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Abstract
Scene depth information plays a fundamental role and can be beneficial to various computer
vision or visual robotics applications. The scene color image acquired by consumer depth
sensors usually has a high resolution, whilst its depth map counterpart often performs low
resolution or man-made artifacts. Due to its strong similarity in terms of scene structures
between RGB-D pairs, taking the color image as prior information, this paper proposes a
Dual BranchMulti-scale Network (CA-DBMNet) based on the channel attention mechanism
which can effectively guide the task of depth map super-resolution (SR). The network con-
sists of two branches–color image feature extraction branch and depth map super-resolution
branch. The first branch adopts the feature pyramid structure to extract the color image
features, capturing image features and structures at different scales. The second branch is
composed of three modules: 1) A dense residual feature fusion (DRFF) module to integrate
the extracted features from two branches with dense connection and residual learning; 2) A
channel multi-scale (CMS) module to exploit multi-scale features from depth feature maps;
3) A channel attention (CA) module to effectively enhance the channel proportion of high-
frequency components in the depth feature maps. Extensive experiments demonstrate that
CA-DBMNet can effectively reconstruct the high-resolution depth map with complete scene
structures and sharp edges.
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1 Introduction

Scene depth map super-resolution (SR) is an important issue in the literature of computer
vision and visual robotics. The depth information of 3d scenes acquired by consumer depth
sensors always plays a fundamental role in various real-world applications of augmented
reality [1], scene segmentation [2], autonomous driving [3], 3d reconstruction [4], robotics
navigation[5], etc. However, due to the limitations of the resolution of depth sensors or
photosensitive devices, the low-resolution depth maps significantly affect the performance
of these downstream applications. Therefore, it is imperative to devise effective depth map
SR algorithms to enhance the utilization of depth information.

In general, the difficulty of depthmap SR is that it always leads to some unavoidable loss of
scene structures or fine details [6], which becomes even more severe as the down-sampling
factor is increased. To tackle this issue, many researchers always adopt color images to
guide the SR task of the corresponding low-resolution depth map, such as optimized-based
methods [7–9], dictionary learning-based [10, 11] and deep learning-based schemes [12,
13]. The intuition behind these methods is that color images and their corresponding depth
maps represent the photometric color and geometric depth of the same scene from the same
perspective, and they always have strong structural similarities. Although the guidance from
high-resolution color images within the depthmap SR reconstruction can effectively alleviate
the issue of edge and detail blurring, the texture information such as flash-reflection patterns
on the object surface in the color image may lead to man-made artifacts on the reconstructed
depth map. The key to color-guided schemes is to excavate the rich structural information in
color images and suppress texture copy artifacts.

Recently, some methods have exploited multi-scale information for better feature extrac-
tion. Hui et al. [14] presented a multi-scale guided convolutional neural network (CNN) to
realize a depth map SR task. This network learns the rich feature information of scene depth
maps at different scales so that it can better adapt to the fine structures of depth maps and be
suitable for the task of large-scale depth upsampling. Similarly, Zuo et al. [15] introduced
a residual network structure at each scale in the upsampling step to effectively recover the
high-frequency details of depth maps. These methods always adopt one or two convolutional
networks at each scale while extracting the scene features of high-resolution color images,
but it is still difficult to achieve a desirable reconstruction of the fine structures in depth
maps. Different from the aforementioned works, our network learns multi-scale information
on both color images and depth maps. In addition, the proposed network integrates a channel
attention mechanism for better structure reconstruction and artifact suppression.

With the high-resolution scene color image as prior information, here we propose a Chan-
nel Attention based Dual Branch Multi-scale Network (CA-DBMNet) to effectively guide
depth map SR. The proposed network consists of two branches, i.e., the color image feature
extraction branch, and the depth map SR branch, as shown in Fig. 1. The color image feature
extraction branch uses the feature pyramid structure, which consists of a down-sampling
operation for shallow feature extraction, an upsampling procedure for deep feature extrac-
tion, and a skip-connection process for feature fusion. The structural information at multiple
scales can be learned by such down-sampling and upsampling operations. The depth map
SR branch comprises a dense residual feature fusion (DRFF) module, a channel multi-scale
(CMS) module, and a channel attention (CA) module. To realize the high-resolution color
image guidance, the DRFF module adopts dense connection and residual connection to fuse
the feature maps from two branches. CMS module can effectively learn the structural infor-
mation of depth maps at different scales by average group convolution to enlarge multi-level
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Fig. 1 The network architecture of our proposed CA-DBMNet. This network consists of the color image
feature extraction branch and the depth map SR branch. The top branch takes a high-resolution color image as
input, uses a feature pyramid to extractmulti-scale features, and guides depthmap SR. The bottom branch takes
a low-resolution depth map as input and employs a dense residual feature fusion (DRFF) module, a channel
multi-scale (CMS) module, and a channel attention (CA) module to effectively reconstruct the corresponding
high-resolution depth map.

receptive fields. CA module assigns different weights to the channels of the scene feature
map, which can effectively reflect the differences between channels. The adaptive chan-
nel weights are used to reduce the influence of high-resolution color image artifacts on the
depth map SR. The proposed network has achieved gratifying performance in various cases
and possesses significant potential to improve the performance of real-world downstream
tasks, such as object detection, scene reconstruction, and semantic segmentation. The main
technical contributions can be summarized as follows:

• A feature extraction branch of the scene color image based on the feature pyramid
structure is proposed, effectively extracting the shallow and deep features of the high-
resolution color image. It combines features by skip connection to extract rich features
of the color image and provide better guidance for depth map SR.

