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Abstract
Medical imaging plays an essential role in modern healthcare, helping accurate diagnoses 
and effective treatment strategies. Still, the quality and interpretability of medical images 
are regularly hindered by various sources of noise. This paper presents a comprehensive 
exploration of traditional noise reduction techniques in medical imaging, addressing chal-
lenges posed by quantum noise, electronic noise, radiation interference, and other factors. 
The study delves into spatial filtering, frequency domain filtering, statistical methods, 
probability-based noise reduction, and adaptive filtering techniques. Each method is ana-
lyzed for its applicability and effectiveness in mitigating noise while preserving diagnosti-
cally relevant information. The comparative analysis provides insights into the strengths 
and limitations of these techniques, guiding practitioners in selecting appropriate methods 
based on imaging modalities and noise characteristics. Also, the paper highlights future 
research directions, emphasizing the potential of advanced Machine Learning (ML) mod-
els and the integration of multimodal data for enhanced noise removal.

Keywords Medical imaging · Noise · Reduction · Machine learning · Modalities · Image 
quality · Diagnostic

1 Introduction

Medical imaging has emerged as an essential aspect of modern healthcare, influencing the 
detection, treatment, management, and monitoring of a variety of diseases. The field com-
bines modern equipment to develop comprehensive visual models of the human body’s 
internal structure, helping healthcare professionals to investigate and assess both normal 
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physiological functioning and abnormal anomalies [1, 2]. The importance of medical imaging 
in the healthcare system is enormous, with wide-ranging consequences that extend beyond 
conventional medicine. The primary benefit of this technology is its ability to visualize what 
was previously undetected, allowing us to peer through the skin and observe the intricate 
structures of the human body. Medical imaging provides an innovative insight into the intri-
cate structure of an infant’s developing heart and the effects of cancer in a patient’s lung [3, 
4]. Medical imaging is crucial for enabling the early identification and diagnosis of illnesses. 
Medical experts may diagnose illnesses in their early stages using imaging modalities such 
as X-rays, Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI), ultra-
sounds, and Positron Emission Tomography (PET) scans, commonly before symptoms occur. 
Mammography plays an important part in detecting breast cancer at an early stage, increasing 
the chances of successful treatment, and saving lives. Lung cancer screening with CT scans 
may detect lung cancers in their early stages, providing an opportunity for intervention [5, 6]. 
Medical imaging supervises the whole healthcare process, from treatment planning to exact 
implementation. Surgeons may meticulously organize intricate surgeries to minimize dam-
age to healthy tissue. Real-time imaging, including fluoroscopy, assists in directing surgical 
tools and evaluating progress throughout surgery. Radiation therapy and chemotherapy may 
be precisely targeted at tumor sites, minimizing side effects, and improving therapeutic effec-
tiveness. Medical imaging is essential for monitoring disease development and analyzing the 
effectiveness of treatments, as well as playing a significant role in diagnosing, treating, and 
detecting illnesses [7, 8]. Regular scans are crucial for overseeing chronic conditions like can-
cer or cardiovascular disease since they enable healthcare providers to track the progression 
of the illness and assess the efficacy of therapies. Early improvements to treatment protocols 
according to diagnostic information could improve outcomes for patients.

Also, there is constant research and development in the field of medical imaging. 
Advanced technologies, including 3D imaging, functional MRI, and molecular imaging, 
continue to expand the boundaries of medical knowledge. The advancements improve our 
knowledge of disease processes, help create new medicines, and boost diagnostic proce-
dures. The importance of noise reduction and segmentation in medical image analysis is 
crucial [9, 10]. Noise from many sources during picture collection might distort crucial fea-
tures and impede diagnostic accuracy. Reducing such noise is essential not just to achieve 
visual clarity but also to ensure the effectiveness of automated image analysis techniques. 
Segmentation, which involves separating an image into important components, is also 
essential [11, 12]. Segmentation is essential, not only for diagnosing but also for modifying 
therapies to fit individual patient characteristics. But challenges persist, which include the 
variation of noise across different imaging techniques, physical variations among people, 
and the limited availability of accurate data to use for model training [13].

Advanced technologies, such as Deep Learning (DL), provide interesting responses in this 
dynamic environment. Convolutional Neural Networks (CNNs) are very effective in noise 
reduction tasks due to their capacity to adapt to the several noise characteristics present across 
various modalities. DL models like U-Net structures work well for segmentation because they 
find a good balance between accurate localization and low computational cost [14, 15]. Com-
bining data from multiple domains enhances the overall analysis by incorporating information 
from various sources. Despite progress, the need for explainable AI is essential to maintain-
ing openness in algorithmic decision-making, particularly in medical fields where trust and 
comprehension are essential. Real-time segmentation is an innovative factor that improves 
workflow efficiency and enables dynamic treatment techniques. Processing medical images 
in real-time speeds up diagnosis, particularly in emergency situations, and helps with adaptive 
therapies by providing immediate insight into evolving clinical conditions [16, 17].
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Finally, the collaboration of medical imaging, noise reduction, and segmentation has 
advanced healthcare into an innovative era of accuracy and effectiveness. The exploration 
continues, including historical landmarks and the incorporation of advanced technology. 
Challenges remain, but each obstacle provides opportunities for innovation and collabora-
tion [18, 19]. As we proceed ahead, it is important to not only emphasize technology devel-
opments but also integrate them into clinical processes to ensure that medical imaging can 
fully enhance patient outcomes. The commitment to creativity, collaboration, and an in-
depth knowledge of the intersection of medical imaging, noise reduction, and segmentation 
remains the main objective in the achievement of excellence in healthcare.

This work aims to improve the efficiency of medical image analysis by overcoming the 
issues of noise and segmentation. Various sources of noise, such as acquisition techniques 
and environmental conditions, may cause ambiguities that may prevent an accurate diagno-
sis [20, 21]. Segmentation, a method of splitting an image into significant parts, is essential 
for distinguishing specific characteristics or irregularities. Thus, it is crucial to understand 
and reduce noise while enhancing segmentation methods to progress in medical image 
analysis.

2  Research objectives

The objectives of the paper are as follows:

• Provide a comprehensive review of modern approaches for noise reduction and seg-
mentation in medical imaging.

• Analyze traditional techniques utilized for noise reduction and image segmentation.
• Compare traditional techniques with modern machine learning (ML) algorithms for 

noise reduction and segmentation.
• Provide concepts on the suitability and effectiveness of these methods in various medi-

cal imaging applications.
• Investigate and evaluate traditional noise reduction methods used in medical imaging.
• Study spatial filtering, frequency domain filtering, statistical approaches, probability-

based noise reduction, and adaptive filtering techniques.
• Provide guidance to professionals on choosing suitable methods according to imaging 

modalities and noise factors.
• Study how advanced ML models and the use of multimodal data may improve noise 

reduction in medical imaging.
• Identify potential research approaches to enhance noise reduction techniques in medical 

imaging applications.

2.1  Paper organization

In order to achieve these objectives, the paper is organized in a way that facilitates a com-
prehensive and systematic analysis of various issues related to the removal of noise and 
segmentation in medical imaging. The following sections provide an organized structure 
for this paper, working as an overview for readers to navigate the comprehensive review 
that is being presented.
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• Section 3 provides a basic introduction to essential medical imaging modalities and 
emphasizes their important role in healthcare.

• Section 4 explores the complexities of noise reduction, including both conventional 
methods and the recent development of ML-based approaches.

• Section 5 discusses image segmentation, highlighting its importance and providing 
information on both conventional and advanced ML-based techniques.

• Section  6  discusses the challenges involved in noise reduction and segmentation, 
recognizing variations across imaging techniques, anatomical changes, and the 
obstacles of obtaining accurate data for comparison.

• The study in Section 7 discusses future research areas such as improved ML models, 
multimodal data fusion, explainable artificial intelligence, and real-time segmenta-
tion.

• The conclusion in Section 8 summarizes the main findings, emphasizing their impact 
on medical imaging and emphasizing the need for efficient noise reduction and seg-
mentation in improving healthcare outcomes.

The article provides an overview for readers to help them navigate the intricate area 
and understand the constantly evolving terrain of medical imaging.

3  Medical imaging in healthcare: A visual revolution

Medical imaging plays an essential role in modern medical treatment by presenting the 
hidden complexities of the human body with excellent clarity. This overview presents 
a wide range of imaging techniques, from conventional X-rays to advanced techniques 
such as MRI and CT scans. We investigate how medical imaging improves diagnosis, 
optimizes medical treatment, and encourages us toward precision medicine [22, 23]. 
Simply put, it is a visual revolution that is transforming how medical professionals per-
ceive and improve patient outcomes.

3.1  Types of medical imaging modalities

Medical imaging methods play an important role in providing specialists with novel 
insights into the human body within the dynamic healthcare sector. This section pro-
vides an analysis of several imaging modalities, each with unique features adapted to 
specific diagnostic requirements [24, 25]. From X-rays showing skeletal structures to 
CT scans providing cross-sectional imaging and MRIs identifying soft tissue, these 
modalities collectively give a complete toolset. Recognizing the principles and uses of 
X-ray, MRI, CT, and other modalities is essential for understanding their significance in 
diagnostic techniques and therapeutic treatments [26, 27].

The above Table 1 provides a quick overview of diagnostic imaging modalities, sum-
marizing their principles, applications, significance in clinical practice, noise types, dis-
tribution characteristics, and radiation sources. This overview serves as a quick refer-
ence for medical professionals and scholars seeking a comprehensive understanding of 
diagnostic imaging techniques.
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3.1.1  X‑ray imaging

X-ray imaging, a pioneering modality discovered by Wilhelm Roentgen in 1895, relies on 
the principle of differential absorption of X-ray photons by tissues. This modality excels 
at visualizing dense structures like bones due to their higher X-ray absorption [28, 29]. 
Widely employed in diagnostic radiology, X-ray imaging provides a rapid and effective 
means for detecting fractures, assessing orthopedic conditions, and uncovering abnor-
malities within the chest, including pneumonia and lung cancer. Its versatility extends to 
dental examinations, where it aids in the prompt diagnosis and planning of interventions 
for oral health issues. The enduring significance of X-ray imaging lies in its accessibility, 
speed, and critical role in providing essential diagnostic information across various medi-
cal disciplines.

3.1.2  Magnetic Resonance Imaging (MRI)

MRI, a transformative technology, harnesses the behavior of hydrogen nuclei in response to 
magnetic fields and radiofrequency pulses. This non-invasive technique captures detailed, 
high-contrast images of soft tissues by processing the signals generated during the realign-
ment of hydrogen nuclei [30, 31]. Widely acclaimed for its exceptional soft tissue contrast, 
MRI plays an indispensable role in medical imaging. In neurology, it stands as a key diag-
nostic tool for conditions such as multiple sclerosis, offering unparalleled insights into the 
intricacies of the brain and spinal cord. Moreover, its applications extend to musculoskel-
etal imaging, facilitating precise assessments of ligaments, tendons, and cartilage, essential 
in orthopedic evaluations. Beyond its neuro and musculoskeletal prowess, MRI’s versatil-
ity spans various medical disciplines, establishing it as a cornerstone for comprehensive 
and detailed diagnostic imaging throughout the body [32].

