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Abstract

Stroke poses a significant risk to human life. Segmenting and immediately treating the stroke
core stops its further development, therefore, enhancing the likelihood of survival. Convo-
lutional neural networks (CNN) have been very successful in medical image segmentation,
namely in the field of deep learning, and have produced the most advanced outcomes. Multi-
modal images provide superior outcomes in the segmentation of stroke lesions compared
to single-modal images. The integration of input from several modalities at various levels is
crucial in determining performance and producing diverse outcomes in deep learning models
that use multimodalities. Further investigation is required to explore the optimal methods for
processing multimodal data in CNNss, the influence of fusion on CNN learning, and the effect
of fusion strategies on lesions of varying sizes. To examine the impact of a multi-modal fusion
method on lesion segmentation, we assessed four models using distinct fusion techniques,
including early, late, bottleneck, and hierarchical fusions. This study discusses the various
fusion procedures used in segmenting the lesion using computed tomography perfusion data.
In addition, both quantitative and qualitative assessments, including deep feature analysis
and feature similarity, were conducted to assess the impact of the fusion technique on the
model’s performance. Furthermore, we examined the influence of fusion techniques on the
size of the lesion. In addition, we analyzed the advantages and disadvantages of several multi-
modal fusion systems. Our findings demonstrate that the bottleneck fusion technique got the
highest dice score, 0.582, on the Ischemic Stroke Lesion Segmentation 2018 validation data
as a result of its capacity to construct complex relationships across several modalities.
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1 Introduction

The incidence of brain strokes is increasing in India, making it a prominent cause of mortality
and long-term disability [17]. Stroke is one of the cerebrovascular diseases that affects the
blood flow and blood vessels in the brain. A stroke can be either an ischemic stroke that occurs
due to a block in the blood vessels or a hemorrhage caused by the breakage of blood vessels
in the brain. Ischemic stroke holds the major share of about 80% of total cases. The stroke
has different stages based on the onset time (acute ischemic stroke: O — 24 hours, sub-acute
stroke: 24 hours—2 weeks, and chronic stroke: >2 weeks) [15]. When the stroke occurs, the
blood flow gets interrupted to some parts of the brain where the cells in the brain will be
dead which is called the core (irreversibly damaged tissue), and brain cells around the core
will get the oxygen supply enough for its survival but not enough for cognitive functioning.
This part of the brain is referred to as the penumbra (salvageable brain tissue).

The quantification of brain abnormalities (brain tumors, strokes, etc.) requires brain imag-
ing such as computed tomography (CT) and magnetic resonance imaging (MRI). The stroke
can be detected in MRI (T1-weighted, T2-weighted, Fluid Attenuated Inversion Recovery
(FLAIR), and Diffusion Weighted Imaging (DWI)), MR perfusion, CT (Non-Contrast CT), or
CT perfusion. The advantage of perfusion maps is that they can provide sufficient information
about the penumbra area, whereas MRI is more sensitive to the core area. With the infor-
mation about the penumbra area, the radiologists can decide on a more suitable treatment,
which benefits the affected persons. For capturing the raw CT perfusion images, a contrast
bolus is injected into the blood, and performed a series of scans continuously or at predefined
intervals. The raw CT perfusion data is 4-dimensional data (3-dimensional volume data over
time). These raw CTP images also referred to as dynamic contrast-enhanced images, are
used to generate the blood flow and time parameter maps. The blood flow parameter maps
are Cerebral Blood Volume (CBV) and Cerebral Blood Flow (CBF). The time parameters
are Mean Transit Time (MTT) and Time to Maximum (Tmax). These parameter maps con-
tain the flow-related variables with each voxel of interest [25]. These four parametric maps
contain different information related to the stroke-affected area. This information is vital in
segmenting the core region. The stroke lesions can be seen in the brain as darker regions in
CBYV and CBF, whereas it is brighter regions in the Tmax and MTT [7]. This property can
be seen in Fig. 1.

Generally, in medical image processing tasks such as classification and segmentation, the
earlier works included only a single modality [2, 6, 41]. But, nowadays, the use of multimodal
for a specific task in medical image processing has increased. The studies also suggested that
multimodal input performs better than single modal input [27, 45]. The main reason behind
this is that the processing of multimodal inputs gives sufficient information present in the mul-
timodalities that helps in performing the tasks much better. Whereas, with a single-modal, the

(a) (b)

Fig.1 An example of input images a) CBV b) CBF ¢) MTT d)Tmax e) Ground Truth

(d)
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deep learning models may not be able to extract sufficient information for accurate segmen-
tation. The consideration of different modalities reduces the uncertainty [45] and eliminates
artifacts [22]. From the literature, extracting information from multimodal images and fusing
them was performed in several ways [13, 44]. One of them is extracting the information from
one modality and fusing that into the other modality using conventional image processing
techniques. Later the fused image is used for further processing and discarded the image from
which the features have been extracted. A multilevel fusion strategy has also been proposed
by [23] for combining two different modalities that combine the features at the image level,
matrix level, and feature level. Few researchers used multimodal images as input to deep
learning models as different channels for extracting better features. The observations made
from the literature are that feature fusion at different layers or stages yields different results
[14]. Effective feature extraction from multimodalities is in demand for better segmentation
of the abnormalities in medical image analysis. Even though the information from the dif-
ferent modalities is significant, the stage of fusing the information is also vital in improving
performance.