• A channel attention module for scene depth feature map based on attention mechanism
is presented. The module can adaptively learn the weights of different channels of the
depth feature map, and effectively suppress the artifacts caused by high-resolution color
images, thus realizing the effective reconstruction of high-frequency structures such as
edge information of the depth map.

• A dual branch multi-scale network is introduced for the task of depth map SR. This
network can simultaneously extract multi-scale features of color images and depth maps,
and also fuse the image structural information at each scale to guide the depth map SR.

The rest of this paper is organized as follows. In Section 2, the related works of depth
map SR and learning-based multi-scale feature extraction are reviewed. The details of the
proposed network CA-DBMNet are given in Section 3, including the overall framework and
key modules. Experimental results are presented in Section 4. Section 5 concludes this paper
and gives future improvements.

2 Related works

2.1 Single image super-resolution

Deep learning methods have achieved dramatic performance in single image SR tasks. Liu
et al. [16] proposed a multi-scale encoder-decoder network with the guidance of a phase
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congruency edgemap. Aiming at small-scale pedestrian detection, Pang et al. [17] proposed a
unified framework that integrates SR and classification sub-networks. Similarly, Liu et al. [18]
proposed a joint SR and deblurring network with decoupled cooperative learning. To capture
long-range feature similarities, Mei et al. [19] integrated a Cross-Scale Non-Local Attention
module into a recurrent neural network. To tackle the case of unpaired image sets, Maeda
[20] designed a generative adversarial framework that produced pseudo-clean low-resolution
images for SR network training.Wang et al. [21] proposed a lightweight network DDistill-SR
that captured and reused important information through a plug-in reparameterized dynamic
distillation unit. Lee et al. [22] proposed an optimization method in the network training
process by removing the inherent noise. Based on the assumption that underlying image
distribution is scale-invariant, Scanvic et al. [23] introduced a new self-supervised loss for
SR network training. More recently, Wu et al. [24] proposed a self-attention-free network
CFSR that utilizes large kernel convolution for lightweight feature extraction.

Most single image SR networks are CNN-based, while recent Transformer-based SR
models showcase better performance. Due to the differences in resolution and structure
between depth maps and color images, these methods applicable to RGB images cannot be
directly used for depth map SR tasks.

2.2 Depthmap super-resolution

Among different methods for depth map SR, color-guided approaches are most commonly-
seen. These works take low-resolution depth maps and the corresponding high-resolution
color images as joint inputs, where RGB information plays as guidance. The intuition behind
these methods is that color images contain rich structural information and accurately repre-
sent the visual characteristics of the captured scenes. Existing studies can be classified into
optimized-based methods, dictionary learning-based, and deep learning-based schemes.

The optimized-based schemes usually adjust color image guidance bymanually modeling
depth smoothness. Zuo et al. [7] proposed an explicit evaluation model to quantitatively
measure the inconsistency between the depth edge map and the color edge map. Khoddami
et al. [8] introduced a structure-preserving guided filter for depthmapSRwhich can overcome
the defects of depthmaps, such as texture-copying artifacts, halo artifacts, and blurring edges.
Wang et al. [9] presented a depth map enhancement method based on a dual normal-depth
regularization with a re-weighted graph Laplacian prior, which constrains edge consistency
between the surface normal map and depth map.

Benefiting from the dictionary learning strategy, Liu et al. [10] presented a depth map
SR method which employed a joint dictionary learning method with both low- and high-
resolution depth maps and thus built a sparse vector classification scheme that can be used in
depthmap SR. Li et al. [11] presented a scheme for depth image SR based onmulti-dictionary
learning with an edge regularization model, which can learn three dictionaries of three parts
based on the assumption that the low-resolution, high-resolution, and edge-depth images
share the same sparse representation.

The deep-learning based approaches always learn from scene datasets and recover depth
maps through deep neural networks. Owing to a joint bilateral filter, Li et al. [25] applied
a CNN to the task of depth upsampling. This network jointly extracts the structural fea-
tures from both color and depth images and concatenates feature maps through another
sub-network. Ye et al. [26] first learned a binary map from a low-resolution depth map and
the corresponding color image, and thus reconstructed a high-quality depth map through an
edge-guided interpolation. Zhu et al. [27] designed CNNs for concurrent edge detection and
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depth map interpolation operation. Using a color-guided strategy, Wen et al. [12] introduced
a progressive method to recover the high-frequency details of depth maps while alleviat-
ing man-made artifacts. Lutio et al. [28] regarded the transformation from color image to
corresponding depth map as a pixel-wise translation during depth map enhancement.

Although the structural information of color images can guide the task of depth map SR,
depth-color inconsistencymay occur due to color image texture copying. The aforementioned
works used various strategies to alleviate such artifacts. Different from these methods, we
design a dual-branch multi-scale network integrated with a channel attention mechanism to
suppress texture-copy artifacts.

