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Abstract
Activities and falls monitoring systems using wearable technology have a promising future. 
The publicly available datasets are based on a few inertial features only acquired with 
an accelerometer, gyroscope, smartphone or smart Watches. The activities and falls per-
formed are also less. In this study, a dataset is created by collecting physiological features 
along with inertial features which will help in developing and validating systems studying 
the effect of physiological features on the detection and prediction of falls and activities. 
The dataset consists of 7 activities and 8 falls for inertial data; 2 activities for ECG data; 6 
activities for EMG data and 6 activities for GSR data. Basic body parameters like height, 
weight, etc. along with beats per minute, SpO2 and blood pressure are also recorded for 12 
subjects. The collected data is analyzed statistically using a boxplot, pair plot, correlation 
heatmap and p value. The activities are classified using SVM, KNN, RF and DT. For GSR, 
more than 90% accuracy is achieved and for EMG, the accuracy is less than 80%. For IMU 
data, more than 95% accuracy is achieved. The results encourage combining inertial, physi-
ological and basic body parameters to detect and predict falls and activities.

Keywords ECG · EMG · GSR · IMU · Machine learning · Statistics · Falls · Activities

1 Introduction

 Global data volume presently generated by the healthcare sector is about 30%. The annual-
ized average growth rate of healthcare data will be 36% by 2025. This is 6% swifter than 
the industrial sector, 10% swifter than the financial sector, and 11% swifter than the media 
& entertainment sector [1]. In 2010, per subject gadget interaction is 298 per day, by 2025 
it will reach 5000 gadget interactions per day and the major contributor of this data is the 
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healthcare sector [2]. The accuracy of machine learning techniques is dependent on the 
availability of large amounts of data. With the advancement of technology and availability 
of data, the world is moving towards automation leading to smart applications in health-
care. Smart healthcare applications rely on real-time datasets for validation and wearable 
technology has made it possible to collect real-time health-related data. Seshadri et al. [3] 
provide in-depth knowledge about the various wearables available in the market. Wearable 
technology, features and the activities are useful to monitor various diseases. Wu et al. [4] 
projected a 7-day early prediction of Acute Exacerbations of Chronic Obstructive Pulmo-
nary Disease (AECOPD) on 67 subjects using wearable and sensor devices. According to 
Wong et al. [5] use of wearables assists us in the early prediction of covid illness. In [14], 
EMG and gyro sensors are used for the detection of freezing of gait in Parkinson’s disease. 
Trembling and shuffling muscle activities help in the assessment of falls for the affected 
person. In [15], EMG data collected through Myo Armband is used to classify hand-posed 
activities including stretching, wrist, waving, relaxed, and waving out to control wheelchair 
movement. The information related to prediction of falls and various types of activities 
for elderly people living alone can be shared with the caretakers that can ensure their well 
being [16–18, 50]. Ichwana et al. [19] monitored Transient Ischemic Attack (TTA) by clas-
sifying ten various activities pertaining to sitting, standing, walking and falling using an 
MPU6050 sensor affixed to their waists. For stress and anxiety disorder and emotion pre-
diction, Castro-Garcia et al. [20] used EEG, ECG, breathing rate (BR), electrodermal activ-
ity and Skin temperature, Deger et al.‘s study [21] used GSR signals, Luz Santamaria-Gra-
nados et al. [22] used ECG and GSR features and Chueh et al. [25] used skin temperature 
variation, ECG and GSR to classify emotions using various machine learning techniques.

Synthetic datasets have been used for the prediction of diseases [6–10]. [11–13]. used 
real datasets but these datasets have limited features. Moreover, for detecting falls and 
activities of daily living, the datasets available are based on inertial features. This study 
is a move toward the development of a dataset that is based on physiological and inertial 
features. We used a prototype using various sensors that can collect the physiological and 
motion features of a person. As the data are collected in a real environment it can assist 
researchers in the development and validation of an efficient Machine learning system that 
can help to detect and predict the condition.

This study is divided into 5 sections. Section 2 discusses the existing datasets. Section 3 
covers the details of PIF dataset. Section 4 deals with the data analysis that further consists 
of two parts i.e., statistical and machine learning-based analysis of the dataset. Lastly, the 
study is concluded in Section 5.

