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Abstract
Medical imaging, a cornerstone of disease diagnosis and treatment planning, faces the 
hurdles of subjective interpretation and reliance on specialized expertise. Deep learning 
algorithms show improvements in automating medical image analysis, reducing radiologists’ 
burden, and potentially enhancing patient outcomes. However, these algorithms require 
substantial quantities of high-quality labelled data for effective training and refinement. 
This paper proposes an innovative approach that harnesses few-shot learning (FSL) and 
generative adversarial networks (GANs) to overcome conventional methods’ limitations in 
medical image classification. FSL, capable of learning from limited labelled examples, holds 
promise for scenarios where labelled data is scarce. However, the lack of interpretability 
in existing FSL models impedes their clinical adoption. To tackle this, this paper proposes 
a explainable FSL network, "MTUNet +  + ," which integrates an attention mechanism to 
emphasize relevant regions in medical images. Furthermore, integrating a generative 
adversarial network, enhances the performance of MTUNet +  + by generating synthetic 
medical images. Systematically eliminating misleading synthetic images improves the 
reliability and accuracy of medical image classification. Empirical evaluation on benchmark 
datasets underscores the effectiveness of the approach, achieving 85.19% and 69.28% 
accuracy for the HAM10000 and Kvasir datasets, respectively. This paper contributes to 
advancing AI-driven solutions in clinical practice, facilitating enhanced patient care and 
streamlined workflows within real-world healthcare settings.
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1  Introduction

The integration of artificial intelligence (AI) into healthcare has emerged as a critical 
imperative in addressing the increasing complexity and challenges within the medical field 
[1]. The rapid expansion of medical data and the increasing demand for accurate and effi-
cient diagnostic methods position AI as a pivotal force in transforming healthcare delivery, 
especially in medical imaging. Medical imaging modalities such as magnetic resonance 
imaging (MRI), computed tomography (CT), and X-rays play fundamental roles in disease 
diagnosis, treatment planning, and patient progress monitoring. However, the interpreta-
tion of medical images often requires specialized expertise and is prone to subjectivity, 
which may lead to potential diagnostic errors and delays in treatment. Deep learning has 
emerged as a powerful tool for automating the analysis of medical images and improving 
the accuracy and efficiency of diagnoses. However, its effectiveness depends on a large 
amount of labelled data for training. The lack of labelled data in medical fields presents a 
significant challenge, hindering the complete utilization of machine learning algorithms for 
diagnostic tasks. Therefore, deep learning may not always be the most reliable choice for 
medical image analysis and diagnosis. Deep learning may show less than optimal accuracy 
in classifying rare diseases. Its performance may differ among various datasets due to dif-
ficulties in generalizing within deep learning models.

In recent years, few-shot learning (FSL) has emerged as a promising approach to medi-
cal image classification, particularly in scenarios where labelled data is scarce or unavaila-
ble. FSL aims to train machine learning models to recognize patterns from a small number 
of labelled examples, or support images, and generalize to classify new, unseen images, or 
query images. This paradigm closely mimics the human ability to learn new concepts from 
a limited number of examples, making it well-suited for medical image analysis, where 
labelled data is often limited and expensive to obtain. By leveraging FSL, researchers and 
healthcare professionals can potentially improve the efficiency and accuracy of diagnos-
ing medical conditions from imaging data. Despite the potential of FSL in medical image 
classification, existing models often lack interpretability and transparency, hindering their 
adoption in clinical practice. Deep learning models, which are commonly used in FSL 
approaches, are often perceived as black boxes, making it difficult for healthcare profes-
sionals to understand the rationale behind their decisions. Explainable artificial intelligence 
(XAI) aims to address this challenge by providing transparent insights into the decision-
making process of AI models, enabling clinicians to validate and trust the decisions made 
by these models. XAI methods like feature visualization, saliency maps, and attention 
mechanisms can assist healthcare professionals in identifying the specific regions of an 
image that are impacting the model’s decision-making process. This not only increases 
confidence in the model’s predictions but also allows clinicians to provide better patient 
care by integrating AI technology into their workflow [2].

The integration of generative adversarial networks (GANs) into medical image analy-
sis holds significant promise for enhancing the quality and diversity of training data. 
GANs, a class of AI algorithms that generate synthetic data by learning from real data 
distributions, can produce realistic medical images that closely resemble real patient 
data. Augmenting the limited labelled datasets available to FSL with synthetic data 
generated by GANs may improve the generalization performance and robustness of 
FSL models to changes in imaging conditions. Furthermore, the integration of GANs 
may also aid in addressing the issue of data scarcity in medical imaging by generating 
large amounts of realistic data for training [3]. This may help improve the accuracy and 
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reliability of FSL models for detecting and diagnosing medical conditions. While GANs 
can generate realistic data, there may still be limitations in the ability of synthetic data 
to fully capture the complexity and variability of real patient data. Additionally, there is 
a risk of introducing bias or inaccuracies into the FSL models if the synthetic data does 
not accurately reflect the true distribution of medical images. To tackle this, this paper 
introduces an approach that uses two convolutional neural networks (CNNs) to remove 
misleading synthetic images from the training dataset before training the FSL models. 
GANs is a versatile tool that can be applied in a wide range of domains beyond image 
generation. For example, it can be employed in recommendation systems [38, 39] to 
generate synthetic embeddings from content features, thereby improving recommenda-
tion accuracy and addressing challenges in recommending cold items. By incorporating 
GANs into the process of training FSL models, researchers can ensure that the synthetic 
data used is both accurate and representative of the true distribution of medical images, 
ultimately improving the performance and reliability of the FSL models in medical 
image analysis tasks.

