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Abstract

In this work, an efficient and real-time person re-identification system based on an affordable
hybrid framework was presented. The proposed pipeline consisting of human detecting,
tracking and extracting features was developed based on lightweight deep neural models so
that they could be computationally accelerated on limited hardware resources devices. A
comprehensive and substantial dataset has been established aiming to facilitate the training
and evaluation of a surveillance system implemented to monitor individuals in an indoor
environment. The proposed processing pipeline was implemented on both low-cost devices
as Nvidia Jetson Nano and Google Coral. The experimental results indicated that the system
could achieve real-time performance with up to 29 FPS and 0.96 mAP for the person detection
algorithm task via edge devices, whereas a comparable accuracy was reached on the proposed
feature extraction model with 0.85 mAP.
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1 Introduction

Smart surveillance system which provides automatic analysis of streaming videos without
human interference is getting more and more demanding in recent years [1]. In a traditional
system, raw video data recorded by cameras is transmitted to a security center and manually
monitored by officers. This method is not only prone to human errors but also demands
tremendous human and financial resources. With the development in the technology of both
hardware and software, an end-to-end camera system now can self-analyze information from
video data and raise advanced actions automatically such as security warnings, detecting
anomalous behaviors, and attendance tracking.

Person re-identification (person re-ID) is a novel research field in automated monitoring
systems. The operation of acknowledgment of an individual from different video frames
captured by multiple cameras is the objective of the person re-ID algorithm. This technique
can be necessary for many computer vision-based applications, especially those that involve
tracking entities across a system composed of multiple cameras. Most existing end-to-end
personre-ID systems are deployed via two main approaches: cloud-based and edge-based [2].
The former mainly relies on a cloud server resource capable of applying complex algorithms,
resulting in better recognition accuracy. Transmitting a large amount of raw video data from
cameras to the cloud, however, causes extra workload on the network’s bandwidth. This
usually results in the degradation of the system’s real-time performance. The latter approach,
that being edge-based deployment, requires an expensive embedded device that is deployed
on-site, in order to implement complex deep learning models (models such as the Jetson
Nano AGX or the Jetson TX2) [2—4]. This leads to challenges in scaling smart surveillance
systems across a broad area for low-budget users, such as shophouses, restaurants, and small
buildings. Given the aforementioned advantages and disadvantages of cloud-based and edge-
based deployment, this research paper henceforth proposes a hybrid edge-cloud person re-ID
framework based on two low-cost embedded platforms, Jetson Nano and Google Coral [5].

Notable achievements have been recently made on person re-ID methods for edge devices.
For instance, a mixed precision approach using lightweight models (models such as ResNet50
and MobileNet-v2) was implemented on an NVIDIA AGX Xavier embedded system, in order
to form an end-to-end re-ID approach [6]. Another example is a combined framework of
embedded devices, fog processing, and a cloud server based on a segmented binarized ResNet
model, which was proposed in the previous paper [7]. Lastly, the “deep squared similarity
learning method”, as proposed in [8] involved learning similarities between different pairs of
human images. That being said, the issues regarding pragmatic edge-based implementation
could not be solved by the above-mentioned works.

Our primary research contribution involves developing a highly scalable, lightweight
end-to-end re-identification framework. Specifically designed for deployment on resource-
constrained devices, such as the Jetson Nano, our framework emphasizes efficiency without
compromising performance. We introduced a tailored lightweight model, showcasing com-
mendable results with significantly reduced latency. Additionally, we proposed our dataset,
the BKREID dataset, which comprises 23,160 indoor images capturing 37 individuals.

The structure of our manuscript consists of five sections. Section 2 gives the informa-
tion on related works. Our approach is presented in Section 3. Detailed information about
the experiments can be found in Section 4. The final section, Section 5, summarizes this
manuscript.
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2 Related work
2.1 Re-identification systems

A person re-identification system is a model used to identify people if they leave a camera’s
line-of-sight, and then re-appear in another camera’s line-of-sight. It is also used for setups that
use multiple cameras at the same time to track specific entities. While being constantly utilized
in security, traffic, or commercial centers, a person re-ID system faces many challenges, such
as differences in lighting, viewing angles, environments, outfits worn by entities, etc. There
is also the complexity involved in deploying the person re-ID system on multiple devices, as
well as the cost of deploying the said system.

