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Abstract
Omnidirectional images provide an immersive viewing experience in a Virtual Reality (VR)
environment, surpassing the limitations of traditional 2D media beyond the conventional
screen. This VR technology allows users to interact with visual information in an exciting
and engaging manner. However, the storage and transmission requirements for 360-degree
panoramic images are substantial, leading to the establishment of compression frameworks.
Unfortunately, these frameworks introduce projection distortion and compression artifacts.
With the rapid growth of VR applications, it becomes crucial to investigate the quality of the
perceptible omnidirectional experience and evaluate the extent of visual degradation caused
by compression. In this regard, viewport plays a significant role in omnidirectional image
quality assessment (OIQA), as it directly affects the user’s perceived quality and overall
viewing experience. Extracting viewports compatible with users viewing behavior plays a
crucial role in OIQA. Different users may focus on different regions, and the model’s per-
formance may be sensitive to the chosen viewport extraction strategy. Improper selection
of viewports could lead to biased quality predictions. Instead of assessing the entire image,
attention can be directed to areas that are more importance to the overall quality. Feature
extraction is vital in OIQA as it plays a significant role in representing image content that
alignswith human perception. Taking this into consideration, the proposedATtention enabled
VIewport Selection (ATVIS-OIQA) employs attention based view port selection with Vision
Transformers(ViT) for feature extraction. Furthermore, the spatial relationship between the
viewports is established using graph convolution, enabling intuitive prediction of the objec-
tive visual quality of omnidirectional images. The effectiveness of the proposed model is
demonstrated by achieving state-of-the-art results on publicly available benchmark datasets,
namely OIQA and CVIQD.
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1 Introduction

Nowadays, with the accelerated proliferation of VR technologies, omnidirectional videos
and images have been increasingly popular and have drawn great attention. They have been
employed in an abundance of application scenarios, such as TV, film, broadcasting, designing
products, auto-driving, education, etc. User experience is one of the key motivations for the
evolution and success of VR technologies and applications. Omnidirectional images/videos
provide an immersive experience with an unlimited Field of View (FoV) in a VR environment
through Head Mounted Displays (HMD). The users can interact with the visual content in an
exciting way from any direction using their head movement. However, restricted by several
inadequacies in graphic instruments, transfer bandwidth, and viewing devices, the content
viewed by observers usually cannot quench their satisfaction. The spherical representation
of the omnidirectional image and its high resolution complicates image acquisition, stor-
age, compression, encoding, transmission, and visual display. These stages may degrade the
quality by introducing white noise, blurring, compression, and projection distortions, thereby
severely compromising the quality of the experience. So, quality deterioration is typical and
it may cause irritation for a longer time viewing experience.

The omnidirectional spherical images are converted into 2D format using equirectangu-
lar projection (ERP) for efficient transmission and storage. During this encoding process,
the bipolar regions of the sphere undergo geometrical deformations which affect the image
quality. Pixel redundancy and geometric deformation additionally antagonize storing its con-
tents. Further, the equirectangular format of these images differs substantially from the actual
content viewed in the HMD. This is because in a VR environment, the viewer can see any
location of the spherical image by changing the head orientation, but only a very small part
of the whole content is seen at the same time. Each of these requirements is confined to
lesser apparatus, high transmission bandwidth and conversion to 2D formats tends to intro-
duce some projection distortion, compression degradation, and geometry deformation. The
visual content of surrounding viewports influences the user’s evaluation of every viewport
in obtaining the aggregate quality score. Moreover, conventional 2-D Image Quality Assess-
ment (IQA)models cannot be applied directly on omnidirectional images because they do not
account for the characteristics of 360-degree content such as non-linear transformation like
spherical image projections. Hence, 360-degree Image Quality Assessment is a prominent
study that helps with effectively evaluating the quality performance of VR technologies in
order to maximize the quality of realistic viewing experience.

Typical viewing process of 360-degree media contents begins with looking around the
spherical interface, where the visual information of interacting multiple viewpoints is aggre-
gated locally. At the end of the perusal, the entire scenery is reconstructed by the observer in
his hallucination based on what he has seen to gain a general estimation of the quality glob-
ally. It is imperative for both local and global quality evaluation to resolve the overall quality.
The proposed ATVIS-OIQA model utilizes global and local quality estimation to be more
effective for Omnidirectional Image (OI) quality evaluation and better generalization perfor-
mance. While CNNs dominate computer vision, transformers have demonstrated exemplary
performance in various natural language processing (NLP) tasks due to their excellent ability
tomodel sequences and long-distance dependencies. You andKorhonen [25] experimentwith
the employment of transformers to solve the task of 2D IQA. They achieved state-of-the-art
performance on two public databases for blind IQA. Haoran and Yang et.al. [4] enhanced the
vision transformer with two parallel modules and multi-lingual self-attention. The parallel-
designed Dynamic Unary Convolution in Transformer (DUCT) blocks are added into the
deep architecture, which enhances the computer vision tasks for classification, segmenta-
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tion, and other relevant tasks. The proposed method explores an end-to-end training strategy
that selects the viewport using an attention mechanism and utilizes transformer-based archi-
tectures and graph convolution to model the spatial dependencies in the omnidirectional
images.

The main contribution of the proposed work are as follows:

• Develop a learning-based attention sampling model to select and extract the most impor-
tant viewports in a 360◦ image with fewer computational steps.

• Investigate the application of transformers in OIQA to extract distinctive features from
input viewport images

• Design a graph convolution network that helps extract local and global information to
better model the spatial dependencies between viewports

Implications of the proposedmethodThe proposedmethod significantly impacts almost
all the broad domains of image processing tasks. This section deals with the implications of
the various domains listed below.