In summary, the integration of AI into healthcare, particularly in medical image 
analysis, offers transformative opportunities to improve patient care, enhance diagnostic 
accuracy, and streamline clinical workflows. Advanced computational techniques such 
as FSL and GANs may be leveraged to develop innovative solutions to address the com-
plex challenges faced by healthcare professionals in diagnosing and treating diseases. 
This paper introduces a novel approach to explainable few-shot medical image classifi-
cation using generative adversarial networks (GANs), aiming to enhance the trustwor-
thiness and adoption of AI-driven solutions in clinical practice. This paper demonstrates 
the effectiveness and interpretability of the proposed approach through empirical evalu-
ation and validation. This facilitates its practical implementation in real-world health-
care environments. The key contributions of this paper are outlined as follows:

•	 This paper proposes "MTUNet +  + ," a novel explainable few-shot medical image 
classification network exhibiting superior accuracy compared to current state-of-the-
art methods. The proposed network integrates an attention mechanism, emphasizing 
relevant regions in medical images for classification. Notably, the attention mecha-
nism incorporates learnable positional embedding and gated recurrent unit with a 
skip connection, diverging from traditional approaches employing fixed positional 
embedding and gated recurrent unit architectures.

•	 This paper proposes leveraging a generative adversarial network to enhance MTU-
Net +  + ’s performance. It integrates FASTGAN [4] to generate additional medical 
images from available training data. Employing two CNNs, the approach identifies syn-
thetic images prone to misclassification, removing them from the dataset. This system-
atic elimination aims to improve the accuracy and reliability of the classification task, 
showcasing the potential of FSL techniques in medical image classification.

2 � Related work

In this section, the literature on few-shot learning is initially addressed. Following this, 
the literature on explainable artificial intelligence is examined. Finally, the literature on 
generative adversarial networks is discussed.
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2.1 � Few‑shot learning

FSL, a subfield of machine learning, addresses the challenge of training models with lim-
ited labelled data. Initial methods for FSL primarily utilized meta-learning strategies, 
training models that quickly adapted to new tasks utilizing limited data. Vinyals et al. [6] 
introduce matching networks, which utilize attention mechanisms to compare support set 
examples with query examples. Ravi et al. [7] introduce the concept of learning to learn, 
which involves utilizing a recurrent neural network to acquire shared initialization for mul-
tiple tasks. Snell et  al. [8] introduce prototypical networks, which are designed to learn 
class prototypes to improve classification efficiency. Finn et al. [9] present Model-Agnostic 
Meta-Learning (MAML), which learns an initialization that enables fast adaptation to new 
tasks. Nichol et al. [10] streamline the meta-learning process with Reptile by employing a 
minimal number of inner loop updates during training. Relational reasoning models, such 
as Relation Network (Sung et al. [11]), explicitly represent relationships between pairs of 
instances to enhance classification. Gidaris et al. [12] present Dynamic Few-Shot Visual 
Learning, which adjusts feature embeddings dynamically to enhance classification perfor-
mance. Cross-modal FSL is now a significant area of research. Xing et al. [13] introduce 
Cross-Modal Few-Shot Learning, a method that enhances classification by sharing knowl-
edge across different modalities. Hu et al. [14] propose transductive meta-learning, which 
involves using unlabelled data in meta-training to improve generalization. Zhou et al. [15] 
introduce Few-Shot Deep Learning via Information Bottleneck, leveraging information bot-
tleneck theory to improve few-shot classification performance. Wang et al. [16] introduce 
meta-prototypical networks, which combine meta-learning with prototypical networks to 
enhance few-shot learning. Gauch et al. [17] introduce a method called SubGD, which dis-
covers low-dimensional parameter subspaces in stochastic gradient descent updates. Wang 
et al. [26] suggest a few-shot classification method that uses a two-stream neural network 
to pull out features and adds circle loss to the loss function. This leads to higher accuracy 
rates on standard datasets. Wang et  al. [37] investigate the efficacy of nearest-neighbour 
baselines without meta-learning in few-shot learning, revealing competitive accuracies 
with basic feature transformations. Mix-MAML is a hybrid optimization meta-learning 
method that Jia et al. [27] have created to improve MAML’s limited generalization perfor-
mance by adding techniques for data enhancement, initialization attenuation, and resolu-
tion enhancement. Zhang et  al. [28] propose RaPSPNet, a network tailored for few-shot 
fine-grained image classification, enhanced feature distinction, and similarity evaluation. 
While the existing literature has made remarkable progress in advancing few-shot learning 
techniques, there is still a significant research gap in terms of scalability, real-world appli-
cability, generalization across diverse domains, as well as interoperability and integration.

