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Abstract
Image captioning is a technique that generates concise and meaningful descriptions of the
visual contents present in an image. Image captioning frameworks generally employ an
encoder-decoder-based pipeline to generate image descriptions. Multimodal meaning space,
visual and semantic fusion, and influential recurrent decoding are some of the highlights
of these frameworks. However, the lack of cutting-edge implementation schemes, such as
ensemble feature extraction, context-aware fusion, and real-time captioning, limit their inte-
gration in the vision assistance domain. In this research work, we introduce Neuraltalk+,
which comprises various structural and functional enhancements, and feature-based exten-
sions, making it lightweight, robust, effective, and automated. Neuraltalk+ uses ensemble
feature extraction to extract visual and spatial image features for efficient image compre-
hension. We then map these feature vectors with multimodal semantic knowledge using
dual context-aware feature fusion followed by self-attention-assisted decoding. Lastly, we
introduce two new features: real-time captioning and visual similarity comparison, which
allow vision assistance and sight comprehension capabilities. Experimental analysis on the
Flickr 8K and Flickr 30K datasets demonstrates that our model trains faster and generates
improved quantitative (BLEU(72.08), METEOR(33.65), and CIDEr(143.5)) and qualitative
results. Neuraltalk+ also demonstrates high performance in real-time captioning for both
familiar and unfamiliar contexts. We also offer potential suggestions for extending our work
in the future.

Keywords Deep learning · Encoder-Decoder · Image captioning · Image comprehension ·
Neuraltalk · Visual assistance

1 Introduction

The current era of digital information generates an exponential amount of multimedia data
(images, audio, and videos) every second. Digital images are one of the most widely shared
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contents over the web across multiple domains such as social media, news, e-learning, and
medical among others. An image comprises a vast amount of visual entities with various
attributes and actions [39]. A quick glance is enough for us to identify all the visual entities
and thus infer a logical conclusion for any image [20]. This image-understanding ability
even though seems simple is one of the complex and challenging problems for image-
understanding models [33]. Image Captioning (IC) refers to the generation of a description
for an image [16]. The generated description is comprehensive enough to include all the
significant information about the image [7]. IC models not only recognize the visual context
correctly but also describe them precisely using the appropriate phrases and sentences [22].
IC thus involves the joint application of two cutting-edge disciplines of Artificial Intelligence
(AI) namely Computer Vision (CV) and Natural Language Processing (NLP).

IC has numerous direct and indirect applications across various domains. For instance,
it assists visually impaired individuals in navigating their surroundings [17] and e-learning
platforms in generating automated captions [21]. It is also employed in self-driving cars to aid
drivers in traffic congestion [24]. In addition, IC aids robots and Unmanned Aerial Vehicles
(UAV) to perceive and interact with their neighboring [3, 4]. Moreover, IC frameworks are
essential components of multimodal search engines that retrieve images from web servers
[42]. Some novel applications includemedical IC and remote-sensing IC. Therefore, devising
effective and reliable ICmodels is crucial, as they can directly affect the performance ofmany
other application frameworks used every day.

The principal approaches of IC are template-based, retrieval-based, and encoder-decoder-
based models [31]. Template-based models [22] leverage handcrafted visual features such as
Global ImageDescriptor (GIST), Scale Invariant FeatureTransform (SIFT), andHistogramof
OrientedGradients (HOG) extracted from the image to produce captions.While thesemodels
produce grammatically correct descriptions, they are limited in their ability to convey visual
facts. Retrieval-based architectures [9] produce descriptions by reusing existing phrases based
onmultimodal similarity. However, as the dataset grows, they suffer fromperformance issues.
The state-of-the-art paradigm of IC is the end-to-end encoder-decoder framework [21] that
leverages data-driven techniques to generate captions. The captioning is further improved by
incorporating visual and semantic attention [38] into the decoder, which leads to descriptions
having tight association with the query image. The encoder-decoder paradigm has brought a
revolution in the area of IC frameworks by effectively correlating visual context and lexical
information within the latent space. Furthermore, the end-to-end methodology enhances the
robustness and ease of upgrading, making the integration of IC frameworks into vision aid
domains possible.

NeuralTalk (NT), developed by Karpathy and Fei Fei [20], is an IC framework widely
renowned for its encoder-decoder paradigm. It learns a multimodal latent space that trans-
lates the input visual context to image descriptions word by word. It is freely available
on the github1 for educational and research purposes. Despite being released in 2015, it is
still a crucial benchmark for nearly all IC models. Current frameworks draw upon several
of its characteristics, including architecture, feature extraction, multimodal fusion, correla-
tional objective function, and decoding strategy. Its methods of vocabulary initializations and
handling bad tokens are still a baseline for current captioning and language modeling archi-
tectures. In recent years, various domains, including vision aid, have actively reinforced the
implementation of IC. However, the NT and other cutting-edge IC models are fundamentally
not structured for this purpose. It comprises complex computational models, a semi-end-
to-end pipeline, and serial processing. Additionally, it primarily focuses on image rankings,

1 Neuraltalk: https://github.com/karpathy/neuraltalk
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resulting in descriptions lacking vital details for image interpretation. Moreover, data-driven
concepts such as ensemble feature extraction, visual and spatial attribute fusion, and adap-
tive attention are absent. Even if explicitly tailored for visual aids, NT lacks built-in visual
aid functionalities precisely devised for this purpose. Consequently, it requires supplemen-
tary handling, rendering it unfeasible for visual aid systems such as self-driving cars, road
assistance, or aiding visually impaired individuals.

Motivated by the popularity and success of this model, we undertook this research work
to design and develop a lightweight neural IC framework, Neuraltalk+ (NT+), which exhibits
architectural optimizations, captioning enhancements, and feature extensions. To our knowl-
edge, no previous works have attempted to extend NT’s performance and features. Our
work involves introducing state-of-the-art algorithms and data-driven paradigms into the
NT, making it lightweight for swift captioning and effective and automated for its possible
incorporation into the visual aid domain. This research aims to develop a novel IC frame-
work with reliable semantic knowledge and a fast captioning pipeline through structural and
functional modifications. To achieve this, we follow a two-phase research methodology: ana-
lyzing baseline models for research gaps and then resolving them during the development of
our NT+ framework. The main contributions of our work are as follows:

i. We propose a novel, lightweight, and autonomous NT+ framework for visual compre-
hension and image captioning.

ii. To enhance the training efficiency and description quality, we introduce dual context-
aware feature fusion and adaptive attention-assisted decoding.

iii. We design and incorporate two newvision assistance functionalities (real-time captioning
and visual similarity comparison) into our framework.

iv. Quantitative and qualitative experiments on the benchmark datasets Flickr 8K and Flickr
30K reveal that NT+ outperforms its baselines. Additionally, NT+ also yields competitive
real-time performance on out-of-distribution-testing.

The remainder of this article is as follows. Section 2 presents a brief literature overview of
the encoder-decoder-based IC paradigm. Section 3 comprehensively examines our research
methodology, covering framework characteristics such as ensemble feature extraction, dual-
context aware multimodal fusion, adaptive attention, and vision assistance extensions. The
dataset, evaluation metrics, implementation details, ablation study, and comparative analysis
are explored in Section 4. Section 5 discuss the limitations and future scopes of our study,
followed by a conclusion in Section 6.