2  Existing datasets

Kausik Sen et al. [23] conducted a study using GSR and EMG sensors for pain assess-
ment on BioVid heat pain database. After statistical features extraction various machine 
learning algorithms are implemented to estimate the level of pain. From the EMG sig-
nal, features like Root Mean square are extracted. This feature has also been considered 
in this study. Fu et al. [24] used EMG with ECG features to detect fatigue in drivers and 
Kolmogorov–Smirnov Z test is implemented for statistical analysis. Two states such as 
fatigue and normal are classified with an accuracy of 86.67%. Chueh et al. [25] analyzed 
the data related to ECG, GSR and temperature of a person using MANOVA and six 
machine learning methods to predict emotions. The author concluded that MANOVA 
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and Logistic regression significantly improves the performance of the system. Kim et al. 
[26] considered physiological features i.e., ECG, EMG Skin conductance and respira-
tion. After the extraction of features using pseudoinverse LDA (pLDA) is used to clas-
sify four musical emotions. Soleymani et al. [27] used the ANOVA test to analyze the 
emotions during movie scenes using physiological signals captured from ECG, EMG, 
temperature, respiration and GSR. The author concluded that MANOVA and Logistic 
regression significantly improves the performance of the system. Nadeem et  al. [28] 
acquired the data for three activities and one fall using a Shimmer inertial sensor on the 
waist of 114 participants but in the dataset, the falls are performed by only four partici-
pants. ECG data are collected in parallel using a Shimmer ECG Sensor attached to the 
chest of a person to record 10 to 15 min ECG signals. A total of 39 records are collected 
of which 33 records contain twelve attributes and six contain 8 attributes. The PTB-XL 
dataset [29] is recorded from 18,885 participants. The Schiller AG device is used to 
acquire ECG signals from participants. Nebojša Malešević et  al. [30] collected EMG 
signals from the right-hand using Force sensors from 20 subjects performing 65 hand 
movements. These movements are collected in an isometric way. Ozdemir et  al. [31] 
used a BIOPAC MP36 device to acquire EMG signals of the forearm from forty partici-
pants performing ten hand gestures. In the CASE dataset [32], data related to physiolog-
ical features such as EMG, GSR, ECG, Temperature, BVP and respiration are collected 
in parallel from thirty young subjects watching videos. Ojetola et  al. [33] collected a 
dataset using seven activities and six falls using a Shimmer sensor placed on the chest 
and thigh of 42 subjects. This dataset has also data from only young healthy persons. 
DEAP dataset [34] is collected from thirty-two subjects by playing 40 music videos and 
rating the videos in four categories to acquire physiological signals such as GSR, EEG, 
Respiration Amplitude, Blood Volume, EMG, Skin Temperature, and EOG.

SisFall Dataset [35] consists of 19 activities and 15 falls collected from 38 partici-
pants using two accelerometers and one gyroscope attached to the waist of the partici-
pants. During data collection, few activities and falls are not performed by the elderly. 
Only one elderly who has expertise in judo performed all falls and ADLs. KU-HAR 
[36] dataset is only related to ADLs data collected from 90 subjects using Smartphones. 
This dataset was collected using only young participants aged between 18 and 34. This 
dataset has also data from only young healthy persons. The Real-World Falls dataset 
[37] is collected while performing falls by 100 subjects using a tri-axial accelerometer. 
This dataset faced the problem of class imbalance. AMIGOS dataset [38] is collected 
using Shimmer Sensor from forty subjects watching 16 short videos and 4 long videos. 
The author selected GSR, EEG and ECG features including Audio, Visual and Depth. 
Phinyomark et  al. [39] used EMG signals to classify the gestures of six hands move-
ments. Thirty-seven features are extracted in this study. The authors concluded that fre-
quency domain features are not good for EMG signals. Falih et al. [15] used an EMG 
signal to control the wheelchair movement using the forearm motion to detect the mus-
cle signals using the Myo Armband device. In this study, features are extracted based on 
the time domain and classified the movement using the Naïve Bayes technique in Weka. 
A total of five poses are correctly classified with 93.5%.