2.2 � Explainable artificial intelligence

XAI has garnered substantial attention in recent years as a pivotal element in constructing 
trustworthy and interpretable machine learning models. Initial XAI methods concentrated 
on model-agnostic techniques that explain predictions of machine learning models without 
needing access to their internal mechanisms. Ribeiro et  al. [18] introduce LIME (Local 
Interpretable Model-Agnostic Explanations) as a method that explains the predictions of any 
classifier in a human-interpretable way. It generates local surrogate models to approximate 
the behavior of the black-box model near a specific prediction. Lundberg et al. [19] propose 
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SHAP (SHapley Additive exPlanations), which leverages cooperative game theory to assign 
feature importance scores to individual input features. Recently, there has been an increasing 
interest in incorporating XAI methods into the training phase to improve model transparency 
and interpretability. This trend has resulted in the creation of interpretable neural network 
structures like attention mechanisms and self-attention mechanisms. Vaswani et  al. [20] 
present the Transformer architecture, which uses self-attention mechanisms to capture distant 
relationships in sequential data and offers interpretability by using attention weights. Wang 
et al. [21] introduce Score-CAM, a novel visual explanation method for CNNs, surpassing 
previous approaches with gradient-independent weight determination for improved 
interpretability. Selvaraju et  al. [22] propose Grad-CAM. It creates visual explanations for 
decisions in CNN-based models by highlighting important image regions for different tasks 
without changing the architecture. Chattopadhay et  al. [23] introduce Grad-CAM +  + , an 
enhanced method building on Grad-CAM, aiming to improve visual explanations of CNN 
predictions significantly. Li et  al. [24] suggest SCOUTER, a slot attention-based classifier 
that offers classification by adding explanations directly to final confidence scores, which 
makes them easier to understand. Sun et  al. [25] introduce a new way to train models for 
cross-domain few-shot classification tasks that uses explanation scores to highlight important 
features in real time. This makes the models more generalized across a wider range of 
datasets. Wang et al. [5] propose a novel FSL approach for image classification, utilizing a 
visual representation from the backbone model and patterns generated by a self-attention 
based explainable module to enhance transparency in knowledge transfer. While recent 
advancements in XAI have demonstrated promising results in enhancing the interpretability 
of machine learning models and improving model generalization across various domains, 
there are still several critical gaps and considerations that require attention. Future research 
should focus on developing robust, versatile, and user-centric XAI methods that are 
computationally efficient, maintain high performance, and consider XAI’s broader ethical 
and societal implications.

2.3 � Generative adversarial networks

GANs have emerged as a powerful tool in medical imaging, particularly for image generation, 
segmentation, and enhancement tasks. The application of GANs in medical imaging gained 
momentum with the pioneering work of Goodfellow et al. [29]. They introduce the concept 
of adversarial training. In the context of medical imaging, GANs have been employed for 
various tasks such as image generation, image-to-image translation, and anomaly detection. 
They employ Parzen window-based log-likelihood estimates to figure out the performance 
of the GAN network on MNIST and TFD datasets. Nie et  al. [30] propose a data-driven 
approach, using adversarial training and an image gradient difference loss, improving 
accuracy in predicting Computed tomography (CT) images from magnetic resonance 
imaging (MRI). Iqbal et  al. [31] propose MI-GAN, which synthesizes retinal images and 
segmented masks for STARE and DRIVE datasets. Beers et al. [32] suggest a GAN network 
that generates synthetic medical images, including fundus photographs of retinopathy of 
prematurity and multi-modal MRI images of glioma. Ren et al. [33] suggest using GANs to 
create real medical image stimuli. They have created tumor-like stimuli with specific shapes 
and authentic textures in a controlled manner. Liu et  al. [4] introduce a lightweight GAN 
structure for few-shot image synthesis, achieving high quality at 1024 × 1024 resolution with 
minimal computing resources. They use the Frechet Inception Distance metric to measure 
the overall semantic realism of synthesized images. Joseph et al. [34] propose a GAN-based 
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data augmentation model to generate synthetic mammograms, addressing class imbalances 
in the MIAS dataset and leading to improved breast cancer classification performance. They 
use CNN classifiers, including binary and ternary classifiers, to evaluate the performance of 
their GAN network. While GANs have shown promise in creating realistic medical images, 
there may be some concerns regarding the use of synthetic data for medical diagnosis and 
treatment decisions. Additionally, the reliability and accuracy of GAN-generated images 
compared to real patient data may still be a concern in clinical settings.

In conclusion, recent advancements in FSL and XAI have shown promise for enhancing 
model adaptation and interpretability across diverse domains. Additionally, GANs offer 
valuable tools for medical imaging tasks, although concerns remain regarding their 
reliability and accuracy in clinical settings. Therefore, this paper proposes an explainable 
FSL network tailored for medical image classification, integrating it with GAN. This 
integrated approach aims to address the limitations of current models by providing both 
accuracy and interpretability in medical image classification.

3 � Method

In this section, the problem definition is initially discussed, along with the proposed few-
shot medical image classification network. Furthermore, the generation of medical images 
through a generative adversarial network is discussed.

3.1 � Problem definition

In the context of classification tasks, the training set D represents a collection of paired 
instances (xi, yi) , where xi denotes the input data and yi signifies the corresponding 
output label. The fundamental objective is to derive a functional mapping f ∶ X → Y  , 
where X denotes the input space and Y  signifies the output space, thereby enabling the 
model to accurately assign class labels to new inputs. In few-shot learning (FSL), on 
the other hand, the training dataset D is very limited, with only a few examples of each 
class. This is different from the usual assumption of a lot of examples in supervised 
learning methods. A typical approach in FSL is characterized by an M-way N-shot 
strategy, where M denotes the number of classes and N  signifies the number of samples 
per class. This strategy works in an episodic manner. The algorithm parses the whole 
dataset into various episodes. A single episode consists of two distinct sets: a support set 
and a query set. The support set Ds encompasses a set of labelled instances, formulated 
as Ds =

{
(xmn, ymn

)
|m = 1, 2, 3,…M, n = 1, 2, 3,…N} while the query set Dq contains 

unlabelled instances belonging to classes present in the support set but distinct from 
those in the support set. The basic purpose of a Few-Shot Learning (FSL) algorithm is 
to acquire knowledge from the support set to make predictions for instances in the query 
set.