Recently, multimodalities have been frequently used for brain stroke detection and quan-
tification [3]. Researchers mainly followed different fusion strategies i.e. early fusion, late
fusion, and other fusion strategies for fusing the features from the multimodalities. More
details about these fusion strategies are summarized in Section 2. For the segmentation of
stroke lesions using CTP, parameter maps are being used, but most of the developed works
used early fusion [4, 8]. Few works have experimented with different feature fusion tech-
niques such as early and late fusions. They concluded that late fusion is performing better
[34]. In addition to these fusion strategies, various other fusion methods are also addressed
in the literature. Although various fusion strategies are discussed in the literature, there is a
lack of detailed discussion on why these strategies exhibit different behaviors. Multimodal
imaging, which integrates information from diverse imaging modalities like CTP maps,
has demonstrated superior results in stroke lesion segmentation compared to single-modal
images. However, determining the optimal methods for integrating multimodal data within
CNNs and understanding the impact of fusion strategies on segmentation performance are
areas necessitating further investigation. This study aims to address these gaps by explor-
ing and comparing four distinct fusion strategies-early, late, bottleneck, and hierarchical
fusions-in the context of stroke lesion segmentation using CTP data. Despite the prevalence
of different fusion methods in the literature, there remains a need for a deeper understanding
and emphasis on the rationale and efficacy behind these strategies. Our approach involves
analyzing the deep features learned by CNN and investigating how the CNN encodes the
diversity present in medical images, such as lesion size, while also evaluating the effect of
different fusion strategies on CNN learning. Furthermore, in this study, we have demon-
strated four feature fusion strategies and investigated how these strategies influence the final
segmentation result. The contributions of this paper are as follows:

1. We summarized the available deep learning fusion techniques on CTP data into different
fusion strategies. Four multimodal fusion strategies are explored to identify the promising
fusion strategy for ischemic stroke lesion segmentation.

2. Quantitative and qualitative analysis is carried out to determine the performance of the
different fusion strategies.

3. The analysis of the effect of fusion strategies based on the lesion volume i.e. small and
large lesions. In addition to this, the analysis of deep features and feature similarity index
is also studied for all multimodal fusion strategies.
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The models incorporated with early fusion, late fusion, bottleneck fusion, and hierarchical
fusion strategies were designed and trained in our environment for fair comparison purposes.
The organization of this paper is as follows. Section 2 gives insight into the literature on
multimodal fusion strategies. Section 3 discusses materials and methodology that include
the dataset, developed models to carry out the experimentation, and metrics used to compare
the performance of the deep learning models. Section 4 describes the quantitative results
of all multimodal feature fusion strategies in addition to qualitative analysis such as deep
feature analysis, feature similarity index, and the effect of the fusion strategy on small and
large lesions. Section 6 is about conclusions and future work.

2 Related works

Many researchers adopted the early fusion strategy, but their main contribution differs from
fusing the multimodal images. The segmentation of stroke lesions is achieved by incorpo-
rating different conceptual knowledge into the networks. Those concepts are i) processing
the multimodal data in different paths for acquiring multi-scale features i.e. Multiscale pro-
cessing [3, 16, 20], ii) training with the adversarial loss along with the traditional loss, i.e.
adversarial learning [42], iii) development of novel network architectures like asymmetrical
encoder-decoder architecture for reducing the complexity of the network [8], iv) used dilated
convolutions for enhancing the contextual information from the multimodal input images
[38], v) transfer learning technique [1] and vi) generating the DWI from the perfusion maps
and then segmenting the lesions on the DWI [36, 37, 40].

In the work of [34], the late fusion technique was employed in the segmentation of the
stroke lesions on CTP data. All modalities were fed to four different U-Nets and different
pixel-level classifiers to segment the lesion. They experimented with the voting classifier,
weighted averaging, and logistic regression. The model with the logistic regression performed
well. In this case, all modalities are well exploited independently by the networks for better
information. The late fusion strategy will become an asset where multimodality information
has little complementary information. Raju et al. [30] also utilized the late fusion strategy to
segment the stroke lesion on CTP data in which a single model can process the multimodal
inputs using group convolutions without the need to develop multiple networks.

Chen et al. [7] modelled an encoder that extracts the features from different modalities
individually and those latent representations were fused through a hyper-fusion module in
the decoder part. Deep supervision is also employed for better convergence. Zhou et al.
[45] developed a multiple-encoder network that can segment brain tumour lesions on the
MRI sequences. This model processed the T1-weighted, contrast-enhanced T1-weighted,
T2-weighted, and FLAIR MRI sequences in individual encoders to derive features from
every modality and fuse the information in the decoder using a fusing block. To extract the
informative features, both attentions i.e. channel and spatial were used. A dense multipath U-
Net was developed by [9] that contains different encoders for extracting the features from the
different modalities and also employs the dense connections within and across the encoders.
These individual features were fused at every stage in the encoder.

In an article [33], the authors followed a different approach to fuse the features from
multimodalities. The architecture comprises two parallel U-Nets and each U-Net with two
encoders to process the parametric maps. One U-Net is for processing the blood param-
eters (CBV and CBF) through different encoders and fusing those individual features at
the bottleneck using cross-modality and cross-attention modules. The other U-Net is for
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Table 1 Overview of fusion strategies involved in stroke lesion segmentation on CTP data

Reference

Fusion Strategy

Description of fusion involved / Contribution of
the paper

Liu et al. [22]

Soltanpour et al. [34]

Abulnaga and Rubin
(11
Islam et al. [15]

Anand et al. [4]

Song and Huang [37]

Liu et al. [20]

Bertels et al. [5]

Dolz et al. [9]

Clerigues et al. [8]

Pinheiro et al. [29]

Song [36]

Yang [42]

Tureckova and
Rodriguez-Sanchez
[38]

Wang et al. [40]
Chen et al. [7]

Multiple Layer Fusion

Late

Early

Early

Early

Early

Early

Early

Multiple Layer Fusion

Early

Early

Early

Early
Early

Early
Bottleneck

Divided the maps into two groups i.e i) CBV,
CBF, and MTT ii) Tmax. These two groups are
processed in different paths. These features are
combined in the last stages of the model.