Researchers have focused on features based on single sensor or in certain circum-
stances, dual sensors like GSR and EMG. In PIF dataset, physiological and inertial fea-
tures are collected for different types of activities and fall. The basic parameters of the 
human body are also available in the dataset. The motivation is that in the real world, 
holistic information about patients helps in detecting a condition with more accuracy.
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3  PIF dataset

The dataset collected in this study is a comprehensive dataset that is based on Physiologi-
cal as well as Inertial Features (PIF). Table  1 gives the details of the dataset including 
source location, subject area etc.

PIF dataset is useful for the following:

• To develop and validate algorithms for the classification of various events.
• To compare existing datasets with existing algorithms.
• To support further studies in bioinformatics, bioengineering, health informatics etc.
• To develop systems for detection, prediction and health monitoring for the elderly, dif-

ferently-abled persons or persons with major health problems like heart attack, emo-
tional instability, and mental issues.

• To detect anomalies in different events that include heart rate, blood pressure spike, 
abnormal values of sdnn and rmssd, anomalies in accelerometer and gyroscope values 
etc.

3.1  Design, materials, and methods

In this section, several aspects of the data-acquiring process are discussed, that includes 
sensors used for data collection, types of data collected, storage, subjects, size of data sam-
ples, etc.

3.1.1  Data collection

Data acquisition process is shown in Fig. 1 and extracted features from various sensors are 
shown in Table 2. Figure 1 indicates the placement of sensors on the body during the data 
collection process, the flow of data, storage of data in .csv file with names and the flow of 
methodology used for this study.

Table 1  Specification table of PIF dataset

Specification table

Subject area Computer science in healthcare
More specific subject area Physiological features of electromyography, electrocardiography, skin response 

and inertial measurements, GOQII smartwatch
How data was acquired Using wearable Sensors MPU6050 Sensor, AD8232 Sensor, AD8226 Sensor, 

GSR Sensor, GOQII smartwatch
Data format Raw and analyzed
Experimental factors Measure of the dynamic behavior of subjects during different activities
Experimental features 12 healthy subjects while wearing wearable sensors.
Data source location https:// data. mende ley. com/ datas ets/ phb9y 6cp5c/1
Data accessibility Dataset will be made available on different open platforms.
Related research article Improving detection of falls and activities using machine learning model 

(Accepted, not published yet)

https://data.mendeley.com/datasets/phb9y6cp5c/1
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In Table 2 PID represents the unique identification number for the person, BPM means 
beats per minute, ECG represents the raw ecg value from the sensor, blood pressure repre-
sents the systolic and diastolic values and Label divides the data into various classes. EMG 
represents raw muscle value. RMS stands for Root Mean Square; MAV stands for Mean 
Absolute Value. SCL stands for Skin Conductance Level. Features in IMU sensor represent 
GyRoX, GyRoY, GyRoZ represent 3-axis gyroscope values, AccX, AccY, AccZ represent 
3-axis accelerometer values, AccANG X, AccANG Y represent 3-axis accelerometer angle 
values, and GetANG X, GetANG Y, GetANG Z represent 3-axis combined angles of accel-
erometer and gyroscope.

Subjects For the study, we have taken twelve participants, all are of Indian descent and 
free from physical or mental disorders. Each participant is given detailed information about 
the experiment and the entire method, and the goal of data collection and utilization is 
clearly defined. The Declaration of Helsinki was followed in all of the trials. Informed con-
sent is provided by all the subjects and anonymous data is collected.

Basic health information Basic health information is often used to assess overall health 
and wellness, and it can help doctors and other healthcare professionals provide you with 
the care and treatment you need. Basic information of participants is recorded manually 
that includes the information give in Table 3.

Fig. 1  The schematic diagram of the system for data acquisition and analysis

Table 2  List of sensors with 
extracted features

Sensors Extracted features

ECG PID, BPM, ECG,  SpO2, blood pressure, label
EMG EMG, RMS, MAV, Label
GSR Raw value, resistance, GSR value, SCL, label
IMU TEMP, AccX, AccY, AccZ, GyRoX, GyRoY, 

GyRoZ, AccANGX, AccANGY, GyRoANGX, 
GyRoANGY, GyRoANGZ, GetANGX, GetANGY, 
GetANGZ, label
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In this article, the physiological features of subjects are collected using AD8232, 
AD8226, GSR, MPU6050, sensors and GOQII smartwatch. Details of the sensors used are 
given below:

• ECG Sensor: An electrocardiogram (ECG) sensor known as the ECG8232 is used to 
measure and record the electrical activity of the heart. This sensor is often used to find 
irregular heartbeats or other heart-related disorders using wearable technology and 
medical monitoring systems. A microcontroller Arduino 2560 receives the recorded 
ECG data from the ECG8232 sensor, where it is analyzed and interpreted. Figure  2 
shows the raw ECG value of a subject. ECG data is collected using the AD8232 sensor 
and data was saved in (.csv) file format. On each subject electrodes are placed on Left 
Arm, Right Arm and Right Leg. We have recorded the values of ECG in sitting and 
sleeping mode for 5 min and the size of samples in each category is shown in Fig. 3c.

Fig. 2  ECG plot of a subject in sitting and deep breath while sleeping

Fig. 3  a-d Number of samples in each class
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• EMG Sensor: An electromyography (EMG) sensor known as the EMG8226 is used to 
assess the health of muscles and nerve cells. These cells provide electrical signals that 
trigger the contraction or relaxation of muscles. These signals are read using the EMG 
sensor, which is a small form factor, multichannel, low-cost, and low-power amplifier. 
The 3-lead differential EMG sensor utilized in this study is shown in Fig. 4. Figure 5 
shows the Raw EMG values of the subject during the data collection process. EMG 
electrodes can be attached to the hand and wrist using the onboard 3.5 mm cable con-
nection and 30s data is recorded in a .csv file. All the movements are explained to sub-
jects before performing. In this study, 6 movements have been considered, hand at rest, 
fist, up, down, handshaking and waving so that multi-classification can be possible. The 
number of samples in each class is shown in Fig. 3d.

• GSR Sensor: The Galvanic Skin Response (GSR) sensor is a biosensor that meas-
ures the electrical conductance of the skin. It is also known as a skin conductance 
or skin resistance sensor. It is generally used in psychological research studies to 
monitor changes in a person’s autonomic nervous system that includes emotional 
state, stress levels, and physiological arousal. When a person experiences emotional 
or physical changes, the skin’s electrical conductance varies, and the GSR sensor 
can pick up these changes. In this study, a sensor is placed in the first two fingers 
of a subject as shown in Fig. 6. Figure 7 gives the plotted values of GSR sensor in 
scary and normal moods. GSR sensor data is collected in 6 different moods; the 
number of samples in each class is shown in Fig. 3b. To capture values for scary, sad 

Fig. 4  Subject performing hand movements using EMG sensor for data collection

Fig. 5  EMG plot of subject performing hand at rest and fist
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and happy moods, a horror clip, a sad clip and a happy clip of 1 min each are shown 
to the subjects. In deep breathing the subject is breathing deeply and in hold breath, 
the subject is holding the breath.

• IMU Sensor: An MPU6050 Sensor is an Inertial Measurement Unit consisting of 9° 
of freedom device that includes a 3-axis Accelerometer, 3- axis Gyroscope and Tem-
perature sensors. It operates on 3.3 V to 5 V DC. The different ranges of the Gyroscope 
are ± 250, 500, 1000, and 2000 °/s and Accelerometer is ± 2 ± 4 ± 8 ± 16 g. It is used 
to measure the acceleration, angular velocity, orientation, rotation and temperature of 
the body. MPU6050-based prototype is mounted on the waist of the subjects as shown 
in Fig. 8. It describes the features extracted from sensors using the acquisition system 
and stores in various .csv files for each subject. A total of 12 subjects with different age, 
weight and height profiles are selected for performing 7 activities and 8 falls and two 
trials are performed per subject. The features are extracted using tockn arduino library. 
The number of samples collected in each motion is shown in Fig. 3a. We have collected 
1-minute data for activities and 20s data for falls. The plotted graph of 2 activities and 2 
falls is shown in Fig. 9.

Fig. 6  Recording emotion data of 
subject using GSR sensor

Fig. 7  GSR plot of subject in scary and normal mood

Fig. 8  Subject performing activities for data collection
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• GOQII Smartwatch: It is used to collect beats per minute,  SpO2 and blood pressure of 
the subject and data is recorded after every 10 s and stored in a .csv file.