3.2 � Few‑shot medical image classification network

Figure  1 illustrates the proposed MTUNet +  + network, which is designed for few-shot 
image classification. It is the enhanced version of [5]. During each episode, feature maps 
Fmap = f�(x) ∈ ℝ

a×h×w are extracted from each image x in the support set Ds and the query 
image using the CNN backbone f� , where � represents the set of learnable parameters. 
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These feature maps are then fed into the pattern extractor module fpe , which generates 
attention Att = fpe(Fmap) ∈ ℝ

u×v over Fmap . The pairwise matching module utilizes a Multi-
Layer Perceptron (MLP) to determine a score indicating the probability of the query image 
xq belonging to one of the M classes in Ds . The Pattern extractor module is essential in 
the learning process for FSL tasks. It is designed with a specific focus on developing a 
transferable attention mechanism that can effectively recognize and analyse common 
patterns that are present in the dataset.

Figure  2 illustrates the structure of the proposed pattern extractor module.  It is the 
enhanced version of [24]. First, the input feature map Fmap goes through a 1 × 1 convolutional 
layer, which is then followed by a Rectified Linear Unit (ReLU) activation function. This 
process is intended to reduce the dimensionality of Fmap from a to b . Afterwards, the spatial 

Fig. 1   The structure of MTUNet +  + . A single query image undergoes processing by the pattern extractor 
to derive distinctive patterns, which are then aggregated into an overall attention mechanism. Then, features 
of each query image are combined with features of every support image by concatenation, which enables 
final classification through pairwise matching

Fig. 2   The structure of proposed pattern extractor



	 Multimedia Tools and Applications

1 3

dimension of the reduced features is flattened to construct Fmap� ∈ ℝ
b×v , where v = h × w . 

To maintain spatial information, a learnable positional embedding Pl is integrated with 
the features, represented as Fmap� = Fmap� + Pl . By utilizing a self-attention mechanism, 
attention is allocated over Fmap concerning spatial dimensions. This is done by calculating the 
dot-product similarity between a set of u patterns and Fmap′ post nonlinear transformations. 
This process is iterated R times, where patterns are updated using a Gated Recurrent Unit 
with Skip Connections (GRUsc) to improve attention. Let K(r) ∈ ℝ

u×b represent the patterns 
in the r-th iteration, where r = 1, 2,… ,R and K(1) = K denotes the learnable parameters. 
Nonlinear transformations for K(r) and Fmap′ are denoted by

The attention is applied by utilizing a normalization function � , as follows:

The patterns are updated through

Let Softmax represent a softmax function and let � represent a sigmoid function. MTU-
Net +  + adjusts the attention map through

This function effectively diminishes weak attention across various patterns sharing the 
same spatial location, utilizing ⊙ Hadamard product. This mechanism pushes the network 
to find very specific and different patterns with less duplication, which improves the precise 
allocation of attention. The attention map predominantly focuses on individual patterns, 
typically excluding their peripheral regions. The input feature map Fmap is then defined by 
the comprehensive attention Att′′ that corresponds to the extracted patterns.

The vector ​ 1u represents a row vector wherein all u elements are aggregated to yield 
1. The attention Att′′ is reshaped from v into a spatial structure identical to that of Fmap . 
Subsequently, features corresponding to the comprehensive attention are extracted and sub-
jected to average pooling across spatial dimensions, denoted as:

The process of performing a Few-Shot Learning (FSL) classification task typically 
entails establishing a similarity between a query image and one of the support images pro-
vided. The proposed network utilizes a learnable distance framework that includes a MLP. 

(1)gq
(
K(r)

)
∈ ℝ

u×b, gM
(
Fmap�

)
∈ ℝ

b×v ……

(2)Att�(r) = gq
(
K(r)

)
gM

(
Fmap�

)
……

(3)Att(r) = �
(
Att�(r)

)
∈ ℝ

u×v ……

(4)W (r) = Att(r)Fmap�
R ……

(5)K(r+1) = GRUsc

(
W (r),K(r)

)
……

(6)Att(r) = 𝜚
(
Att�(r)

)
= 𝜎

(
Att�(r)

)
⊙ Softmax

(
Att�(r)

)
……

(7)Att�� =
1

u
Att(r)1u ……

(8)O =
1

hw

h∑

i=1

w∑

j=1

Att��ijFmapij
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This MLP takes the feature vectors of the query and support images as input and outputs 
a similarity score. Let Oq and Omn denote the feature extracted by applying the pattern 
extractor to the query image xq ∈ DQ and support images xmn ∈ Ds. Here the subscripts 
m = 1, 2, 3……M and n = 1, 2, 3……N denote the nth image in the M-way N-shot epi-
sodic paradigm. In scenarios where N > 1 , an average over the N images is computed the 
generate the representative feature Om ; otherwise Om = Om1. To compute the similarity 
score score between Oq and Om , a MLP f� with learnable parameters � is employed:

Here [., .] denotes concatenation. The similarity score is then used to measure the simi-
larity between the query image and each support image. By comparing the scores, the net-
work can determine which support image is most similar to the query image and classify it 
accordingly. The query image xq is assigned to class m∗ , with the highest similarity scores 
over m classes.

This learnable distance framework enhances the performance of Few-Shot Learning by 
effectively capturing the underlying similarities and differences between images.