2.3 Multi-scale feature extraction

Multi-scale feature extraction in CNNs plays a vital role in various computer vision and
visual robotics tasks such as object detection [29], semantic segmentation [30, 31], and SR
enhancement [15]. To effectively extract the multi-scale features of scene images, some
works adopt multi-scale input, skip-connection, or recursive models. He et al. [29] presented
a spatial pooling network for object detection, which can feed images at different scales to
enhance multi-scale feature representation. Long et al. [30] introduced a fully convolutional
multi-scale representation network, exploiting feature maps at different scales by convolu-
tion operation to perform better semantic segmentation results. Owing to the convolutional
network architecture, Ronneberger et al. [31] utilized a U-net structure to extract multi-
scale information for image segmentation by down-sampling and upsampling operations.
Apart from these methods, another multi-scale strategy is to integrate dilated convolution
into the backbone network and get scene features at multiple scaling factors for extracting
context information. Song et al. [32] treated depth map SR as a series of novel view synthe-
sis sub-tasks, and used a multi-scale fusion strategy to effectively exploit the feature maps
at different scales. To deal with the issue of depth map SR with large scaling factors, Zuo
et al. [15] adopted multi-scale frequency synthesis with local residual learning to extract
rich features. This network can maintain spatial information and extract fine structures on
multi-scale depth feature maps.

Different from the existing methods, we combine a multi-scale scheme not only in the
depth map SR branch but also in the color image feature extraction branch. Furthermore, by
incorporating channel-wise attention, we also assign different weights for multi-scale feature
maps to reconstruct the high-frequency information of depth maps.

3 The proposed CA-DBMNet

Owing to the channel attention mechanism, our proposed network CA-DBMNet adopts the
high-resolution scene color images as prior and reconstructs corresponding depth maps. The
structural information extracted from different depth map channels may be inconsistent,
which could lead to artifacts during the reconstruction of the depth map. Our CA-DBMNet
utilizes channel-wise attention to adaptively recalibrate theweights of each channel and exca-
vate high-frequency features. The conventional color-guided approach [27] only considers
color-depth fusion at a single scale and ignores fine details under different scaling factors.
Owing to a dual branch multi-scale framework, this paper applies a feature pyramid structure
to both the color image feature extraction branch and the depth map SR branch, as shown
in Fig.1. In the network branch of color image feature extraction, we adopt the feature pyra-
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mid structure that consists of top-down and subsequent bottom-up convolutional operations
to learn the structural information. This feature pyramid can effectively extract multi-scale
structural information of color images and also provide sound guidance for depth map SR.
In the network branch of depth SR, we employ an image pyramid structure to progressively
upscale the low-resolution depth map and perform the SR operation in a coarse-to-fine man-
ner. This branch adopts a two-layer convolution to extract features and then applies the
Bicubic interpolation to restore low-frequency information of the depth map. For each level
of the pyramid structure, the dense connection, channel multi-scale, and channel attention
are employed to effectively reconstruct high-frequency features of the depth map.

3.1 Network branch of color image feature extraction

In general, since the scene color image and its corresponding depth map represent the color
and geometric depth of the same scene from the same perspective, there is a strong struc-
tural similarity between RGB-D pairs. The low-resolution depth map usually contains less
high-frequency detail information, while the corresponding high-resolution color image of
the same scene contains rich high-frequency texture information. Thus, we can employ the
color image to assist depth map SR for a better reconstruction. The function of the color
image feature extraction branch is mainly to provide structural information as a priori for
the depth map SR branch. Under the guidance of high-resolution color images, unlike most
enhancement methods [12] that only use a single-scale convolution layer for feature extrac-
tion, this paper adopts a multi-scale scheme to effectively extract shallow and deep structural
information. In addition, the shallow features obtained after down-sampling is further fused
with the deep features obtained after upsampling through skip connections, extracting rich
structural information to guide depth map SR.

The proposed color image feature extraction branch can be divided into three parts. The
first part is the down-sampling operation. In this part, the input high-resolution color image
is gradually down-sampled through the convolution layer and max-pooling layer so that the
down-sampled color image matches the same resolution as the input depth map. Specifically,
as shown in Fig. 1, the upsampling factor of depth map SR is 8. The color map feature
extraction branch undergoes three down-samplings, where the kernel of all convolution layers
is 3× 3 with the stride 1 and the channel number 32. The kernel, stride, and channel number
of max-pooling layers are 3 × 3, 2, and 32, respectively. The second part is the upsampling
operation. In this part, the low-resolution color feature map is upsampled by transposed
convolution, reaching the same resolution as the depth feature map, which can guide the
depth feature map SR at different scales. The kernel, stride, and channel number of these
transposed convolution layers are 5 × 5, 2, and 32, respectively. The third part is the fusion
operation. In this part, the initial color feature map and the upsampled color feature map are
concatenated by skip connection. Then the convolution operation is carried out with kernel
3 × 3, 2 stride, and 32 channels. The above operations in the branch of color image feature
extraction can be formulated as follows,

FY
1 = σ(WY

1 ∗ Yh + bY1 ),

FY
i = Maxpool(FY

i−1), i ∈ {2, 4, 6}
FY
j = σ(WY

j ∗ FY
j−1 + bYj ), j ∈ {3, 5, 7}

FY
k = σ(WY

k • FY
k−1 + bYk ), k ∈ {8, 11, 14}

FY
k+2 = σ(Wk+2[FY

j , FY
k+2] + bYk+2) (1)
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where σ represents the activation function PRelu, ∗ and • are convolution and deconvolution
respectively, W and b are the weights and the biases of convolution respectively. Yh means
the high-resolution color image, FY

i is the feature map after the max-pooling operation at
i-th layer, FY

j represents the feature map extracted by j-th convolution layer, FY
k denotes the

feature map after transposed convolution at k-th layer, and FY
k+2 represents the feature map

fused from shallow and deep features at the same scale.

3.2 Network branch of depthmap super-resolution

The network branch of depth map SR adopts a low-resolution scene depth map as input and
employs an end-to-end multi-scale upsampling scheme. To obtain the high-resolution depth
map, this branch consists of a shallow feature extraction module, an upsampling module, a
DRFF module, a CMS module, a CA module, and a depth map reconstruction module.