2 Related work

Image captioning is currently undergoing intensive research, and as a consequence, several
designprinciples, trainingmethodologies, and alignment algorithmshavebeenproposed [16].
The classical encoder-decoder pipeline, attention assisted techniques, and transformer-based
IC models are all strongly related to our research. Kiros et al. [21] pioneered the integra-
tion of the encoder-decoder architecture into IC, wherein a Convolutional Neural Network
(CNN) and Log BiLinear (LBL) space are employed to derive a fixed-length visual feature
vector, facilitating the generation of captions for query images. Karpathy et al. [20] devised
an IC alignment network aimed at correlating image segments with language phrases utiliz-
ing a multimodal structured alignment cost function. The model decodes semantic context
using a Recurrent Neural Network (RNN), specifically Long Short Term Memory (LSTM).
Vinyals et al. [33] developed an integrated correlational model rather than a two-component
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architecture, which is dynamically trained to optimize the log-likelihood to yield a target
sequence of words that best fits the query image. Xu et al. [38] integrated an attention-based
module into the captioning pipeline. The model dynamically evaluates the visual segments
and assigns them an attention score to determine the image fragment to focus on for the
next token generation. Jin et al. [19] refined the existing attention algorithm by incorpo-
rating scene-specific visual ordering within image regions, evaluating and giving attention
scores to visual details by leveraging earlier predicted words. Wang et al. [34] underline the
decoder’s limitation in capturing global dependencies between current and previous words.
They propose an incremental adaptive global context-based attention method that enhances
target word prediction by capturing global information between words. Zhao et al. [42], and
Effendi et al. [6] replaced the feature extractorwith ResNet [13] for capturing the grid features
and preserving the spatial properties between the visual entities.

The attention-assisted captioning pipeline is a standard benchmark in IC.However, explicit
attention modules struggle to capture complex spatial and multiscale information in pro-
longed captions [14]. Thus, an implicit attention module in the decoder is necessary, enabling
training with a joint multimodal loss function. This finding paved the way for integrating
self-attention-driven layouts into IC, facilitating the adoption of transformer-based models.
Jiang et al. [18] introduced an early transformer-based model in the IC framework. The
model employs a self-attention-aided multi-gate transformer block, which evaluates image
fragments with additional weights. This enhances the capture of visual and semantic repre-
sentations, thereby improving caption quality. Transformer-based decoders improve caption
length, but the CNN-based feature encoders lose positional and geometric details. Haque et
al. [12] developed a capsule network-based feature extraction with a transformer decoder,
preserving geometric details for expressive correlations in captions. Effendi et al. [6] devised
an image-to-speech model, eliminating the need for a textual training corpus. The model
utilized a vector-quantized variational autoencoder and a transformer-based decoder to learn
direct associations between images and speech. To overcome the constraints of sequential
contextual encoding and uniform weight assignment to visual regions during decoding, Shao
et al. [30] proposed an end-to-end transformer-based dense IC architecture. This system incor-
porates a region-object correlation score unit to evaluate the relevance of visual areas, with
semantic objects aiding in score determination. Despite resolving the sequential encoding
issue, IC pipelines overlook potentially significant phrases during captioning, relying solely
on visual context cues. Additionally, limited vocabulary diversity during training hinders the
model’s ability to produce diverse descriptions. To address this issue, Shao et al. [29] offered
an IC design trained on a diverse vocabulary, assigning equal preference to textual and visual
cues. Zhang et al. [41] proposed a fusion-enhanced multi-feature transformer-based frame-
work. The model achieves multi-feature fusion by aligning semantic features with the visual
attributes. Li et al. [23] also implemented a similar transformer-based multimodal decoder
backed by a hybrid attention module for effective training. Recent analysis indicates a prefer-
ence for transformer-based decoders over LSTMs in IC. However, transformers are not solely
limited to decoders; deeper object detection blocks, including transformer-based fusionmod-
els [5], are increasingly integrated into IC architectures, rendering both encoder and decoder
components entirely self-attention-driven. Yu et al. [40] and Guo et al. [11] utilized a hybrid
attention module with a multimodal transformer-based decoder for precise caption genera-
tion. Fang et al. [8] andWang et al. [36] devised a transformer-transformer-based framework
integrating attention mechanisms for visual and semantic features.

The emergence of IC frameworks leveraging reinforcement learning is also notable. How-
ever, challenges such as exposure bias and inconsistent evaluation emerge. Zhou et al. [43]
tackle this problem by introducing a reinforcement learning-based IC framework incorpo-
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rating spatial attention and Generative Adversarial Network (GAN) modules. The model
employs a discriminator network to address prior evaluation limitations, resulting in a more
efficient framework. Zhou et al. [43] combined generation-based and retrieval-based models
to enhance feature extraction and fusion in IC. The framework incorporates three modules-
cross-modal feature enhancement, gated feature fusion, and cross-model decoder-to facilitate
effective caption decodingwith visual and enhanced features. Lian et al. [25] observed that the
majority of the existing two-pass IC models employ captions to aid in the refining process by
using the conventional attention blocks. They, therefore, proposed a novel cross-modification
attention model that utilizes the image and caption tokens to deliver reliable features for
refinement. Wei et al. [37] devised an enhanced captioning model to capture and combine
the complexities of image features with semantic phrases. The model makes use of a two-
phase CNN-Transformer pipeline. Transformer models are computationally expensive due to
their depth and multiple hidden layers, resulting in heavyweight models [14]. It makes them
hardware-intensive and time-consuming to train and generate captions. The aforementioned
related works indicate a limited usefulness of captioning in aiding vision, underscoring an
ongoing research area. Therefore, we designed our NT+ framework specifically to address
this constraint. To improve efficiency and reliability, we developed a lightweight captioning
framework. To the best of our knowledge, this is the first attempt to reconstruct an existing
IC pipeline, modifying it at three fundamental levels.

3 Methodology

In this section, we provide a comprehensive overview of our research methodology, aimed at
enhancing object recognition and description generation. Our methodology centers around
the pivotal research question: how do structural, functional, and feature-level enhancements
in the IC pipeline augment visual assistance and image interpretation capabilities? To address
this, we redesigned the pipeline for lightweight execution, enhancing its ability to decode
complex image comprehension skills with additional features compared to existing methods.
Additionally, we prioritize componentization of the pipeline to facilitate seamless integration
in future expansions. Our research methodology consists of two fundamental phases:

i. Analysis phase: Study and analyze the baseline models to determine potential upgrad-
able, replaceable, and redesignable areas, and

ii. Development phase:Design and develop NT+ to adopt novel solutions for the identified
concerns and implement new data-driven strategies resulting in a lightweight, compact,
and robust framework.

We begin by examining the sequential flow of baseline models in our methodology, cover-
ing dataset preprocessing, vocabulary initialization, correlational mapping, model training,
and captioning. Then, we systematically identify areas for structural, functional, and feature
upgrades. After a thorough examination, we propose solutions for each concern. These solu-
tions form the basis for designing our novel NT+ framework, which combines classical and
cutting-edge approaches. Figure 1 illustrates both phases of our methodology. Generally, our
model comprises three fundamental sets of enhancements from the baselines, namely, struc-
tural, functional, and feature-based. Structural enhancements aim to optimize the architectural
pipeline by removing and replacing outdated libraries or non-efficient responsibilities. Struc-
tured enhancements instantly contribute to the lightweight and autonomous execution of the
pipeline. The functional upgrades enclose improvements to the training and alignment net-
work of the framework, including transformations to feature extraction, feature fusion, and
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Fig. 1 The proposed methodology of our model: Analysis and Development phases

decoding. Functional enhancements impact the image comprehension capability. Feature-
based advances are the addition of new components to the framework. We introduce two
novel features, real-time captioning and visual similarity comparison, to our framework,
which are missing in existing pipelines.

Table 1 offers an abstract comparison between NT+ and contemporary models in IC
(attention-based [38], Bi-LSTM [35], and transformer model [18]). Our model exhibits sub-
stantial deviations fromNT [20] and significant disparities from other baselines, as delineated
in Table 1. The subsequent subsections will delve into the detailed discussion of each dis-
tinction, its significance, and its benefit.