3.3 � Generation of medical images through generative adversarial network

This study employs FASTGAN [4] for generating synthetic images in the training data-
set. FASTGAN employs a single convolution layer per resolution with restricted channels, 
yielding a smaller and quicker-to-train model. Moreover, it integrates the Skip-Layer Exci-
tation (SLE) module, enhancing gradient flow by modifying skip-connections for efficient 
gradient signal propagation across resolutions. SLE utilizes channel-wise multiplications 
and extends skip-connections between distant resolutions to improve gradient flow with-
out notable computational overhead. While resembling the Squeeze-and-Excitation mod-
ule, SLE operates between distant feature-maps, aiding gradient flow and channel-wise 
feature recalibration essential for disentangling content and style attributes in generated 
images. FASTGAN also incorporates a self-supervised discriminator trained with small 
decoders, enhancing image feature extraction via auto-encoding. This approach improves 
the discriminator’s capacity to extract comprehensive representations from inputs, thereby 
enhancing model robustness and synthesis quality. This approach maintains a pure GAN 
framework, using auto-encoding solely for discriminator regularization. Additionally, the 
method employs the hinge version of the adversarial loss for iterative training of the dis-
criminator and generator. Overall, these methodological advancements contribute to more 
efficient and effective GAN training, which has implications for various image synthesis 
tasks.

Figure 3 illustrates the integration of the GAN with the few-shot classifier network. This 
paper initially undertakes the generation of synthetic medical images by using original 
images. Considering that some synthetic medical images may not be completely realistic 
or accurately categorized, the possibility of inaccuracies necessitates manual examination 
by domain experts for correction. To circumvent the need for expert intervention, the study 
employs two CNNs, namely EfficientNetV2 and ShuffleNetV2, trained on the original 
medical images for the accurate classification of synthetic images. Consequently, only the 

(9)score
(
Oq,Om

)
= �

(
f�

([
Oq,Om

]))
……

(10)m∗ = argmax
m

score
(
Oq,Om

)
……
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synthetic images correctly classified by these CNNs are utilized. These mutually classified 
images, along with the original medical images, form the training set for the Few-Shot 
Learning (FSL) classifier. This approach ensures the selection of high-quality synthetic 
images for inclusion in the training dataset, thereby enhancing the performance and reli-
ability of the FSL classifier. By leveraging the capabilities of pretrained CNNs, the study 
establishes a mechanism to automate the classification process. It mitigates the need for 
manual intervention and facilitates the seamless integration of synthetic images into the 
training pipeline.

4 � Experiments

4.1 � Dataset

This paper employs two distinct datasets to evaluate the effectiveness of the proposed 
method in medical image classification. The first dataset comprises dermoscopic images 
of skin cancer, while the second dataset encompasses gastrointestinal endoscopy images 
for gastrointestinal disorders. The HAM10000 dataset, abbreviated as "Human Against 
Machine with 10,000 Training Images" [35], is a comprehensive collection of dermoscopic 
images of pigmented skin lesions, consisting of 10,015 images. The dataset encompasses 
dermatoscopic images sourced from diverse populations and acquired through various 
modalities, resulting in a comprehensive collection suitable for academic machine learning 
purposes. Over a span of 20 years, the Department of Dermatology at the Medical Univer-
sity of Vienna, Austria, and Cliff Rosendahl’s skin cancer practice in Queensland, Aus-
tralia, collected the 10,015 dermatoscopic images in the HAM10000 dataset. This data-
set covers a diverse range of benign and malignant lesions, including ’Actinic Keratoses’, 
’Basal cell carcinoma’, ’Benign Keratosis’, ’Dermatofibroma’, ’Melanocytic Nevi’, ’Mela-
noma’, and ’Vascular Skin Lesions’. Furthermore, histopathology confirms over 50% of 
the lesions in the HAM10000 dataset. Expert consensus, follow-up examination, or in-vivo 
confocal microscopy established the ground truth for the remaining cases. The dataset is a 
valuable resource for developing and evaluating algorithms for dermatology and skin can-
cer detection. The Kvasir dataset [36] comprises gastrointestinal endoscopy images, facili-
tating research in medical image classification for gastrointestinal disorders. Vestre Viken 
Health Trust (VV) in Norway, consisting of four hospitals providing healthcare to 470,000 
people, collected the data using endoscopic equipment. The dataset includes eight classes: 
’Normal Z-line’, ’Pylorus’, ’Cecum’, ’Esophagitis’, ’Polyps’, ’Ulcerative Colitis’, ’Dyed 
and Lifted Polyps’, and ’Dyed Resection Margins’. Medical experts from VV and the Can-
cer Registry of Norway (CRN) manually annotated the images. Some of the included image 
classes feature a green picture-in-picture illustration of the endoscope’s position and con-
figuration inside the bowel, facilitated by an electromagnetic imaging system (ScopeGuide, 

Fig. 3   Illustration of the integration of the GAN with the few-shot classifier network
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Olympus Europe), which may aid in interpreting the image. The dataset offers a diverse 
set of images representing various gastrointestinal conditions. This makes it an appropri-
ate dataset for training and evaluating medical image classification models, specifically for 
gastrointestinal diseases.