Depthmap shallow feature extractionThe scene features with different frequencies in the
depth maps often require different reconstruction and processing strategies. For example, the
traditional Bicubic interpolation has an excellent performance in dealing with low-frequency
features such as smooth surfaces [14]. However, this interpolation scheme is not suitable
for recovering high-frequency features such as sharp edges. In our network branch, the low-
frequency features are first interpolated by Bicubic interpolation before feature extraction.
Then the low-frequency components of the interpolated depth map are kept and later com-
bined with the output of the network. This branch focuses on extracting the high-frequency
components, which is beneficial to restoring the high-frequency structural information and
reducing the computational cost. The input of this branch is the low-frequency depth map
Dl , the features extracted from two-layer convolution are F1 and F2, as follows,

F1 = σ(W1 ∗ Dl + b1), F2 = σ(W2 ∗ F1 + b2) (2)

Depth map upsampling In the color image feature extraction branch, the high-resolution
color image will be continuously down-sampled until it reaches the same resolution as the
scene depth map. To maintain the same resolution between feature maps from both branches
in the fusion stage, the low-resolution scene depthmap is also upsampled 2× in an end-to-end
manner. The upsampling operation is realized by transposed convolution, which has 5 × 5
kernel size with stride and channel numbers set to 2 and 32, respectively. This operation can
be formulated as follows,

Ft = σ(Wt ∗ Ft−1 + bt ), t ∈ 3, 7, 11 (3)

where Ft and Ft−1 are the feature maps before and after transposed convolution at t-th layer.
Dense residual feature fusion (DRFF) As mentioned before, the high-resolution color

image can be down-sampled and thus obtain a color feature map. In this network branch,
the low-resolution depth map is converted to the same size as the color image, producing
a corresponding depth feature map. The introduced DRFF module fuses the color feature
map and depth feature map at the same scale to fully realize the color-guided depth SR. As
shown in Fig.2, the DRFF module consists of dense connections and residual connections.
The dense connection takes the outputs of each preceding layer as the input of the following
layers, which can strengthen feature propagation by connecting low-level and high-level
features. To further alleviate the issue of vanishing-gradient, the local residual structure is
introduced to effectively optimize the network performance.
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Fig. 2 Thedense residual feature fusion (DRFF)module.Thismodule employs dense connections to strengthen
feature propagation and uses local residual structure to alleviate the vanishing-gradient problem

Specifically, the inputs of the DRFF module are color feature map FY
k+2 and depth feature

map Ft . These two feature maps are concatenated and produce a fused feature map Ff

through a 3 × 3 convolution as,

Ff = σ(Wd [Ft , FY
k+2]) (4)

Taking Ff as input, the dense connection can be calculated as,

Fd,l = σ(Wd,l [Ff , Fd,0, Fd,1, · · · , Fd,l−1]) (5)

where Fd,l means the output of dense connection at layer l, [Ff , Fd,0, Fd,1, · · · , Fd,l−1]
represents feature map concatenation,Wd,l are the weights of convolution at layer l. Assume
there are L convolutional layers in total, and each layer hasG channels; the number of output
feature maps is (L +1)×G. To reduce the dimension of feature maps and the computational
complexity of the network, a 1× 1 convolution kernel is applied here. Furthermore, to make
the dense connection fully recover the fine structures of scene depth, we adopt the residual
connection structure to link the feature map Ff to the last layer. The final output of the DRFF
module can be represented as follows (see Fig.2),

Ff m = Fs + Ff (6)

where Ff m is the output featuremap. The last convolution kernel is 1×1, the rest convolutions
have 3× 3 kernel with stride and channel numbers set to 1 and 32, respectively. The number
of dense connection layers L is 5.

Depth map multi-scale optimization In the task of depth map SR, the multi-scale infor-
mation is usually excavated from the scene depth image, which is the key to achieving
high-precision reconstruction. In our network, the depth map SR branch uses the pyramid
structure to extract multi-scale information. At each pyramid level, the multi-scale feature
is extracted and optimized by channel grouping. Specifically, our depth SR network adopts
a channel multi-scale (CMS) strategy to further exploit multi-scale information from depth
feature maps. As shown in Fig. 3, to extract the detailed multi-scale features, group convolu-
tion is employed on depth feature maps, and thus residual blocks are stacked to enlarge the
receptive field.

The input of the CMS module is the feature map Ff m from the output of DRFF. A 1 × 1
convolution is applied first to get a feature map with 64 channels, which is further divided
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Fig. 3 Multi-scale optimization. A grouping and concatenation strategy is exploited to extract depth map
multi-scale information by enlarging receptive fields of feature maps

into 4 groups. Each group xi has its feature map subset with a corresponding convolution
kernel Ki , producing an output feature map yi (i = 1, 2, 3, 4). The third and fourth groups
add their feature map subsets xi with yi−1. This multi-scale grouping can be formulated as
follows,

yi =
⎧
⎨

⎩

xi i = 1
Ki (xi ) i = 2

Ki (xi + yi−1) i = 3, 4
(7)

The outputs from these four groups are concatenated and filtered by a 1 × 1 convolution,
producing a feature map Fm . This grouping and concatenation strategy makes convolution
operation more effective for extracting features by enlarging receptive fields of the feature
map and getting better multi-scale representation. The final output of the CMS module Fmo

is the sum of feature map Fm and Ff m as follows,

Fmo = Fm + Ff m (8)

Channel attention (CA) The depth map features obtained by different channels in the
depth feature map are different, and each channel has a different effect on the task of depth
SR. To focus on the informative high-frequency features, we adopt the CAmodule to generate
different attention for the channel-wise feature as follows,

Fca = fC A(Fmo) (9)

where Fmo is the output of CMSmodule, Fca is the output of CAmodule. The next subsection
will detail the channel attention operation fC A.