3.1 Structural analysis and enhancements

Structural analysis and enhancements involve modifying the pipeline organization, data pre-
processing, andflow techniques.While thesemodifications do not alter the training logic, they
streamline the execution by replacing non-optimized libraries with state-of-the-art. These
upgrades impact the execution and computational resource utilization, making the model
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Table 1 Distinguishing features of Neuraltalk+ compared to other cutting-edge image captioning frameworks

Differences Neuraltalk
[20]

Show &
Tell [33]

Bi-LSTM
[35]

Show,
Attend &
Tell [38]

Multigate
Transformer
[18]

Neuraltalk+

Structural End-to-end ✗ ✗ ✓ ✓ ✓ ✓

Implicit par-
allelism

✗ ✗ ✗ ✗ ✓ ✓

Low training
overhead

✗ ✗ ✗ ✗ ✗ ✓

Functional Ensemble
feature
extraction

✗ ✗ ✗ ✗ ✗ ✓

Context-
aware fusion

✗ ✗ ✗ ✗ ✗ ✓

Attention-
assisted
decoding

✗ ✗ ✗ ✓ ✓ ✓

Feature Real-time
captioning

✗ ✗ ✗ ✗ ✗ ✓

Visual
similarity
comparison

✗ ✗ ✗ ✗ ✗ ✓

Web-
application

✗ ✗ ✗ ✗ ✗ ✓

lightweight and swift. In the structural analysis step of our methodology (Stage 1 of Fig. 1),
we investigated several baseline implementations to identify the segments to be removed,
altered, or replaced. Based on this analysis, we introduce three primary kinds of structural
upgrades (pipeline-based, parallel processing, and library-based) to our NT+ framework.

3.1.1 Pipeline updates

The earlier captioning pipeline is partially end-to-end and comprises two disconnected com-
ponents: the visual feature extractor API and the encoder-decoder component, as illustrated
in Fig. 2. It results in a non-trainable and non-finetuneable feature extractor. In addition,
the explicit saving, loading, and mapping of feature files hinder the baseline framework’s

Fig. 2 Architectural pipeline of Neuraltalk framework (Karpathy & Fei Fei [20])
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Fig. 3 The fully end-to-end and trainable pipeline of our framework Neuraltalk+

end-to-end automation capability, making it non-suitable for real-time application scenarios
(vision assistance, traffic assistance, and image comparisons).

In contrast, our framework has an end-to-end trainable pipeline,where the feature extractor
is trainable and finetuneable, as illustrated in Fig. 3. Furthermore, our framework operates
autonomously,making it suitable for diverse real-time applications and image comprehension
domains. Several additional segments, such as implicit resource initializations, reduced user-
defined parameter context, log saves, and modular designs, have also been introduced to
make the framework lightweight, flexible, and expandable in the future.

3.1.2 Parallel processing

The baseline frameworks have no inbuilt parallel processing implementations for training
and evaluation. However, computationally high-speed Graphic Processing Units (GPUs) are
effortlessly available and affordable nowadays. Lack of GPU support limits the model to
efficiently use the underlying computational resources, resulting in longer training times.
In response to this limitation, we integrate NT+ with implicit GPU support, allowing for
swift computations and reducing training times. Moreover, our framework facilitates easy
enablement and disablement of GPU support without necessitating any alterations to the
pipeline configuration.

3.1.3 Library updates

Thebaseline IC frameworksmostly employ the nativePython implementations in conjunction
with several additional libraries (such as argparse, numpy, scipy, JSON, and pickle, among
others). The data flow and training processes, including dataset batching, loss computation,
gradient estimation, and backpropagation, are all explicitly executed. All these issues impose
limitations on the extendability and restructuring of the frameworks. In contrast, our NT+
frameworks operate and exploit the optimized TensorFlow and Keras resources. Our ensem-
ble feature extractor, tokenizer, word encoder, attention module, and multimodal decoder are
all developed using these cutting-edge libraries. It enables the effective utilization of under-
lying hardware, which is particularly beneficial due to the limited availability of resources in
real-time domain. A contrast between the architectural libraries used in the baseline and our
model is illustrated in Table 2.
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Table 2 Comparison of application libraries used in Neuraltalk and Neuraltalk+

Libraries Usage description Neuraltalk Neuraltalk+

airium Writes python context to HTML documents ✗ ✓

argparse Handles dynamically passed arguments ✓ ✗

json Loads and stores json data ✓ ✓

matplotlib Draws graphs and images ✗ ✓

numpy Performs numeric computations ✓ ✓

os Loads os and machine specific details ✓ ✓

pickle Loading and stores files ✓ ✓

PIL Image manipulation ✗ ✓

random Random numbers generator ✓ ✓

re Preproceses text dataset ✗ ✓

scipy MATLAB file processing ✓ ✗

time Date and time details ✓ ✓

TensorFlow Deep learning framework ✗ ✓

tqdm Progress bar ✗ ✓

3.2 Functional analysis and enhancements

The functional upgrades are one of the significant contributions of our work. In this analysis
(Stage 2 of Fig. 1), we empirically analyze the baseline frameworks to identify obsolete
strategies and techniques that require disposal and alteration. Based on this, we introduce
an ensemble feature extraction network incorporating the recurrent and non-recurrent visual
features into the latent space. We also present a novel dual context-aware multimodal fusion
that fuses the visual information with every semantic phrase, making the multimodal corre-
lational space more intricate. Furthermore, we incorporate an adaptive attention module in
the decoder to capture correlational dependencies within the fused sequences and previously
generated words. In particular, we introduce three different kinds of functional upgrades in
NT+, including ensembled feature extraction, context-aware feature fusion alignment, and
adaptive attention-assisted decoding.

3.2.1 Ensemble feature extraction

The initial phase of the IC pipeline is feature extraction, which involves extracting visual
information from image regions. It captures significant identities of the input image, enabling
subsequent multi-modeling, feature fusion, and decoding. The feature extractor typically
employs a deep CNN leveraging multiple convolutional and pooling layers. The convolu-
tional filters of various sizes capture diverse features containing detailed information about the
visual entities and their actions and attributes. The classical convolutional models, however,
lack spatial information, which is essential for establishing connections between visual enti-
ties. Consequently, even though the generated descriptions contain rich object and semantic
details, they lack spatial knowledge. However, in visual assistance, associations are cru-
cial for comprehensive context. To address the lack of spatial information during the feature
extraction, we introduce an ensemble feature extraction network, where the spatial and visual
features are individually extracted.
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Fig. 4 An ensemble feature extraction model using Inception V3 and DenseNet-121 networks

We leverage a dual CNN (Inception V3 and DenseNet-121) ensemble network to preserve
the spatial features in our pipeline. The DenseNet-121 has around 7 million trainable param-
eters and has dense feature associations, thereby saving spatial attributes. A finetuning layer
is introduced at the top of both networks for realigning feature vectors into the equivalent
feature space. The ensemble extractor extracts both the spatial and visual features from the
images. We then employ a preprocessing layer to normalize the feature values removing any
variations and noises from the extracted attributes. As depicted in Fig. 4, the analysis and
fusion block fuses and reintroduces the spatial information into the feature vector wherever
necessary. The extracted features are then preserved and used during the execution of the rest
of the pipeline.

3.2.2 Self-attention block

Attention is a predominant technique in deep learning models that considerably affects their
training and efficiency. It draws inspiration from human and animal visual systems, which
selectively focus on vital contextual information while disregarding irrelevant details. A
similar strategy is implemented in our IC framework to attend only to the relevant image
segments [38], leading to prompter model training and elaborate captioning as depicted in
Fig. 5.

The baseline NT model does not use any attention mechanism as outlined in Algorithm 1.
Consequently, it cannot dynamically shift its gaze on influential visual regions while caption-
ing, resulting in erroneous descriptions in numerous instances. In contrast, NT+ incorporates
a self-attention block leveraging the Bahdanau attention mechanism [1] to dynamically

Fig. 5 Attention mechanism (Bahdanau et al. [1]) in Neuraltalk+
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compute the significance of the image regions corresponding to the previously generated
phrase. Based on the selected image region, context-aware fusion is applied to obtain the
visual-semantic cross-domain embedding. This way, the caption prediction is guided by both
modalities resulting in a dual context-aware decoding technique.