3.1.3  Computed Tomography (CT) Imaging

CT stands at the intersection of X-ray technology and advanced computer processing, facil-
itating the creation of intricate cross-sectional images with three-dimensional precision. 
This modality employs a rotating X-ray source and detectors, capturing detailed snapshots 
of internal structures. CT imaging’s versatility is represented in its widespread use for 
comprehensive examinations of the head, chest, abdomen, and pelvis [33, 34]. Its diagnos-
tic prowess extends to the identification of conditions such as tumors, vascular abnormali-
ties, and traumatic injuries, offering unparalleled clarity in delineating anatomical details. 
In the realm of vascular imaging, CT angiography plays a pivotal role, providing detailed 
assessments of blood vessels and enabling the detection of vascular diseases. CT imaging’s 
ability to deliver high-resolution, multi-dimensional images positions it as an indispensable 
tool in the diagnostic arsenal, contributing significantly to accurate diagnosis and treatment 
planning across diverse medical specialties.

3.1.4  Ultrasound imaging

Ultrasound imaging, harnessing high-frequency sound waves, offers real-time visualiza-
tions of internal structures by processing echoes generated during their interaction. Its non-
invasive nature and dynamic imaging capabilities render ultrasound a versatile modality 
across various medical domains. Widely embraced in obstetrics, it becomes a vital tool 
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for monitoring fetal development, providing expectant parents and healthcare professionals 
with valuable insights. In cardiology, ultrasound serves as a cornerstone for assessing heart 
function, capturing detailed images that aid in the diagnosis and management of cardiac 
conditions [35, 36]. Moreover, abdominal imaging excels at evaluating organs like the liver 
and kidneys, contributing to the diagnosis of diverse pathologies. The inherent advantages 
of ultrasound, including portability and the absence of ionizing radiation, underscore its 
pivotal role in diagnostics, making it an invaluable asset in diverse clinical scenarios.

3.1.5  Nuclear medicine

Nuclear medicine, a dynamic field, revolves around the administration of radioactive 
tracers emitting gamma rays. In this process, detectors capture emitted gamma rays, and 
sophisticated computer processing translates this data into images depicting the tracer’s 
distribution within the body. The core strength of nuclear medicine lies in functional imag-
ing, which provides unique insights into organ function and metabolism. Myocardial per-
fusion imaging, a notable application, provides crucial information about heart function, 
aiding in the diagnosis and management of cardiovascular conditions [37, 38]. Similarly, 
PET plays a pivotal role in cancer staging, offering detailed information about tumor activ-
ity, and contributing significantly to the evaluation of neurological disorders. The ability 
of nuclear medicine to unravel physiological processes at a molecular level underscores 
its importance in personalized medicine, contributing to precise diagnostics and targeted 
therapeutic approaches.

3.1.6  Positron Emission Tomography (PET)

PET is an advanced imaging technique where a small amount of a radioactive substance, 
i.e. a glucose analog is introduced into the body. The emitted positrons produce gamma 
rays, whose detection enables the creation of functional images that vividly reflect meta-
bolic activity. This process is particularly invaluable in oncology, where PET is extensively 
employed for cancer staging, treatment planning, and monitoring treatment response [39, 
40]. Its applications extend to cardiology, facilitating the assessment of myocardial viabil-
ity, and neurology, providing detailed insights into brain function.

3.1.7  Mammography

Mammography, an essential tool in breast imaging, harnesses X-rays to craft detailed 
images of breast tissue. The advent of digital mammography has augmented image qual-
ity while enhancing the efficiency of image storage and retrieval. Positioned as a primary 
method for breast cancer screening and diagnosis, mammography plays a crucial role in 
the early detection of breast cancer [41, 42]. Regular mammographic screenings are instru-
mental in improving treatment outcomes by facilitating early interventions and contribut-
ing to the comprehensive management of breast health.

3.1.8  Fluoroscopy

Fluoroscopy is a continuous X-ray imaging method that allows for the real-time moni-
toring of moving components within the body. Numerous interventional treatments 
use its adaptability, providing dynamic, real-time guidance. Conventional procedures 
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include barium studies for assessing contrast agents’ movement, catheter insertion, and 
joint injections [43, 44]. Fluoroscopy’s real-time feedback is essential in interventional 
radiology and other medical fields, providing accuracy and precision in a wide range of 
operations, from diagnostics to treatments.

Overall, the variety of medical imaging modalities plays an important role in health-
care, providing professionals with an extensive range of tools for diagnosis and treat-
ment. Each modality has distinct benefits, enabling an extensive knowledge of ana-
tomical structures and clinical circumstances. Advancements in these technologies are 
continuously improving their capabilities, leading to better patient care, early illness 
identification, and progress in medical research [45]. Combining these modalities into 
clinical workflows emphasizes their importance in contemporary healthcare, influencing 
the diagnostic and treatment processes and eventually enhancing the results achieved for 
patients.

3.2  Significance of medical imaging in healthcare

Medical imaging has importance beyond collecting visual data, ranging beyond techni-
cal complexities. This section explores the important impact of medical imaging on the 
diagnostic and therapeutic components of healthcare. Medical imaging provides a crucial 
role in early illness detection and treatment planning, which makes it a key instrument for 
healthcare providers. The study continues throughout how imaging technologies help in 
precision medicine, monitoring treatment responses, and non-invasive assessments of both 
anatomy and function [46, 47]. The predominant theme throughout every application is 
the significant impact of medical imaging on patient outcomes, medical research, and the 
ongoing development of healthcare methods.

3.2.1  Early diagnosis and disease detection

One of the paramount contributions of medical imaging is its unparalleled ability to facili-
tate early diagnosis and the detection of diseases. Technologies such as X-ray, MRI, CT, 
and ultrasound empower clinicians to visualize internal structures, identify abnormali-
ties, and detect diseases at their nascent stages [48, 49]. In the realm of oncology, early 
detection through modalities like mammography and PET-CT significantly enhances the 
chances of successful treatment, underscoring the critical role of medical imaging in the 
fight against cancer.

3.2.2  Treatment planning and precision medicine

Medical imaging serves as a linchpin in treatment planning, enabling clinicians to formu-
late precise and personalized intervention strategies. In orthopedics, imaging modalities 
like MRI and CT guide surgical planning for joint replacements or spinal surgeries. Simi-
larly, in cardiology, imaging techniques such as echocardiography and coronary angiogra-
phy aid in planning interventions like angioplasty or heart surgeries [50, 51]. The integra-
tion of imaging into treatment planning not only enhances precision but also minimizes the 
invasiveness of procedures, contributing to improved patient outcomes.
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3.2.3  Monitoring disease progression and treatment response

The significance of medical imaging extends beyond diagnosis and initial treatment 
planning to the continuous monitoring of disease progression and treatment response. 
Sequential imaging studies, involving modalities like MRI or CT, provide clinicians 
with real-time insights into changes in tumor size, tissue healing, or the efficacy of ther-
apeutic interventions [52, 53]. This real-time monitoring is crucial in oncology, neu-
rology, and various other specialties, guiding adjustments in treatment protocols and 
ensuring timely interventions.

3.2.4  Non‑invasive assessment of anatomy and function

Medical imaging facilitates a non-invasive assessment of both anatomical structures 
and physiological functions. Modalities like functional MRI (fMRI) and nuclear medi-
cine techniques offer insights into brain activity, metabolism, and organ function. This 
non-invasiveness is particularly crucial in pediatrics and geriatrics, where traditional 
invasive diagnostic procedures may pose additional risks [54, 55]. Imaging’s ability 
to unveil both structural and functional aspects of the body provides a comprehensive 
understanding, laying the foundation for informed clinical decision-making.

3.2.5  Image‑guided interventions

The integration of medical imaging and interventional procedures has revolutionized 
medical practice. Techniques like fluoroscopy and ultrasound-guided interventions 
allow clinicians to perform procedures with unprecedented precision [56]. From guided 
biopsies in oncology to catheter placements in cardiology, image-guided interventions 
enhance accuracy, reduce complications, and offer minimally invasive alternatives to 
traditional surgical procedures.

3.2.6  Advancements in research and medical knowledge

Medical imaging contributes significantly to advancements in research and the expan-
sion of medical knowledge. Imaging studies generate data that fuels research endeav-
ors, enabling scientists and clinicians to explore disease mechanisms, evaluate treat-
ment efficacy, and develop innovative diagnostic tools [57]. Medical imaging provides 
a wealth of information that deepens our understanding of disease processes, paving the 
way for groundbreaking discoveries and advancements in medical science.

3.2.7  Improved patient outcomes and quality of care

Ultimately, the overarching significance of medical imaging lies in its profound impact 
on patient outcomes and the overall quality of healthcare. Early diagnosis, precise treat-
ment planning, and continuous monitoring facilitated by medical imaging contribute to 
improved survival rates, reduced morbidity, and enhanced patient well-being [58, 59]. 
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The non-invasive nature of imaging procedures also aligns with patient-centric care, 
emphasizing safety and comfort.

3.2.8  Training and education

Medical imaging plays a vital role in medical education and training. From anatomy 
classes to specialized radiology training, medical imaging provides a tangible and visual 
representation of the human body. Interactive simulations and virtual reality applications 
based on imaging data enhance the educational experience for medical students and prac-
titioners [60]. Understanding the nuances of medical imaging becomes an integral part of 
the skill set for healthcare professionals across various specialties.

3.2.9  Technological advancements and innovation

The relentless pursuit of excellence in medical imaging has led to continuous technologi-
cal advancements and innovation. From the advent of digital imaging to the integration of 
artificial intelligence (AI) in image analysis, these innovations enhance the capabilities of 
imaging modalities [61, 62]. AI algorithms aid in rapid image interpretation, improving 
diagnostic accuracy and efficiency. Moreover, developments in imaging technologies, such 
as 3D imaging and functional imaging, open new frontiers in diagnostics and research.

3.2.10  Multimodal approaches for comprehensive assessment

The emergence of multimodal approaches, which integrate information from multiple 
imaging modalities for a comprehensive assessment, further underscores the significance 
of medical imaging [63]. Managing multimodal medical imaging data involves various 
issues and possibilities for reducing noise and enhancing images. Researchers may enhance 
image quality and diagnosis accuracy by combining data from several imaging modali-
ties or modalities with varied noise characteristics to use their complementary strengths. 
Integrating methods like data fusion from MRI, CT scans, PET scans, and other imag-
ing modalities enables an extensive assessment of anatomical structures and physiologi-
cal processes. Improved signal processing techniques designed for multimodal data, such 
as multi-sensor fusion and joint estimation algorithms, allow for extracting more informa-
tion while reducing noise and artifacts present in each modality. ML methods, such as DL 
structures, provide powerful ways to combine multimodal data and understand the connec-
tions between various imaging techniques and biological processes. Further study in this 
field is essential to fully using the capabilities of multimodal medical imaging, resulting in 
enhanced diagnostic precision, personalized medical approaches, and improved treatments 
for patients.