Image Quality Assessment (IQA): Proposed method introduced an advanced method for
assessing the quality of the omnidirectional images. The impact of using attention and
graph convolution networks significantly improves the accuracy and reliability of visual
quality assessment in various image processing applications.
Information Fusion: Fusing information from various viewports improves the overall
visual quality. This fusion leads to better handling of distortions, thereby enhancing the
robustness of the visual assessment [21].
Impact on image processing tasks: The viewport selection and attention mechanism can
be applied to tasks like image restoration to improve the most degraded image portions.
It can also be applied to image compression while preserving quality in key areas and
enhancing compression quality.
Broaden Scope:Beyond omnidirectional images, proposed techniques can also influence
other relevant areas like medical image fusions [20], where accurate quality assessment
is crucial for diagnostics and environment perception in autonomous vehicles.

2 Related work

This section critically appraises the previous work published in the literature pertaining to
OIQA Task. Initially, conventional FR IQA metrics had been extended to create FR OIQA
metrics. On account of their coherence and statistical comfort, two very popular FR met-
rics - Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), were used to
assess the capabilities of popular media restoration and coding technologies. Several PSNR-
based FR OIQAmodels had been investigated. Spherical PSNR (S-PSNR) presented in [26],
picked uniformly distributed points on the sphere rather than the casted panoramic image
to eliminate pixel redundancy in 2-D extended omnidirectional images. Sun et al. [19] pre-
sented Weighted-to-spherically uniform PSNR (WS-PSNR) where the stretched regions are
weighed and the associated map is integrated with an error map to reduce the impact of
drawn out areas and establish a balanced non-uniform sampling density. Zakharchenko et
al. [27] put forth the craster parabolic projection PSNR (CPP-PSNR), which computed the
location-invariant PSNR on the craster parabolic projection domain promising uniform sam-
pling density and lesser shape distortion. Xu et al. [24] predicted positional information using
Non-Content-based-Perceptual PSNR (NCP-PSNR), while viewing direction was predicted
by Content-based Perceptual PSNR (CP-PSNR). These metrics assigned different weights
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to distortions at different locations. The models relying on PSNR significantly underper-
formed compared to the conventional successful IQA approaches for 2D natural images to
precisely predict the human perceived visual quality. This can be attributed to the discrepancy
between PSNR and theHVS. Consequently, the properties of theHVSwere employed to con-
struct perception-based models using SSIMwhich calculates the contrast, luminescence, and
structural similarities of each pixel in the spherical domain and its variants. Zhou et al. [32]
proposed the Weighted-to-Spherically uniform SSIM (WS-SSIM) which combined the error
and location-weighted map to ensure different weights to different distortions at different
locations. Chen et al. [3] proposed the Spherical Structural Similarity Index (SSSIM) for
omnidirectional video quality evaluation by computing the similarity between reference and
distorted 360-degree images on the sphere. Researchers from Facebook proposed SSIM360
and 360VQM to verify the performance of 360 video pipelines on encoding and stream-
ing [2]. SSIM360 is a result of weighing each sample SSIM on the basis of how much the
sampled area is expanded when cast or projected.

However, the FR OIQA method faces significant limitations as it relies on reference
images. Moreover, the aforementioned OIQA models are evaluated using 2-D image pro-
cessing techniques that fail to consider the unique visual characteristics of omnidirectional
images. Consequently, they struggle to achieve exceptional performance in assessing the
quality of omnidirectional images.

With the fast proliferation of CNN-basedmodels, researchers adopted deep learning based
strategies to construct objective OIQA indexes. Despite expansive research attention in the
realm of IQA in the present day, there is still an insufficiency in efforts to predict the objective
quality of panoramic pictures especially because in most practical scenarios, reference or
backing images are difficult to acquire and hence, NR/Blind IQAmetrics are being researched
extensively although it is challenging.

Early Blind OIQA methods leveraged patch-level features to perform quality prediction.
Several modern deep quality assessment metrics regard images as an assemblage of bit-sized
patches. Patch-wise metrics tend to conduct individual computations on patches only to be
accumulated later to attain the final quality rating rather than handling inputs in their com-
plete resolution. Most existing methods, however, do not focus on complex attention models
and simply process each patch independently which is overcome by [11] and [9]. Li et al.
[11] utilized the concept of multi-task guided prediction of saliency maps and proposed a
model that predicted the weight plots of headmovement and eyemovement with visual atten-
tion models of DHP and SalGAN. The model was able to correlate human behaviour with
the task of quality assessment. Kim et al. [9] presented a deep learning pipeline for Virtual
Reality image quality assessment (DeepVR-IQA), accounting for the spherical representa-
tion of the omnidirectional content based on the concept of adversarial learning. The authors
used the spherical positional information of the sampled patches to weigh individual quality
ratings and predict the final quality score. The final quality rating is extracted from accumu-
lating the local quality values with their weights. However, due to significant deformation
revealed on the projection plane of the sampled images, patches failed to manifest the actual
viewing information contained in the image. Hence viewport-oriented methods were devel-
oped. Viewport-based Neural Network (V-CNN) [12] proposed an approach conceptualizing
images as viewports rather than patches. The authors decomposed the task of OVQA into
two subsidiary tasks - to propose potential viewports based on the locations and predict the
saliency of HM and EMmaps. VQA score rating produced the weighted average over quality
scores of selected viewports to ultimately predict the perceptual quality of omnidirectional
images. MC360IQA [18] proposed a multi-channel CNN for blind OIQA. Images from 6
viewpoints are processed parallelly through 6 hyper-ResNet-34 [6] networks. The fusion of
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features in the image quality regressor generates the final quality score. Despite their success,
they failed to consider the spatial dependence between different viewports.