Depth map reconstruction The goal of this module is to generate a high-resolution depth
map by adaptively combining the feature maps. The feature map output by the CA module
is processed by another convolution operation and combined with the low-frequency feature
map obtained by Bicubic interpolation thus reconstructing the final high-resolution depth
map.
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3.3 Channel attentionmechanism

In the area of computer vision and computer graphics, the attention mechanism has become
an important component of various neural networks [33, 34], which can improve the feature
selection ability of the entire network by setting higher weights to those channels containing
high-frequency information whilst setting lower weights to those of low- frequency infor-
mation. Generally speaking, channel attention can learn the weight distribution of image
features according to each channel dimension [35]. The learned weights can thus be applied
to the original feature channels so that it is concentrated on crucial feature channels whilst
ignoring the unimportant ones. The depth map contains both the low-frequency structure
of smooth regions and also the high-frequency depth boundaries which could make a more
significant impact on the depth SR. In the network branch of depth map SR, the channel
attention mechanism can adaptively aggregate different feature channels and assign larger
weights to those channels containing high-frequency structures.

As shown in Fig. 4, the input of the CA module is the output from the CMS module,
which is further encoded by V , P , and Q operations in parallel. Here, V represents the
data preprocessing, producing component Fmov with tensor size C × H × W via one-layer
convolution; P and Q represent the shaping operation, producing component PmoP with
tensor sizeC×(H ∗W ) and component PmoQ with tensor size (H ∗W )×C . After encoding,
theweight of channel attention θ is obtained by Softmax operation on the dot product between
PmoP and PmoQ . The output of the CA module Fca is the dot product between θ and FmoV .
The above process can be formulated as follows,

FmoV = V (Fmo),

FmoP = P(Fmo),

FmoQ = Q(Fmo),

θ = Sof tmax(FmoP · FmoQ),

Fca = FmoV · θ (10)

where · is the dot product. The kernel size in V , P , and Q is 3 × 3, the stride and channel
numbers are 1 and 32, respectively.

Fig. 4 Channel attention. The depth feature map is encoded by V , P , and Q, where V represents the data
preprocessing, P and Q represent shaping operation. The weights of channel attention are generated according
to the outputs of P and Q operations
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3.4 Loss function

The proposed CA-DBMNet takes low-resolution depthmaps as input and finally reconstructs
high-resolution depth maps. Let F represents the model of our CA-DBMNet and K is the
number of training samples. The loss function can be formulated as follows,

L(θ) = 1

K

K∑

i=1

‖F(Dl(i), Yh(i); θ) − Dh(i)‖2 (11)

where θ is the learning parameters. For each training sample i , Yh(i) is a high-resolution
color image, Dl(i) and Dh(i) mean low-resolution depth map and corresponding restored
high-resolution depth map, respectively.

4 Experimental results and discussion

4.1 Implementation details

In this paper, our proposed CA-DBMNet adopts the pyramid structure to extract multi-
scale information from the color image and combines the shallow and deep features of the
same scale with skip connections. Thus, the multi-scale structure information of the color
feature map is effectively exploited in the depth map SR. Based on the channel attention
mechanism, this network can adaptively assign a higher weight to the channel with a more

Fig. 5 Visual performance of depth map SR reconstruction on Middlebury [38] testing data: (a) input high-
resolution color images, (b) the ground truth depth maps, (c) input low-resolution depth maps, (d) the results
using the proposed method
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significant contribution to the task of depth map SR. Thus, it effectively suppresses man-
made artifacts such as shadow texture copying and focuses on high-frequency structures such
as depth boundaries. The proposed network is implemented with the Tensorflow framework
and trained on an NVIDIA Tesla V100 with 16G GPU memory. It is optimized using Adam
optimizer [36] with β1 = 0.9, β2 = 0.99. The initial learning rate is set to 1e − 4 and
decreased to 1e − 5 after 30 epochs.

The high-resolution scene color images and corresponding low-resolution depth maps are
fed into the color image feature extraction branch and the depth map SR branch, respectively.
Our experiments use 58 RGB-D scene images from the MPI dataset [37] and 34 RGB-
D scene images from the Middlebury dataset [38]. During network training, 82 RGB-D
scene images are selected as the training candidates, and the other 10 scene images are
used as the test set for experimental verification. The training candidates are rotated by 90
degrees and normalized to the range [0, 1] to augment the training samples. The upscaling
factors 2×,4×, 8×, and 16× are employed for generating depth map SR results. Unlike
[39] uses large-scale images for training, we partition the scene depth map into regular
and small overlapping patches to reduce the network training time and also maintain its
performance. Then the low-resolution depth maps are generated by Bicubic interpolation
from high-resolution maps. The size of the depth map patch is set according to upsampling
factor. When the upsampling factor is set to {2×, 4×, 8×, 16×}, the size of low-resolution
depth map patch is {24 × 24, 16 × 16, 12 × 12, 8 × 8}, and the size of color image patch
is {48 × 48, 64 × 64, 96 × 96, 128 × 128}, whilst the size of the output depth map is also
{48 × 48, 64 × 64, 96 × 96, 128 × 128} respectively.