An overview of essential components in the domain of medical imaging is effectively 
and meticulously presented in Table  2. Multimodal integration, point-of-care imaging, 
precision oncology, interventional imaging, early disease monitoring, treatment guidance, 
functional neuroimaging, and non-invasive assessment are among the numerous contribu-
tions explored. Each contribution comprises a brief description, key metrics, modalities 
involved, and impact on healthcare. The data provided in Table 2 is very useful in real-
izing the diverse and nuanced ways in which medical imaging contributes to the enhance-
ment of treatment accuracy, patient outcomes, and diagnostic capabilities. In conclusion, 
the significance of medical imaging in healthcare is profound and far-reaching. From the 
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early detection of diseases to precise treatment planning, continuous monitoring, and con-
tributions to medical knowledge, imaging technologies have become indispensable tools 
in the modern healthcare landscape [64]. As technology continues to evolve, the role of 
medical imaging is poised to expand, promising further innovations and improvements in 
patient care. Medical imaging intricately weaves the journey from discovery to diagnosis, 
treatment, and beyond, shaping the future of healthcare and advancing the possibilities of 
personalized and effective medical interventions.

3.3  Datasets for medical images

Datasets are essential in medical image analysis research for training, validating, and test-
ing ML and DL algorithms. Various publicly accessible datasets have been optimized for 
specific applications and imaging modalities, enabling a wide range of investigations in the 
medical imaging field. The MICCAI datasets provide resources for challenges like segmen-
tation, registration, and classification, which include datasets like the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) and the Multimodal Brain Tumor Image Segmentation 
(BRATS) challenge. TCIA provides cancer-related imaging data for tumor diagnosis and 
treatment response evaluation, while MSD provides datasets for segmentation tasks involv-
ing various anatomical structures and imaging modalities. IXI, LIDC-IDRI, and CAME-
LYON represent important datasets that provide essential information for brain imaging, 
lung cancer screening, and histopathology analysis, respectively. The datasets provide sup-
port for several research projects in medical image processing, including illness diagnosis, 
treatment planning, and outcome prediction.

4  Noise removal in medical imaging

Medical imaging plays a pivotal role in modern healthcare, providing clinicians with valu-
able insights into the human body’s structures and functions. However, the quality of medi-
cal images can be compromised by various sources of noise, presenting challenges to accu-
rate diagnosis and treatment planning [65]. This section explores the intricate landscape of 
noise removal in medical imaging, spanning from the sources of noise to the comparative 
analysis of traditional and ML-based noise reduction techniques.

4.1  Sources of noise

Noise in medical images denotes to unwanted variations or distortions that can obscure true 
anatomical or physiological information. These variations can stem from multiple sources, 
including the image acquisition process and environmental factors.

4.1.1  Quantum noise

Quantum noise is inherent in medical imaging modalities that use X-ray photons, such as 
X-ray radiography and CT. It arises from the probabilistic nature of photon interactions 
with tissues during image acquisition [66]. As X-ray photons pass through the body, their 
interactions create an image based on the varying absorption characteristics of different 
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tissues. However, due to the discrete nature of photons, the resulting image exhibits fluc-
tuations in pixel intensity, introducing uncertainty.

Mitigating quantum noise involves finding a balance between using a sufficiently high 
number of photons for image clarity and minimizing the radiation dose. Advanced tech-
niques, such as statistical iterative reconstruction algorithms, aim to reduce quantum noise 
while maintaining diagnostic image quality.

4.1.2  Electronic noise

Electronic noise stems from imperfections in the electronic components of imaging 
devices, affecting the accuracy of signal detection. In digital imaging systems, electronic 
noise can manifest as random variations in pixel values, adding an additional layer of 
uncertainty to the acquired image [67]. This noise can be particularly pronounced in high-
sensitivity imaging scenarios, impacting the detection of subtle features.

To address electronic noise, technological advancements focus on improving the signal-
to-noise ratio through enhanced electronic components and signal processing algorithms. 
Additionally, regular calibration and maintenance of imaging equipment are essential to 
minimize electronic noise and ensure accurate signal detection.

4.1.3  Radiation interference

External sources of radiation, such as cosmic rays, can interfere with the imaging process, 
introducing additional unwanted signals. This interference contributes to random spikes or 
fluctuations in pixel values, making it challenging to distinguish between radiation-induced 
noise and diagnostically relevant information [68].

We commonly employ shielding measures to reduce radiation interference. Implement-
ing physical barriers and utilizing lead shielding can help protect imaging systems from 
external radiation sources [69]. Furthermore, during image processing, one can employ 
sophisticated algorithms to identify and filter out radiation-induced noise.

4.1.4  Temperature variations

Fluctuations in temperature can impact the performance of imaging equipment, influenc-
ing the generation and transmission of image signals. Temperature-related variations can 
introduce systematic errors in image acquisition, affecting the overall image quality [70]. In 
extreme cases, temperature variations can lead to thermal noise, which appears as random 
fluctuations in pixel values.

To minimize temperature-related noise, maintaining consistent imaging conditions 
through thermal stabilization methods is crucial [71]. Climate-controlled environments and 
cooling systems help regulate temperature, ensuring stable imaging conditions and reduc-
ing the impact of temperature-related noise on image quality.

4.1.5  Motion artifacts

Patient movement during image acquisition can result in motion artifacts, introducing dis-
tortions in the final image. Motion artifacts can lead to blurring or misalignment of ana-
tomical structures, impacting diagnostic accuracy [72]. This source of noise is particularly 
relevant in modalities like MRI and PET, where motion can compromise image quality.
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Motion correction techniques play a pivotal role in mitigating artifacts associated with 
patient movement. Advanced imaging systems may utilize real-time tracking or retrospec-
tive motion correction algorithms to compensate for motion-induced distortions and ensure 
the accuracy of the final images [73].

4.1.6  Speckle noise

Imaging modalities that use ultrasound, such as ultrasonography, observe speckle noise, a 
unique type of noise. It appears as granular patterns in images, impacting image clarity and 
diagnostic interpretation. Interference patterns in the reflected ultrasound waves primarily 
cause speckle noise [74].

Ultrasound images employ several techniques to mitigate speckle noise. Image filtering 
methods, such as adaptive filtering and speckle reduction filters, aim to suppress speckle 
while preserving diagnostically relevant information [75]. Additionally, advanced ultra-
sound imaging systems may incorporate synthetic aperture imaging and advanced beam-
forming techniques to reduce speckle noise.

4.1.7  Systematic noise

Systematic noise refers to non-random noise that follows a specific pattern or distribution. 
It can result from systematic errors in the imaging system, affecting the overall uniformity 
of the image [76]. These errors may include sensor calibration inaccuracies, non-uniformi-
ties in detector response, or imperfections in imaging equipment.

Calibration procedures and quality assurance protocols are essential for minimizing 
systematic noise [77]. Regular checks and corrections for systematic errors contribute to 
maintaining image quality and ensuring accurate diagnostic information.

4.1.8  Patient anatomy variability

Variations in patient anatomy contribute to noise, especially in tasks such as image seg-
mentation and comparison across different individuals [78]. Differences in organ shapes 
and sizes among patients introduce variability that can complicate image analysis.

We employ advanced image processing techniques, such as atlas-based segmentation 
and ML algorithms, to address patient anatomy variability [79]. These methods leverage 
large datasets to account for anatomical variations and enhance the robustness of image 
analysis algorithms.

4.1.9  Scanner artifacts

Imperfections or glitches in the imaging equipment can introduce artifacts into medi-
cal images. These artifacts may appear as streaks, lines, or distortions in the final image, 
impacting diagnostic accuracy [80]. Scanner artifacts can result from malfunctions in hard-
ware components, software errors, or issues during the image acquisition process.

To mitigate scanner artifacts, regular maintenance and quality control checks are cru-
cial. Additionally, advancements in imaging technology focus on improving hardware and 
software components to minimize the occurrence of artifacts.
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4.1.10  Chemical noise

Chemical noise is particularly relevant in imaging modalities that involve chemical pro-
cesses, such as MRI [81]. Changes in chemical make-up, like where contrast agents are 
distributed or the properties of the tissue, can cause changes in signal intensity, which can 
make it harder to tell the difference between tissues.

We design advanced MRI sequences and pulse sequences to minimize chemical noise. 
Additionally, the development of new contrast agents and imaging protocols aims to 
enhance the specificity of chemical information while reducing noise-related uncertainties.

4.1.11  Salt and pepper noise

Salt and pepper noise, also known as impulse noise, is a distinct form of digital image cor-
ruption characterized by the random occurrence of individual pixels with either extremely 
high or low intensity values, resembling grains of salt and pepper scattered throughout 
the image. This type of noise is introduced during the image acquisition process due to 
various factors, including sensor malfunctions, transmission errors, or external interfer-
ence [82, 83]. The severity of salt and pepper noise is determined by the density of these 
extreme value pixels within the image. Its presence significantly degrades image quality, 
creating visually noticeable artifacts that can obscure critical details. Mitigation techniques 
involve the application of filters, such as median filtering, which replaces noisy pixels with 
the median value of neighboring pixels, effectively reducing the impact of salt and pep-
per noise while preserving essential image features. In applications like medical imaging, 
where precise interpretation is crucial, addressing salt and pepper noise is essential for 
maintaining the reliability of diagnostic processes.

4.1.12  Gaussian noise

Gaussian noise, a prevalent form of random signal disturbance, is characterized by pixel 
intensity variations following a Gaussian distribution. In digital images, each pixel’s inten-
sity is perturbed by a random value drawn from this distribution, resulting in a symmetri-
cal bell-shaped curve centered on the mean value. The standard deviation parameter deter-
mines the spread of the distribution, influencing the degree of noise present. Originating 
from factors such as electronic or thermal fluctuations during image acquisition, Gaussian 
noise can adversely affect image quality by introducing undesirable artifacts like blurring 
and reduced contrast [84, 85]. Some ways to reduce the effects of Gaussian noise are to 
use smoothing filters, like the Gaussian filter, and advanced denoising algorithms that use 
statistical and ML techniques to keep the image’s quality while reducing its effects. Under-
standing and managing Gaussian noise are crucial across various domains, from digital 
photography to medical imaging, to ensure accurate interpretation and reliable analysis of 
visual content.

The quality of diagnostic information heavily relies on the effective mitigation of vari-
ous sources of noise. Table 3 outlines the key mitigation strategies employed to address 
different types of noise encountered in medical images. These strategies are crucial for 
maintaining image quality, minimizing artifacts, and ensuring the reliability of medical 
imaging systems. This comprehensive overview serves as a guide for healthcare profes-
sionals, image processing experts, and researchers navigating the intricate landscape of 
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noise mitigation in medical imaging. In the end, addressing the sources of noise in medi-
cal images is essential for maintaining image quality and improving diagnostic accuracy. 
Implementing mitigation strategies, including calibration, shielding, thermal stabilization, 
and motion correction, plays a crucial role in minimizing the impact of noise and optimiz-
ing the performance of medical imaging systems.

4.2  Traditional noise reduction techniques

Traditional noise reduction techniques in medical imaging have played a crucial role in 
addressing the inherent challenges posed by various sources of noise [86, 87]. Figure  1 
illustrates traditional noise reduction techniques employed in the field of medical imag-
ing, and the significance of these methods lies in their ability to enhance image quality 
by effectively minimizing unwanted variations while preserving diagnostically relevant 
information.