Xu et al. [23] proposed a viewport-oriented graph convolutional network(VGCN) which
took advantage of the spatial mutual interactions between the extracted viewports using a
GCN. In addition, the authors employ the DB-CNN to find the global quality with a low-
resolution ERP image as an input. A culmination of both scores predicts the final quality
score. [13] apply the Local Binary Pattern (LBP) operator to encode cross-channel color
information and utilize the weighted LBP technique to extract structural features. Addition-
ally, the viewport sampling method is used to extract local NSS features, then support vector
regression is utilized to predict the quality score of the observed images. [31] introduced Dis-
tortion Discrimination Assisted Multi-stream Network (DDAMN), which has the capability
to assess the quality and distortion type distinguish ment task. The auxiliary distortion dis-
crimination task enhances the learning process of OIQA. Furthermore, DDAMN introduced
a data augmentation strategy that involves generating multiple sets of viewport images from
a single omnidirectional image. Chen and Han et al. [1] proposed a semi-supervised learning
method for dense prediction models with limited labels; a virtual category is assigned to
each confusing sample to contribute to model optimization. This approach is helpful for a
CNN-based segmentation and detection system with extremely limited labels. Despite the
astounding performance of the CNN based methods, they suffer from major limitations. For
instance, the pre-processing tasks, like viewport selection, are more computationally expen-
sive than the actual IQA task. Hand-crafted designs of viewport sampling strategies might not
hold for all types of spherical distortions. Often, viewports are processed either independently
or considering only spatial interactions. Quality evaluation in all methods discussed so far
ignored temporal and semantic correlations like content characteristics. Further, the CNNs
exhibit a very limited, skewed tendency tomodel spatial dependencies. Hence, all these issues
raise the concern about improving the unsatisfactory and computationally expensive OIQA
performance.

3 Proposedmethodology

Theproposed pipeline of theATVIS-OIQAmodel is illustrated inFig. 1The task of perceptual
quality prediction has been bifurcated into local and global branches.

The primary branch comprises the following components:
A viewport detector A viewport descriptor A viewpoint quality aggregator It is similar

to the observer perceiving the scenery using the HMD; the user first chooses the FoV, then
information frommultiple viewports and their dependency are aggregated to realize the entire
scene. The viewport detector samples the most useful viewports using attention sampling.
The viewport descriptor extracts distinctive features indicative of the perceptible information
inside the input viewpoints for predicting the quality by leveraging a pre-trained vision
transformer architecture. The viewport aggregator models the spatial relations between the
viewports in 360-degree images by building a spatial viewport graph and aggregates visual
information from multiple viewports to arrive at the local quality.

The supplementary branch consists of the global quality estimator and quality regressor.
It estimates the quality of the complete distorted image without viewport selection using the
vision transformer architecture. Finally, the quality regressor is used to fuse the local quality
obtained from the primary branch and the global quality from the supplementary quality
evaluator to determine the conclusive omnidirectional image quality of the 360-degree image.
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Fig. 1 Illustration of the proposed ATVIS-OIQA Model

The following sub-sections detail each individual part in sequence.

3.1 Viewport detector

Algorithm 1 Viewport Selection
Input:

x_low − low resolution view of image
x_high − high resolution view of image

Output:
v − set o f top N "in f ormative viewports"
attn − attention map computed f rom x_low

procedure selectviewports(x_low, x_high : image)
attn ← attention_network(x_low)

samples ← scorer_network(log(attention), n_viewports)
top_samples ← topk(samples)
v ← extract_viewports(top_samples, x_high)

return attn, v
end procedure

The viewport detector aims to select the most salient viewports in accordance with struc-
tural information, which is most appealing to users following the literature [8]. Algorithm 1
briefly outlines the overall viewport selection algorithm. The viewport selector uses an atten-
tion network to select the most prominent visual features using the low-resolution image.
It uses a scorer network based on attention sampling to extract the key points. The module
samples locations of informative viewports from an attention distribution computed on an
unclear version of the original image, thus processing only a fraction of the original image.
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It then proceeds to use this attention map on the high-resolution image to sample and extract
the top N viewports. This subsection first explains the generic formulation for attention in a
neural network, then describes how the sampling attention significantly reduces the required
computation by generating an optimal approximation, and later details the method to speed
up the high-resolution image processing.

3.1.1 Scorer network

Attention plays a significant role in human perception. Recently, attention has been widely
employed to enhance the representation of deep convolutional neural networks (DCNNs)
in various computer vision tasks. The success of attention lies in its ability to discern the
relevance of specific features without necessitating prior knowledge about the target task.
Instead, features extracted from the internal layers of the deep neural network are analyzed
to determine their significance.

The scorer network provides an effective attention-based sampling technique for selecting
structurally sensitive patches. Attention sampling is used to identify the saliency region that
requires further analysis. The low-resolution (LR) image is utilized in the scorer network to
mitigate computation and memory bottlenecks.

By leveraging the attention model, the distorted input image x is transformed into an
attention map, which is subsequently employed for selecting the samples in the following
stages.

Let ŷ = �(x; θ) be the neural network parameterized by θ , where (x, y) is an input image
and its score in the dataset is given using

�(x; θ) = g( f (x; θ); θ) (1)

The attention mechanism is applied to the intermediate representation of the neural net-
work f (x; θ) ∈ RM×D . The attention function is defined as a(x; θ) ∈ RM+ such that
∑M

i=1 a(x; θ)i = 1 is used in selecting the more prominent R features of dimension D.
Hence (1) can be rewritten as

�(x; θ) = g(
M∑

i=1

a(x; θ)i f (x; θ)i ) (2)

the subscript i is used to extract the i-th value from the vector.
As seen, a(.) by definition is amultinomial distribution overMpixels location in the image.

Let I be a random variable sampled from a(x; θ) then the attention in the neural network can
be rewritten in terms of expectation of intermediate features over the attention distribution
a(.).