4.2 � Experimental Setup

The backbone CNN is initially trained using a task-based method on the utilized medical 
dataset. Subsequently, the attention module is trained independently, and finally, the few-
shot classifier is trained to optimize its performance for medical image classification tasks. 
This sequential training approach is adopted to ensure that each component of the network 
is effectively trained to perform its specific task, thereby enhancing the overall performance 
of the model. The proposed network (MTUNet + +) is assessed through experimentation 
involving 2000 episodes of 2-way classification. The first step in this evaluation process is 
to randomly pick two classes from the dataset. Next, support and query images from these 
2 classes are randomly picked, with the number of support images ( N = 5 or 10) and the 
fifteen query images per class. The average accuracy is calculated for (15 × 2 = 30) query 
images from all 2000 episodes. This paper adopts ResNet-18 as the backbone for MTU-
Net +  + , utilized in Few-Shot Learning (FSL) tasks. Changes are made to the ResNet-18 
architecture. The first two downsampling layers are left out, and the kernel size of the first 
7 × 7 convolutional layer is changed to 3 × 3. After the Rectified Linear Unit (ReLU) activa-
tion, the feature maps used in the model are taken from the hidden vector of the last convo-
lutional layer. For ResNet-18, the respective numbers of feature maps amount to 512. In the 
pre-training phase of the pattern extractor module, the hyperparameter hidden dimension 
for GRUsc is configured to 256, with 3 update iterations. The number of patterns is set to 
seven. Both the gq and gM consist of three fully connected layers with ReLU nonlinearities. 
All parameters within the backbone (ResNet-18) remain fixed. The initial learning rate for 
training commences at 10−4 and undergoes a reduction by a factor of 10 at the 40th epoch, 
with a total training duration spanning 150 epochs. To train the proposed network, MTU-
Net +  + , the CNNs and pattern extractor parameters are fine-tuned using a slow learning 
rate of 10–5 over 20 iterations. Each epoch involves the sampling of 500 episodes for 2-way 
tasks. The remaining trainable components of the model commence training with an ini-
tial learning rate of 10–4, divided at the 10th epoch by 10. The model selection process 
involves saving the model demonstrating the best performance after evaluation on 2,000 
episodes sampled from the validation set. The AdaBelief algorithm facilitates optimiza-
tion as part of the model’s implementation using PyTorch. Input images undergo resizing 
to dimensions of 80 × 80, alongside data augmentation techniques such as random flipping 
and affine transformations. Experiments were run on a GPU workstation with one NVIDIA 
A4000 GPU (16 GB of GDDR6 memory) and a Xenon Gold 6226R CPU and 64 GB of 
RAM.

4.3 � Results and Discussion

For image classification, the HAM10000 and Kvasir datasets are used for training and 
testing the proposed architecture. The HAM10000 dataset comprises 7 classes of skin 
lesions, while Kvasir dataset contains 8 classes of gastrointestinal tract diseases. The 
distribution of both datasets is depicted in Figs. 4 and 5. Additionally, 1000 synthetic 
medical images are added to each class to evaluate the proposed model’s performance 
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with GAN. In the HAM10000 dataset, ’Benign keratosis’, ’Basal cell carcinoma’, and 
’Actinic Keratoses’ constitute the training set, while ’Melanoma’ and ’Dermatofibroma’ 
are used for validation. ’Vascular skin lesions’ and ’Melanocytic nevi’ are designated 

Fig. 4   Data distribution plot of HAM10000 dataset

Fig. 5   Data distribution plot of Kvasir dataset
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for the test dataset. In the Kvasir dataset, ’Dyed and Lifted Polyps’, ’Dyed Resection 
Margins’, and ’Esophagitis’ are utilized for training, with ’Cecum’, ’Pylorus’, and 
’Z-line’ reserved for validation. ’Polyps’ and ’Ulcerative Colitis’ are allocated for the 
test dataset. Thus, only two-way classification is possible for both the datasets.

Figure  6 presents the depiction of original images alongside generated syn-
thetic images belonging to classes from both the training and validation sets of the 
HAM10000 dataset. Similarly, Fig. 7 illustrates original images and generated synthetic 
images from classes within the training and validation sets of the Kvasir dataset. The 
synthetic images are generated using a FASTGAN model to increase the diversity of the 
dataset and improve the performance of the classification model. By incorporating syn-
thetic images, the model can better generalize to new, unseen data and improve overall 
accuracy.

GANs are widely utilized in generating synthetic images that mimic the characteristics 
of the original images. The GAN framework typically employs a discriminator network 
to distinguish between these synthetic images and the original images. However, due to 
the inherent limitations in the discriminator’s discriminative capabilities, it is not always 
feasible for the GANs to accurately classify all synthetic images. Given the critical nature 
of medical imaging, manual verification by domain experts is often indispensable to ensur-
ing the quality and accuracy of the synthetic images. Incorporating these synthetic images 
directly into the training dataset can introduce additional noise, compromising the model’s 
accuracy and potentially rendering it less useful in medical applications. This constraint 
presents a significant challenge for the integration of GANs with limited medical data.

Fig. 6   Illustration of original images and generated synthetic images of the HAM10000 dataset
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Although a trained expert has the potential to handle this issue, the medical commu-
nity frequently lacks such experts. Additionally, relying solely on expert verification can be 
time-consuming and may not be scalable for large datasets. To address this challenge, this 
paper proposes a novel approach that leverages two CNNs trained on the original dataset 
to classify the synthetic images. This paper utilizes EfficientNetV2 and ShuffleNetV2, pre-
trained on the original medical images, for the accurate classification of synthetic images. 
The newly created dataset only includes the synthetic images that both CNNs mutually 
classify as correct. This selective approach ensures that the dataset remains noise-free and 
includes only correctly generated synthetic images, thereby mitigating the limitations asso-
ciated with the integration of GANs in medical applications.