The End-to-end person re-identification [2] provides a method of re-identifying people
on the video surveillance system that is actually deployed on the cloud system and edge
devices, but the model is deployed mostly on devices. To achieve optimal performance,
addressing such marginalization necessitates a robust system, which can result in high costs
and challenges when attempting to deploy it across various devices and locations.

To solve this problem, we have proposed cheaper, more suitable models that can be
mounted more easily on edge devices. These models will have the ability to identify people
more quickly and efficiently in real-time.

2.2 Background
2.2.1 Object detection

This computer vision task finds applications in various fields like transportation, security,
surveillance, and robotics. In recent years, object detection tasks have experienced significant
performance improvements, primarily by the appearance of deep learning. In this situation,
Regions with CNN Features (R-CNN) [9], were among the pioneer studies. This approach
used a CNN along with a region proposal algorithm. By combining these components, the
system could accurately identify and categorize objects within the image data. Later, the
authors extended R-CNN to Fast R-CNN [10], and Faster R-CNN [11], which improved the
speed and accuracy of the original method by sharing computation across region proposals,
and by introducing a region proposal network. Though achieving great accuracy, this type of
two-staged approach is often considered slow and hard to implement in real-time. On the other
hand, You Only Look Once (YOLO) [12] detects objects in a single forward pass through a
single network. In this situation, images are partitioned into a grid of cells, from which the
model then predicts objectness scores, class probabilities, and bounding box coordinates, for
each cell. While fast and efficient, there are possibilities where said method struggles with
small objects and densely-packed scenes. In addition, there are also many other approaches
and variations that have been suggested for object detection, such as RetinaNet [13], which
introduces a focal loss function that down-weights the contribution of easy examples and
focuses on hard examples during training. CenterNet [14] simplifies the object detection
pipeline by predicting their center points and sizes, rather than using anchor boxes or region
proposals. Transformer-based methods were also introduced, such as DETR [15], in which
a CNN backbone is leveraged to get features from an image. Multiple transformer blocks
are then applied to the sequence of features to get a richer representation, before finally
outputting a set of object classes and bounding boxes.
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2.2.2 Object tracking

While object detection only detects objects in independent frames without providing any
information about the objects’ trajectories or identities over time, object tracking aims to
follow an object’s movements and maintain its identity, even when the object undergoes
changes in appearance or motion. Various methods for object tracking have been developed;
a traditional example would be Multiple Hypothesis Tracking (MHT) [16], which creates
multiple tracks for each object, and uses a data association algorithm to select the most likely
track at each time step.

Recently, great successes in deep learning and object detection have enabled tracking-by-
detection methods to gain more and more popularity. As an example, SORT (Simple Online
and Realtime Tracking) [17] provides a lightweight, simple object tracking algorithm that
combines object detection and motion models. This approach has a Kalman filter to infer the
state of each object in each frame based on the previous state, and the Hungarian algorithm
is then used to associate the predicted states with the detected objects of the current frame.
DeepSORT [18] extends on SORT by introducing a Siamese network that is pre-trained to
differentiate between people, adding visual information to the process of association, and
showing significant improvement in scenarios where objects are moving at high speeds.
Other appearance-based methods were also widely used, such as a correlation filter [19,
20], which trains a filter that maximizes the correlation between the object template and the
image patches. Another method is the color histogram-based tracker [21, 22], which uses
color histograms to represent the appearance of objects and to track their movements.

2.2.3 Deep metric learning

This technique trains a neural network to learn a distance metric between data points. The
objective is to discover a data representation so that related data points are mapped closer to
the learned space. This objective is achieved through the optimization of a loss function, which
encourages the network to minimize the gap between similar samples while maximizing the
gap between dissimilar samples. The learned representation can subsequently be utilized for
other tasks like clustering [23] or classification [24] tasks. Deep metric learning has shown
promising results in many real-life applications like image retrieval [25] and face recognition.