4.2 Visual performance

To verify the effectiveness of our proposed depth map SR network CA-DBMNet, we analyze
the visual results of depth map SR in terms of global and local aspects. From the global
aspect, the network achieves two goals of depth map SR, such as image amplification and
image clarity. Figure 5 shows the depth SR results in 8× upsampling case on the Middle-
bury [38] testing data. Figures 5(a) and 5(c) present input high-resolution color images and
corresponding depth maps respectively. Figure 5(d) shows the enhancement results of dif-
ferent depth maps, which successfully upsample the low-resolution inputs into the specified
high-resolution depth maps. By comparing the depth maps of different scenes in Fig. 5(c)
and Fig. 5(d), it can be seen that our SR results are sharper and cleaner than the original
depth map input. These results are consistent with the corresponding ground truth in Fig.
5(b), and the overall structures can be well maintained. From the local aspect, the blue boxes
given in Fig. 5 identify the depth map high-frequency edge structures, such as water spout
and book edge in Fig. 5(a), which are the fine structures that are difficult to recover in the
depth map SR task. The red boxes identify the detailed texture structures in color images,
such as the production instruction text of the watering can and the pattern on the book in Fig.
5(a), which may interfere with the depth map SR. As seen from the red boxes in Fig. 5(d),
the structures recovered from the depth map SR are not affected by the texture information
from color images. The artifacts caused by texture copying do not appear in the recovered
high-resolution depth maps.

Figure 6 shows the reconstruction results of depth map SR by using our proposed network
in 8× upsampling case on the MPI [37] testing data. From the global view, the proposed
network produces high-resolution depth maps in Fig. 6(d) from low-resolution depth maps
of various scenes in Fig. 6(c). As shown in the red boxes of Fig. 6(d), texture information
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Fig. 6 Visual performance of depth map SR reconstruction on MPI [37] testing data: (a) input high-resolution
color images, (b) the ground truth depth maps, (c) input low-resolution depth maps, (d) the results using the
proposed method

in the color images, such as hair texture and scalp tattoo, do not cause man-made artifacts
in the depth map SR. The proposed network also restores high-resolution depth maps with
precise details, such as the edges of fingers and beards in the blue boxes of Fig. 6(d).

4.3 Comparisons

To demonstrate the effectiveness of the proposed network CA-DBMNet, we use Root Mean
Squared Error (RMSE) as the evaluation metric for comparison with other existing methods.
We evaluate the reconstruction results onMiddlebury RGB-D scene dataset [38] and compare
with 6 traditional methods (Bicubic, GF [40], RMRF [41], TGV [42], JID [43], AR [44])
and 5 learning-based approaches (SRCNN [6], MSG [14], MFR [15], PMBA [13], LAP
[45]). The Middlebury dataset is divided into Groups A, B, and C in our experiments. The
experimental results of CA-DBMNet and other methods are analyzed and compared under
upsampling factors 2×, 4×, 8×, and 16× for Groups A and B. For Group C data, this paper
only performs 2×, 4×, and 8× since the resolution of the input depth map is too low to
reconstruct under 16×.

Tables 1, 2, and 3 respectively show the RMSE of the depth map SR results in testing
on these three data groups. The smallest RMSE value represents the optimal results of all
methods, which are marked in boldface. The sub-optimal results are underlined. It can be
seen from Table 1 that when testing on Group A data, the average RMSE error of our
CA-DBMNet is only 1.30, which is reduced by 56.67%, 55.17%, 62.53%, and 53.07%
respectively, compared with bicubic, GF [40], JID [43] and AR [44]. Experimental results
demonstrate that the effectiveness of CA-DBMNet is superior to traditional methods. It can
be seen from Table 2 that when testing on Group B data, the average RMSE error of our
CA-DBMNet is only 1.35, which is reduced by 44.90%, 12.90%, and 21.05% respectively,
compared with learning-based methods SRCNN [6], MFR [15] and PMBA [13]. SRCNN [6]
does not consider the multi-scale information of depth maps. On the contrary, MFR [15] and
PMBA [13] use the multi-scale information of depth maps while ignoring the multi-scale
information of color images. Experimental results can verify the effectiveness of our CA-
DBMNet in terms of multi-scale feature extraction from both high-resolution color images
and low-resolution depth maps. Table 3 shows the comparisons of reconstruction results
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Table 1 Quantitative depth map SR results (in RMSE) on group A of Middlebury Dataset [38]

Mehods Art Book Moebius
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

Bicubic 2.66 3.85 5.52 8.37 1.03 1.58 2.27 3.36 0.93 1.40 2.06 2.98

GF [40] 2.93 3.79 4.97 7.88 1.16 1.57 2.09 3.18 1.09 1.44 1.88 2.86

RMRF [41] 2.31 3.26 4.31 6.68 1.14 1.53 2.18 2.92 0.97 1.44 2.21 2.79

TGV [42] 3.03 3.79 4.79 7.11 1.29 1.61 1.99 2.94 1.12 1.46 1.91 2.63

JID [43] 1.16 1.84 2.77 10.86 0.59 0.93 1.14 9.15 0.61 0.87 1.37 10.38

AR [44] 3.07 3.99 4.68 6.87 1.38 1.94 2.05 2.84 0.98 1.23 1.73 2.56

SRCNN [6] 0.98 2.29 4.75 7.81 0.39 0.94 2.15 3.24 0.45 0.97 2.01 2.82

LAP [45] 0.88 1.79 2.73 6.31 0.78 0.94 1.29 2.35 0.77 0.95 1.33 2.37

MSG [14] 0.73 1.65 3.01 5.76 0.41 0.69 1.48 2.96 0.44 0.76 1.44 2.91

MFR [15] 0.71 1.54 2.71 4.35 0.42 0.63 1.05 1.78 0.42 0.72 1.10 1.73

PMBA [13] 0.61 2.04 3.63 5.38 0.41 0.92 1.68 2.55 0.39 0.84 1.41 2.09

CA-DBMNet 0.46 1.42 2.57 4.15 0.31 0.54 0.98 1.63 0.35 0.59 0.96 1.63

∗ Boldface indicates the best value for each evaluation, while the underline indicates the second best