4  Dataset analysis

4.1  Statistical analysis

Statistical analysis of the dataset is essential because it helps us to understand the data bet-
ter. Descriptive statistics and graphs provide a general overview of the dataset that makes 
it simple to grasp. Graphs also summarize data to make it more intelligible by highlighting 
trends, patterns, regression, and correlations, among other measures. We have used Python 
as a statistical analysis language. In statistics, box plot is used to show the dispersion of the 
dataset, with the center line indicating the median value of the dataset. Box plot in Fig. 10 
shows the data pertaining to GSR, EMG, ECG and AccX values. For the EMG plot, data 
is mostly negatively skewed dispersed as compared to GSR where data is less dispersed. 
For scary and sad classes, data is positively skewed and for hold and happy classes, data is 
normally distributed. For Falls, data is more dispersed and for activities it is very less dis-
persed. For ECG values data is symmetric and equally dispersed.

Figure 11 represents the pair plot to identify patterns and relationships between multiple 
variables. We have plotted the pair graph for Accelerometer and gyroscope values accord-
ing to ADLs and Falls. The relationship and difference in variable values are displayed 
by the scatter plot in the paired graphs. It can be observed from the pair plot that features 
AccZ shows a symmetrical relation with other features. In contrast, other features are dis-
persed so it makes it easy to classify into the classes.

Figure  12 shows that there is a positive relationship between MAV and EMG but 
a negative relationship between for the RMS feature. GSR is positively correlated with 

Fig. 9  Plotted graphs of two activities and two falls using IMU sensor
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Fig. 10  Boxplots for ECG, EMG, IMU and GSR

Fig. 11  Pair Plots for features captured using IMU for ADLs and fall
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conductance level. AccAngY is positively correlated with GetANGY and negatively with 
AccX.

T-test and Anova test have also been performed to see how varied and similar the labels 
on the various datasets are. T test is a parametric test used for hypothesis testing to check 
whether two groups are different or not. It compares the mean of two different groups. 
ANOVA test stands for Analysis of Variance. It is used to examine the variance among 
two groups. The test on GSR values is illustrated in Fig. 13, where we have taken the raw 
values of the GSR and compared them to various scenarios, such as scared and happy. 
We have established the null hypothesis that there is no difference between scary and hold 
breath and performed t-test and anova test. P value for various GSR classes are shown in 
Table 4. As P values are smaller than 0.05, we reject the null hypothesis that there is no dif-
ference between Scary and hold breath etc.

We have also performed t-test on ECG values as shown in Fig. 14. It receives the Pvalue 
0.0012 which is less than the significance level 0.05. So, we can conclude that sitting and 
deep breath while sleeping are significantly different.

Fig. 12  Correlation heatmap of features

Fig. 13  Represents the distplot of GSR feature according to labels

Table 4  P values for various 
GSR classes

GSR classes P value

Scary and hold breath 1.02E-111
Normal and deep breath 5.83E-19
Sad and happy 3.78E-159
Scary and happy 2.53E-184
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 Figures 15 and 16 shows the Distplot for IMU classes and EMG classes respectively. 
Tables 5 and 6 show the P values for IMU and EMG classes. It is concluded from both fig-
ures and tables that there are significant differences among class values for IMU and EMG.

4.2  Analysis of PIF dataset using machine learning

Statistical analysis was performed to check the similarities and differences in the class val-
ues of the dataset. Based on Distplot and significant values it is concluded that classes are 
different. In this section, we are classifying the same classes using Machine learning tech-
niques: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF) 
and Decision Tree (DT). Apart from KNN, RF, SVM and DT, Logistic Regression, Linear 
Discriminant Analysis, and Gaussian Naïve Bayes were also implemented and based on the 

Fig. 14  Distplot for ECG values

Fig. 15  DistPlot for IMU classes

Fig. 16  DistPlot for EMG values
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results top four have been included in this study. Results are shown in Figs. 17, 18 and 19. 
This is based on the raw values of GSR, EMG, ECG and AccX values.