�(x; θ) = g

(
M∑

i=1

a(x; θ)i f (x; θ)i

)

= g

⎛

⎝
M∑

I∼a(x;θ)

[ f (x; θ)I ]

⎞

⎠

(3)

Now the expectation can be approximated by using the Monte Carlo estimate and thus,
can avoid the computation of all the M features. Now,

Q = {qi ∼ a(x; θ) | i = {1, 2, 3, . . . N }}
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is sampled, whereQ is a set of N indices from the attention distribution. The attention network
can be approximated as

�(x; θ) ≈ g

⎛

⎝ 1

N

∑

q∈Q
f (x; θ)q

⎞

⎠ (4)

Since a neural network is used as the attention distribution, the gradient of the loss with
respect to the attention function parameters should be used by sampling the set of indices of
Q. The gradient that we have used in the proposed model is defined as follows

δ

δθ

1

N

∑

q∈Q
f (x; θ)q = 1

N

∑

q∈Q

δ
δθ

[
a(x; θ)q f (x; θ)q

]

a(x; θ)q
(5)

This reduces the computation, as for the sampled indices in Q, it computes only the rows
of f (·).

In most of the implementations that use attention in neural networks [7] it is required
to compute all the features because a(.) is a function of features f (.). But here to avoid
computing all K features in Monte Carlo estimation of (2), a low resolution image view of
the original image is used. This, as a result, bargains a greater speed from sampling attention.

Now given an image x ∈ RH×W×C where H is the height of the image, W is the width
of the image and C is the number of channels. Its corresponding view is V (x, s) = Rh×w×c

at scale s where h is the height of the low resolution image such that h < H , w is the width
of low resolution image such that w < W and C is the number of channels which remains
unchanged. For this, the attention Â is computed as follows

a(V (x, s);�) : Rh×w×C → Rhw (6)

Â =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1ws

a21 a22 · · · a2ws

...
...

. . .
...

ahs1 ahs2 · · · ahw

⎞

⎟
⎟
⎟
⎠

(7)

where ai j is the probability value and the higher probability indicates the higher saliency
pixel. The advantage provided by this attention block is to focus on prominent regions based
on the image content and it generates the global feature representation. Directly sampling
from these underlying feature maps leads to generating stronger attention masks that are
more aggressive in selecting discriminating visual structures.

The attention model that generates the attention map of the low resolution image is illus-
trated in Fig.2

Fig. 2 Structure of attention model to generate attention map of low resolution image
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3.1.2 Top K viewport selection

Attention maps are used for sampling which produces optimal approximation and thereby
reduces the computational complexity. As attention is acquired from multiple locations in
the image, it is considered as the multinomial distribution over the discrete elements as
opposed to a continuous distribution. Moreover, the attention map is generated during the
forward pass, and it is not differentiable, hence the gradients cannot be backpropagated. The
deterministic parts of the sampling process are attained by applying the log probabilities on
the input attention Â, and then flattening it to reduce the computational requirements and
improve numerical stability. The gumbel noise is combined with log probabilities of the
gumbel softmax distribution and softmax is applied to make it differentiable and select top-k
samples.

The patches are sampled from the high resolution image by defining a function P(x, i)
which extracts patches centered around i th pixel in V (x, s) from a high resolution image
x. From above, only a few patches are considered from the full resolution image x and the
model is defined as

�(x;�) = g

(
hw∑

i=1

a(V (x, s);�)i f (P(x, i);�)i

)

≈ g

⎛

⎝ 1

N

∑

q∈Q
f (P(x, q);�)q

⎞

⎠

(8)

The position of the patches is passed to the feature function f (.). a(.) is a neural network
significantly smaller than feature network f (.)which is called an attention network. Equation
f (.) is implemented by a vision transformer which is called a feature network. Finally the
function g(.) is a Regression Layer with L1 loss function and SGD as optimizer. So low and
high resolution map is passed into the scorer network which calculates the attention map and
selects the top N patches based on the attention called Viewports.

3.2 Next view prediction

Next View Prediction serves a critical role in enhancing blur parts before user interac-
tion within the context of our proposed system/application. The primary objective of this
mechanism is to anticipate the user’s next viewpoint or perspective and pre-process the cor-
responding image areas to mitigate potential blurriness.

When users interact with visual content, especially in dynamic environments or virtual
reality settings, there might be delays or inconsistencies in rendering high-quality images due
to computational constraints or network latency. As a result, certain parts of the displayed
scene may appear blurred or distorted, detracting from the overall user experience.

To address this issue, our system leverages next view prediction to anticipate the user’s
upcoming viewpoint based on their interactions and movement patterns. By accurately pre-
dicting the next viewpoint, we can proactively identify and prioritize the pre-processing of
image regions that are likely to become the focus of attention using VGG-16 [16].

Using advanced algorithms and machine learning techniques, our system analyzes the
user’s previous interactions, environmental context, and motion trajectories to predict the
most probable next viewpoint. Once the next viewpoint is predicted, we apply image
enhancement and deblurring techniques to the corresponding image regions in real-time
or pre-rendering stages.
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By pre-processing the anticipated blur parts before the user interacts with them, our sys-
tem ensures a smoother and more immersive user experience. Users can enjoy sharper and
clearer visuals, leading to increased engagement, satisfaction, and immersion in the virtual
environment or interactive application.

Overall, the integration of next viewprediction to enhance blur parts before user interaction
represents a significant advancement in improving the quality and realism of interactive
visual experiences, particularly in applications such as virtual reality, gaming, and immersive
simulations.

This module extracts effective features from the top N input viewports for quality predic-
tion. The Vision Transformer architecture illustrated in Fig. 3 has been leveraged as Viewport
Descriptor because of its success in various computer vision tasks like image recognition,
classification and segmentation due to its reduced architectural complexity, scalability and
training efficiency.

Figure 3 illustrates the ViT architecture. Each of top N viewports obtained for each image
from the viewport detector x ∈ R(H×W×C), is reshaped into fixed sized patches xp ∈
R(N×(P2·C)), where H×Wis the dimension of the omnidirectional image and C is the number
of channels in the omnidirectional image, P2 is the size of each image patch, and, N =
HW/P2. The patch embeddings are extracted from the resultant patches by flattening them
and mapping them to D dimensions by a trainable linear projection with 2-D convolutional
layer. Standard learnable position embeddings are added to the patch embeddings to retain
positional information to get the embedding vector.