Used separate U-Nets for four different modal-
ities and the final output is generated using the
probabilities from all models using the pixel-level
classifier.

Used a PSP Net and focal loss to segment
ischemic stroke lesions.

Used the concept of adversarial learning. Bulit a
discriminator to correct the higher order incon-
sistencies between predicted output and ground
truth.

Used the concept of Dense connections. Utilized
DenseNet-121 as an encoder in the U-Net.

Three sub models i.e., extractor for feature extrac-
tion, generator for DWI generation using CTP
maps, segmentor for segmenting the lesion.

Generated the DWI from the CTP maps using
generative adversarial learning and a segmentor
is used for segmenting the lesion. All the inputs
are fed to the network together.

Used the symmetrical nature of the brain i.e.,
maps are flipped and registered with the original.
All the inputs are fed into the model together.

Used HyperDense Connectivity i.e. features are
extracted from maps individually through differ-
ent encoders and the features are transferred from
one map to another in the form of dense connec-
tions among the encoders.

Used a more regularized training, symmetric
modality and uncertainty filtering.

Utilized V-Net and U-Net for the segmentation of
the lesions with emphasis on voxel normalization
and depth of network.

Generated the DWI from the CTP maps then seg-
mented the lesions on the DWI.

Adversarial learning

All the input maps are fused from the first
stage itself. The work mainly focuses on the use
of dilated convolution for the segmentation of
lesions.

It is improved version of work presented by [37]

The features are extracted from individual maps
separately, and then fused at the bottleneck.
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Table 1 continued

Reference Fusion Strategy Description of fusion involved / Contribution of
the paper
Shi et al. [33] Multiple Layer Fusion First, features are extracted from all maps using

separate encoders, then blood parameters features
are fused through a common decoder and sim-
ilarly for time parameters. Lastly, features from
both decoders are fused.

Soltanpour et al. [35] Early Along with four maps, 3 successive slices are also
included for 3D context, and a heatmap of Tmax
is also included at the input. All these maps are
fused at the first stage itself.

Raju et al. [30] Late Used group convolution to process the CTP maps
individually to extract features by using only one
U-Net. This eliminated the use of training multi-

ple U-Nets.

Zhu et al. [46] Other At first stage features are extracted from all the
maps individually, then fused those at very next
stage.

Liu et al. [21] Early Used transformer block to extract the global fea-

tures using U-Net residual blocks. All the maps
are fused at the early stages only.

Omarov et al. [28] Early Used the modified version of UNet. Added few
regularization techniques and augmentation.

Kumar et al. [18] Early A modified version of model proposed by [8]

Ghnemat et al. [10] Early Utilized an augmentation technique based on gen-

erative adversarial networks and mutation model
to increase the number of samples.

processing the time parameters (MTT and Tmax) in a similar way that has been followed for
the blood parameters. Finally, two feature maps from each U-Net were fused and fined-tuned
the weights at the last stage in order to create the final segmentation map. Zhu et al. [46]
have developed a network that extracts different features from all the parameter maps sepa-
rately and concatenates them after the first stage. Then those features are processed through
the encoder and decoder structure. In the paper published by [19], the features from three
distinct modalities were extracted by separate encoders and concatenated the features from
all the modalities at every stage. The concatenated features from all stages in the encoders
were upsampled to produce the same dimensions, concatenated, and convolved to generate
the segmentation map. Table 1 gives the overview of the fusion strategies involved in the
literature on stroke lesion segmentation on CTP data.

In recent years, several studies [26, 32, 39] have been proposed to segment stroke lesions
using CTP data. These studies primarily utilize perfusion-weighted imaging (3D CTP images
over time) to identify and segment lesions, without utilization of the CBV, CBF, MTT, and
Tmax modalities. These works were not emphasized in our study as they did not incorporate
any fusion strategies.

Despite learning from the literature that multimodal image segmentation outperforms
single modal image segmentation. In deep learning models incorporating multimodal inputs,
the level of fusion significantly impacts performance. The aforementioned papers made use
of several fusion strategies. However, due to the wide variations in the cross-modalities, a
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simple fusion strategy may not effectively exploit the features of the modalities [7]. Fusing
these complementary pieces of information from different modalities without proper care may
lead to cross-modal interference. So, implementing any fusion arbitrarily does not extract
the better features, and also there are some standard questions about this multimodal fusion
in deep learning that are left unanswered. Those are i) how the CNN will encode the features
of different multimodal inputs ii) the analysis behind the success of the fusion strategies, iii)
how fusion strategies affect the learning of CNN models, and iv) the effect of multimodal
fusion strategies on small and large volume lesions. It is very difficult and unfair to compare
all developed strategies as they have been implemented and analyzed in different conditions
and on different data. Also, understanding the feature fusion across multiple modalities,
particularly in the ischemic stroke segmentation application, is still untouched.

3 Materials and methods
3.1 Dataset

Ischemic Stroke Lesion Segmentation (ISLES) is a medical image segmentation challenge
in which the delineation of stroke lesions needs to be performed on the CT Perfusion data.
In ISLES 2018 [24], the data provided is from 103 patients. 63 out of 103 are for training
the network and the remaining 40 are used for testing the network. Each data contains five
different modalities, i.e. CBV, CBF, MTT, Tmax, and CT. The automatic segmentation model
can take either all or a few of these modalities as input segmentation of stroke lesions. The
ground truth is also included for the train data and it is delineated manually based on the
DWI. For a fair comparison of deep learning models’ performance, the test set’s ground truth
is not made available to the general public. To know the model’s performance, segmentation
maps of the test cases need to be uploaded to the SMIR website. The dimension of each
modality is 256 X 256. The depth of the volume, i.e. slices in each case, ranges from 2 to 22.
For this reason, the implementation of 3D segmentation models is not feasible.