2.2.4 Convert models

a) TensorRT conversion

NVIDIA has created TensorRT, an SDK for deep learning inference, which has the capa-
bility to import trained models from state-of-the-art deep learning frameworks [26]. It may
also generate efficient runtime engines that can be easily deployed in embedded systems

TensorRT performs optimization of the neural network graph through various transfor-
mations that enhance throughput and minimize latency during the inference process. These
transformations within the graph improve operation speed and efficiency without altering
the graphs’ underlying computation. The process of INT8 and FP16 quantization technique
and optimized runtime engine generation in TensorRT significantly accelerate the inference
speed of neural networks up to 8 times.

For embedded cameras with constrained resources, utilizing TensorRT helps in the pro-
cessing of large amounts of video data efficiently and accurately, while keeping latency and
memory usage low throughout.
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b) Tflite conversion

TensorFlow Lite (TFLite) is a lightweight framework for building machine learning appli-
cations that can run on mobile and embedded devices. TFLite is designed to be fast, efficient,
and easy to use, making it an ideal choice for developers who want to deploy machine learn-
ing models on edge devices [27]. One significant advantage of using TFLite on edge devices
is the ability to leverage the power of edge TPUs (Tensor Processing Units). Edge TPUs are
custom-designed chips optimized for running machine learning workloads on edge devices.
By using TFLite on edge TPUs, developers can achieve significant performance improve-
ments, lower latency, and lower power consumption, making it possible to build real-time,
low-power applications including image recognition or object detection. Overall, TFLite pro-
vides a powerful and flexible framework for building machine learning applications that can
run on the edge, with the added advantage of being able to leverage the power of edge TPUs.

3 Proposed framework
3.1 Overview

This research presents a comprehensive system capable of monitoring entities that enter
or exit a building or room as demonstrated in Fig. 1. Our suggested system consists of three
components: two edge devices and one server. One of the edge devices will be positioned at
the entrance of the building or room; the other will be positioned at the exit. Said edge devices
will detect humans and provide the bounding box and frame information to the server. Next,
the server runs tracking and feature extraction algorithms. Each individual entity’s extracted
features (as detected by the entrance device) will then be saved in a database. The features
of individuals captured by the exit device will be matched with those present in the database
by estimating the distance between each pair of feature vectors. Hence, we will be able to
re-identify these individuals as long as they have already been spotted using the entrance
device.

( Edge Devices f Server \

Frames,
Object Bounding boxes Store (features)
Detection Database
Tracking EFteatutll'e Query
Xtraction (features)
Distance
Frames, Estimation
Object Bounding boxes
|
Detection
\_ - \\ OW
ID

Fig. 1 The proposed re-identification system has an Edge Devices block for object detection and a Server
block for person tracking and feature extraction
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3.2 Modules on edge devices
3.2.1 Object detection

As discussed above, YOLO is a one-stage object detector well-known for its efficiency and
accuracy. For the purpose of our experiment, with our detection module’s parameters to be
accurate while also as fast as possible, so we chose the stripped-down version of YOLOVS
being YOLOv5n. YOLOv5n is designed to be lightweight by incorporating fewer convolu-
tional layers and anchor boxes compared to the base version. This reduction in components
leads to a decrease in parameters and FLOPS count, thus more efficient. This is particularly
important as our detection module is intended for use on edge devices, where computational
resources are limited. We also tested the model against several bigger versions and observed
no significant differences in terms of performance on our datasets, so we chose YOLOv5n
due to its ease of deployment and high efficiency. Our research took advantage by using the
pre-trained weights of a previous study without the need for fine-tuning, as this model had
already been trained on COCO dataset and was able to recognize the “person” class [28],
which is the primary object of interest in our device’s application.

Despite the model’s lightweight characteristics, our testing showed that it was unable
to achieve real-time performance on devices with limited resources when used with raw
PyTorch. This was due to a combination of factors, including insufficient computing power
and a computing graph that was not optimized for the hardware. Thus, it is necessary to
transform the model into an optimized format tailored to each device, specifically into the
TensorRT format for Jetson Nano devices, and the TFLite format for Raspberry Pi devices
(along with Google Coral). YOLOv5n could be easily converted to the ONNX format, and
then to the TensorRT format. Parameters of the model are quantized down to 16-bit floating
point, which is a good choice for the speed-accuracy trade-off. In the case of the TFLite
format conversion, INT8 weights were used as the TPU only supports INT8 inference.