The resulting sequence of embedding vectors is fed into the encoder which contains
alternating layers of Multiheaded self-attention (MSA) and Multilayer perceptron (MLP)
blocks. Finally, a MLP layer at the end of transformer encoder outputs the result of viewport
representation.

Fig. 3 ViT model
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3.3 Viewport quality aggregator

The process of the viewport quality aggretator is shown in Fig. 4. The viewport features of
different viewports is given to the graph convolution network, then average pooling is used
to estimate the local quality score.

A spatial viewport graph is constructed to create a mutual reliance between different
viewports. This is done by taking the N selected viewports as graph nodes, and connecting
pairs of these viewpoints with different edges. The procedure is elaborated as shown in Fig. 5
based on [23], as the relation between two viewports A and B is connected only when the
medial point of viewpoint B is in the Field of View (FoV) of viewpoint A, the viewport A
and C are separated as the medial point of viewpoint C is not in the FoV.

The feature vector for each of the N viewports acquired from the viewport descriptor
is denoted by X . The feature representation of the N viewports is represented as X =
x1, x2, ..., xN . Each pair of viewpoints shares a correspondence, imitating the relationship as
shown in (9).

A
(
xi ′x j

) =

⎧
⎪⎨

⎪⎩

1 if AngularDist
[
(�i ′ , θi ), (� j ′ , θ j )

]

≤ 45◦,
0 otherwise

(9)

where,A denotes the affinitymatrix, Angular Dist(.) computes the angular distance between
two viewpoints i and j on the 3D sphere, (i, i) and ( j, j) represent the longitudes and the
latitudes of viewports i and j. Assuming the viewport size to be angular 90 degrees, the angular
distance threshold in the above equation is set to angular 45 degrees. Then, normalization is
implemented as follows:

Â = D− 1
2 AD− 1

2 (10)

where, A shows the spatial viewport graph (un-directed) after normalization represented as
an adjecency matrix, D represents the diagonal matrix and Di j = ∑

i Ai j . Each layer in the
graph convolution network propagates using the soft plus activation function as follows:

H (l+1) = σ
(
BNγ,β

(
ÂH (l)W (l)

))
(11)

σ(x) = log(1 + ex ) · BNγ, β(.) (12)

Where BN is the batch normalization and γ , β are the trainable parameters. The trainable
weight matrix for every layer l is denoted by W (l), and the after-activation matrix in layer l

Fig. 4 Viewport quality aggregator
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Fig. 5 Visual examples of spatial relations

is represented by H (l). H (0) = X . The features of each viewpoint represented as a node can
be changed through interactions between different nodes in graph convolutions. Eight layers
of GCN are adopted, and each layer’s specific dimensions of feature vectors are 768, 384,
192, 96, 48, 24, 12, 6, and 1, respectively. In the end, a single max-pooling layer cumulates
the features from each viewpoint and acquires the local quality QL . The entire process of
quality aggregation training is outlined in Algorithm 2.

Algorithm 2 Viewpoint Quality Aggregation
Input:

X = {x1, x2, ..., xN } where X is the f eature representation of N viewports
Output: QL − Local Quali t y Aggregate
while k ≤ batch_si ze do

if AngularDist
[(

�i ′ , θi
)
,
(
� j ′θ j

)]
≤ 45◦ then

A
(
xi ′ x j

) ← 1
else

A
(
xi ′ x j

) ← 0
end if
Di j ← ∑

i Ai j

Â ← D− 1
2 AD− 1

2 
 Normalize A
H (0) ← X
while l ≤ 8 do 
 GCN

H (l+1) ← Softplus
(
BNγ,β

(
ÂH (l)W (l)

))

W (l) ← W (l) − α × dE(l)

dW (l)

end while
k ← k + 1

end while
QL ← max Pool(H (8))
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3.4 Global quality estimator

Viewpoints are selected and need to be reconstructed when the observers view the 360◦
complete scenery. This is illustrated in the local quality branch of ATVIS OIQA model. The
global branch of the entire omni-directional image is directly taken in its ERP format as an
input and the quality is estimated directly. The vision transformer model inscribed in the
section 3.2 extracts the effective features of the whole image. Lastly, a linear layer is applied
to get the global quality of the omnidirectional image QG.

Algorithm 3 Final Quality Estimation
Input:

QL − Local Quali t y, I − I nput Image
Output:

Q − Final Perceptual Quali t y

while k ≤ batch_si ze do
f eatures ← V iT (Ik )
QG ← f eaturesT × W + bias
QA ← Regressor(QL , QG )

end while

The Local quality Aggregate QL from the local branch and the Global quality QG from
the global quality estimator in the global branch are weighted automatically by utilizing a
linear layer, and the final output is the predicted perceptual image quality score QA .

3.5 Loseless compression

We researched on efficiency of lossless compression techniques, particularly in the context
of low-end devices. These compression methods offer significant advantages in terms of
data reduction and computational efficiency, making them particularly suitable for resource-
constrained environments.

Low-end devices, such as smartphones, IoT devices, and embedded systems, often have
limited storage capacity and processing power. As a result, it is essential to minimize the size
of data without sacrificing quality to ensure optimal performance and user experience.

Lossless compression techniques, shown in Fig. 6 unlike their lossy counterparts, enable
data to be compressed without any loss of information. This preservation of data integrity is
crucial for applications where data accuracy and consistency are paramount.

Fig. 6 Loseless compression
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In our investigation, we focus on the utilization of lossless compression techniques, such
asHEVC (HighEfficiencyVideoCoding) and JPEG formatswith consistency improvements.
HEVC, in particular, offers superior compression efficiency compared to previous standards,
allowing for significant reductions in file size while maintaining high-quality video content.