3.2 Pre-processing and augmentation

The ISLES 2018 data is skull-stripped and co-registered across the modalities. The only
pre-processing technique applied to data is intensity normalization. In this technique, the
variance and mean of all images are set to one and zero, respectively. One of the significant
limitations of the medical image datasets is the amount of the dataset, i.e. the number of
training images. Moreover, deep learning models are data-driven models, which thrive on a
huge number of images for training the models. In these small dataset scenarios, the models
tend to overfit the data, resulting in the model’s poor performance. To overcome this issue,
data augmentation is necessary. Hence, a few primitive augmentation techniques have been
applied to the data, such as random rotation of —45° to 445, random horizontal flip, and
random vertical flip with probabilities of 0.5. These techniques have been applied “On the
fly” to save memory and dynamically change the input data patterns in every epoch.

3.3 DL models incorporated with multimodal fusion strategies

The models utilized in this paper are largely derived from U-Net [31], which was created
specifically for segmenting medical images. In this paper, four multimodal fusion strategies
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are investigated. They are i) Early fusion, ii) Late fusion, iii) Bottleneck fusion, and iv)
Hierarchical fusion. For an extensive study of these fusion strategies, these are incorporated
separately into a simple basic U-Net architecture resulting in the development of four different
models. All the convolution layers involved in these models are 3 x 3 except for the last layer.

The U-Net architecture comprises an encoder section, where input images are processed to
generate latent representations, and a decoder section, which produces segmentation outputs.
The encoder begins with 64 feature maps, doubling at each step until reaching a maximum of
1024 feature maps. Each step includes two convolutional layers followed by batch normal-
ization [12] and ReLU activation. Max-pooling layers reduce feature map resolution. Direct
connections from an encoder to a decoder alleviate this reduction. The decoder increases
feature map resolution, ultimately matching the input image size. Starting with 1024 feature
maps, the decoder halves feature maps at each step, ending with 64 feature maps match-
ing the input image resolution. A final 1 X 1 convolution generates a final feature map,
which is thresholded to produce the segmentation map. Multimodal fusion strategies are also
integrated into the models.

Early fusion of multimodalities is implemented on the basic U-Net structure without any
changes in the network. All the modalities are fed to the model as different channels to
acquire the fused feature representations of all the modalities together. Majorly the early
fusion technique is adopted in most of the networks, which fuse the information in the initial
layer itself. Thus, the complementary information from all the modalities is fused at the initial
layer itself. The deep learning model structure that implements the early fusion is shown in
Fig. 2.

In a network utilizing the late fusion strategy, each modality is independently processed
to extract unique features before combining them to generate the final segmentation map for
the multimodal input images, as illustrated in Fig. 3. Upon the basic U-Net structure, our
model incorporates several modifications. Previous studies on late fusion typically employed
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Fig.2 Architecture of U-Net model with early fusion strategy. Conv, BN, and ReLU represent 3 X 3 convolution
layer, batch normalization and rectified linear unit respectively. The number of feature maps are mentioned in
the Table 3

@ Springer



Multimedia Tools and Applications

»»lﬂ o
@«

AL g

e o»

¥

i
Kl o v/
o

[N — ¢TI

(OIS

‘ Grouped Conv + BN + ReLU
¥ Max pooling layer

4 Up Convolution layer

. Elementwise Summation
I$ 1 X 1 Convolution

=»  Skip Connections

Fig. 3 Architecture U-Net model with late fusion strategy. grouped Conv, BN and ReLU represent 3 X 3
convolution layer with four groups, batch normalization and rectified linear unit respectively. The number of
feature maps are mentioned in the Table 3

a method where each modality is processed separately by individual networks before feature
fusion. However, in this study, we developed an alternative network architecture where all
modalities are processed together within the same network, ensuring isolation among the
features of each modality. Key alterations in the network to accommodate the late fusion
strategy include replacing conventional convolutional layers with group convolutional lay-
ers and incorporating element-wise summation instead of concatenating features from the
encoder to the decoder. This approach ensures that low-level features from the contracting
path are added to high-level features of the same modality in the expanding path without
interference from features of other modalities, thereby providing feature isolation.

The idea behind the bottleneck fusion strategy is that the different networks extract the
features from the different modalities. The latent representations from all the modalities are
fused at the middle layers of the network, i.e. the feature maps from individual modalities
are fused at the end of the encoder, which is referred to as a bottleneck. Thus this fusion is
called bottleneck fusion. In this fusion strategy also, we used group convolutions to avoid
the multiple networks to process the input modalities independently. The architecture of the
network is shown in Fig. 4.

The hierarchical fusion technique is more specific to the ISLES data, whereas the other
fusion strategies can also be applied to other databases. As explained in Section 3.1, input data
has four parameters, divided into two groups, i.e. blood parameter group and time parameter
group. Based on this concept, in the early layers, the features are extracted from the individual
maps. First, the feature maps are fused within the group and then fused across the groups
in later layers. Thus, this fusion is referred to as a hierarchical fusion strategy shown in
Fig. 5. In detail, the first two stages of the network extract the features from the modalities
independently. Then the features from the same groups are fused after the second stage. Later
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Fig. 4 Architecture of U-Net model with bottleneck fusion strategy. Conv, Group Conv, BN and ReLU rep-
resent 3 X 3 convolution layer, 3 X 3 convolution layer with four groups, batch normalization and rectified
linear unit respectively. The number of feature maps are mentioned in the Table 3

two stages extract the combined features from the same group resulting in features from the
two different groups. Finally, these two group features are fused at the bottleneck of the
network. The latent representations of these modalities are fed to the decoder that uses the
conventional convolution layers to generate the final segmentation results.
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Fig. 5 Architecture of U-Net model with hierarchical fusion strategy. Conv, Group Conv, BN and ReLU
represent 3 X 3 convolution layer, 3 X 3 convolution layer with groups, batch normalization and rectified
linear unit respectively. The number of feature maps are mentioned in the Table 3
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3.4 Group convolution

The primary distinction between conventional and group convolutional layers is the number of
feature maps from the preceding layer is taken into account when creating the current feature
maps. The output channel (feature map) in a traditional convolutional layer is dependent
upon every channel in the preceding layer. In group convolution, the output channel depends
on all the channels in a particular group instead of all channels in the preceding layer. The
graphical representation is shown in Fig. 6. The input channels are shown at the top, while
the output channels are shown at the bottom. Each group of feature maps is represented by
a black box with a thin line, and each channel (feature maps) is represented by a rectangular
box with a different color.