Algorithm 1 Training and backpropagation sequence of Neuraltalk (Baseline)
Require: Embedding size (es), Caption size (S), Batch size (bs), Dataset (D), Pipeline weights (W )

1: while batch in D do
2: while (image, caption) in batch do
3: E1∗es

i ← f eature_encoder(image) � Encode image features
4: Es∗es

c ← caption_encoder(caption) � Encode captions

5: E(1+s)∗es
m = MFẐ (E1∗es

i , Es∗es
c ) � Multimodal fusion

6: while E1∗es in E(1+s)∗es
m do � Caption prediction

7: Pcaption ← decoder(E1∗es )
8: Li ← loss_ f unction(Pcaption , caption)

9: end while
10: Lbs+ ← Li
11: end while
12: G ← θ( f eature_encoder , caption_encoder , Lbs ) � Gradient calculation
13: W ← backpropagation(W ,G) � Model updation
14: end while

We implement a hard variant of region-based attention, where only a single image subre-
gion is gazed at each decoding step. Our self-attention block leverages the extracted image
features and the decoder’s hidden states. The visual attributes first undergo normalization
using the hyperbolic tangent (tanh) activation, following which the activation scores are
computed using the Hadamard addition of visual and hidden attributes using an Artificial
Neural Network (ANN). These scores determine the significance of the image region to be
attended to and fused in the current decoding step. The feature vector of the selected subre-
gion is known as dynamic context (I f ). Equations (1), (2), and (3) provide the mathematical
representation of the steps performed for obtaining dynamic context.

αt,i = exp(et,i )
∑256

k=1 exp(et,k)
(1)

a(ht−1, Fi ) = vTa tanh(Waht−1 +Ua Ie) (2)

I f = a(st−1, Ie) (3)

where αt,i represents the attention weight assigned to the i th image region at time step t ,
et,i is the attention energy or compatibility score between the previous decoder state ht−1

and the image regions Ie at time step t , a is the alignment function, va , Wa , and Ua are the
learnable parameters, and tanh is the hyperbolic tangent function. The output vector I f is the
dynamically selected visual region to be attended by the decoder at the current time step.

3.2.3 Dual context-aware fusion

The cross-domain fusion facilitates the interactions between the visual and the word embed-
dings to align the image regions with their respective semantic phrases. It enables the model
to learn a multimodal latent space capable of translating the visual context into descrip-
tion sentences. In baseline models, the visual features (Ie) and the semantic embeddings
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(C = {w1e, w2e, ...., wke}, where k is the maximum caption length and wie ∈ vocabulary)
are organized sequentially in the semantic space (Ẑ ) by positioning visual features above the
semantic phrases as illustrated in (4).

Sv,s = MFẐ (Ie, [w1e, w2e, ...., wke]) (4)

where Sv,s is the fused encoding, and MFẐ is the cross-domain fusion function. The com-
plete operational procedure of one of our baseline model (NT) is outlined in the Algorithm
1. As depicted in it, the decoder’s hidden states are initially set by the visual features. Subse-
quently, the decoding process relies entirely on previously generated semantic information.
However, there are instances where the decoder makes incorrect word predictions, leading
to inaccurately generated descriptions. The limitation arises from the decoder’s inability to
reference the visual information during each prediction step. Consequently, the visual infor-
mation holds minimal significance in the decoding process of baseline models. Furthermore,
this drawback makes the training process complex, and time-consuming and restricts IC to
be employed in more complicated and innovative domains

We present a novel multimodal decoding technique in NT+ where the visual information
is gazed at for the prediction of each word. The joint direction of cross-modal attributes
ensures improved token prediction. By considering both the semantic and visual details,
the decoder accurately predicts the subsequent word, even when the previously predicted
token is incorrect. As a result, the generated captions are closely aligned with the query
image. Additionally, we replace the traditional multimodal fusion method with a novel cross-
domain approach where visual features are merged with each word embeddings individually.
Employing the novel fusion technique, a combined visual-semantic cross-domain embedding
is generated that surpasses the effectiveness of earlier used features. Equation (5) describes
our multimodal fusion technique.

Sv,s =
k∑

i=1

(CFẐ (I f , wie)) (5)

where Sv,s is the fused encoding, k is the maximum caption length, CFẐ is the cross-domain
context-aware fusion function, and I f and wie are the dynamic context and individual word
embeddings respectively. Once the multimodal fusion completes, the context is fed to the
decoder for predicting the subsequent word token, as depicted in Algorithm 2.

The respective equations of the update gate, reset gate, and hidden states of ourGRU-based
decoder model are illustrated in (6), (7), and (8).

z(t) = σ(Wzx(t) +Uzh(t − 1) + bz) (6)

r(t) = σ(Wr x(t) +Urh(t − 1) + br ) (7)

h(t) = (1 − z(t)) � h(t − 1) + z(t) � h(t̃) (8)

where wz, uz, wr, ur, bz, and br are the trainable weights and biases of the update and
reset gates. x(t) stands for the input at the current time frame, h(t-1) depicts the previous
hidden state, σ denotes the sigmoid activation and� signifies the elementwisemultiplication.
The LSTM network is a more advanced and complex architecture compared to the GRU.
This complexity enables the decoder to exhibit improved performance in decoding tasks.
The LSTM network incorporates an additional output gate to regulate the information flow.
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Algorithm 2 Training and backpropagation sequence of Neuraltalk+
Require: Embedding size (es), Caption size (S), Batch size (bs), Dataset (D), Pipeline weights (W )

1: while batch in D do
2: while (image, caption) in batch do
3: En∗es

i ← ensembled_ f eature_encoder(image) � Encode images
4: Es∗es

c ← caption_encoder(caption) � Encode captions
5: H ← E1∗es

c � The start token embedding

6: while E1∗es
c in E(s−1)∗es

c do � Caption prediction
7: A1∗es ← attention_block(En∗es

i , H) � Attention calculation

8: Pcaption ,← decoder(CFẑ(A
1∗es , E1∗es

c )) � Context-aware fusion
9: Li ← loss_ f unction(Pcaption , caption)

10: H ← E1∗es
c

11: end while
12: Lbs+ ← Li
13: end while
14: G ← θ( f eature_encoder , caption_encoder , Lbs ) � Gradient calculation
15: W ← backpropagation(W ,G) � Model updation
16: end while

Moreover, unlike the GRU, the LSTM decoder uses an explicit mechanism for updating
the cell state, enabling the preservation and manipulation of both short-term and long-term
memory. However, due to the incorporation of extra parameters, it takes more resources
and training period. Equations (9), (10), (11), (12), and (13) depicts the forget gate, input
gate, output gate and cell and hidden state update equations for our LSTM-based decoder
respectively.

ft = σ(W f · [ht−1, xt ] + b f ) (9)

it = σ(Wi · [ht−1, xt ] + bi ) (10)

ot = σ(Wo · [ht−1, xt ] + bo) (11)

C̃t = tanh(WC · [ht−1, xt ] + bC ) (12)

ht = ot � tanh(C̃t ) (13)

where ft , it , ot , C̃t , and ht are the outputs of forget gate, input gate output gate, cell state, and
hidden state respectively. W and b denote the weight matrices and bias vectors, ht−1 is the
previous hidden state. The σ and� functions denote the sigmoid activation and element-wise
multiplication respectively.