3.3 Modules on server
3.3.1 Person tracking

After detection, objects must be tracked in order to maintain their identities across frames.
For this part, we researched several methods and chose the SORT algorithm because of
its efficiency and simplicity. This algorithm can track multiple objects simultaneously and
assign them unique IDs, even when objects are close to each other, or when occlusions
and temporary disappearances occur. This makes the SORT algorithm highly suitable for
tracking in crowded environments, with many individuals in close proximity. In addition, the
algorithm is very fast, owing to it using only simple math calculations. This is particularly
important for our purposes, as our tracking module is placed on the server; the server needs
to be able to handle tracking simultaneously for multiple camera streams from edge devices

3.3.2 Feature extraction

The obtained bounding box information from previous parts will be used to crop regions of
interest from images. After that, the features of each region will be extracted using a deep
learning model. We proposed a lightweight, customized model that obtains good results in
relative to a reduced latency.
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Backbone We proposed a customized backbone based on MobileNetV2 [29] due to its low
computational cost and lightweight characteristics. Before feeding the input into the model,
we first resize it to 128 x 64. Because of the small resolutions, only a portion of MobileNetV2
is required. Our backbone’s output is the expanding layer of the 12/ block in the original
model. A global max pooling layer followed by a 224-dimensional fully connected layer are
added to the backbone. In addition, a dropout layer is added after the global max pooling
layer to address any overfitting issues.

Loss function For our objective loss function, we utilized the Hard Triplet Loss [30]. In
a batch, the loss motivates the maximum distance between a pair of embeddings from the
same class to be less than the minimum distance between a negative pair plus the margin
constant. When constructing the triplets for calculating the loss, the hardest negative and
positive samples in the batch were selected.

3.3.3 Distance estimation

After extracting the features of individuals from exit devices, we will then compare them
with features present in the database. A distance will be calculated between each pair of
feature vectors to determine if they are from the same individual, using cosine similarity as
our distance metric.

4 Experiment
4.1 Environmental setup

Our experiments employed the Google Colab cloud environment and a computer that had
an AMD Ryzen 5 5600H CPU equipped with NVIDIA GeForce RTX 3050 Ti 4GB GPU
for the training of our models. Each camera node in the system is either a budget-friendly
NVIDIA Jetson Nano device or a Google Coral device, that is specifically made for individual
detection. However, only simple, computer-based, lightweight devices were used for the final
experimental results presented in this work. As for deep learning frameworks, we utilized
TensorFlow and TensorRT (Table 1).

4.2 Hyper-parameters and training settings

Object Detection: Our experiment utilized the published weights of YOLOv5n trained on
the COCO datasets, which already contain the class “person”. Our network required the
images to be resized to the dimension of 416 x 416 before they are processed.

Table 1 Hardware setup on the server and at the edge

Jetson Nano Raspberry Pi + Google Coral ~ Server
CPU quad-core ARM®Cortex®-A57  Broadcom BCM2711 AMD Ryzen 5 5600H
GPU 128-core Maxwell™ None NVIDIA GeForce RTX
3050 Ti 4GB
Memory 4GB 64-bit LPDDR4 4GB LPDDR4 SDRAM 8GB
TPU None Google Coral TPU None
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Feature extraction The hyper-parameters for this model are summarized in Table 2 First, we
resized the input to 128 x 64. Second, the resized tensor will be divided by 255 to normalize
the input from zero to one. Then, we chose a batch size of 64. In a training step, we would
choose a person in the dataset, and then take at most half of the batch size of the samples
from that person. The remaining samples in the batch will be taken randomly from other
people. An epoch would end when we iterate through all of the people in the training set. We
choose the margin constant for the Hard Triplet Loss [30] to be 0.2. Afterwards, our model
would be trained for 500 epochs, and the model that obtained the highest top-1 accuracy on
the validation set was considered the final model.

4.3 Datasets
4.3.1 Penn-Fudan

Though we decided not to fine-tune our detection model, we still needed a dataset in order
to benchmark our model’s performance. For this purpose, we chose the public Penn-Fudan
Dataset, published in accordance with [31]. The dataset contains images, bounding boxes,
and segmentation masks of people taken around campuses and urban streets. The number
of pedestrians per image ranges from 1 to a maximum of 8, with 170 images in total, 345
labeled persons, and 423 bounding boxes.