Consider an encoder-decoder network which consists of layers with ‘n’ number of con-
volution filters with a input depth D. Here, I = {I, o, I3------ Ip} represents either the
input image stack or the feature maps at a particular layer is the input to generate the output
feature maps O = {01, O, -+ - -- O¢} where g denotes the number of groups in the convo-
lution layer, { } represents concatenation operation and O; = (o}, 012, -+, 0"} where O}"
represents the m'" feature map in /" group and calculation of O;" is shown in (1).

D/g 2k+1  2k+1

0;"<i,j>=<Z > Fmd(x,wxd(i—x,j—y))+bm,m:1,2,3,---,<n/g>

d=1x=2k—1 y=2k—1
)]

Where Oy, denotes the m'” feature map in the {"" group, 2k + 1 and 2k — 1 represents
the parameters of the filter side length and b,, represents bias for the m'” feature map. The
filters are represented with F.

Fig.6 Formation of feature maps in group convolutions

@ Springer



Multimedia Tools and Applications

4 Experimental results
4.1 Experimental setup

All the experiments were carried out on an Intel-based Xeon processor configured with
128GB of RAM and an NVIDIA Tesla T4 graphic card with 16 GB of memory. The models
were developed using PyTorch deep learning libraries. The deep learning models were trained
for 200 epochs with a learning rate equal to 0.0001 and used Adam as an optimizer. The batch
size is kept at 4. The combination of cross entropy and soft dice loss has been used as a loss
function to combat class imbalance, which is very common in medical image datasets. Cross
entropy loss is responsible for calculating the pixel-wise loss, whereas the soft dice loss is
responsible for volume difference. The ISLES 2018 training data is divided into an 80:20
ratio for training and validation data. The metrics that are used for evaluating the models
are Dice score, Hausdorff Distance (HD), Average Symmetric Surface Distance (ASSD),
precision, recall, and Average Volume Difference (AVD).

4.2 Quantitative results

The architectures incorporated with different fusion strategies, discussed in Section 3.3,
were developed especially to find the effectiveness of the fusion of multimodalities at the
different layers. Hence, other modules which responsible for enhancing performance are not
included in the architectures of deep learning models. Experiments were carried out in the
same environment mentioned in Section 4.1. The same hyperparameters are followed across
all the experiments. All the metrics are calculated for all the different fusion strategies and
are mentioned in Table 2.

Among all the fusion strategies, bottleneck fusion achieved the highest dice score. This
is a considerable increase compared to the early and late fusion strategies. In the next place,
the hierarchical fusion achieved a slightly lower value than the bottleneck fusion. The mean
and median scores are denoted with the *x” symbol and solid line respectively in Fig. 7 and
mean Dice scores are mentioned in Table 2. The median dice scores of early, late, bottleneck,
and hierarchical fusions are 0.659, 0.693, 0.696, and 0.6871 respectively.

In addition to the dice score, other metrics such as HD, ASSD, precision, and recall are
also calculated and represented in the Table 2. Lower HD and ASSD values indicate better
performance of the model. Lower HD and ASSD values were achieved by the bottleneck
fusion i.e., 18.72 and 3.49 respectively, indicating the closest proximity between the original
and predicted surface. The precision and recall provide information about the false positives
and false negatives. The higher the values the better the performance. Bottleneck fusion
achieved better precision with 46.21 indicating fewer false positives. Whereas the highest

Table 2 The quantitative results of all the fusion strategies

Fusion Type Dice Score HD ASSD Precision Recall
Early Fusion 0.564 +£0.28 23.19 3.84 45.11 42.64
Late Fusion 0.569 +0.28 20.30 443 44.38 43.60
Bottleneck Fusion 0.582 4+ 0.26 18.72 3.49 46.21 45.44
Hierarchical Fusion 0.574 £0.27 19.41 3.79 42.62 46.37

The values highlighted in bold are the best values. The values presented are averages across all fusion strategies
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Fig.7 Boxplot representation of Dice scores achieved in different fusion strategies

recall is achieved by the hierarchical fusion represents fewer false negatives. Bottleneck
fusion shows a good balance between precision and recall indicating better performance by
balancing the false positives and negatives.

The architectures exhibit close similarities with slight variations. Table 3 gives more
insights into the architectural differences of all fusion strategies. The first column is in the
form of [-,—,—], and that the first number indicates the number of features, and the later two
numbers denote the resolution of feature maps. The following two columns represent the
type of layer and the number of parameters associated with that corresponding layer. All
models contain the same resolutions for feature maps across all stages, but their formation
diverges. As outlined in the methodology, differences among the models primarily lie in
their convolution layers. Instead of conventional convolutional layers, group convolutions are
utilized, as specified in the layer column of Table 3 in the format (G=n). For instance, Conv2d
(G=4) denotes a convolution layer with four groups. The adoption of group convolutions does
not alter map resolution. However, parameters within the layer differ based on the number
of groups utilized.