3.3 Feature analysis and enhancements

IC finds extensive application across many domains like social media, e-commerce, visual
aid, and traffic assistance. As a result, there is a growing need for real-time IC frameworks.
However, the limitations of baseline IC models, such as reliance on external feature extrac-
tion APIs, distributed pipelines, and non-lightweight execution, hinder their use in real-time
image comprehension domains. By contrast, NT+ employs a fully implicit execution pipeline,
enabling the expansion of functionality.Accordingly, in the feature enhancement phase (Stage
6 of Fig. 1), we have introduced two new components (real-time captioning and visual simi-
larity comparison) to our framework to facilitate image comprehension and visual assistance
capabilities.
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Fig. 6 Results of visual similarity between two sample images

3.3.1 Visual similarity

While the visual similarity segment of our framework is in its preliminary stages of develop-
ment, we have demonstrated its potential value in real-time scenarios, particularly in image
comparison. It is a crucial part of multimodal search engines that retrieve images based on
multimodal queries. Presently, we leverage the generated semantic information for com-
puting visual similarity. In the future, we can explore more innovative techniques, such as
visual context or multimodal vector analysis. Figure 6 presents the visual similarity outcomes
obtained by our model for a pair of input images.

3.3.2 Real-time captioning

Real-time captioning allows the interpretation of any image presented to the model dynam-
ically. Our framework has a user-friendly and swift dynamic captioning functionality. It is
valuable for real-time visual aid applications, including blind assistance and traffic aid sys-
tems, to comprehend the surrounding environments and take proper responses. NT+ executes
autonomously to extract and save the feature of the query image, followed by the captioning
stage to generate descriptions. The whole process is automated and does not demand any
human intervention. Additionally, owing to our framework’s modular and componentized
architecture, the inclusion of supplementary visual support, such as image-to-voice conver-
sion or visual question answering, can be seamlessly integrated without the need for future
system alterations. Figure 7 illustrates results, showcasing dynamically captioned images by
our model. Our model produces captions that align more closely with observed semantics,
providing comprehensive inference of visual traits while maintaining syntactic correctness
in description phrases. Consequently, the captions generated by NT+ are sufficiently reliable
for integration into visual assistance systems.

4 Experiments

To assess the efficacy of our proposed NT+ framework, we perform a comprehensive set
of experiments on the popularly adopted Flick 8K and Flickr 30K datasets, which serves
as a widely used public benchmark for IC. Subsequently, we present detailed information
regarding the architecture, dataset preprocessing, search spaces, evaluation metrics, testing
procedures, and evaluation strategy employed in our study. We further conduct ablation
experiments and offer comparative results for thorough analysis. Finally, we visualize the
performance of our model in comparison to the baseline frameworks to demonstrate the
effectiveness of our proposed model.
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Fig. 7 Results of real-time image captioning against the ground truth descriptions

4.1 Dataset

IC frameworks need a substantial amount of (image, caption) training pairs for generating
reasonable captions. The widely utilized Flickr 8K dataset, introduced by Hodosh et al.
[15] and Flickr 30K introduced by Gong et al. [10], serves as prominent benchmark for
training and evaluating IC frameworks. Flickr 8K dataset consists of 8,091 images, each
associated with five distinct captions, resulting in a total of 40,455 unique image-caption
pairings. Flickr 30K is a much larger dataset containing more complex visual representations
of people, animals, and indoor and outdoor scenes. We standardize and lowercase all the
captions. To ensure consistency with the baselines, Karpathy’s splits has been used in both
the datasets. Specifically, our model trains on 30,455 unique (image, caption) pairs, followed
by fine-tuning on 5,000 new samples and validates on unseen 1,000 images on Flickr 8K.
In the case of Flickr 30K, we train on 113,915 unique (image, caption) pairs followed by
validation on 15,000 new samples and testing on 6,000 unseen images.

4.2 Evaluationmetrics

We evaluate the performance of our framework against the baseline models using the widely-
used Bilingual Evaluation Understudy (BLEU) score, Metric for Evaluation of Translation
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with Explicit Ordering (METEOR), and Consensus-based Image Description Evaluation
(Consensus-based Image Description Evaluation).

4.2.1 BLEU

BLEU [28] is a popular machine translation evaluation metric using a modified n-gram
precision approach to compare candidate captions with reference sentences. The BLEU
score for a candidate caption against a ground truth sentence is calculated as illustrated in
(14).

BLEU =
∑

C∈Cand

(∑
Tn∈C Countclip(Tn)C,C ′

)

∑
C ′ ∈Ref

(∑
T ∈
n C ′ Count(N )

) (14)

where Tn represents the n-gram tokens occurring in the candidate and reference captions,
based on the user-defined n-gram size. Count() computes the total number of unique tokens
in the caption, while the Countclip determines the minimum frequency of shared tokens
between the Cand and Cref captions.

4.2.2 METEOR

METEOR [2] evaluates the input caption tokens against the WordNet vocabulary for seman-
tics. The METEOR [2] score includes a porter module and a synonym module that help map
word tokens to their semantic meanings. Precision (P) and Recall (R) are calculated based
on all such mappings. The Fmean is then calculated using P and R, as shown in (15)

Fmean = 10PR

R + 9P
(15)

The final METEOR score is calculated as illustrated in (16).

MET EOR = Fmean × (1 − Penalty) (16)

where Penality is calculated for each unaligned n-gram in the candidate caption.

4.2.3 CIDEr

The CIDEr [32] score is a more comprehensive evaluation metric than BLEU [28] and
METEOR [2], as it incorporates the underlying concepts of the reference captions to deter-
mine whether the candidate captions accurately depict the same idea. Unlike traditional
n-gram matching, the CIDEr score provides a consensus-based accuracy score that is both
normalized and reliable.

4.3 Implementation details

We use an ensemble of object recognition and feature extraction models, including Inception
V3 and DenseNet-121 for extracting visual image regions. A feature encoder network is then
used to turn the visual information into a multimodal semantic embedding. We eliminated
all words that appeared fewer than 5 times in the training sets while creating our vocabulary,
resulting in a 2768 and 11569-word vocabulary size for Flickr 8K and Flickr 30K respectively.
Any term that is not in our vocabulary is represented by the ’UNK’ token, which stands for
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Fig. 8 Visualizations of our model training on Flickr 8K: a) Sparse categorical cross-entropy loss per epoch,
b) Average BLEU-1 evaluation scores per epoch during training

unknown token. Our attention network examines visual areas to identify their significance
for predicting present tokens. We use a single hidden layer ANN that aids the GRU or
LSTM-based decoder. The decoder model is linked to an output-dense layer with hidden
units equal to the vocabulary sizes. To deal with the pipeline’s complexity, we include a 0.2
dropout in each trainable component. For backpropagation and learning, NT+ employs a
sparse categorical cross-entropy loss function and Adam’s optimizer with a learning rate of
1e-3.

4.4 Training strategy

During training, the model employs a variety of batch sizes (32, 64, 128, 256, 512, 1024,
and 2048). Because of the extra gradient calculation and backpropagation, smaller batches
require more training time per epoch than the larger ones. As a result, as demonstrated in
Fig. 8(a), models with small batch sizes converge faster than models with higher batch sizes.