4.2.1  Spatial filtering

Spatial filtering is a fundamental technique in image processing that involves manipulat-
ing pixel values directly in the spatial domain, focusing on the local characteristics of the 

Traditional 
Noise 

Reduction 
Techniques 

Probability-
Based Noise 
Reduction

Frequency 
domain 
filtering

Spatial 
Filtering:

Statistical 
methods

Adaptive 
Filtering 

Techniques

Fig. 1  Traditional noise reduction techniques in medical imaging
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image. Smoothing filters, a common category of spatial filters, are employed to reduce 
high-frequency noise by averaging pixel values within a local neighborhood [88, 89]. Two 
prominent examples of smoothing filters are the Gaussian filter and the median filter.

a) Gaussian Filter

The Gaussian Filter is a widely utilized smoothing filter known for its effectiveness in 
reducing high-frequency noise while preserving essential image details. It operates by con-
volving the image with a Gaussian kernel, which is a two-dimensional distribution resem-
bling a bell-shaped curve [90, 91]. The convolution process involves assigning more weight 
to central pixels and gradually decreasing weights for pixels farther from the center. This 
weighted averaging blurs the image, effectively smoothing out variations caused by high-
frequency noise. The parameter controlling the spread of the Gaussian distribution influ-
ences the degree of blurring, allowing for adaptability based on the specific noise charac-
teristics and desired image quality. The Gaussian filter is particularly suitable for scenarios 
where noise manifests as random variations in pixel values, contributing to a more visually 
appealing and diagnostically relevant image.

b) Median Filter

The median filter is another spatial filtering technique designed to reduce noise, particu-
larly impulsive noise such as salt and pepper noise. Instead of averaging pixel values, the 
Median Filter replaces each pixel’s value with the median value within its local neighbor-
hood. Because extreme values less affect the median than the mean, this approach effec-
tively preserves edge details. In the context of impulsive noise, where individual pixels 
have exceptionally high or low intensity values, the median operation helps to mitigate the 
impact of these outliers [92, 93]. The Median Filter excels in scenarios where preserving 
sharp transitions and fine details is crucial, making it a valuable tool in medical imaging 
applications. It is particularly robust in situations where other smoothing filters might com-
promise critical image features.

4.2.2  Frequency domain filtering

Frequency domain filtering is a powerful technique in image processing that involves trans-
forming the image into its frequency components using mathematical transformations. One 
of the cornerstone methods in frequency domain filtering is the Fourier transform, which 
represents the image as a sum of sinusoidal functions in the frequency domain [94, 95]. 
This method proves invaluable for noise reduction by manipulating specific frequencies 
associated with noise characteristics.

a) Fourier Transform

The Fourier transform is a mathematical operation that decomposes a signal, such as 
an image, into its frequency components. Image processing expresses the image as a sum 
of sinusoidal functions of varying frequencies. This transformation provides a unique rep-
resentation of the image, revealing the frequency content that might be obscured in the 
spatial domain [96, 97]. Certain frequency ranges tend to concentrate noise, and we can 
achieve noise reduction by analyzing and manipulating these frequencies. The Fourier 
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transform is particularly adept at identifying and isolating specific frequencies associated 
with noise patterns.

b) Low-pass Filtering

Low-pass filtering is a common approach in frequency domain filtering where high-
frequency components associated with noise are suppressed, allowing only low-frequency 
components to pass through. This technique is effective when noise manifests as high-fre-
quency variations in the image. By selectively attenuating the high-frequency noise com-
ponents, low-pass filtering helps smooth out the image while preserving low-frequency 
details. This approach is analogous to spatial filtering with a Gaussian filter in the spa-
tial domain [98, 99]. The controlled suppression of high-frequency noise ensures that the 
essential features of the image remain intact, contributing to improved image quality.

c) Band-pass Filtering

Another approach to frequency domain filtering is band-pass filtering, which selectively 
allows a certain range of frequencies to pass through while attenuating others. This tech-
nique is particularly useful when noise exhibits distinct frequency characteristics. In medi-
cal imaging, where different tissues and structures may contribute to specific frequency 
components, band-pass filtering allows for targeted noise reduction without compromising 
diagnostically relevant information [100, 101]. By customizing the passband to match the 
frequency range associated with noise, this method offers a nuanced and adaptive approach 
to noise reduction.

Frequency domain filtering provides a global perspective on noise reduction, impact-
ing the entire image based on its frequency content. This approach is advantageous when 
noise exhibits specific frequency characteristics that are challenging to address in the spa-
tial domain [102]. By unveiling the frequency composition of the image, frequency domain 
filtering allows for precise manipulation and suppression of noise components. Its versatil-
ity and adaptability make it a valuable tool in a variety of noise reduction applications, 
contributing to the continual improvement of image quality in medical imaging modalities.

4.2.3  Statistical methods

Statistical methods for noise reduction use mathematical transformations on image data 
to look at and change the image in a way that considers both its statistical properties and 
the noise’s properties [103]. The Fourier transform, discussed earlier, is one such method. 
Another powerful technique in this category is the wavelet transform, which provides a 
nuanced approach to noise reduction by decomposing the image into different frequency 
bands.

a) Fourier Transform

The Fourier transform is a mathematical operation that represents an image in the fre-
quency domain by decomposing it into sinusoidal functions of various frequencies. This 
transformation allows for the identification and isolation of specific frequencies asso-
ciated with noise patterns. By manipulating these frequencies, noise reduction can be 
achieved [104, 105]. The Fourier transform provides a global perspective on the frequency 
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composition of the image, enabling targeted suppression of noise components. Its statisti-
cal foundation lies in the systematic analysis of the image’s frequency characteristics, con-
tributing to effective noise reduction strategies.

b) Wavelet Transform

The wavelet transform is a statistical method that operates by decomposing the image 
into different frequency bands, known as wavelets. Unlike the Fourier transform, which 
represents the entire image in the frequency domain, the wavelet transform provides a 
multi-resolution analysis. This decomposition enables targeted noise reduction in specific 
frequency ranges, offering a more nuanced approach compared to global frequency domain 
filtering. Wavelet denoising has proven effective in preserving fine details while reducing 
noise, making it particularly valuable in scenarios where maintaining image fidelity is cru-
cial [106, 107]. The statistical foundation of the wavelet Transform lies in its ability to 
capture and analyze the image’s frequency content at different scales, allowing for adaptive 
noise reduction strategies.

c) Systematic Analysis and Manipulation

Both the Fourier transform and the wavelet transform provide a systematic way to ana-
lyze and manipulate image data in the context of noise reduction. These transformations 
serve as powerful tools for understanding the underlying statistical properties of the image 
and noise. By representing the image in different domains, these methods facilitate the 
identification of noise characteristics and the development of targeted noise reduction strat-
egies [108, 109]. The systematic nature of these transformations ensures a structured and 
principled approach to noise reduction, contributing to the enhancement of image quality 
in medical imaging.

In summary, statistical methods in noise reduction, exemplified by the Fourier transform 
and the wavelet transform, offer sophisticated approaches to analyzing and manipulating 
image data. These methods, rooted in mathematical principles, provide insights into the 
statistical properties of both the image and the noise. The utilization of these transforma-
tions in noise reduction strategies underscores their significance in the continual refinement 
of image processing techniques in the field of medical imaging.

4.2.4  Probability‑based noise reduction

In the realm of noise reduction, statistical models grounded in probability distributions 
play a pivotal role. Two prominent methods in this category, Maximum Likelihood Estima-
tion (MLE) and Bayesian Methods, harness the power of probability-based approaches to 
separate signals from noise, particularly in scenarios with complex noise characteristics.

a) Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation is a common statistical method used in noise reduc-
tion, where parameters of a probability distribution are estimated to maximize the likeli-
hood of the observed data. In the context of noise reduction, MLE is employed to estimate 
noise parameters and discern signal from noise [110, 111]. The fundamental idea is to find 
the parameter values that make the observed data most probable under a given statistical 
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model. MLE is particularly effective when dealing with noise characterized by specific 
probability distributions. By tailoring the model to the expected noise characteristics, MLE 
provides a robust framework for estimating parameters and enhancing noise reduction 
strategies. Its adaptability to different probability distributions makes it a versatile tool in 
the arsenal of statistical noise reduction techniques.

b) Bayesian methods

Bayesian methods introduce a probabilistic framework by incorporating prior knowl-
edge about the image and the noise. This approach allows for the construction of a proba-
bilistic model that considers both prior information and observed data. Bayesian methods 
provide a robust way to differentiate between signal and noise, especially in scenarios with 
complex noise characteristics. The Bayesian framework involves updating the probability 
distribution of the parameters based on both prior knowledge and new data, resulting in a 
posterior probability distribution [112, 113]. This posterior distribution encapsulates the 
updated knowledge about the parameters, reflecting the interplay between prior beliefs and 
observed evidence. Bayesian methods are particularly advantageous in  situations where 
prior information about the image or noise is available, contributing to a more informed 
and adaptive noise reduction strategy.

c) Probability-based methods

Probability-based methods, encompassing MLE and Bayesian methods, offer a princi-
pled way to model and estimate noise in the context of image processing. By grounding 
noise reduction strategies in probabilistic frameworks, these methods provide a systematic 
and adaptable approach to various noise scenarios [114, 115]. The use of probability distri-
butions allows for a nuanced understanding of the underlying statistical properties of both 
the image and the noise. In scenarios where precise modeling of noise characteristics is 
possible, probability-based methods excel, leading to more effective noise reduction strate-
gies tailored to the specific challenges posed by the imaging modality and noise profile.

Finally, statistical models and probability-based noise reduction methods, such as MLE 
and Bayesian methods, represent sophisticated approaches to handling noise in medi-
cal imaging. These methods offer a principled way to model, estimate, and differentiate 
between signal and noise, contributing to the continual advancement of noise reduction 
techniques in the field of medical imaging. Their adaptability and robustness make them 
integral components in the pursuit of enhancing image quality and diagnostic accuracy.

4.2.5  Adaptive filtering techniques

In the quest for refined noise reduction strategies, adaptive filtering techniques emerge 
as dynamic solutions that adjust their parameters based on the characteristics of the local 
image region. Among these techniques, the Wiener filter stands out as an exemplary adap-
tive filter, leveraging statistical properties to minimize the mean-squared error between the 
estimated and true signal. This adaptive nature makes it particularly effective in scenarios 
with varying noise characteristics, providing a nuanced and targeted approach to noise 
suppression.

a) Wiener Filter
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The Wiener filter is a notable example of an adaptive filter that operates by minimizing 
the mean-squared error between the estimated and true signal. This filter adapts its param-
eters based on the statistical properties of both the signal and the noise. The fundamen-
tal principle is to find the optimal filter that minimizes the expected value of the squared 
difference between the estimated signal and the true signal [116, 117]. The Wiener filter 
excels in scenarios where the statistical properties of the signal and noise are known or can 
be reliably estimated. By adapting its parameters based on these properties, the Wiener 
filter provides an effective means of reducing noise while preserving the essential charac-
teristics of the signal. Its adaptability to varying noise conditions makes it a versatile tool 
in situations where noise profiles may change across different regions of the image.

b) Adaptive Filtering Dynamics

Adaptive filtering provides a dynamic method for reducing noise. Adaptive filters mod-
ify their parameters according on various characteristics of the image, unlike fixed filters. 
This flexibility enables more precise and advanced noise reduction. Adaptive filtering is 
essential in medical imaging because of the diverse features of images [118, 119]. Optimiz-
ing the filter response to the distinct noise factors in various areas of an image enhances 
image quality and diagnostic precision.

c) Local Image Properties

The key to the effectiveness of adaptive filtering lies in its consideration of local image 
properties. Instead of applying a uniform filter across the entire image, adaptive filters ana-
lyze the characteristics of the local neighborhood around each pixel [120, 121]. This analy-
sis enables the filter to dynamically adjust its parameters, responding to the variations in 
noise characteristics and signal intensity within different regions. As a result, adaptive fil-
tering can effectively mitigate noise without compromising the crucial details of the under-
lying signal.

