8526 0.4537 0.2621
f1-score 0.6615 0.5189 0.3333

Extra Trees precision 0.9361 0.9016 0.9206 91.81%
recall 0.8000 1.0000 0.9508
f1-score 0.8627 0.9482 0.9354
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concerning subcortical brain structures. This motivated us to make use of FCM-based seg-
mentation and calculate the volume of segmented brain tissues.

A few similar existing work contributions are discussed in the following: In [51], the brain 
volume was analyzed based on gender. They contributed that ADHD boys have reduced vol-
ume compared to TD boys while ADHD girls show higher volume compared to TD girls in 
the ventral anterior cingulate cortex. Here, the number of subjects used for the study was 60 
among which there were 27 TD and 33 ADHD-C children who weren’t taking medication. In 
[52], the authors compared children with ADHD, ASD, and TD based on the development 
coordination disorder questionnaire (DCDQ). Fifty-five children in the age groups of 8 to 
12 were included in this study. DCDQ scores are calculated using coordination, fine motor 
skills, handwriting, and movement control. The association between the DCDQ score and six 
regional volume abnormalities is explored within each group of children. They observed that 
in the group of people with ASD, the volume of the right medial frontal gyrus was related to 

Fig. 6  Confusion matrix obtained 
by the XGBoost Classifier

Fig. 7  Cross-validation score obtained by different ML methods applying SKF cross-validation
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coordination skills. In children with ADHD, the volume of the right superior frontal gyrus 
was correlated with the overall DCDQ score. In [53], the authors investigated T1 and T2 
weighted MRI of 27 healthy controls and 37 drug-free ADHD children. This study used a 
Pearson correlation analysis. The results show that the GM regions in children with ADHD 
have different brain structures from TD in the cerebellum, the attention and execution control 
network, and the limbic system. This study analyzed TD and ADHD subtypes of children’s 
brain volume based on medication status and gender.

The various ML methods were investigated and the efficient model was identified as 
XGBoost. The inference obtained after applying SHAP is that brain GMV, WMV, and GMV_F 
are significant in the classification of ADHD subtypes along with medication status and full IQ. 
Table 6 presents a comparison of the proposed approach with the existing research results. The 
proposed approach with the XGBoost classifier can classify between ADHD and TD with an 
accuracy of 90.64%. This indicates a 6.64% and 15.64% increase in accuracy when compared to 
the research performed in references [27, 28] respectively, using sMRI.

Fig. 8  SHAP showing the average impact of each feature on model output magnitude

Fig. 9  SHAP showing the impact of features in the classification of ADHD subtypes
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6  Conclusion

The highest model accuracy of 92.98% is obtained by the proposed approach using the 
XGBoost classifier for ADHD subtypes and TD. This classification model can help identify 
subtypes of ADHD based on various features such as medication status, gender, full IQ score, 
age, GMV_F, GMV, WMV_F, and WMV. The most common tools such as Freesurfer and 
FMRIB Software Library (FSL) used in brain tissue segmentation do not support the Win-
dows operating system [62]. Therefore, this study introduced a method that segments the brain 
tissue and calculates the volume of the important brain tissues without the use of neuroimag-
ing tools available online. This approach had the benefit of being compatible with all operating 
systems. Furthermore, the most important features in the classification of ADHD subtypes and 
TD were identified by the SHAP. This can help prioritize further research and inform the clini-
cal assessment. It is important to acknowledge the limitations of the study, including potential 
biases in the data and the need to validate the findings in diverse populations.

Future studies can focus on enhancing and optimizing the ML algorithms utilized for 
classifying ADHD subtypes. A possible approach is to investigate various feature selection 
techniques, model structures, and hyperparameter optimization methods to enhance clas-
sification precision and applicability to various populations. Also, Longitudinal data can 
be used with these machine learning methods to predict treatment response, symptom pro-
gression, and functional results. This lets doctors act quickly and make personalized treat-
ment plans. Classification systems could also work more effectively if they used data from 
a variety of sources, such as neuroimaging, genetic markers, cognitive tests, and behavioral 
observations. Integrating diverse data sources can provide a more comprehensive under-
standing of the underlying neurobiological mechanisms associated with ADHD subtypes.
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