We train each of our variants for a minimum of 40 epochs while analyzing their per-
formance on the evaluation set. Since the smaller batch training receives more modeling
adjustments, these variants attain satisfactory evaluation scores quicker than the larger
batches, as shown in Fig. 8(b). Finally, the test split is processed, and the resulting captions
are compared to the ground truth to determine quantitative findings. Flickr 30K comprises a
substantial training samples including diverse indoor and outdoor scenes, landscapes, people,
and animals. Consequently, the model trains and converges more efficiently as illustrated in

Fig. 9 Visualizations of our model training on Flickr 30K: a) Sparse categorical cross-entropy loss per epoch,
b) Average BLEU-1, BLEU-2, BLEU-3 and BLEU-4 evaluation scores per epoch during training
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Table 3 Ablative experimental results for feature extractor ensembles

Extractor Feature Shape Batch Size BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Inception V3 2048 32 40.65 21.63 8.31 2.78 20.23 129.21

64 41.23 21.76 9.63 2.91 21.61 128.51

128 42.49 22.80 10.15 3.00 20.96 129.84

256 43.14 23.04 10.83 2.96 22.01 129.48

512 41.36 22.35 9.82 2.95 21.78 127.06

DenseNet-121 1024 32 45.56 29.37 11.14 2.84 22.07 129.35

64 45.41 30.16 10.46 3.01 23.79 129.50

128 46.73 30.68 12.36 2.92 24.35 130.25

256 47.27 31.03 12.52 4.03 26.69 131.47

512 48.59 32.39 13.03 4.34 28.56 130.56

ResNet-101 4096 32 43.39 25.22 9.92 2.63 23.77 129.49

64 43.52 26.31 9.74 2.49 23.83 128.81

128 44.61 26.07 10.17 3.11 24.35 129.62

256 45.90 27.14 11.01 3.20 23.92 129.68

512 46.33 27.56 10.83 2.96 22.46 129.51

The best result in each column is highlighted in bold

Fig. 9(a). Additionally, it offers a large training vocabulary, enabling our model to generate
more efficient and robust captions, as indicated by the BLEU evaluation graph shown in
Fig. 9(b).

4.5 Ablation study

We conducted ablation experiments on the Flickr 8K dataset to analyze the NT+ framework’s
capabilities. The investigations focused on feature extraction, context-aware fusion, decoding
techniques, and attention mechanisms. We examined how different combinations of feature
extraction ensembles, context-aware techniques, and attention modeling influence outcomes.
Table 3 shows results from our ablation study, focusing on the feature extractor ensemble.
We evaluate our framework using three feature extractor blocks: Inception V3, ResNet-
101, and DenseNet-121. These extractors generate feature shapes of 2048, 4096, and 1024
respectively. All three are prominent extractor blocks with varying abilities. Inception V3
focuses on parallel convolutional operations, while ResNet-121 is a residual network-based
extractor. DenseNet-101 employs dense connections to encourage feature reuse and gradient
flow. Table 3 illustrates DenseNet-101’s precise capture of visual characteristics and retention
of spatial information. Additionally, DenseNet-101 achieves a reduced feature size of 1024,
aiding quick and efficient model training, aligning with our goal of a lightweight and fast
pipeline. Consequently, we proceed with DenseNet-121 and Inception V3 for the remaining
ablation studies, given their brisk operational speed.

Table 4 summarizes our ablation study on the feature fusion component. We tested our
pipeline with diverse image features, including spatial and visual attributes, in the fusion
module. The results in Table 4 show that context-aware fusion, merging spatial and visual
attributes, outperforms other strategies. It underscores the importance of including details
from both visual and spatial contexts in caption generation.
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Table 4 Ablative experimental results for dual context-aware feature fusion (I: Inception-V3, D: DenseNet-
121, G: GRU, and embedding sizes: 32, 64, 128, 256, 512, 1024 and 2048)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Visual context-
aware fusion

IG_32 41.48 21.6 8.65 2.89 21.93 129.15

IG_64 41.43 22.58 10.31 3 20.36 127.84

IG_128 42.51 23.35 9.15 2.94 20.76 129.21

IG_256 37.68 23.6 8.8 2.84 22.32 129.47

IG_512 40.93 24.04 8.82 2.42 21.46 129.21

Spatial and visual
context-aware
fusion

DG_32 45.64 32.38 13.73 4.36 28.56 130.5

DG_64 45.46 30.97 12.63 3.15 24.77 131.35

DG_128 45.71 32.72 12.14 3.63 24.94 129.69

DG_256 47.23 29.98 11.46 2.18 23.97 128.45

DG_512 48.59 31.06 10.32 2.08 22.87 129.49

The best result in each column is highlighted in bold

Table 5 Ablative experimental results for decoding techniques (nD: Non-dual context-aware fusion, G:GRU,
L: LSTM, and embedding sizes: 32, 64, 128, 256, 512, 1024 and 2048)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

GRU-assisted captioning nD-G_128 41.48 21.6 8.65 2.89 21.93 129.15

nD-G_256 41.43 22.58 10.31 3 20.36 127.84

nD-G_512 42.51 23.35 9.15 2.94 20.76 129.21

nD-G_1024 37.68 23.6 8.8 2.84 22.32 129.47

nDG_2048 40.93 24.04 8.82 2.42 21.46 129.21

DG_128 45.64 32.38 13.73 4.36 28.56 130.5

DG_256 45.46 30.97 12.63 3.15 24.77 131.35

DG_512 45.71 32.72 12.14 3.63 24.94 129.69

DG_1024 47.23 29.98 11.46 2.18 23.97 128.45

DG_2048 48.59 31.06 10.32 2.08 22.87 129.49

LSTM-assisted captioning nD_L_128 47.55 24.46 12.71 3.27 27.01 130.19

nD_L_256 46.29 26.54 12.61 3.12 25.78 130.07

nD_L_512 45.36 27.27 11.72 3.14 26.9 129.82

nD_L_1024 43.7 28.58 12.42 3.94 27.32 129.13

nD_L_2048 44.34 29.63 12.27 4.17 27.25 128.32

DL_128 49.71 30.5 15.31 6.47 29.06 142.45

DL_256 49.36 29.92 15.57 6.93 33.49 142.35

DL_512 49.6 29.53 16.12 6.96 33.44 141.69

DL_1024 46.84 27.88 14.6 6.61 33.2 136.45

DL_2048 45.79 26.25 15.74 5.68 32.66 139.49

The best result in each column is highlighted in bold
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Furthermore, different techniques exist for decoding multimodal context into captions.
The GRU-based decoding method employs a recurrent approach without an output control
gate and fewer training parameters. However, GRU typically retains less historical context,
resulting in more generic captions. In contrast, the LSTM-based decoder leverages a more
potent recurrent mechanism with an output gate to predict the next token of the caption.

Consequently, the generated word is effectively visualized and reused within the decoder.
The results in Table 5 reveal that the LSTM-based decoder yields captions more closely
aligned with the query image. The LSTM decoder outperforms the GRU-based decoder
in capturing and analyzing complex dual-context semantics during decoding. Additionally,
LSTM focuses solely on relevant semantic information via the output gate. The resultant
captions are descriptive, accentuating prominent visual subregions and their distinctive fea-
tures and actions. Consequently, the captions better align with the ground truth, enhancing
the overall effectiveness of the model.

We also conduct ablation experiments on our attention module, exploring attention and
non-attention-assisted training. The attention block receives input from the 49 detected image
sub-regions extracted during feature extraction before predicting each word. It scores the
visual regions based on the previously predicted token and the visual embedding. We select
and fuse the region with the highest attention score to create the dual-context multimodal
embedding.Our attention-based decoding outperforms the baselinemodel, which lacks atten-
tion in both the encoding and decoding stages. The experimental results of our attention
ablation study are presented in Table 6.

To illustrate the statistical distribution observed in our ablation investigations, we employ
Kernel Density Estimation (KDE) plots to visualize our BLEU scores. Figure 10 depicts
KDE plots for both BLEU-1 and BLEU-2 scores, respectively. The narrow bases of both
BLEU-1 and BLEU-2 distributions indicate low variability among our data, implying no
underfitting during training and testing. The shady regions in Fig. 10(a) & (b) highlight the
most frequently occurring scores, with our model variants consistently achieving BLEU-1
scores within the range of (46-51) and BLEU-2 scores within the range of (30-33). These
ranges notably exceed the baseline scores, indicating the effectiveness of our model variants.