4.2.6  Deep learning algorithms with traditional noise

The combination of DL techniques with traditional noise reduction methods provides an 
approach to the issues of noise reduction in medical imaging and other fields. Traditional 
methods like spatial filtering, frequency domain filtering, and adaptive filtering are effec-
tive for noise reduction in images while maintaining visual features. But these techniques 
have difficulties adapting to challenging noise patterns and fluctuations across various 
types of medical images. DL algorithms improve at learning involved patterns and features 
from enormous datasets, making them suitable for employment opportunities involving 
noise reduction. Researchers can utilize the robustness and interpretability of traditional 
approaches together with the flexibility and scalability of DL by integrating both method-
ologies. Utilizing a hybrid approach enables DL models to benefit from enriched and pre-
processed data produced by conventional noise reduction methods, leading to greater noise 
reduction capabilities and more precise medical picture interpretation. Furthermore, inte-
grating DL with conventional methods provides opportunities for modifying and enhanc-
ing, resulting in personalized solutions designed for imaging modalities and noise features. 
The combination of DL algorithms with traditional noise reduction approaches shows a 
great deal of for improving the quality and dependability of medical imaging applications.
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The objectives of the researchers and the results that were attained are effectively 
described in Table 4, which also provides an overview of noise reduction in medical imag-
ing. Adaptive filtering techniques, demonstrated by the Wiener Filter, comprise a dynamic 
and improved methodology for mitigating noise in the field of medical imaging. The filters’ 
ability to adapt to the unique features of the image allows for enhanced noise suppression. 
Adaptive filtering comes into its own as a valuable instrument for improving image quality 
and facilitating precise diagnosis in the dynamic field of medical image processing, where 
noise conditions can vary significantly.

4.3  Machine learning‑based noise removal

The integration of ML methods has significantly transformed the domain of noise reduc-
tion in medical imaging in recent times. Traditional methods, while effective, usually rely 
on predetermined algorithms that might encounter difficulties when attempting to accom-
modate the complexities of various noise patterns. By permitting the algorithm to learn 
and adapt from the data itself, ML represents an innovation. This segment provides an 
overview of the core principles underlying ML-based noise reduction. It investigates how 
these methodologies utilize sophisticated algorithms to improve the precision and effec-
tiveness of noise elimination in medical images. Also, the comprehensive understanding 
and innovative strategies employed by the authors to contribute to the field of noise reduc-
tion, specifically through the implementation of ML techniques, are emphasized in Table 5. 
The utilization of ML-based noise elimination methods in the field of medical imaging is 
illustrated in Fig. 2. These techniques have significantly improved the quality of images in 
a wide range of domains and applications.

ML is an area of artificial intelligence that enables computers to analyze data, identify 
patterns, and make predictions and assessments without being explicitly programmed. ML 
algorithms for noise reduction are trained on datasets that include both noisy and clean 
medical images. The algorithm learns the patterns and correlations between noisy input 
and clean output during training, enabling it to make accurate predictions on novel infor-
mation. These methods use advanced algorithms to analyze data, adapt to various noise 
patterns, and improve image sharpness. Let’s analyze numerous important ML-based noise 
reduction techniques in the field:

4.3.1  Neural network‑based denoising

Neural networks, particularly DL architectures, have demonstrated remarkable capabilities 
in noise removal. CNNs excel in learning hierarchical features from medical images, allow-
ing them to effectively discern between noise and genuine signal. Trained on large datasets, 
these networks can generalize well to diverse noise patterns, providing robust noise reduc-
tion across various imaging modalities [143].

4.3.2  Autoencoders for image restoration

Autoencoders, a type of neural network architecture, are adept at learning efficient repre-
sentations of input data. In the context of noise removal, autoencoders can be trained on 
clean images to learn the underlying structure, and then applied to noisy images for res-
toration. Variational autoencoders introduce a probabilistic framework, allowing for more 
nuanced modeling of noise distributions and facilitating adaptive noise removal [144].
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4.3.3  Generative Adversarial Networks (GANs)

GANs, that involve a generator and a discriminator in a competitive learning setup, 
have been utilized for noise reduction. The generator is taught to produce images with 
reduced noise, while the discriminator is trained to differentiate between images that 
are clean and those that are noisy. Adversarial training produces the development of 
genuine and attractive denoised images, highlighting the potential of GANs for noise 
reduction [145].

4.3.4  Non‑local means filtering with machine learning

Non-Local Means (NLM) filtering, a classical method in image denoising, has been 
enhanced with ML. By incorporating ML models into the NLM framework, these 
methods adaptively adjust filter parameters based on the local image content. This 
fusion of traditional filtering techniques with ML intelligence enhances the overall 
denoising performance [146].

Machine 
Learning-

Based Noise 
Removal 

Image 
Transformation 

Networks

Generative 
Adversarial 
Networks 
(GANs)

Non-Local 
Means Filtering 
with Machine 

Learning

Autoencoders 
for Image 

Restoration

Neural 
Network-Based 

Denoising

Fig. 2  Machine learning-based noise removal for medical imaging
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4.3.5  Image transformation networks

Image Transformation Networks use DL architectures for transforming noisy images into 
their prominent version. These networks obtain the mapping function during training and 
can ultimately be used for removing noise from input images. These networks provide effi-
cient noise reduction via comprehending the interactions between noisy and clean image 
sequences [147].

ML-based noise reduction algorithms are an important development in medical imag-
ing. These advanced algorithms, such as neural networks and GANs, use data-driven learn-
ing to improve picture quality, proving to be effective tools for producing better and diag-
nostically relevant medical images.

4.4  Comparative analysis

In the rapidly evolving field of medical image processing, the effectiveness of noise reduc-
tion methods is crucial in evaluating the quality of diagnostic information. This section 
compares conventional approaches with ML-based methods to analyze their strengths, 
errors, and overall performance.

4.4.1  Traditional noise removal techniques

Traditional noise removal techniques, rooted in well-established principles, have been the 
stalwarts of image processing for decades. Methods like spatial domain filtering, frequency 
domain filtering, and statistical approaches such as Fourier transformations and median fil-
tering have proven efficacy in certain scenarios. However, these techniques rely on assump-
tions about noise characteristics and may struggle with adaptability to diverse noise pro-
files. Their performance can vary depending on the imaging modality, noise distribution, 
and the presence of complex noise patterns [148].

4.4.2  Machine learning‑based noise removal

ML noise reduction methods represent an important development in image processing. 
Algorithms like neural networks, autoencoders, and GANs use data-driven learning. They 
demonstrate the capacity to adapt to various noise patterns via comprehending complex 
connections between clear and noisy images. Their versatility enables them to generalize 
well across many imaging modalities and noise conditions, enabling a more versatile and 
effective method for noise reduction [149, 150].

4.4.3  Deep learning algorithms with traditional noise reduction techniques

Integrating DL algorithms with traditional noise reduction methods has enormous possi-
bilities for improving medical image analysis. CNNs proved their outstanding ability in 
learning nuanced patterns and features from extensive datasets, highlighting the strength of 
DL models. Combined benefits may be achieved by integrating DL with traditional noise 
reduction techniques like spatial filtering or wavelet denoising. DL models can effectively 
denoise medical imaging by using the comprehensive data included in pairs of noisy and 
noise-free images. This integration enables DL algorithms to effectively identify intricate 
structures and features while reducing noise artifacts, resulting in enhanced picture quality 
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and diagnostic precision [151, 152]. By combining standard noise reduction techniques’ 
computational economic growth with DL models’ representational capability, this strategy 
can achieve better noise reduction performance than individual approaches. The develop-
ment of integrated techniques has tremendous promise to advance medical image process-
ing and improve healthcare diagnostics.

4.4.4  Comparative evaluation

a) Adaptability: Traditional techniques may have difficulties in dealing with various and 
intricate noise patterns because to their reliance on predetermined assumptions about 
noise properties. ML-based approaches improve in flexibility, by learning from data and 
modifying parameters to deal with various noise patterns [153].

b) Performance across Modalities: Traditional methods may perform well in specific 
scenarios but might falter when applied to different imaging modalities with distinct 
noise characteristics. ML-based approaches, trained on diverse datasets, highlight robust 
performance across various modalities, making them more versatile in real-world appli-
cations [154].

c) Learning and Generalization: ML-based methods have the advantage of learning 
intricate patterns from large datasets, allowing them to generalize well to unseen data. 
Traditional methods, lacking the learning capacity of intelligent algorithms, might strug-
gle to adapt to unforeseen noise scenarios [155].

d) Computational Complexity: Conventional methods can be computationally efficient, 
yielding rapid results in real-time applications. ML methods, particularly DL models, 
may need increased computer resources for both training and inference [156]. Advance-
ments in technology and optimization methods are reducing this concern.

A comparison between traditional and ML-based noise removal techniques is provided 
in Table 6. The outcomes indicate that although traditional techniques have a track record 
of dependability in specific situations, ML-based approaches are formidable competitors 
in the quest for superior image quality due to their adaptability, learning capability, and 
versatility. The specific demands of the imaging task, the characteristics of the noise, and 
computational efficiency factors will determine which of these methods is selected. The 
assets and limitations of both traditional and ML-based approaches are comprehensively 
illustrated in Fig. 3, which presents a comparative analysis of each criterion. The visual 
representations facilitate comprehension of the minor differences between these techniques 
by depicting the trends identified during the comparison. The field of medical imaging 
noise removal is increasingly transitioning towards intelligent, data-driven solutions, as 
technological progress, and the availability of diverse and extensive datasets for training 
ML models advance.

5  Image segmentation in medical imaging

Within medical image analysis, segmentation is an essential process that plays an important 
role in recognizing the spatial details of anatomical structures. Segmentation is important 
for improving accuracy, diagnosis, and treatment planning beyond mere visualization. Seg-
mentation allows doctors to accurately identify anatomical structures, helping in targeted 
therapies and reducing unintended harm by navigating complicated anatomical landscapes. 
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It provides the basis for treatment planning, enabling the adaptation of methods accord-
ing to the unique features of each patient. Segmentation also plays an important role in 
quantitative analysis by providing important metrics to comprehend illness development 
and therapy response [157]. Segmentation helps in combining data from several imaging 
techniques to enhance the overall comprehension of the patient’s condition. Advancements 
in artificial intelligence and ML have made segmentation more complex, providing auto-
matic and precise analysis. Segmentation not only benefits clinical applications but also 
improves communication between healthcare teams and assists in training professionals 
and patients. Advancements in technology are increasing the importance of segmentation 
in medical image analysis, paving the way for imaging to not only diagnose but also stra-
tegically enhance patient care. The contributions of notable papers to image segmentation 
in medical imaging are presented in Table 7. The segmentation methods used include con-
ventional convolutional networks as well as advanced models such as U-Net, variational 
autoencoders, and conditional generative adversarial networks. The goals of these efforts 
include accurate organ delineation, enhanced tumor identification, probabilistic segmenta-
tion, and instance-level segmentation for accurate lesion localization.