between our proposed network and other methods when testing on Group C data. As seen
from Table 3, the average RMSE error of CA-DBMNet is only 1.35, which is reduced by
17.09%, 22.97%, and 5.00% respectively, compared with LAP [45],MS [14], andMSG [14].
Here, LAP [45] andMS [14] lack the guidance of color images, and MSG [14] does not fully
fuse the feature map. On the contrary, CA-DBMNet effectively fuses the color feature map
and depth feature map under the guidance of the scene color images at multiple scales.

It can be seen from Tables 1, 2, and 3 that the reconstruction performance of our method
is superior to other methods in most cases of the Middlebury dataset [38]. The reasons are
as follows. Firstly, the color map feature extraction branch in our network can extract rich

Table 2 Quantitative depth map SR results (in RMSE) on group B of Middlebury Dataset [38]

Mehods Dolls Laundry Reindeer
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

Bicubic 0.91 1.31 1.96 2.63 1.61 2.41 3.45 5.09 1.94 2.81 3.99 5.82

GF [40] 1.25 1.31 1.86 3.62 2.21 2.54 3.42 4.56 2.68 3.05 4.06 5.32

RMRF [41] 1.14 1.49 1.94 2.45 1.47 2.06 2.87 4.22 1.82 2.58 3.24 4.91

TGV [42] 1.17 1.42 2.05 4.44 1.84 2.21 3.92 6.75 2.41 2.67 4.29 8.80

JID [43] 0.73 0.96 1.26 2.06 0.72 1.19 1.77 3.47 0.91 1.47 2.19 4.15

AR [44] 1.01 1.23 1.65 2.23 2.39 2.43 3.01 4.47 2.99 3.09 4.33 4.99

SRCNN [6] 0.63 1.11 1.92 2.61 0.81 1.87 3.87 5.63 0.67 1.74 3.45 5.04

LAP [45] 0.77 0.98 1.42 2.28 0.78 1.12 1.67 3.79 0.81 1.31 1.92 4.56

MSG [14] 0.61 0.92 1.47 3.29 0.51 1.12 2.09 4.26 0.62 1.32 2.43 4.97

MFR [15] 0.61 0.89 1.22 1.74 0.61 1.11 1.75 3.01 0.65 1.23 2.06 3.74

PMBA [13] 0.36 0.95 1.47 2.03 0.38 1.14 2.19 3.31 0.41 1.39 2.74 4.12

CA-DBMNet 0.43 0.79 1.09 1.55 0.36 0.89 1.49 2.74 0.45 1.09 1.89 3.39

∗ Boldface indicates the best value for each evaluation, while the underline indicates the second best
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Table 3 Quantitative depth map SR results (in RMSE) on group C of Middlebury Dataset [38]

Mehods Tsukuba Venus Teddy Cones
2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×

Bicubic 5.81 8.56 12.30 1.32 1.91 2.76 1.99 2.90 4.07 2.45 3.61 5.30

GF[40] 8.12 9.41 12.51 1.63 1.93 2.69 2.49 2.93 3.98 3.33 3.87 5.29

TGV[42] 7.21 10.31 17.51 2.15 2.52 4.04 2.71 3.31 5.39 3.51 4.45 7.14

JID[43] 3.48 5.95 10.91 0.81 1.17 1.76 1.28 2.94 2.76 1.69 4.17 5.11

SRCNN[6] 5.47 8.11 11.80 1.27 1.85 2.67 1.88 2.77 3.95 2.34 3.43 5.15

LAP[45] 1.72 5.34 8.94 0.72 0.77 1.34 0.97 1.68 2.96 0.98 2.85 4.67

MS[14] 2.21 5.21 10.25 0.59 0.78 1.18 0.99 1.78 3.18 1.13 2.95 5.23

MSG[14] 1.85 4.29 8.42 0.14 0.35 1.04 0.71 1.49 2.76 0.91 2.61 4.23

CA-DBMNet 1.71 4.12 8.36 0.13 0.32 1.01 0.68 1.45 2.35 0.85 2.38 4.05

∗ Boldface indicates the best value for each evaluation, while the underline indicates the second best

structural information and pass it to the depth map SR branch, which provides effective
guidance for depth information recovery. Secondly, unlike the existing methods that employ
themulti-scale structure only in one branch, ourCA-DBMNet adopts themulti-scale structure
in both branches to fully extract theirmulti-scale information; Finally, our network introduces
the channel attention mechanism into depth map SR, which can adaptively assign different
weights to the feature map channels, and thus help for depth map enhancement.