Figures 11 depict KDE plots specifically for BLEU-3 and BLEU-4 scores. In Fig. 11(a),
the distribution of BLEU-3 scores indicates the presence of two distinct kernel point ranges,
namely (10-12) and (15-16). This observation highlights a discernible variability within the
BLEU-3 data, underscoring the necessity for additional training to facilitate convergence
towards a singular point. Likewise, the KDE plot for BLEU-4 scores, depicted in Fig.11(b),
manifests a similar pattern to BLEU-3, albeit not identical, with variability occurring within
data point ranges of (2-4) and (7-8). The statistical visualization analysis reveals that our
model effectively captures BLEU-1 and BLEU-2 metrics during training, exhibiting negligi-
ble data dispersion and no outliers. However, for BLEU-3 and BLEU-4, our model converges
towards two distinct data ranges, suggesting some variability and the presence of an outlier
within the ablation dataset.

4.6 Comparative experiments

We evaluate our work quantitatively and qualitatively against various standard state-of-the-
art IC models. On both the Flickr 8K and Flickr 30K datasets, our model offers effective
results and more reliable captions than the baselines.
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Table 6 Ablative experimental results for attention and non-attention assisted captioning (I: Inception V3, G:
GRU, L: LSTM, D: DenseNet-121

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Non-attention assisted captioning IG_128 41.48 21.6 8.65 2.89 21.93 129.15

IG_256 41.43 22.58 10.31 3 20.36 127.84

IG_512 42.51 23.35 9.15 2.94 20.76 129.21

IG_1024 37.68 23.6 8.8 2.84 22.32 129.47

IG_2048 40.93 24.04 8.82 2.42 21.46 129.21

IL_128 47.55 24.46 12.71 3.27 27.01 130.19

IL_256 46.29 26.54 12.61 3.12 25.78 130.07

IL_512 45.36 27.27 11.72 3.14 26.9 129.82

IL_1024 43.7 28.58 12.42 3.94 27.32 129.13

IL_2048 44.34 29.63 12.27 4.17 27.25 128.32

DG_128 45.64 32.38 13.73 4.36 28.56 130.5

DG_256 45.46 30.97 12.63 3.15 24.77 131.35

DG_512 45.71 32.72 12.14 3.63 24.94 129.69

DG_1024 47.23 29.98 11.46 2.18 23.97 128.45

DG_2048 48.59 31.06 10.32 2.08 22.87 129.49

DL_128 49.71 30.5 15.31 6.47 29.06 142.45

DL_256 49.36 29.92 15.57 6.93 33.49 142.35

DL_512 49.6 29.53 16.12 6.96 33.44 141.69

DL_1024 46.84 27.88 14.6 6.61 33.2 136.45

DL_2048 45.79 26.25 15.74 5.68 32.66 139.49

Attention assisted captioning IG_128 44.82 25.15 10.84 4.29 25.85 131.34

IG_256 44.02 25.47 12.43 5.14 25.58 130.85

IG_512 46.77 26.63 12.37 5.38 25.66 131.21

IG_1024 44.84 26.41 10.88 4.5 27.23 132.04

IG_2048 46.39 27.27 11.17 4.55 26.7 132.75

IL_128 50.79 27.09 16.25 5.45 33.65 134.15

IL_256 49.42 31.91 15.97 6.93 33.49 134.21

IL_512 48.09 30.89 15.9 7.24 33.44 134.19

IL_1024 47.73 31.72 15.3 6.64 33.2 134.32

IL_2048 49.56 31.83 15.18 6.65 32.66 133.21

DG_128 45.64 32.38 15.31 6.47 29.06 142.45

DG_256 45.46 30.97 15.57 6.93 33.49 142.35

DG_512 45.71 32.72 16.12 6.96 33.44 141.69

DG_1024 47.23 29.98 14.6 6.61 33.2 136.45

DG_2048 48.59 31.06 15.74 5.68 32.66 139.49

DL_128 52.06 33.88 17 7.27 33.65 143.5

DL_256 51.49 33.07 15.9 5.54 29.06 143.39

DL_512 51.93 33.94 16.69 5.72 29.19 141.68

DL_1024 49.3 31.08 14.7 4.94 28.9 137.82

DL_2048 48.1 29.57 13.61 4.2 26.56 139.58

The best result in each column is highlighted in bold
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Fig. 10 Kernel density estimation plot of BLEU Scores: a) Distribution of BLEU-1 scores, b) Distribution of
BLEU-2 scores

4.6.1 Quantitative evaluation

Todemonstrate the effectiveness of ourmodel,weuse anoffline evaluationmethod to compare
it against various conventional and state-of-the-art baseline models. Specifically, our model
is quantitatively compared to the ten most influential and popular IC models. These include
the Neuraltalk [20], the Show & Tell framework [33], the BiLSTM network [35], Show,
Attend, & Tell model [38], and six different transformer-based cutting-edge approaches
[6][18][12][23][40][36]. Our model outperforms Neuraltalk [20] by implementing ensemble
feature extraction, followed by dual-context aware multimodal fusion and attention-assisted
caption decoding, resulting in superior performance across all evaluation metrics. Likewise,
we quantitatively compare our model to Show and Tell IC developed by Vinyals et al. [33].

Fig. 11 Kernel density estimation plot of BLEU Scores: a) Distribution of BLEU-3 scores, b) Distribution of
BLEU-4 scores
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Table 7 Quantitative evaluation of our model with various state-of-the-art baselines on Flickr 8K [27] dataset
(D: DenseNet-121, L: LSTM, I: Inception V3)

Authors(s) Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Karpathy & Fei
Fei [20]

Neuraltalk 41.41 24.63 9.22 3.39 19.72 –

Vinyals et al. [33] Show & Tell 46.6 – – 4.6 21.06 –

Wang et al. [35] Bi-LSTM 41.9 28.3 12.7 5.0 – –

Xu et al. [38] Show, Attend & Tell 45.7 26.4 10.34 2.36 23.33 133.51

Effendi et al [6] Grid Feature Captioner – – – 4.62 14.1 123.2

Jiang et al. [18] Multigate Attention 46.23 – – 5.7 26.2 117.9

Haque et al. [12] Positional & Geometric
Semantics

42.5 23.0 13.6 3.2 24.5 –

Li et. al [23] Hybrid Transformer 51.2 25.7 18.4 3.97 29.1 131.5

Yu et al. [40] Multimodal Transformer 49.6 29.4 18.7 5.75 29.4 130.9

Wang et al. [36] End-to-end Transformer 51.8 30.4 19.4 6.08 29.9 141.0

Neuraltalk+ (Our
model)

DL_128 52.06 33.88 19.68 7.27 31.84 143.5

DL_256 51.49 33.07 18.9 6.54 30.04 143.39

DL_512 51.93 33.94 18.69 5.72 29.91 141.68

IL_128 50.79 27.09 17.25 5.45 30.53 134.15

The best result in each column is highlighted in bold

Our model also outperforms theirs, leveraging spatial and visual features for context-aware
multimodal embedding, resulting in more image-aligned captioning.

Furthermore, ourmodel surpasses the results of the bidirectional decoding-based IC frame-
work proposed byWang et al. [35], even though we do not use bidirectional recurrent context
while decoding. Similarly, we also consider the attention-based model, Show, Attend, and
Tell, by Xu et al. [38], for quantitative comparison. While the Show, Attend, and Tell [38]
model gazes at visual regions during each decoding step, its feature fusion lacks a dual-
context approach, leading to the loss of significant contextual information. As a result, the
generated captions lack particulars on object inter-associations and visual elements, result-
ing in generic captions. We also include top transformer-based IC paradigms for quantitative
assessment in the IC pipeline. It aims to assess our model’s performance with state-of-the-art
IC frameworks. Despite not using a transformer-based language model, our model achieves
comparable or slightly better results against these transformer-based models on both Flickr
8K and Flickr 30K datasets. It validates the effectiveness in image comprehension due to
the structural and functional transformation in the captioning pipeline, thus rendering them
more beneficial in the domain of vision aid, as stated in our research question. We execute
and obtain the results of all these baseline models on Flickr 8K and Flickr 30K datasets using
offline evaluation. Table 7 shows the quantitative comparison analysis of our model against
these baselines on the Flickr 8K dataset.