5.1  Segmentation using digital pathology

Digital pathology is an important field in medical imaging that provides high-resolution 
digital images of tissue samples for diagnostic and research applications. Digital pathol-
ogy is crucial in image segmentation for recognizing the boundaries of cells, nuclei, or 
abnormal characteristics inside tissue samples. Digital pathology segmentation enables 
precise analysis, tumor identification, classification, and prediction, assisting pathologists 
in making precise diagnoses and treatment possibilities [158]. Image segmentation tech-
niques such as thresholding, edge detection, or DL-based algorithms can separate digital 
pathology images into relevant sections for subsequent investigation. Integrating digital 
pathology with image segmentation methods improves the efficiency and accuracy of path-
ological analysis, resulting in improved patient care outcomes. Below is a literature review 
based on digital pathology:

Criteria
Adaptability Performance Across Modalities Learning and Generalization Computational Complexity
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e
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10
Comparative Analysis: Traditional vs Machine Learning-Based

Traditional
Machine Learning-Based

Fig. 3  Comparative analysis of traditional and ML-based noise removal techniques
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Sasmal et  al. provide a method to segregate epithelial layers in oral histopathology 
images. They use superpixel-based clustering together with an enhanced Nature-Inspired 
Optimization Algorithms (NIOAs) termed as the Cooperative Search (CS) algorithm. The 
CS algorithm integrates the Aquila Optimizer (AO) and Particle Swarm Optimizer (PSO) 
to improve exploration–exploitation capabilities and avoid being stuck in local optima. The 
paper compares three superpixel techniques with CS for the best epithelial layer segmenta-
tion. The results demonstrate that the suggested strategy outperforms current techniques, 
reaching high accuracy, MCC, Dice, and Jaccard scores. Furthermore, CS shows competi-
tive optimization efficiency when tested on benchmark functions. This work introduces a 
new method in medical picture segmentation that combines superpixel methods with an 
enhanced optimization algorithm to provide more precise and efficient epithelial layer seg-
mentation [159].

Dhal et al. analyze the difficulties related to the Fuzzy C-Means (FCM) method in image 
segmentation and provide remedies to tackle these problems. FCM, an effective clustering 
method, has limitations including high computing complexity, reliance on initial cluster 
centers, dependency on membership matrices, and susceptibility to noise [160]. The study 
provides an ongoing review of possibilities described in recent literature to address these 
obstacles. It also addresses the primary challenges for developing enhanced FCM versions. 
This work enhances the area of digital image processing by recognizing and overcoming 
the constraints of FCM in image segmentation.

Dhal et al. highlight the difficulties in pathology image segmentation due to variations 
in illumination and staining while collecting microscopic images. An Improved Slime 
Mould Algorithm (ISMA) is suggested, using opposition-based learning and a differential 
evolution mutation technique for illumination-free White Blood Cell (WBC) segmentation. 
The work thoroughly analyzes color components from different color spaces for clustering, 
showing the efficiency of illumination-independent and color component-focused methods 
for picture segmentation. The ISMA-KM algorithm combined with the "ab" bands of the 
CIELab color space are most effective for segmenting nuclei, while ISMA-KM with the 
"CbCr" color component of the YCbCr color space is most accurate for segmenting whole 
white blood cells. The ISMA method demonstrates comparable performance with existing 
NIOAs on CEC2019 benchmark test functions, indicating its potential for effective image 
segmentation [161].

Dhal et al. highlight the issues of local optima trapping and extended computing time 
linked to crisp partitional clustering methods such as K-Means (KM) in image segmen-
tation. The authors suggest a crisp clustering approach called Chaotic Fitness-Dependent 
Quasi-Reflected Aquila Optimizer (CFDQRAO), which is an enhanced version of AO. It 
integrates chaotic fitness-dependent quasi-reflection-based Opposition Based Learning 
(OBL) to boost optimization efficiency. The research also investigates the use of Simple 
Linear Iterative Clustering (SLIC)-based superpixel images to decrease computing time. 
The CFDQRAO approach outperforms other Nature-Inspired Optimization Algorithms 
(NIOAs) in optimizing and maintaining consistency in WBC segmentation based on data 
collected from blood pathology images. The SLIC-CFDQRAO clustering approach sur-
passes previous SLIC-NIOA and SLIC-KM algorithms in visual analysis and segmentation 
criteria for quality [162].

Sasmal et  al. published an extensive review on combining superpixel images with 
clustering approaches for a variety of image segmentation objectives. The research 
highlights the need of choosing suitable superpixel generation methods and clustering 
algorithms to get precise and effective segmentation outcomes. The paper addresses 
the latest developments in superpixel synthesis and clustering techniques, emphasizing 
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their benefits and difficulties. The authors execute a comparative evaluation of super-
pixel-based clustering algorithms using oral pathology and leaf pictures to assess their 
effectiveness. Experimental findings show that superpixel-based clustering algorithms 
outperform standard clustering methods in terms of segmentation accuracy and quality 
metrics. The paper provides useful insights for researchers in the area and highlights 
potential areas of study such as automated superpixel production, integration of DL, and 
improving clustering effectiveness for noisy images [163].

Ray et  al. focus on the automatic segmentation of epithelial layers in pathology 
images, crucial for disease detection. Employing PSO and KM clustering in the CIElab 
color space, the study aims to enhance Computer-Aided Diagnosis (CAD) systems. 
Comparative analysis using different color spaces highlights CIElab’s superior perfor-
mance. Experimental findings demonstrate PSO with CIElab achieving an impressive 
98.43% accuracy, surpassing other methods. This research contributes to more accurate 
and efficient epithelial layer segmentation, advancing CAD-based disease detection sys-
tems [164].

Dhal et al. suggest a histogram-based fast fuzzy image clustering (HBFFIC) approach 
to tackle the obstacles of FCM clustering in image segmentation. This technique utilizes 
morphological reconstruction (MR) to improve resistance to noise while preserving image 
intricacies. Utilizing gray-level histograms for clustering leads to a significant decrease in 
processing time. The research addresses local optima concerns by using NIOAs, includ-
ing the Archimedes optimizer (AO). The HBFFIC-AO hybrid algorithm improves state-of-
the-art algorithms in segmenting synthetic and real-world pathology images, as shown by 
experimental data. This study enhances image segmentation algorithms for environments 
with noise [165].

Dhal et  al. resolve difficulties with image segmentation by proposing a Histogram-
Based Fuzzy Clustering (HBFC) method which includes an improved Firefly Algorithm 
(FA). FCM is a prominent clustering method that commonly faces issues with computa-
tional complexity and vulnerability to noise. The proposed Hybrid Bat Firefly Algorithm 
combines Firefly Algorithm with rough set-based population, random attraction, and local 
search methods. Clustering is conducted using gray-level histograms to minimize pixel 
misclassification. Comparison with state-of-the-art NIOAs and conventional methodolo-
gies shows that HBFC exceeds in accuracy, resilience, and segmented output quality. This 
study enhances fuzzy picture clustering methods to enhance the outcome of segmentation 
[166].

Iqbal et  al. (2023) provide AMIAC, an Adaptive Medical Image Analysis and Clas-
sification framework that emphasizes adaptive self-learning for DL models in medical 
imaging. The framework tackles issues caused by changes in image distribution by using 
transfer learning, adaptive learning, and incremental learning methods. AMIAC enhances 
accuracy and efficiency by combining manual and auto CNN-based characteristics, thereby 
minimizing the need for manual retraining. The framework integrates manual characteris-
tics with pretrained CNN models to improve performance in tasks such as tumor classifica-
tion and lesion identification. The experimental findings show a high F1-score and preci-
sion, indicating the potential of AMIAC as a tool to aid pathologists [167].

Das et al. present a Histogram-based Fast and Robust Crisp Image Clustering (HFRCIC) 
technique for image segmentation, addressing issues with conventional K-means cluster-
ing. The technique incorporates morphological reconstruction for noise immunity and 
preservation of image details, enhancing clustering robustness. By clustering based on 
gray levels rather than individual pixels, computational time is reduced. To overcome local 
optima challenges, Stochastic Fractal Search (SFS) is employed for optimal cluster center 
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determination. Experimental results demonstrate the superiority of HFRCIC-SFS over 
existing segmentation algorithms and NIOA-based clustering techniques [168].

Ray et al. introduces the Whale Optimization Algorithm (WOA) for breast histopathol-
ogy image segmentation, addressing challenges posed by correlated and noisy regions. The 
study focuses on automatic cancer cell detection using clustering techniques, emphasiz-
ing the sensitivity of traditional methods to initial cluster centers. Through a comparative 
analysis, the proposed approach demonstrates superior precision, robustness, and segmen-
tation quality compared to existing clustering methods and nature-inspired optimization 
algorithms [169].

Ray et al. investigate superpixel-based methods for segmenting images, with a specific 
emphasis on medical imaging, notably kidney renal cell carcinoma images. The SLIC tech-
nique is used for its computational economy and high performance on pathology images. 
The study suggests that using SLIC with PSO outperforms other approaches in segmenta-
tion accuracy when compared to ground truth images, by using PSO and KM clustering 
techniques with superpixel preprocessing [170].

Dhal et  al. suggest an innovative hybridization method that merges the Sine–Cosine 
Algorithm (SC) with KM for categorizing pathology images. Their study focuses on 
improving visual information extraction and grouping for cancer studies by using the 
NIOAs and ML approaches to better nuclei segmentation. The hybrid SC-KM method was 
created to overcome the constraints of SC and KM algorithms, providing better outcomes 
than conventional clustering models like K-Means, GA, PSO, and the SC algorithm [171].

This section explores the pivotal role of segmentation in medical image analysis, delves 
into the landscape of traditional segmentation methods, introduces the transformative 
realm of ML-based segmentation, and concludes with a comparative analysis, shedding 
light on the strengths and limitations of each approach (Fig. 4).
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Fig. 4  Image segmentation techniques in medical imaging
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5.2  Traditional segmentation methods

In the realm of medical image analysis, traditional segmentation methods stand as the 
bedrock, providing clinicians with foundational tools to delineate and isolate anatomical 
structures for precise diagnosis and treatment planning. This section offers an insightful 
exploration into classical image segmentation techniques, elucidating their overarching 
principles and applications.

5.2.1  Contour‑based methods

Traditional image segmentation frequently utilizes contour-based techniques to estab-
lish boundaries of structures for segmentation. Edge detection techniques and active 
contours use gradient information and energy reduction to define object boundaries 
[187]. Although efficient in  situations with well-defined boundaries, these techniques 
may encounter difficulties with shapes that are irregular and fluctuations in intensity.

5.2.2  Thresholding techniques

Thresholding is a simple yet powerful segmentation approach that involves separating 
regions based on intensity levels. By setting a threshold value, pixel intensities below or 
above the threshold are classified into distinct regions [188]. This method is particularly 
effective in scenarios where there is a clear contrast between the object of interest and 
the background. However, it might be sensitive to noise and variations in intensity.