The last row of Table 3 indicates the total number of parameters in deep architectures.
The computational cost is also an important factor in deep models and is decided by the
number of trainable parameters in the network. The computational time is proportional to
the number of parameters in the architecture. The feature fusion strategies are arranged in
ascending order based on the computational complexity. They are i) late fusion strategy,
ii) bottleneck fusion, iii) hierarchical fusion, and iv) early fusion. The late fusion strategy
requires a minimum number of parameters around 7 million. The bottleneck fusion network
employed a moderate amount of parameters equal to 16.91 million. The hierarchical feature
fusion strategy utilized 28.63 million parameters. Finally, the early fusion strategy requires
the highest number of parameters at about 31 million.

4.3 Analysis based on the volume of the lesion
This analysis is to explore the effect of multimodal fusion on small and large lesions. The

images within the validation set are divided into two groups based on the volume of lesions
presentin eachslice i.e., small and large lesions. Specifically, the average volume is computed
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Table 4 Comparison of performance of different fusion strategies for small and large volume lesions

Fusion Type Dice Score HD ASSD AVD

Small Large Small Large Small Large Small Large
Early Fusion 0.2024 0.6958 21.80 25.38 6.447 2.773 1.638 3.496
Late Fusion 0.1992 0.7146 17.98 24.02 5.959 1.961 1.147 3.748

Bottleneck Fusion 0.2392 0.7351 15.39 23.77 4.433 2.057 1.589 3.488
Hierarchical Fusion 0.2221 0.7341 16.75 23.57 5.064 1.792 1.530 3.520

The bold entries indicate the best values obtained

across all cases. Images with stroke lesion volumes lower than the calculated average fall
under the small volume group, while those with volumes equal to or greater than the average
are categorized as large-volume lesions. Table 4 denotes values for the different evaluation
metrics for both small and large lesions. All the fusion strategies achieved good performance
in detecting large lesions. Among all these, bottleneck fusion produced the best results for
the large lesions, and hierarchical fusion also achieved similar results.It can be noted that,
in the case of small lesions, bottleneck fusion achieved the best dice over the other fusion
strategies. As a whole, the performance of the bottleneck fusion strategy worked better than
all others in almost all the metrics for small lesions. The late fusion achieved the best than
the other fusion strategies in AVD metric indicating that the prediction of lesion volume is
nearer to the reference volume. Even though the AVD is less in late fusion, the higher dice
score achieved by the bottleneck fusion represents more overlap between the predicted and
reference volumes.

5 Discussion

The utilization of CNN models, especially U-Net, in medical image processing has been
phenomenal in achieving state-of-the-art results in medical image segmentation tasks by
overcoming the drawbacks of conventional image processing techniques. The deep models
developed in this paper were almost similar in terms of architecture except for the level
of fusion of multimodal information. Even though the networks are identical, the results
produced by those networks are different. This is mainly due to the fusion of multimodal
information at the various levels in the deep learning model. Although the models are pro-
ducing the results, how well CNN learns to encode the multimodal data, especially in this
context, and how the feature fusion at various levels affects the feature maps and the learn-
ing procedure of the deep learning model. The aforementioned research questions can be
addressed to an extent with the help of concepts such as complementary information, joint
representation learning, information integration, and feature representation in deep learning

[43].

Complementary Information: Each modality comprises different information. The
modalities have core and penumbra information which implies these modalities will have
different characteristics. These contribute differently to the final core segmentation result.
So, fusing at different levels the characteristics or features from multiple modalities will
definitely influence the result. The fusion strategy enables the model to leverage the comple-
mentary information from multimodalities leading to enhanced performance and improved
understanding of the data.
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Joint representations: Joint representation learning is utilized by multimodal fusion tech-
niques, which also enable the model to reflect complex relations and interactions between
modalities. The model can learn more robust and discriminative representations that better
capture the underlying patterns of multimodal data by integrating data from several modali-
ties.

Information integration: The fusion strategy regulates how information from various
modalities is combined and incorporated within the CNN. Early fusion integrates the infor-
mation from the multiple modalities at the input level, allowing joint representative learning
from the beginning. Whereas the late fusion technique combines the information at the deci-
sion in which the joint feature learning is minimal. The bottleneck fusion, in the encoder,
extracts the features from the multiple modalities separately and all the information is fused
at the bottleneck between the encoder and decoder. The bottleneck fusion allows joint rep-
resentative learning from the bottleneck after the fusion of the information from multiple
modalities.

Feature representation: Different fusion strategies can result in variation in feature
representation learned by the CNN. As discussed above, the early fusion allows the joint
representative learning which can capture the shared modality feature. Late fusion extracts
the modal-specific features from multiple models which may be helpful in the modalities
having very different characteristics. The fusion strategy can impact the level of integration
of the learned feature representations. The models trained on the different fusion strategies
have different feature response characteristics. Analyzing the deep features across the various
fusion strategies may help in understanding the effects of feature fusion at different levels.
We adopted a CNN visualization strategy to visualize the inherent deep features of CNN.
Understanding the features of the deep model helps not only in ensuring how the model learns
practical information from the images but also in connecting this information with patterns
recognizable by humans [11]. The similarity between the features gives more insights into
the learning of the models.

5.1 Deep feature analysis

The deep learning network has the ability to extract the different features on its own. This
ability made CNN different from machine learning algorithms. The filters are the main ones
responsible for the feature generation at each stage. The features in the deep learning model
are represented in (2) as follows:

Z=f; W) %))

Where Z represents the deep features, [ is the input image stack or the feature maps from
the previous layer, and W, is the weight parameters of the deep learning model.