Additionally, we explore methods to enhance the consistency and reliability of lossless
compression techniques, ensuring consistent performance across different devices and plat-
forms. By optimizing compression algorithms and reducing computational overhead, we aim
to improve the efficiency and effectiveness of data compression for low-end devices.

Our research highlights the importance of lossless compression techniques in enabling
efficient data storage and transmission on low-end devices. By leveraging these techniques,
we can overcome the limitations of resource-constrained environments and enhance the
overall user experience on such devices.

4 Experiment and result analysis

This section introduces the details of the dataset, performance metrics used to evaluate the
model andperormance analysis. Then, the proposedATVIS-OIQAmodel is compared against
existing competitive IQA metrics on the publicly available OIQA and CVIQD dataset.

4.1 Dataset description

The efficacy of the proposed method is evaluated on two benchmark omnidirectional image
quality assessment public datasets OIQA [5] and CVIQD [17] dataset.

– OIQA: This dataset contains 336 omnidirectional images formed from 16 reference
images, which is degraded using JPEG, JPEG2000, Gaussian blur, and Gaussian noise.
The MOS values are in the range [1,10].

– CVIQD: This database is the largest 360-degree image quality assessment database
composed of1 6 uncompressed reference images and 528 lossy compressed images. It
considers three compression distortiontypes, i.e., H.265/HEVC,H.264/AVC, and JPEG.
TheMOS constituting the target label is normalized to the range [0,100].

During implementation, following the literature in [10], the database is split for training
and evaluation, and ten viewpoint images are cropped from each distorted 360-degree image.
Figure 6 shows a sample from the dataset with images in decreasing order of quality, in terms
of MOS values, from top-left to bottom-right.

4.2 Evaluationmetrics

Performance analysis is done on the CVIQD [17] and OIQA [5] datasets by the adoption of
three standard measures - Root Mean Square Deviation (RMSE), Spearman’s Rank Order
Correlation Coefficient (SROCC), and Pearson’s Linear Correlation Coefficient (PLCC). The
metrics have been chosen such that SROCC estimates the monotonicity in prediction, while
RMSE and PLCC assess the prediction accuracy. Since SROCCand PLCC assess the likeness
or closeness of the target and forecast values, higher values indicate better performance.
Conversely, RMSE measures the extent of distance between target and predicted values,
indicating that the smaller the value, the higher the accuracy (Fig. 7).
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Fig. 7 Sample from CVIQD dataset

PLCC is formulated as follows:

r =
∑ (

xgi − x̄g
) (
xpi − x̄ p

)

√
∑ (

xgi − x̄g
)2 ∑ (

xpi − x̄ p
)2

(13)

where, r is the correlation coefficient; xgi represents the ground truth MOS scores; x̄g repre-
sents the mean of the ground truth scores; xpi represents predicted MOS and x̄ p represents
mean of the predicted scores.

SROCC is given in the equation as below

rs = ρR(Xg),R(X p) = cov(R(Xg),R(X p))

σR(Xg)σR(X p)

(14)

where, ρ represents usual Pearson correlation coefficient, but applied to the rank variables,
cov(R(Xg),R(X p)) represents covariance of the rank variables and σR(Xg) and σR(X p) rep-
resents standard deviations of the rank variables.

RMSE is given as below

RMSE =
√

∑N
i=1

(
xgi − xpi

)2

N
(15)

where, RMSE represents root-mean-square deviation between xgi actual quality scores and
xpi estimated quality scores.

4.3 Performance evaluation

This section compares the proposed pipeline for OIQA against several existing state-of-
the-art FR and Blind IQA metrics. Additionally, this section investigates the effectiveness
of the strategies adopted in the ATVIS-OIQA model and how each strategy impacts per-
formance during quality prediction tasks. Table 1 shows the performance for the proposed
ATVIS-OIQAmodel onOIQA [5] andCVIQD [17] dataset. Fifteen representative IQAmeth-
ods are chosen for performance comparison. The competitive approaches include five FR
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Table 1 Performance comparison on OIQA and CVIQD dataset

OIQA CVIQD
Methods PLCC SROCC RMSE PLCC SROCC RMSE

FR 2DIQA PSNR 0.5812 0.5226 1.7005 0.7008 0.6239 9.9599

SSIM [28] 0.8718 0.8588 1.0238 0.9002 0.8842 6.0793

MS-SSIM [18] 0.7710 0.7379 1.3308 0.8521 0.8222 7.3072

FSIM [24] 0.9014 0.8938 0.9047 0.9340 0.9152 4.9864

DeepQA [7] 0.9044 0.8973 0.8914 0.9375 0.9292 4.8574

NR 2DIQA BRISQUE [13] 0.8424 0.8331 1.1261 0.8376 0.8180 7.6271

BMPRI [12] 0.6503 0.6238 1.5874 0.7919 0.7470 8.5258

DB-CNN [25] 0.8852 0.8653 0.9717 0.9356 0.9308 4.9311

FR 360IQA SP-PSNR [22] 0.5997 0.5399 1.6721 0.7083 0.6449 9.8564

WS_PSNR [17] 0.5819 0.5263 1.6994 0.6729 0.6107 10.3283

CPP-PSNR [23] 0.5683 0.5149 1.7193 0.6871 0.6265 10.1448

NR 360IQA MC360 [16] 0.9267 0.9139 0.7854 0.9429 0.9428 4.6506

VGCN [19] 0.9584 0.9584 0.5967 0.9597 0.9539 3.9220

MFILGN [26] 0.9695 0.9614 0.5146 0.9751 0.9670 3.1036

SCSOIQA [11] 0.9746 0.9673 3.2582 0.9714 0.9669 0.5063

ATVIS 0.9751 0.9654 0.6132 0.9762 0.9668 3.0171

Bold entries indicate the highest accuracy of the proposed model

2DIQA metrics, i.e., PSNR, SSIM [32], MS-SSIM [22], FSIM [28], and DeepQA [9]; three
learning-based NR 2DIQA metrics, i.e., BRISQUE [15], BMPRI [14], and DB-CNN [29];
three FR 360IQA metrics, i.e., S-PSNR [26], WS-PSNR [19], and CPP-PSNR [27]; four
viewport-oriented NR 360IQA metrics, i.e., MC360IQA [18], VGCN [23], MFILGN [30]
and SCSOIQA [13]. Compared to MC360IQA, MFILGN, and SCSOIQA, VGCN considers
interactions between viewports.