5.2.3  Region‑growing algorithms

Region-growing algorithms start with seed points and iteratively add neighboring pixels 
that meet certain criteria, forming cohesive regions [189]. This approach is suitable for 
images with homogenous regions and gradual intensity transitions. However, its perfor-
mance can be influenced by the choice of seed points and is sensitive to noise.

5.2.4  Clustering methods

Clustering techniques, such as k-means clustering, group pixels with similar intensity 
values into clusters. This segmentation method is particularly effective in scenarios with 
distinct intensity distributions [190]. However, the accuracy of clustering-based seg-
mentation heavily relies on the appropriate choice of the number of clusters and initial 
cluster centers.

5.2.5  Watershed transform

The watershed transform is inspired by the concept of flooding a landscape and marking 
regions where flooding converges. It is particularly useful for segmenting images with 
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objects having different intensities [191]. However, the watershed transform might over-
segment images with fine details, and careful pre-processing is regularly required.

5.2.6  Deformable models

Deformable models, such as snakes or active contours, are mathematical models that 
evolve to fit object boundaries in the image [192]. They are advantageous in capturing 
intricate shapes and contours. However, their performance can be influenced by initializa-
tion and may struggle with concavities and irregularities.

In summary, classical image segmentation techniques provide a diverse toolkit for 
delineating structures in medical images. While each method has its strengths, the choice 
depends on the characteristics of the image, the nature of the structures of interest, and 
considerations of computational efficiency. As the foundation of segmentation methodolo-
gies, traditional approaches pave the way for a deeper understanding of anatomical land-
scapes in medical image analysis.

5.3  Machine learning‑based segmentation

In the dynamic landscape of medical image analysis, the advent of ML and DL has ushered 
in a change in basic assumptions, revolutionizing the field of segmentation. This section 
provides a comprehensive introduction to ML and DL methods tailored for segmentation 
tasks, elucidating the transformative capabilities that these intelligent algorithms bring to 
the precision and efficiency of delineating anatomical structures in medical images.

5.3.1  Machine learning primer

ML, at its core, involves the development of algorithms that enable computers to learn pat-
terns and make predictions or decisions without explicit programming. In medical image 
segmentation, ML leverages training datasets to learn relationships between input images 
and segmented structures [193]. Algorithms like Support Vector Machines (SVM), Ran-
dom Forests, and Decision Trees have been employed, each with its strengths. SVM, for 
instance, excels in binary classification tasks, making it suitable for scenarios where pixel-
wise classification is required.

5.3.2  Deep learning unveiled

DL, a subset of ML, introduces neural networks with multiple layers (deep neural net-
works) to automatically learn hierarchical representations of data. CNNs have become piv-
otal in medical image segmentation [194]. CNNs excel at capturing spatial hierarchies and 
have proven effective in scenarios with complex anatomical structures. The architecture 
of CNNs, inspired by the human visual system, involves convolutional layers for feature 
extraction, pooling layers for down-sampling, and fully connected layers for classification.

5.3.3  Convolutional Neural Networks (CNNs)

CNNs have become synonymous with DL in medical image segmentation. Their archi-
tecture enables automatic and adaptive learning of spatial hierarchies from input images. 
U-Net, a popular CNN architecture, incorporates skip connections to preserve fine details 
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during the down sampling process [195]. This architecture has been particularly successful 
in medical image segmentation, including tasks such as organ segmentation, tumor detec-
tion, and lesion identification.

5.3.4  Recurrent Neural Networks (RNNs) and Long Short‑Term Memory (LSTM)

While CNNs excel at spatial understanding, dynamic medical imaging modalities, such as 
video sequences, require consideration of temporal dependencies. RNNs and Long Short-
Term Memory (LSTM) networks, which are specialized types of recurrent networks, are 
adept at capturing temporal dynamics [196]. In scenarios where temporal information is 
crucial, such as cardiac imaging or video-based endoscopy, these architectures enhance 
segmentation accuracy.

5.3.5  Transfer learning and pre‑trained models

The application of transfer learning techniques provides a potentially effective approach 
to tackle the obstacles that arise from the scarcity of annotated data in the field of medical 
image analysis. Transfer learning is the process of using information acquired from pre-
trained models on large datasets and applying it to various tasks or fields with smaller data-
sets. Transfer learning in medical imaging for noise reduction involves using the obtained 
predictive power from other datasets to enhance the effectiveness of noise reduction algo-
rithms. Transfer learning allows for the effective transfer of information about low-level 
image features, noise characteristics, and structural patterns by adjusting pre-trained mod-
els with domain-specific medical imaging data. This method speeds up development and 
improves the capacity of noise reduction algorithms to generalize, especially in situations 
when obtaining huge annotated medical imaging datasets is not feasible or too expensive. 
Investigating transfer learning methods has tremendous potential for enhancing noise 
reduction in medical image processing and enhancing the quality of diagnostic imaging 
[197, 198].

5.3.6  Generative Adversarial Networks (GANs)

GANs introduce a unique dynamic by involving a generator and discriminator in a 
competitive learning scenario. In medical image segmentation, GANs contribute by 
generating realistic synthetic images [199]. This is particularly useful in scenarios with 

Table 8  Comparative analysis: Precision, Recall, Dice coefficient, and Jaccard index

Methodology Precision (%) Recall (%) Dice Coefficient Jaccard Index

Traditional Segmentation (Thresholding) 88.2 91.5 0.896 0.834
Traditional Segmentation (Region Growing) 82.6 89.2 0.846 0.773
Traditional Segmentation (Edge Detection) 90.1 88.7 0.892 0.825
Machine Learning (CNN) 95.3 93.8 0.942 0.911
Machine Learning (U-Net) 96.8 94.5 0.958 0.934
Machine Learning (Random Forest) 89.7 90.2 0.904 0.865
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limited annotated data for training. GANs have found applications in generating syn-
thetic medical images for augmenting datasets and improving model robustness.

In essence, ML-based segmentation techniques represent a powerful arsenal in the 
medical imaging domain, offering a spectrum of approaches to cater to diverse chal-
lenges and modalities. The evolution of these techniques is fueled by ongoing research, 
addressing limitations, and adapting to the unique demands of medical image analysis.

Fig. 5  Analysis of Precision for medical image segmentation

Fig. 6  Analysis of Recall for medical image segmentation
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5.4  Comparative analysis

An analysis of both traditional and ML-based methods proves essential in the dynamic 
sector of medical image segmentation. The purpose of the analysis provided in Table  8 
is to provide insights into the strengths, limits, and performance metrics associated with 
these segmentation methodologies. A comprehensive analysis of key metrics, including 
Precision, Recall, Dice Coefficient, and Jaccard Index, which were utilized to evaluate the 
performance of medical image segmentation techniques, is illustrated in Figs. 5, 6, 7, and 
8. These metrics play an essential role in evaluating the precision and effectiveness of seg-
mentation techniques, providing valuable insights into different aspects of their operation. 

Fig. 7  Analysis of Dice Coefficient for medical image segmentation

Fig. 8  Analysis of Jaccard Index for medical image segmentation
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In order to interpret the data visualization, the distances between each of the bars repre-
senting each metric for various segmentation methods must be analyzed. Improved levels 
denote enhanced performance in the corresponding metric, thereby presenting a compre-
hensive assessment of the advantages and disadvantages of the segmentation methods with 
respect to precision, recall, Dice Coefficient, and Jaccard Index.

6  Challenges in noise removal and segmentation

6.1  Noise variability

Medical imaging is a diverse field encompassing various modalities, each with unique 
characteristics that contribute to inherent variability in noise patterns. Effectively address-
ing this variability presents a substantial challenge in the development of noise removal 
techniques. Various imaging modalities, including X-ray, MRI, and CT, exhibit distinct 
noise sources and characteristics [200, 201]. For instance, X-ray images may be afflicted 
by quantum noise stemming from the statistical nature of X-ray photon interactions, while 
MRI images may be influenced by thermal noise due to fluctuations in temperature during 
image acquisition. Crafting noise removal algorithms that can dynamically adapt to the 
specific noise profile of each modality is essential for achieving optimal results.

The challenge of noise variability extends beyond the inherent characteristics of each 
imaging modality. Factors such as acquisition settings, patient conditions, and equipment 
variations further contribute to the complexity of noise patterns [202]. Quantum noise in 
X-ray imaging may vary based on exposure settings, while thermal noise in MRI could be 
influenced by the magnetic field strength.

To address noise variability comprehensively, researchers are exploring adaptive 
algorithms that can analyze and learn the specific noise characteristics inherent in dif-
ferent imaging scenarios. ML techniques, including DL models, are being employed to 
create noise removal algorithms capable of adapting to the nuances of each modality, 
providing a more tailored and effective approach to noise reduction [203]. Navigating 
the intricate landscape of noise variability is paramount for advancing the accuracy and 
reliability of medical image analysis across diverse imaging modalities. The Table  9 
outlines the aspects of the challenges related to noise variability of imaging modalities, 

Table 9  Noise variability in medical imaging

Imaging Modality Quantum Noise Electronic Noise Radiation Interfer-
ence

Tempera-
ture Varia-
tions

X-ray [204] ✔ ✔ ✖ ✖
MRI [205] ✖ ✖ ✖ ✔
CT [206] ✔ ✖ ✔ ✖
Ultrasound [207] ✖ ✔ ✖ ✖
Nuclear Medicine [208] ✖ ✔ ✖ ✖
PET [209] ✖ ✔ ✖ ✖
Mammography [210] ✔ ✔ ✖ ✖
Fluoroscopy [211] ✔ ✔ ✖ ✖
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each with parameters indicating the presence or absence of Quantum Noise, Electronic 
Noise, Radiation Interference, and Temperature Variations.

6.2  Anatomical variations

The intricate variability in anatomical structures across patients introduces a significant 
level of complexity in the domain of medical image segmentation. Anatomical struc-
tures can exhibit diverse shapes, sizes, and textures, influenced by factors such as patient 
age, gender, and health conditions [212]. Successfully addressing anatomical variations 
is paramount for accurate and reliable image segmentation, a crucial step in medical 
image analysis.

Segmentation algorithms face the challenge of accommodating the inherent diversity 
in anatomical structures to precisely delineate regions of interest. For instance, when 
dealing with abdominal CT scans, the task of segmenting organs becomes particularly 
challenging due to the inherent variations in organ shapes and positions among different 
individuals [213]. The liver, for example, may exhibit considerable differences in size, 
shape, and location from one patient to another.

To overcome the obstacles posed by anatomical variations, researchers are explor-
ing advanced segmentation approaches, frequently incorporating ML and DL techniques 
[214]. These methodologies aim to develop robust segmentation models that can adapt 
to the intricacies of anatomical diversity. ML models, particularly CNNs, have shown 
promise in learning complex patterns and variations, making them suitable for accurate 
segmentation tasks.

Despite advancements, tackling anatomical variations remains a persistent obstacle in 
the field. Collaborative efforts between medical professionals, image processing experts, 
and ML researchers are crucial for developing segmentation models that can accom-
modate the inherent complexity of anatomical structures across diverse patient popu-
lations [215]. The ultimate goal is to enhance the precision and reliability of medical 
image segmentation for improved diagnosis and treatment planning. Table 10 outlines 
the challenges associated with anatomy variations using various imaging techniques.