Several observations have been made after visualizing the feature maps from several stages
and different fusion strategies. Figure 8 shows the features at various stages of deep learning
models. It contains five columns, each with four distinct feature maps generated from the same
level. Each column represents various layers of feature maps starting from early to a deeper
level. It can be observed that the early-level feature maps do contain low-level features such
as texture and edges. As the feature maps go deeper into the layers, feature maps contain the
higher-level features extracted from the weighted combination of the previous layer features.
The higher-level features are more abstract in nature, clearly highlighting a few regions
in the image. The highlighted regions in the feature maps represent the most significant
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Fig. 8 Feature maps generated at different stages of a fusion strategy. From (a) to (e), columns represent
feature maps at the first stage, and the last column represents feature maps at the bottleneck. All feature maps
shown here are selected randomly, and these are the features generated after the second convolution layer of
each stage. All images are resized to the same size for a good visual appearance

differentiable patterns learned by the filters. Most of the other regions are predominantly less
significant as per the model learned weights. The above observation suggests that the regions
in the early layers contain the most helpful information, which can be interpreted easily as
they directly take the images as input. Even though the later layers contain the information, it
is difficult to interpret as they receive the information from the previous layers, which can be
seen in Fig. 8. Moreover, the regions that are found to be significant in one feature map, the
same region may not be significant in the other feature map. One more important observation
is that most of the feature maps have similar significant regions as the network goes deeper.

(d)

@) (b)

Fig.9 Features maps derived in the last stage of the late fusion strategy. (a) Feature map from CBV (b) Feature
map from CBF (c) Feature map from MTT (d) Feature map from Tmax
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The feature maps shown in Fig. 9 are generated in the last stage of the late fusion strategy.
The late fusion features belong to four different groups derived from different modalities, and
features across the groups are also different in nature. The similarity among the features is
discussed in detail in Section 5.2. One of the observations made from the features of the late
fusion strategy is that the final segmentation result is biased towards one particular group of
features obtained from a specific modality. The highlighted region in the last image (particular
to one group’s features) dominates the features of the other groups. That highlighted part is
falsely recognized as a part of the lesion. This phenomenon may be due to the lack of common
contextual information about the different modalities.

5.2 Feature similarity analysis

The ability to extract the features by actively modifying the filters based on the data fed to
the network puts deep learning forth among all other techniques. How well these feature
maps are generated and how these are distinct from each other are also factors that affect the
performance of the deep learning model. To know how these features are different from each
other, we made use of the cosine similarity concept. It measures how close or similar the two
features are. This similarity measure was calculated for the features generated after the first
stage. Figure 10(a) shows the cosine similarity index between each and every feature map at
the first stage of the encoder path. In it, each pixel (value) indicates the relation between the
two feature maps, and the color of the pixel indicates how strongly they are correlated. The
green color denotes the less correlated features, and the yellow represents a high correlation
between the features.

From the architectures, we know that 64 feature maps are generated in the first stage using
64 different filters. Each feature map is compared to all feature maps in the same stage and
generates a similarity value. Hence, a 64 X 64 matrix contains features’ similarity index
values of the features. It is also observed that the diagonal elements are indicated with value
1 (high similarity) due to features comparing with the same features. Figure 10 illustrates the
similarity index between the features at the first stage of all fusion strategies implemented in
this paper. An important observation from it is that the features in the early fusion strategy
are more similar compared to the other strategies. The reason behind this is that all features
are fused at the first stage itself. Such generated features will have the information of all four
CT perfusion parameter maps, which are applied as the input to the network. In the other
strategies (late fusion, bottleneck fusion, hierarchical fusion), all CTP maps are processed
independently without fusing the information across the modalities, so the feature maps
generated from each modality are different in nature. Hence, the similarity index among the
features generated in the fusion strategies, except early fusion, is very low. In other words,
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Fig. 10 Graphical representation of cosine similarity index between feature maps generated after the first stage
in (a) Early Fusion (b) Late Fusion (c) Bottleneck Fusion (d) Hierarchical Fusion
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Fig. 11 Graphical representation of cosine similarity index between feature maps generated at bottleneck
stage in (a) Early Fusion (b) Late Fusion (c) Bottleneck Fusion (d) Hierarchical Fusion

models that embedded fusion strategies other than early fusion extracted more dissimilar
features which may help boost the performance of the model.

Figure 11 is conceptually similar to Fig. 10, but the sole difference is that feature maps
are generated at the bottleneck. For all the fusion strategies, the number of feature maps
at the bottleneck is the same, i.e. 1024. From Fig. 11(b), it can be observed that the feature
maps generated in late fusion are more diverse in nature and show less similarity among them
since feature maps are derived from each modality independently. These feature maps belong
to four different groups derived from the four CT perfusion maps without any information
exchange between these modalities. Upon observing the feature similarity index diagram of
bottleneck fusion, Fig. 11(c), we can interpret that the feature maps are also different from
each other but not as diverse as the features in the case of late fusion. One of the main reasons
behind this is that the feature maps are fused just preceding the bottleneck layer. The feature
maps in the hierarchical fusion strategy exhibit more similarity as compared to the other
strategies.

By examining Figs. 10 and 11, we can interpret that feature maps in the initial layer are
more diverse as compared with the feature maps at the deeper levels. The same may be
inferred by observing the feature maps in Fig. 8(e), and these are more or less looking like
similar features.

5.3 Effect of fusion strategy on small and large volume lesions

The interpretation of the scatter plot between the original and predicted volumes repre-
sented in Fig. 12 can be understood in the following way. The points on the diagonal (45°
line) are predicted correctly. The points above the line represent the over-prediction of the
lesions and below the line represent the underestimation of the lesions. For a better under-
standing and view, one more diagram for each fusion strategy has also been shown here.
Figure 12(b),(d),(f), and (h) are zoomed and cropped versions of Fig. 12(a),(c),(e), and (g)
respectively, to enhance the appearance of small volume lesion details.