PSNR and its variants are substandard to SSIM-based IQA metrics. The PSNR-based
metrics reflect only the pixel-level distortion, while SSIM-based ones measure the structural
distortion related to HVS. From Table 1, it can be observed that even though the FR DIQA
models based on HVS characteristics like SSIM, MS-SSIM, and FSIM that use structural
features, fail to achieve satisfactory performance as they primarily focus on low-level features
and they are not correlated with human perception. Similarly, the NR-2DIQAmodels did not
take the OIs’ properties into account, so they cannot apply to evaluate OIs’ quality effectively.

NR360IQAviewpoint-orientedmetrics exhibit discernible supremacy over 2DFull Refer-
ence andNoReference IQAmetrics. The characteristics of panoramic images, like viewpoint
data or spheric depiction, are not accounted for 2D IQA metrics, e.g., sphere representation,
viewport information. This confirms the gap between 2DIQA and 360IQA, and points out
the importance of viewport-level information for 360IQA. MC360IQA observes a signifi-
cant enhancement in prediction accuracy because it replaced the conventional ERP format
of omnidirectional images with six viewport images.

VGCN significantly outperforms MC360IQA in terms of PLCC, SROCC, and RMSE
because it considers keypoint interactions and the regression of local and global forecasts.
This shows that it is essential to considermutual dependency between viewports inOIQA.The
proposed method performs better than the state-of-the-art approaches on OIQA and CVIQD
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datasets. This ismainly owing to two aspects; TheATVISmodel utilizes an attention sampling
method for viewport selection. The second aspect involvesmodeling the interactions between
viewports through graphs and feature extraction using transformers. The performance com-
parison results prove that the proposed model employs more representative features than
VGCN and can be effectively applied to evaluate OIs’ quality with limited data.

4.4 Distortion type specific performance comparison

The performance of each distortion type is evaluated on the CVIQD dataset, and the results
are shown in Table 2 with top results denoted in bold. From Table 2, the PLCC of the
proposed model outperforms other state-of-the-art models in terms of JPEG and HEVC
artifacts. The development of image compression technology poses more challenges to IQA.
JPEG introduces tonal disruption and blockiness that is less discernible when compared to
products of newer encoders. AVC/HEVC presents a more limited quality range than JPEG,
making quality prediction extremely difficult.

Table 3 shows the performance of ATVIS-OIQA on various distortion types on OIQA
dataset with best performing results marked in bold. According to Table 3, the SROCC
IQA metric demonstrates a significant decrease in potential from BLUR to WN to JP2K
and further to JPEG. The ATVIS-OIQA model outperforms the state-of-the-art models for
JPEG distortions with the highest PLCC and lowest RMSE. ATVIS-OIQA exhibits exciting
power in evaluating compressed 360-degree images, especially the ones encoded by JPEG.
For JPEG compression, the proposed ATVIS-OIQA delivers the best performance, which
is mainly due to the attention-based viewport selection and the spatial relation between the
viewports that helps in capturing block distortions.

4.5 Visualization of prediction performance

In order to know the effectiveness of the proposed scheme, the actual MOS value is plotted
against the predicted scores for the two datasets as shown in Fig. 8On the top rowof the figure,
the ATVIS model’s overall performance is depicted for the CVIQD2018 database (a) and the
OIQA database (b). The performance under different distortions is shown on the bottom row
for the CVIQD2018 database (c) and the OIQA database (d). A more focused scatter plot
exhibits the promising performance of the ATVIS-OIQA model. The ATVIS-OIQA model
outperforms in the CVIQD dataset, and there is a very few deviations for JPEG compared
to AVC, and HEVC has more deviations. The scatter plot shows a high correlation between
MOS and predicted MOS for BLUR distortion on the OIQA dataset. There are a few more
deviations for JPEG and JP2K distortions. The figure clearly demonstrates that the ATVIS
method consistently and accurately assesses the quality of omnidirectional images.

4.6 Analysis of sampling strategies in viewport detector

The viewport detectormodule carries out the process of viewport selection to choose themost
influential viewports in an omnidirectional image, taking into account the high sensitivity of
observers to constructional properties in accordance with the HVS. The proposed method
adopts attention sampling tomodel effective viewport sampling. To validate the efficacy of the
proposed sampling strategy in choosing themost beneficial viewports for quality prediction to
achieve best performance, two other commonly used sampling strategies have been adopted
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Fig. 8 Predicted MOS versus actual MOS (a) & (c) CVIQD and (b) & (d) OIQA

specifically uniform sampling and random sampling. Uniform sampling is a strategy where
viewports are sampled uniformly at fixed intervals of latitude. Random sampling selects
viewports at random during training and evaluation.

The VGCN method for Panaromic Image Quality Assessment appearing in the literature
[23] adopted a selective sampling strategy. The method adopts Speeded Up Robust Features
(SURF) local feature detector to select salient keypoints and generate a kepypoint map using
structural information in accordance with HVS. Further, a heatmap is generated using a 2D
Gaussian filter. Finally N viewpoints are selected based on angular distance on the sphere.
Table 4 illustrates the performance assessment of various sampling strategies in the Viewport
Detector signifying the how the proposed attention sampling is beneficial to predicting quality
ratings on CVIQD Database.