The proposed network is compared with state-of-the art methods in terms of accu-
racy. The proposed network achieves superior performance and outperforms all other 
methods. For model testing, the results are based on the model that did the best on 
the validation dataset. This was done by picking 2000 (1-shot, 5-shot and 10-shot) 
tasks at random from the test dataset across both datasets. During testing, the model 
assigns query images to one of the support image classes by extracting regions from 
each query and support image, deriving features with the pattern extractor, and subse-
quently matching these features with the pattern matching module. Table 1 and Table 2 

Fig. 7   Illustration of original images and generated synthetic images of the Kvasir dataset
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present the obtained results for the HAM10000 and Kvasir datasets, respectively. The 
results show that MTUNet +  + with GAN achieved higher accuracy in both datasets 
compared to other existing methods. The pattern extractor and matching module in 
MTUNet +  + along with GAN make feature extraction and matching more reliable. This 
results in better performance in few-shot learning tasks on the HAM10000 and Kvasir 
datasets.

Figure 8 provides a visual representation of individual patterns alongside the average 
features extracted from a sampled task within the HAM10000 dataset. This figure displays 
two images from the support set and two images from the query set. Notably, the illus-
tration comprises 1–7 images, each portraying the pattern extracted from corresponding 
slots. The proposed network utilizes a pattern extractor with seven slots. Furthermore, the 
term ’Overall’ encapsulates the average pattern visualization, ranging from 1 to 7 patterns, 
which is integral to the few-shot classification process. Similarly, Fig. 9 showcases the vis-
ualization of each pattern and the average features derived from a sampled task within the 
Kvasir dataset.

Table 1   Average accuracy of 
2000 episodes of 2-way tasks on 
the HAM10000 dataset test set

Approach 2w-1 s-15q 2w-5 s-15q 2w-10 s-15q

Simpleshot [37] 51.14 64.21 66.18
MTUNet [5] 75.08 65.77 78.22
MTUNet +  +  76.29 68.64 80.9
MTUNet +  + with GAN 80.71 84.35 85.19

Table 2   Average accuracy of 
2000 episodes of 2-way tasks on 
the Kvasir dataset test set

Approach 2w-1 s-15q 2w-5 s-15q 2w-10 s-15q

Simpleshot [37] 51.14 58.04 64.21
MTUNet [5] 51.62 51.86 53.46
MTUNet +  +  53.27 54.03 55.01
MTUNet +  + with GAN 62.51 63.49 69.28

Fig. 8   Visualization of each pattern and the average features from a sampled task in the HAM10000 dataset
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4.4 � Ablation study

Spatial relationships between pixels or regions are pivotal for accurate modeling in 
computer vision tasks such as image classification and object detection. Position 
embedding plays a crucial role in capturing spatial context in visual data by encoding 
positional information. This paper employs learned position embedding as opposed to 
fixed position embedding to enhance the performance of the Few-Shot Learning (FSL) 
network in image classification. Fixed-position embedding involves assigning predeter-
mined positional vectors to each location or region within the image grid. These vec-
tors remain static during training and are not adjusted based on the input data. While 
fixed position embedding is computationally efficient and straightforward to implement, 
it may not fully capture the complex spatial relationships present in the data. Further-
more, the fixed positional embeddings eliminate the risk of overfitting. However, fixed 
positional embeddings may not capture specific patterns and structures in the data as 
effectively as learned positional embeddings, potentially resulting in information loss 
as they do not adapt to the specific task or dataset. In contrast, the learned position 
embedding approach treats position embedding vectors as trainable parameters. These 
vectors are adjusted during training to enable the model to dynamically learn spatial 
relationships from the input data. This adaptability allows the model to capture intri-
cate spatial contexts more effectively, potentially enhancing performance in tasks where 
spatial relationships are crucial. Furthermore, in learned positional embedding, the 
model can adapt the positional embeddings to the specific patterns and structures in 
the data it is trained on. However, there are also disadvantages to learned positional 
embeddings, including the risk of overfitting, especially when the model is trained on 
a small dataset. Furthermore, learning positional embeddings requires additional com-
putational resources and may increase training time. In medical images, where the spa-
tial arrangement of features can be critical for accurate diagnosis, this adaptability of 
learned embeddings proves beneficial. Table  3 displays the average accuracy of 2000 
two-way tasks on the HAM10000 dataset test set, with both fixed and learned posi-
tion embeddings. The proposed network attains an accuracy of 68.64% when utilizing 
learned position embeddings, surpassing the performance achieved with fixed position 
embedding. To train the learned position embeddings, the number of epochs has been 

Fig. 9   Visualization of each pattern and the average features from a sampled task in the Kvasir dataset
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increased from 60 to 150. The attention mechanism in the proposed FSL network can 
effectively leverage the learned positional embeddings to focus on relevant regions or 
features within the medical images. The attention mechanism can prioritize the most 
informative spatial contexts, which is critical for accurate medical image classification. 
The learned positional embeddings facilitate the attention mechanism’s adaptability, 
enhancing the model’s ability to identify subtle patterns and structures in the medical 
images, thereby improving classification accuracy.