To further demonstrate the effeciveness of our proposed method in real-world scenarios,
we also implement our network on NYUV2 indoor RGBD dataset[46]. This data is captured
by consumer-level scanning devices. Following the common splitting, we use 1000 images
as training data and the rest 449 images for testing.We evaluate the reconstruction results and
compare with other state-of-the-art methods, including DCTNet [47], AHMF [48], DSR-Diff
[49], SSDNet [50]. It should be mentioned that the DSR-Diff [49] is a diffusion model based
guided superresolution method which has a time-consuming nature of diffusion model. As
seen from Table 4, our CA-DBMNet produces satisfactory depth reconstruction from real-
world data. This demonstrates that our method has competitive performance compared with
other the-state-of-the-arts.

Figure 7 illustrates the reconstruction effect of CA-DBMNet and other methods on the
test image “reindeer” scene under upsampling factor 8×. Figure 7(a) is the high-resolution
color image, and Fig. 7(b) gives the ground truth depth map. Figure 7(c) shows the effect of
depth map SR results using RMRF [41], while the fine structure and the edge information
are blurred. Figure 7(d) gives the depth map SR results using GF [40], while the fine struc-
ture and edges have noticeable artifacts. Figure 7(e) shows the depth map SR results using
TGV [42], while the depth map is disturbed by color textures such as background elements

Table 4 Quantitative depth map SR results (in RMSE) on NYU V2 Dataset [46]

Mehods DCTNet [47] SSDNet [50] AHMF [48] DSR-Diff [49] CA-DBMNet

4× 1.59 1.60 1.40 1.25 1.43

8× 3.16 3.14 2.89 2.57 2.87

16× 5.84 5.86 5.64 4.91 5.69

∗ Boldface indicates the best value for each evaluation, while the underline indicates the second best
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Fig. 7 Visual quality comparisons for depth map SR reconstruction on the test image “reindeer” scene under
upsampling factor 8×: (a) high-resolution color image, (b) the ground truth depth map, (c) RMRF [41], (d)
GF [40], (e) TGV [42], (f) SRCNN [6], (g) PMBA [13], (h) MFR [15], (i) our proposed network

appear. Fig.7(f) gives the result using SRCNN [6], which still has artifacts or blurring in local
structures. Figures 7(g) and 7(h) are the depth map SR results of PMBA [13] and MFR[15]
respectively. These two methods can recover the main structures of the underlying depth
map but perform poorly in several local structures. For the cropped zoomed regions of the
reconstruction results via PMBA [13], local structures within the red box are blurred, and the
structures in the upper-left corner and upper-right corner within the blue box are not clear.
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For the cropped zoomed regions of the reconstruction results via MFR [15], edges within
both the red and small boxes show jagged blurs. Figure 7(i) shows the results using our net-
work, which performs well for the depth map global structure and local details. The structural
blurs caused by upsampling and the artifacts caused by texture copying can be effectively
avoided. It demonstrates that our CA-DBMNet can effectively recover the fine structure and
edge information of depth maps by exploiting multi-scale features extracted from both net-
work branches and focusing on those high-frequency features through the channel attention
mechanism.

4.4 Ablation studies

To explore the role of each module in our proposed CA-DBMNet, the ablation studies of
the color image guidance module, DRFF module, CMS module, and CA module are carried
out. The color image guidance represents the multi-scale feature extraction and guidance in
the color image feature extraction branch. The DRFF module fuses color feature maps and
depth feature maps. The CMSmodule adopts channel grouping to achievemulti-scale feature
extraction, whilst the CA module can assign the weights of depth feature map channels in an
adaptive manner.

Table 5 shows the experimental results of ablation studies under upsampling factor 8×.
The first line is the baseline network, which does not include those four modules. These
modules are added to the baseline network in turn for analysis. The full CA-DBMNet (the
last row of Table 5) achieves the best performance, demonstrating that the dual branch parallel
multi-scale feature extraction, dense fusion strategy, and channel attention mechanism can
contribute to the depth map SR. Notably, the color image guidance module can improve the
reconstruction results because the extracted multi-scale color feature map will provide rich
structural information for depth map enhancement. The CA module improves depth map
SR performance, presumably because this module assigns the appropriate weights to feature
map channels at each scale.

5 Conclusions

In this work, we propose a dual branch network CA-DBMNet for scene depth map SR.
The network adopts the multi-scale mechanism in both the color image feature extraction
branch and the depth map SR branch, which fully extracts the scene structural information
at various scales and provides good guidance for depth map SR. The proposed network

Table 5 Ablation studies on
modules

Image Guided DRFF CMS CA RMSE

� � � � 2.8007

� � � � 2.7738

� � � � 2.7560

� � � � 2.5949

� � � � 2.6715

� � � � 2.5074
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employs the feature pyramid structure in the color image feature extraction branch. This
structure combines shallow and deep features, realizes the effective fusion of multi-level
information, and extracts the structural information from color images. In the depth map SR
branch, this network extracts the features through dense connection, channel multi-scale,
and channel attention. The channel attention mechanism can better restore the fine structure
of depth maps by allocating channel weights. The experimental results show that our CA-
DBMNet can effectively reconstruct the high-frequency structure of depthmaps and suppress
the texture artifacts which is reported better performance compared with state-of-the-art
approaches.

In the future, we will consider the extraction of high-frequency structures from high-
resolution color images and further avoid the issue of texture copying using advanced network
modules. We could also consider adding deep supervision to further solve the gradient van-
ishing problem while the network layers are deep.

Appendix A

The following abbreviations are used in this paper.

Table 6 The abbreviations and
corresponding description

Name Description

CA channel attention module

CA-DBMNet channel attention based dual branch
multi-scale network

CMS channel multi-scale module

CNN convolution neural network

DRFF dense residual feature fusion module

RMSE root mean squared error

SR super-resolution
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