SVM: Support Vector Machine is a type of supervised machine learning algorithm that 
is used both for classification and regression. This algorithm is used to find hyperplane 
that differentiate the classes with maximum margin. Main advantage of using SVM is 
resulting classifier uses less numbers of training points (support vector) to classify new 
points.
DT: A decision tree is a supervised machine learning algorithm which is a non-paramet-
ric algorithm widely used for classification and prediction. In this algorithm the deci-
sions are represented in the form of tree and flowchart like structure using divide and 
conquer method. The output is in the form of leaf nodes.
Random forest: It is also known as Ensemble algorithm which is a supervised learn-
ing algorithm. It solves the classification problem with a bagging mechanism and 
also solves regression problems. It reduces the problem of overfitting which makes 

Table 5  P value for IMU classes IMU P value

Sitting and forward fall while sitting 1.12E-05
Walking and backward fall while sitting 1.08E-65
Sitting and get up from chair slowly 0.0004
Sitting and go upstair slowly 0.0188

Table 6   P value for EMG 
classes

EMG P value

Hand at rest and fist 0.03983778
Wrist up and hand at rest 0.001819062
Waving and fist 2.70E-07
Handshaking and fist 0.003150364
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it better from the decision tree. The best solution (on the basis of voting technique 
performed for every predicted result) is selected from every decision tree created on 
dataset samples. It performs on large datasets very fast and provides accurate result.
KNN: K-Nearest Neighbors algorithm is a non-parametric method, used to solve 
both classification and regression problems. The algorithm provides a solution to a 
problem that depends on identifying similar objects. Euclidean distance, Mahalano-
bis distance or Hamming distance are applied to find the new data points. The main 
advantages of this algorithm are simple, easily implemented, versatile, no need to 
build models and if numbers of parameters increase then this algorithm works slowly.
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Dataset is preprocessed before applying machine learning techniques. Missing values 
are dropped and NAN values are replaced by median values or replicating the previous 
values. Machine learning techniques: SVM, KNN, RF, and DT are applied to the processed 
data. The data are split 75:25 between training and testing and 10-fold cross-validation is 
used. The experimental results are shown in Table 7 in terms of accuracy, precision, recall 
and F1 score for ECG.

From Fig.  17, it is concluded that in GSR data, the performance of all the classes is 
above 82%. All the machine learning methods perform well on our dataset but KNN per-
formance is low compared to other methods. In Fig. 18, on EMG data, SVM outperforms 
other methods by achieving results above 70% in terms of accuracy, precision, recall and 
F1-Score. In Fig. 19, on IMU data, the results are dropped for SVM but RF and KNN per-
form well. KNN and RF achieved an accuracy of 97%.

From Statistical and Machine learning-based analysis, it is drawn that data is imbal-
anced at some points but overall, the distribution is normal. Both methods are classifying 
the classes correctly and it is shown using graphical plots also. Except for EMG’s data val-
ues, all classifiers are performing very well.

5  Conclusion

This paper describes the dataset acquired from 12 subjects performing various activities 
which include the electromyography data while simulating various hand movements that 
include hand at rest, fist, handshaking, waving and up/down movement of hand, Electro-
cardiography data collected while a subject is sitting and sleeping, emotions data using the 
GSR sensor when subjects are watching scary, sad, and happy clips and when the subject 
is holding her breath, breathing deeply and breathing normal, IMU data collected for 7 
activities and 8 falls and smartwatch data which includes blood pressure, SpO2 and heart 
rate values. Basic health information is recorded manually that includes height, weight, 
smoking, drinking, medical history, etc. This dataset is very useful in the development of 
machine learning algorithms for detecting and predicting various activities and falls based 
on physiological and inertial features of subjects. Further, it is useful for developing and 
validating health monitoring systems for prediction and detection of events. The statistical 
and machine learning techniques-based analysis has given greater insights of the dataset 
which will be useful for researchers.

5.1  Limitations of the dataset

• Dataset is imbalanced. The performance of Machine learning model is significantly 
impacted by imbalanced and noisy data [40] but there are balancing techniques [41–

Table 7   Classification results 
of various classifiers for ECG 
classes

Sitting & deep breath 
while sleeping

SVM KNN DT RF

Accuracy 98.1 81.74 98.09 99.45
Precision 98 82 98 99
Recall 98 81 97.5 99
F1-Score 98 81.5 98 99
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49] that improve the performance of models by over-sampling or under-sampling the 
dataset.

• The dataset is created by collecting individual physiological and inertial features. 
Simultaneous collection of all types of features can give more promising results.
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