Table 10  Anatomical Variations across different imaging modalities

Challenge X-ray MRI CT Ultrasound Nuclear 
Medi-
cine

PET Mammography Fluoroscopy

Diverse organ shapes 
[216]

Yes Yes Yes Yes Yes Yes Yes Yes

Variations in organ sizes 
[217]

Yes Yes Yes Yes Yes Yes Yes Yes

Differences in organ 
textures [218]

Yes Yes Yes Yes Yes Yes Yes Yes

Patient age influence 
[219]

Yes Yes Yes Yes Yes Yes Yes Yes

Gender-related variations 
[220]

Yes Yes Yes Yes Yes Yes Yes Yes
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6.3  Lack of ground truth data

The reliance on annotated ground truth data for training ML models is fundamental to the 
development of accurate and robust noise removal and segmentation techniques. However, 
the limited availability of comprehensive and accurately annotated datasets regularly hin-
ders this reliance. Acquiring ground truth data for medical images involves meticulous 
annotation by domain experts, a process that is not only time-consuming but also resource-
intensive [221].

The annotation process requires skilled professionals who can accurately label images 
to serve as reference points for training ML models. Discrepancies in annotations may 
arise due to variations in interpretation among different experts, introducing ambiguity and 
potential challenges in model training. In addition, the lack of diverse and well-annotated 
datasets is a big problem that makes it hard to train ML models that work well in real-life 
situations [222].

Addressing the challenge of a lack of ground truth data requires collaborative efforts 
across disciplines. Medical professionals, image processing experts, and ML practitioners 
need to work together to create standardized and comprehensive datasets [223]. Initiatives 
such as data-sharing collaborations and the development of annotation guidelines can con-
tribute to building datasets that accurately represent the complexities of medical images.

Advancements in addressing the lack of ground truth data are pivotal for unlocking the 
full potential of noise removal and segmentation methodologies in the realm of medical 
image analysis and diagnosis. Future progress relies on the commitment to overcoming 
these challenges through interdisciplinary collaboration and the development of robust, 
well-annotated datasets that reflect the diverse and nuanced nature of medical images 
[224]. Dataset availability, annotation process complexity, resource intensity, discrepancies 
in expert annotations, as well as potential ambiguity in the annotated data, are some of the 
factors that are emphasized in Table 11, which gives an organized overview of the issues 
that are associated with the absence of ground truth data.

7  Future research directions

Researchers are investigating the potential of advanced ML models, including DL archi-
tectures such as CNNs and RNNs, to enhance medical imaging. The present study aims to 
use advanced algorithms to improve noise reduction and segmentation in medical imaging, 
which leads to more accurate and comprehensive diagnostic assessments. A novel field of 
study is the combination of data from numerous imaging techniques, including X-ray, MRI, 
and CT, using multimodal data fusion. The aim of this effort is to improve the accuracy 
and comprehensiveness of evaluations by using the unique benefits of each modality. There 
is more emphasis on the need for interpretable AI models in healthcare. Researchers are 
investigating ways to improve the transparency and interpretability of AI models in medi-
cal imaging so that medical professionals can comprehend and depend on the assessments 
made by these sophisticated systems. Also, emphasizing the essential importance of imme-
diate data in clinical decision-making, there is a focused endeavor to investigate methods 
and technology for attaining real-time segmentation in medical imaging. This improve-
ment can provide rapid and precise information, greatly influencing clinical decision sup-
port procedures. These research issues aim to expand medical imaging by using advanced 
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Table 12  Research issues and challenges in the field of medical imaging

Research Issue Description

Ensuring the scalability of AI models in diverse 
settings

Evaluating the scalability of AI models to guarantee 
their efficiency and performance in various health-
care environments and organizations

Investigating the potential biases in AI predictions Identifying and addressing any biases in AI predic-
tions to guarantee fair and equal results for every 
group of patients

Studying the impact of AI on healthcare disparities Evaluating the impact of using AI models in medical 
imaging on healthcare inequalities and aiming for 
equitable solutions

Addressing data privacy concerns in AI applica-
tions

Developing strong strategies to tackle data privacy 
issues related to the use of sensitive medical data in 
AI applications

Studying the ethical implications of AI-driven deci-
sion support

Exploring the ethical consequences of depending on 
AI-powered decision help in medical imaging and 
establishing ethical use protocols

Investigating the influence of AI on radiologist 
training

Investigating the potential effects of AI technology on 
the education and skill enhancement of radiologists 
and other healthcare practitioners

Developing frameworks for transparent AI decision-
making

Providing transparent frameworks to help healthcare 
practitioners comprehend the decision-making 
process of AI models in medical imaging

Investigating the impact of AI on patient outcomes Evaluating the effects of using AI in medical imag-
ing on patient results, treatment effectiveness, and 
healthcare quality

Lack of annotated datasets for advanced models Insufficient availability of annotated datasets suitable 
for training and verifying sophisticated ML models

Generalization challenges in diverse medical 
images

Issues for developing models that can effectively 
generalize over a wide range of medical images 
with various features

Limited interpretability of DL models Issues in understanding the decisions made by DL 
models are impeding their use in medical applica-
tions

Integration challenges in multimodal data fusion Issues in effectively combining data from several 
imaging techniques to obtain valuable information

Ethical considerations in AI applications Exploring ethical, privacy, and bias issues connected 
with utilizing AI models in medical imaging

Ensuring model robustness in noisy environments Improving the resilience of AI models in medical 
imaging in noisy environments and unpredictable 
circumstances

Cybersecurity concerns in AI applications Maintaining patient data and privacy by addressing 
cybersecurity issues related to using AI models in 
healthcare

Investigating the impact of AI on healthcare 
workflows

Studying the impact of using AI models on present 
healthcare processes and identifying opportunities 
for improvement

Assessing long-term reliability of AI models Evaluating the enduring dependability and steadfast-
ness of AI models to guarantee sustained perfor-
mance over prolonged durations

Exploring edge computing for real-time processing Addressing the practicality of implementing AI 
models on edge devices for immediate processing 
in contexts with limited resources
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Table 12  (continued)

Research Issue Description

Evaluating the cost-effectiveness of AI adoption Investigating the economic consequences and effi-
ciency of using AI technology in medical imaging 
processes

Addressing regulatory compliance and patient 
consent

Ensuring adherence to regulations and gaining 
informed permission from patients for the use of AI 
in medical imaging

Establishing robust model validation procedures Providing standardized and rigorous protocols for 
validating and assessing ML models in medical 
imaging

Bridging the gap between AI research and clinical 
practice

Facilitating in the implementation of AI research 
outcomes in healthcare environments

Investigating the impact of AI on diagnostic 
accuracy

Evaluating the impact of incorporating AI models on 
the diagnostic precision and decision-making skills 
of healthcare practitioners

Developing mechanisms for continuous model 
improvement

Providing methods to enhance models continuously 
by incorporating input, adapting to evolving medi-
cal practices, and integrating new data

Studying the psychological impact on healthcare 
professionals

Exploring the psychological effects of AI implemen-
tation on healthcare workers and resolving issues 
around employment responsibilities and obligations

Investigating the impact of AI on patient-doctor 
communication

Investigating the impact of AI integration in medical 
imaging on the interaction between healthcare 
providers and patients

Enhancing model interpretability for end-users Developing methods to improve the interpretability of 
AI models, allowing medical professionals to have 
confidence in and comprehend the assessments 
generated by the model

Exploring unsupervised learning for limited anno-
tated data

Exploring the use of unsupervised learning methods 
to make the most of scarce annotated data in medi-
cal imaging

Real-time processing constraints Implementing algorithms that enable segmentation in 
real-time while considering advantage of comput-
ing limitations in clinical applications

Standardization of annotation protocols Absence of specific requirements for annotating 
medical images causes variability in annotations 
and expected discrepancies

Lack of collaboration between academia and 
industry

Limited collaboration between academic researchers 
and industry specialists is impeding the transforma-
tion of research into practical solutions

Adapting models to evolving medical imaging tech Ensuring that ML models are able to adapt to emerg-
ing technologies and improvements in medical 
imaging

Incorporating user feedback into model develop-
ment

Providing solutions that integrate input from health-
care experts in order to enhance the usability and 
efficacy of AI models

Addressing bias and fairness in AI models Addressing and reducing biases in AI models to 
guarantee equitable and impartial results, especially 
in varied patient demographics

Regulatory challenges in AI adoption Addressing regulatory challenges while establishing 
criteria for using AI models in medical imaging
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ML, combining several modes of data, enhancing interpretability, and enabling real-time 
capabilities to enhance healthcare outcomes. The research challenges and issues in medical 
imaging are presented in Table 12. These concerns and problems encompass a variety of 
factors, such as advancements in technology, ethical implications, adherence to regulations, 
and the effective incorporation of artificial intelligence into healthcare procedures.

8  Conclusion

In summary, this paper has explored the intricate landscape of noise removal and segmen-
tation techniques in medical imaging, delving into both traditional and advanced ML-based 
approaches. The investigation encompassed the significance of medical imaging in health-
care, highlighting its pivotal role in diagnosis and treatment. The research objectives cen-
tered on comparing the efficacy of traditional and ML-based methods for noise removal and 
segmentation. The paper meticulously navigated through various medical imaging modali-
ties, elucidating their principles and applications. It provided insights into the challenges 
posed by noise variability, anatomical variations, and the scarcity of ground truth data in 
the medical imaging domain. The findings underscored the evolution from conventional 
noise reduction techniques to the promising realm of ML-based approaches. Comparative 
analyses shed light on the strengths and limitations of each methodology. The role of seg-
mentation in medical image analysis was thoroughly discussed, emphasizing its importance 
in enhancing diagnostic precision. Challenges related to noise variability, anatomical varia-
tions, and the lack of ground truth data were dissected, recognizing the complexity of these 
hurdles. Looking forward, the paper proposed future research directions, advocating for the 
exploration of advanced ML models, multimodal data fusion, interpretable AI, and real-
time segmentation. These directions aim to push the boundaries of medical imaging, prom-
ising more accurate, efficient, and real-time diagnostic capabilities. The implications for 
medical imaging are profound. The integration of advanced ML models holds the poten-
tial to revolutionize noise removal and segmentation techniques, paving the way for more 
accurate and timely diagnoses. The exploration of multimodal data fusion addresses the 
need for comprehensive diagnostic analyses, considering the unique strengths of different 
imaging modalities. The call for interpretable AI models responds to the crucial demand 
for transparency and trust in AI-driven decision-making, ensuring seamless integration into 
clinical workflows. Real-time segmentation emerges as a key component for prompt and 
effective clinical decision support. In closing, the significance of effective noise removal 
and segmentation in medical imaging cannot be overstated. These techniques are not mere 
technical processes but integral components that directly impact diagnostic accuracy, treat-
ment planning, and patient outcomes. The continual evolution and integration of advanced 
methodologies, as outlined in this paper, underscore the dynamic nature of medical imag-
ing research and its pivotal role in shaping the future of healthcare.

Table 12  (continued)

Research Issue Description

Development of user-friendly AI interfaces Provide interfaces that are intuitive and readily 
understandable for healthcare providers with less 
technological knowledge
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