For a better understanding of Fig. 12 the R-square values are also calculated. The achieved
R-square value for early fusion is 0.903, Late fusion is 0.933, Bottleneck fusion is 0.919, and
hierarchical fusion is 0.916. The late fusion has achieved the best R-square value followed by
bottleneck fusion. A point to mention here is that the late fusion strategy has been achieved,
which means that it is able to predict the lesion with almost similar volume as the reference
but the overlap between the predicted and reference is not quite good in late fusion. This can
be inferred by the dice and AVD metrics in Table 4. But, in the case of bottleneck fusion, it
has more overlap between the predicted and reference volume, indicated by the dice value.
Looking at Fig. 12(d), we can ascertain that late fusion underestimates the small lesions.
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Fig. 12 The comparison of the original volume and the predicted volume on validation data. (a),(c),(e), and
(g) represent the details of early fusion, late fusion, bottleneck fusion, and hierarchical fusion. (b),(d),(f), and
(h) are zoomed and cropped versions of (a),(c),(e), and (g), respectively. The X-axis indicates the original
volume (ml) and the y-axis indicates the predicted volume (ml)

Similarly, the hierarchical fusion overestimates the small lesions. For the large lesions, all
fusion strategies behave more or less the same.

Figure 13 shows three examples (each row) of different-sized lesions and the predicted
lesions of all fusion strategies are compared with the reference regions. The bottleneck

(a) (b)

Fig. 13 The segmentation results of fusion strategies for three examples. From left to right (a) Ground truth
(b) Early fusion (c) Late fusion (d) Bottleneck fusion (e) Hierarchical fusion
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fusion strategy is able to predict better approximate segmentation results compared to the
other fusion strategies.

Multiple modalities contain different information, particularly in this case, few modalities
are responsive to the core where whereas other modalities to penumbra information. In most
of the papers, the fusion at the input space (early fusion) has been employed. In the early
fusion, the complementary information from the different modalities is integrated into the
early layers while facilitating joint representative learning. This fusion model struggles to
exploit the complementary information present in the modalities since they are fused in
early stages and also cause cross-modal interference. In the late fusion, the information from
all the modalities is well exploited using separate paths facilitating the well extraction of
complementary information with minimum utilization of joint representative learning. The
main problem with the late fusion is that learned features from the different modalities are
independent and have no relation among them i.e., no cross-reference among the multimodal
features. The bottleneck fusion overcomes the weaknesses of early and late fusion by properly
integrating the complementary information present across the multimodalities. The complex
relationship between the different modalities has been exploited by extracting the features
from the modalities differently and combining them at a particular layer. This capacity to
extract the relation among the different modalities makes the models more accurate than the
fusion at the input space or the decision level. From the analysis, it is observed that how
the multimodal data is CNN encoded the diversity of multimodal information presents the
multiple modalities and effect of fusion on CNN learning. The above discussion presents the
strengths and weaknesses of particular fusion strategies.

One of the primary reasons for the better results from bottleneck feature fusion is that
this fusion strategy avoids the problem of cross-modal interference by introducing separate
paths for feature extraction from the different modalities in the encoder. By implanting the
bottleneck fusion strategy into the deep learning models, the models tend to learn the most
complex relationship between the modalities. Moreover, each modality contributes differ-
ent features and sometimes complementary information that is highly significant for better
results. Fusing the features from all different modalities at bottleneck stages facilitates the
efficient exploitation of the features. In bottleneck strategy, the deep learning model will have
the flexibility to learn the appropriate scale for fusing the modalities together. It is beneficial
to separate the information that would otherwise be combined by processing each modal-
ity separately in different networks. From the points mentioned above, it is evident that the
fusion of multimodal features plays a major role in producing better segmentation results and
bottleneck fusion achieved better results. Here we performed simple fusion operations such
as concatenation and element-wise summation, but this can be extendable to the multimodal
fusion through the attention-based module. This gives them more flexibility to capture the
proper information from the multimodalities. The limitations and future work are as follows:
Firstly, the primary limitations of our study may be the availability and size of the dataset
used for training and evaluation. Limited access to large, diverse datasets can restrict the
generalizability of our findings. These experiments are conducted only on this dataset. For
more exploration of these fusion strategies, we need to experiment on the different datasets.
Secondly, these models were developed to process the data in a 2D manner since the depth
of the data varies from 2 to 22. Our future work includes the experimentation of these fusion
strategies on the other datasets and provides more interpretability and explainability of the
models on the diverse datasets.

@ Springer



Multimedia Tools and Applications

6 Conclusion

In this paper, we reviewed and analyzed different fusion strategies i.e., early fusion, late
fusion, bottleneck fusion, and hierarchical fusion, involved in the stroke lesion segmentation
on CTP data. We analyzed the process of encoding the multimodal data, and the effect of
the fusion strategy on CNN learning with the help of complementary information, joint
representation learning, information integration, and feature representation. In addition, we
also analyzed the deep features and feature similarity between the features to explore the
encoding process of different deep learning models which involves various fusion strategies.
After analyzing the results of the models, the bottleneck fusion strategy performed better.
Implanting the early fusion in the deep learning model fails to exploit the complementary
features among the modalities because the fusion is involved in the early stages of the network.
The late fusion strategy fails to extract better features due to no cross-reference among
the features from different modalities. The bottleneck fusion strategy balanced both the
problems mentioned in early and late fusion. It is because of its capacity to establish the
relation between the multimodal inputs. Bottleneck fusion also worked well for the small
lesions as well. The bottleneck fusion strategy performed well in its raw form without any
specialized modules which are responsible for the increase in performance, and the other
fusion strategies also may work better if they are incorporated with the specialized module
for improving performance. All the experiments were conducted on the ISLES 2018 dataset.
The performance of the bottleneck fusion can be improved further by adding modules that
are responsible for increasing the performance. In the future, we will apply these strategies
to other databases and compare which strategy yields better results.
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