Table 4 Performance of various sampling strategies in viewport detector

Dataset OIQA CVIQD
Sampling Strategy PLCC SROCC RMSE PLCC SROCC RMSE

Random 0.9341 0.9322 0.5241 0.9443 0.9310 4.6941

Uniform 0.9532 0.9501 0.5811 0.9484 0.9320 4.5215

VGCN [19] 0.9588 0.9532 0.5611 0.9597 0.9539 3.9220

ATVIS 0.9752 0.9642 0.6132 0.9762 0.9663 3.0171

Bold entries indicate the highest accuracy of the proposed model
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Table 5 Effect of various feature extractors in viewport descriptor

Dataset OIQA CVIQD
Feature Extractors PLCC SROCC RMSE PLCC SROCC RMSE

VGG-16 [14] 0.9499 0.9463 0.7812 0.9504 0.9363 4.4356

ResNet-18 [4] 0.9600 0.9592 0.6611 0.9597 0.9539 3.9220

Transformer [21] 0.9752 0.9642 0.6132 0.9762 0.9663 3.0171

Bold entries indicate the highest accuracy of the proposed model

4.7 Analysis of construction of viewport descriptor

The novelty of this proposed framework for 360-degree IQA lies in the application of Vision
Transformers to solve the task of quality assessment. The chosen feature extractor is highly
influential on the performance of the Viewport Descriptor module in the overall quality
prediction task. Table 5 illustrates the influence of various Viewport Descriptor architectures
on effective feature extraction on CVIQDDataset over all distortion types by comparing their
performance under the same conditions. The proposed Viewport Descriptor is competitive
with other architectures owing to the exceptional ability of transformers in capturing both
positional and content characteristics in images because of positional encodings.

4.8 Cross database evaluation

To evaluate the generalization performance, the model trained on one database is used to test
on remaining databases as shown in Table 6 The CVIQD and OIQA

Datasets contain only JPEG as the common distortion type. CVIQD contains only distor-
tions related to compression artifacts, and OIQA contains Gaussian noise and blur in addition
to compression artifacts. Following the approach of MC360IQA [18], the model trained on
the CVIQD dataset is evaluated on JPEG and JP2K compression from the OIQA dataset, and
the results are shown in Table 6.

It is observed from Table 6 that the cross-dataset evaluation on JPEG compression is
superior, as it is a common distortion type, and the proposed model can effectively capture
the knowndistortions. TheATVIS-OIQAmodel outperforms the other state-of-the-artmodels
in generalization ability. However, the model finds it hard to generalize on other noise-related
distortions; hence the overall generalization capability is significantly low due to unknown
distortions.

In conclusion, the proposed ATVIS-OIQA model exhibits a strong generalization capa-
bility.

Table 6 Cross database comparison

Distortions JPEG JP2K ALL
Method PLCC SROCC PLCC SROCC PLCC SROCC

MC360IQA [16] 0.8898 0.8412 0.6211 0.6221 0.7443 0.6981

MFILGN [26] 0.9027 0.8889 0.7107 0.6781 0.7885 0.7589

ATVIS-OIQA 0.9042 0.8910 0.7202 0.6820 0.7892 0.7583

Bold entries indicate the highest accuracy of the proposed model
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Table 7 Performance comparison
with different number of
viewports

Dataset OIQA CVIQD
No. of Viewports PLCC SROCC PLCC SROCC

5 0.9413 0.9264 0.9571 0.9317

10 0.9751 0.9654 0.9762 0.9668

15 0.9756 0.9659 0.9764 0.9670

20 0.9758 0.9662 0.9764 0.9671

4.9 Effect of number of viewports

The minimal number of viewports used to predict the omnidirectional image quality is one of
the significant parameters during testing. Insufficient viewports will result in incorrect quality
estimation due to the inability to extract features from the entire image. In contrast, excessive
viewports will significantly increase the processing requirements. As a result, the proposed
work investigated the number of viewports to be selected that will improve the performance
without increasing the computation. From Table 7, it is observed that the SROCC and PLCC
values with more than ten viewports do not change considerably. So, the proposed method
chooses ten viewports for training.

4.10 Runtime analysis

In Fig. 9DeepQA andDB-CNNuses the FR 2DIQA learningmethodwhich basically process
the 2-D images, hence the average runtime of these two methods are less than other SOTA
methods. CPP-PSNR uses FR 360IQA learning method whose average inference time is
1.2172 sec per frame. MC360 uses NR 360IQA learning method whose average runtime
is 1.101 sec per frame which is less than VGCN, MFILGN, SCSOIQA. VGCN uses NR
360IQA learning method whose average runtime is 1.48 sec which is higher than all the
other methods due to number of training parameters. MFILGN uses NR 360IQA learning
method whose average runtime is 1.125 sec which is second best in the NR 360IQAmethods.
SCSOIQA also uses NR 360IQA learning method whose average runtime is 1.2401 sec. Our
proposed ATVIS algorithm outperforms due to compatability of algorithm to work with low
computing devices with loss less compression technique, ATVIS uses NR 360IQA learning
method with average runtime is 0.60121 sec.

Fig. 9 Runtime analysis of different viewport descriptor
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5 Conclusion

This chapter proposed an application of image quality assessment on omnidirectional images
for VR applications. The proposed method utilizes attention-based viewport selection with
graph convolution for building a spatial viewport graph and vision transformers for feature
extraction. It contains a local branch to capture fine-grained details and a global branch to
capture real-world distortions.

The local branch is built upon a scorer network which uses the attention map to select
the top-k viewports, and graph convolution is employed to model the relation between the
viewports. The global branchmodule fuses the features trained using the vision transformers,
which helps in extracting the global features. Finally, the local and global quality features
regress to the quality score.

Extensive experiments have shown the effectiveness of the proposed ATVIS-OIQA on the
two publicly available benchmark datasets. The future extension of the ATVIS-OIQA model
could be to focus on Omnidirectional Video Quality Assessment for capturing complex
spatial-temporal interactions between viewports in videos.
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