Table 8 depicts the summary of our experiment validating the quantitative effectiveness of
ourmodel against the above-discussed baselines on amore robust and challenging Flickr 30K
dataset. As can be seen, our model outperforms the baseline models on Flickr 30K dataset as
well. Finally, we also note that we obtained these performances on a single predicted caption
without using beam searches.
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Table 8 Comparative evaluation of ourmodel with various state-of-the-art baselines on Flickr 30K [10] dataset
(D: DenseNet-121, L: LSTM, I: Inception V3)

Authors(s) Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Karpathy & Fei
Fei [20]

Neuraltalk 57.3 36.9 24.0 15.7 – –

Vinyals et al. [33] Show & Tell 66 – – 27.7 23.7 –

Wang et al. [35] Bi-LSTM 58.9 39.3 25.9 17.1 – –

Xu et al. [38] Show, Attend & Tell 67.0 45.7 31.4 21.3 20.3 –

Effendi et al [6] Grid Feature Captioner – – – 37.78 17.40 129.34

Jiang et al. [18] Multigate Attention 70.6 55.2 40.7 38.5 28.9 129.6

Haque et al. [12] Positional & Geometric
Semantics

65.4 51.6 38.29 34.21 18.7 –

Li et. al [23] Hybrid Transformer 69.8 54.3 39.8 38.4 29.3 130.9

Yu et al. [40] Multimodal Transformer 76.2 – – 36.6 28.7 134.1

Wang et al. [36] End-to-end Transformer 79.1 – – 40.9 30.2 138.2

Neuraltalk+ (Our
model)

DL_128 78.06 56.88 40.78 41.27 33.65 143.5

DL_256 75.49 54.07 38.9 38.54 29.06 143.39

DL_512 71.93 53.94 38.69 36.72 29.19 141.68

IL_128 71.79 51.09 37.25 35.45 33.65 134.15

The best result in each column is highlighted in bold

4.6.2 Qualitative evaluation

Despite having found that quantitative results show conclusively that our model yields more
efficient results than baseline models, we also performed a qualitative evaluation to gain
an intuitive understanding of the experimental outcomes and to observe how the quality of
information generated in their captions differs from ours. Figure 12 depicts the qualitative
results of our experimentation.During the qualitative analysis,we compare ourmodelwith the
predicted captions from four baseline models: Neuraltalk [20], Show and Tell [33], BiLSTM
Network [35], and Show, Attend, and Tell [38].

We evaluate these models using a diverse set of images with varying visual complexity.
In Fig. 12, we observe that our model produces captions that are more closely related to the
visual content of the images. Specifically, our model demonstrates improved object detection
compared to the baselines, which can be attributed to the incorporation of both spatial and
visual features during the feature extraction process. Furthermore, the recognized character-
istics are more reliable in our predictions than the current models, demonstrating the worth
of our dual context-aware feature fusion strategy. In addition, whenever multiple elements
are present in the image, our approach attempts to interpret interactions between them. This
ability seems to be less efficient in the baselines, which might be due to a lack of attention
and an effective cross-domain decoding method. Although the majority of our captions are
correct and reliable, our model does produce some erroneous, as seen in some predicted
samples such as "A man in a white shirt is standing in a stream", where our model wrongly
recognizes the shirt. We believe that the quality of our captions may be improved further by
leveraging a more robust dataset during model training, resulting in a more rich semantic
embedding space.

123



Multimedia Tools and Applications

Fig. 12 Results of qualitative comparisons of our models’ predictions against baselines

5 Limitations and future scopes

Although our work surpasses numerous baseline models in terms of quantitative and qual-
itative benchmarks, certain areas have not been thoroughly investigated due to the intricate
pipeline architecture, the complexity of training resources, and the wide range of possible
extensions. The following are the areas that demand further exploration:

i. Lack of inherent personalized assistance: The NT+ framework offers visual
assistance through object detection, activity recognition, decoding inter-associations,
real-time captioning, and visual comparisons. However, the model concentrates pri-
marily on common contextual elements [26] prevalent in datasets like Flickr 8K and
Flickr 30K. As a result, NT+ cannot offer tailored assistance like customized personal
identification, 3D object recognition, and pedestrian detection inherently. Nonetheless,
we’ve included support for training our framework on personalized domains, enabling
it to feature personalized assistance.

ii. Investigating varied fusion methods: Presently, our NT+ frameworks employ a
dual-context feature fusion approach. While effective, evidenced by quantitative and
qualitative analyses, alternative fusion methodologies merit consideration for future
framework development. These include bidirectional feature fusion, transformer-
boosted fusion, and graph neural network-based multimodal fusion. The investigation
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of these fusion techniques highlights a clear research gap in our work, necessitating
additional attention for future exploration.

iii. Incorporating transformer-based decoders:Our model engages an encoder-decoder
architecture for IC, utilizing a CNN-based visual feature extractor alongside a word
encoder. The decoder employs LSTM or GRU, yielding excellent results after exten-
sive training. However, future research directions include integrating state-of-the-art
deep learning techniques, specifically focusing on self-attention, cross-attention, and
transformer decoders, to enhance our model further.

iv. Multilingual captioning: NT+, trained solely in English corpora, currently produces
captions exclusively in English. However, enabling vision-assistive IC across diverse
linguistic domains necessitates the crucial adoption of multilingual decoding. Hence,
the augmentation of our captioning algorithms to cage training across diverse corpora
emerges as a vital measure for future advancement.

v. Knowledge-transfer approaches:While we use transfer learning-based visual feature
extraction approaches, further exploration is required to investigate the application of
domain-based knowledge-transfer strategies. IC frameworks are generally very com-
plex to train. Therefore, leveraging existing knowledge canmitigate the need for training
novel models from scratch, leading to resource and time savings.

vi. Dual-context attention: Although we employ self-attention to calculate the signif-
icance of visual image regions during captioning, exploring the use of attention for
semantic sequences, focusing on words with contextual information and ignoring the
rest, presents another domain for further research in IC.

vii. Pre-trainednetworks:The increasing popularity of generative pre-trained embeddings
offers a research opportunity in IC. These networks, trained on extensive image and
text datasets, can be potentially employed in IC with fine-tuning. Given the limitations
of training IC models from scratch to incorporate new visual or semantic information,
the use of pre-trained networks becomes crucial for future advancements.

viii. Reinforcement learning:While supervised and unsupervised learning approaches are
prevalent inmultimodal translationproblems, the introductionof reinforcement learning
has shown promising results. Exploring the application of reinforcement learning in IC
can potentially enhance the performance and capabilities of the models.

ix. Domain-specific applications: Our IC framework facilitates environmental compre-
hension for visually impaired individuals. However, in complex domains like traffic
assistance, medical applications, and remote sensing, domain-specific training is nec-
essary for broader utilization. The integration of IC frameworks into customized
application domains is an emerging research area that needs further exploration.

6 Conclusions

This study introduces a novel, lightweight, autonomous, and efficient image captioning
framework for vision assistance. Through a two-staged systematic methodology, we iden-
tify areas for improvement in existing pipelines by empirically analyzing their architectures,
execution sequences, training algorithms, and semantic mappings. We address these con-
cerns by incorporating ensemble feature extraction, dual-context aware feature fusion, and
attention-assisted decoding into our framework. Additionally, we implement real-time cap-
tioning and visual similarity comparison capabilities. Our model is trained and evaluated on
two benchmark datasets, demonstrating quantitative and qualitative improvements over vari-
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ous baselines. Neuraltalk+ produces semantically and syntactically efficient captions closely
aligned with query images. It also supports captioning and similarity comparison for out-
of-training samples. Furthermore, our model’s scalability allows for potential expansions,
including multilingual training, customized object identification, domain-specific training,
and integration of cutting-edge data-driven strategies, which warrant future exploration.
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