Adding skip connections to Gated Recurrent Unit (GRU) networks improves the 
flow of information and makes it easier for gradients to propagate through the network. 
These skip connections can assist in learning long-term dependencies by establishing 
a direct path for gradient flow during backpropagation. This feature aids in mitigat-
ing the vanishing gradient problem, which is a prevalent challenge in training deep 
recurrent neural networks (RNNs). By retaining information from prior time steps and 
enabling it to bypass certain GRU layers, skip connections allow the model to capture 
both short-term and long-term dependencies more effectively. However, adding skip 
connections introduces additional complexity and increases the number of parameters 
in the model. To effectively manage this increased complexity and ensure optimal uti-
lization of skip connections, selecting an appropriate hidden dimension is essential. 
The hidden dimension determines the network’s capacity to capture and represent the 
underlying patterns in the data while also accommodating the information flow facili-
tated by the skip connections. Insufficient hidden dimensions may limit the network’s 
ability to exploit the benefits of skip connections, leading to suboptimal performance 
or even degradation in performance due to overfitting or underfitting. Therefore, choos-
ing the right hidden dimension is crucial in GRU with skip connections to maintain 
a balance between model capacity and computational efficiency. Table 4 presents the 
mean accuracy results obtained from 2000 episodes consisting of 2-way 5-shot tasks 
with 15 queries each, conducted on the HAM10000 dataset’s test set. These experi-
ments were conducted using GRU with skip connections with varying numbers of hid-
den dimensions. The proposed network achieves its highest accuracy when configured 
with a hidden dimension value set at 256. Table 5 further illustrates the effectiveness 
of GRU with skip connections by presenting the mean accuracy of 2000 episodes of 

Table 3   Mean accuracy of 2000 episodes of 2-way 5-shot 15-query tasks on the HAM10000 dataset test set 
with various position embeddings

Position embedding 2w-5 s-15q

Fixed position embedding 66.48
Learned position embedding 68.64

Table 4   Mean accuracy 
of 2000 episodes of 2-way 
5-shot 15-query tasks on the 
HAM10000 dataset test set 
with varying numbers of hidden 
dimensions in Gated Recurrent 
Unit with skip connections

Hidden Dimension 2w-5 s-15q

64 64.49
128 66.83
256 68.64
512 67.25
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2-way 5-shot 15-query tasks on the HAM10000 dataset test set with a hidden dimen-
sion set at 256. The proposed network achieves the highest accuracy when GRU with 
skip connections is employed.

4.5 � Limitations

A significant limitation of the proposed network lies in its inability to effectively clas-
sify histopathological images when integrated with GANs. While MTUNet +  + dem-
onstrates advancements in classification compared to MTUNet, the inclusion of syn-
thetic images generated by FASTGAN diminishes the performance of the proposed 
network. Specifically, FASTGAN fails to produce realistic histopathological images, 
posing a significant challenge to achieving optimal classification results. Furthermore, 
histopathological images require a substantial input size within the network to pre-
serve the intricate details inherent in histopathological images. Consequently, employ-
ing a smaller input size compromises the retention of crucial information within the 
images. So, more research needs to be done to make it easier for GANs to make realis-
tic histopathological images, which would then help classification networks like MTU-
Net +  + work better. Advanced GAN architectures, specially designed for complex 
medical images, may be beneficial in addressing this issue. Additionally, exploring 
ways to effectively handle the large input size required for histopathological images 
without losing important details will be crucial for advancing the accuracy and effi-
ciency of such classification systems in the future.

Numerous images in the Kvasir dataset feature the scope configuration for the cecal 
position, which is a common occurrence across various images. In the proposed net-
work, the pattern extractor identifies this common pattern within images of the same 
class and allocates attention to this green component, thereby impeding the network’s 
performance. Figure  9 illustrates this phenomenon. The prevalent green element in 
images across diverse classes introduces noise into the classification process, thereby 
hindering accurate categorization. To address this issue, future research may focus 
on implementing advanced data augmentation techniques, such as Cutout, Mixup, or 
AutoAugment, to diversify the dataset and reduce the impact of common patterns, such 
as the green component in the Kvasir dataset. By introducing variations in the images, 
the network will be less likely to rely solely on these common patterns for classifica-
tion. Additionally, experimentation with modifications to the attention mechanism to 
focus on other relevant features instead of distracting common patterns may enhance 
the overall efficacy and accuracy of the network. Another technique of self-attention 
mechanisms or adaptive attention models could be explored to improve the network’s 
ability to capture and prioritize relevant features in the images.

Table 5   Mean accuracy of 2000 episodes of 2-way 5-shot 15-query tasks on the HAM10000 dataset test set 
with GRU and GRU with skip connections

Network 2w-5 s-15q

GRU​ 66.18
GRU with skip connections 68.64
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5 � Conclusion

This paper proposed a novel few-shot classification network with explainable artificial intelligence 
within the context of medical image classification. The network demonstrated better performance 
compared to existing methods, especially when using GAN-generated images. It achieved 
an accuracy of 85.19% for the HAM10000 dataset and 69.28% for the Kvasir dataset in 2000 
episodes (2-way, 10-shot, 15-query). The network’s increased precision in the 1-shot scenario 
underscores its potential for practical medical uses, especially in  situations where there is a 
scarcity of labelled data. This paper has shown how using synthetic images created by GAN can 
enhance dataset diversity and improve the performance of classification models. The network’s 
spatial context comprehension has been improved by adopting learned position embedding 
instead of fixed embedding, resulting in enhanced classification capabilities. GRU with skip 
connections has facilitated improved information flow and gradient propagation, particularly 
with carefully selected hidden dimensions. However, challenges persist, particularly regarding 
the accurate classification of images containing common patterns, such as the green component 
observed in the Kvasir dataset. Further investigation is needed to address these challenges. Future 
research could focus on using advanced data augmentation techniques and improving attention 
mechanisms to reduce their effects and enhance network performance. Furthermore, visualizing 
patterns in the network’s decision-making process has offered valuable insights into its operations, 
improving transparency and interpretability. In medical settings, these features are extremely 
valuable because they are essential for building trust and encouraging acceptance among medical 
professionals due to their explainability. By addressing the challenges outlined and continuing 
to innovate in this field, researchers can advance the reliability and usability of medical image 
classification models, ultimately enhancing patient care and outcomes.
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