4.3.2 CUHKO3

This dataset has 14,097 photographs of 1,467 individuals [32]. Six campus cameras were
used for the image collection, with two cameras for each identity. In this dataset, there are
two categories of bounding box annotations: manual labeling, and automatic labeling using a
detector. This dataset also provides 20 train/test partitions, where 100 identities are reserved
for testing, and the remaining samples are considered training samples. Our approach only
investigates the manually-labeled part for training, evaluation, and comparison.

4.3.3 BKREID

Our proposed dataset’s name is BKREID; it is used to develop person re-identification models,
and to contribute to improving the system’s efficiency. This dataset was taken indoors with
stable light, so it will not be affected by weather factors and outside light, compared to the
CUHKO3 [32] dataset (that was taken outdoors).

The proposed dataset consists of four rounds of videos, each round consisting of two
videos corresponding to two cameras placed at two locations: the entrance and the exit. The
first camera captures the image of individuals entering at the entrance; this camera is used
primarily to collect images. The second camera captures the image of individuals leaving
at the exit; this camera is used primarily to determine their identities. The dataset contains
23,160 images of 37 people, and is carefully labeled with the aid of an object detector. The
dataset is used for training and evaluation purposes (Fig. 2).

Table 2 Hyperparameters for

. Input size Batch size Margin Number of epochs
feature extraction model

128 x 64 64 0.2 500
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4.4 Experimental results
4.4.1 Results for detection model

The performance of the detection module on the edge devices via two scenarios was inves-
tigated: first, running the module in raw PyTorch, and second, running the module after
converting it to TensorRT/TFLite. The model processed all the images to produce the initial
output and then applied non-maximum suppression (NMS) to eliminate overlapping boxes
and generate the ultimate bounding box predictions. Metrics were then calculated after NMS.
Both the NMS intersection-over-union ratio (IoU) and confidence threshold were set to 0.45
and 0.25, respectively, in both scenarios. That means only boxes with a confidence score
equal to or greater than 0.25 were considered, and two boxes were called overlapping if their
IoU was above or equal to 0.45.

Tables 3 presented the AP@0.5 and mAP metrics of three different lightweight detection
models evaluated on two datasets and their processing time, measured in FPS. After convert-
ing the models to optimized formats, the results indicated that the models’ inference speed

Fig.2 Images from BKREID Dataset
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Table 3 Results of Detection Module before and after conversion. The numbers before “/ are the results
before conversion. The numbers after “/” are the results after conversion

Model Dataset Jetson Nano Raspberry Pi + Coral TPU
AP@0.5 mAP FPS AP@0.5 mAP FPS
YOLOv5n Penn-Fudan  0.956/0.956  0.963/0.962  13/50  0.948/0.942  0.953/0.952  4/23

BKREID 0.962/0.958  0.965/0.962  14/50  0.917/0.894  0.920/0.897  3/22
YOLOvV7-tiny  Penn-Fudan  0.975/0.973  0.978/0.977  9/31 - - -

BKREID 0.979/0.977  0.981/0.980  9/31 - - -
YOLOv8n Penn-Fudan  0.967/0.967 0.972/0.971 11/40 - - -

BKREID 0.975/0.972  0.977/0.975 11/40 - - -

increased by approximately 4-5 times on the Jetson Nano and Raspberry Pi with Google Coral
TPU. The performance degradation was minimal. YOLOv5n on the Jetson Nano performed
well at around 0.96 mAP while delivering real-time speed. As for the Raspberry Pi (with
Google Coral), there was a marginal decline in the mAP due to the weight quantization from
32-bit floating-point to 8-bit integer. The impact, however, remained minimal. The results
showed that converting a model can significantly increase speed without sacrificing accuracy.

We also see that the detection accuracy across three YOLO variants did not differ much and
should not significantly affect the system result (some comparisons of the detected bounding
boxes can be seen in Fig. 3). Tables 4 provided info about each model’s memory cost and

Fig.3 Detected bounding boxes from three models. Green: YOLOVS, Red: YOLOvV7, Blue: YOLOVS
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Table4 Memory usage and computational complexity of different lightweight detection models

Model GPU Memory (MB) #Params (M) FLOPS (B)
YOLOV5n 170 1.9 1.9
YOLOV7-tiny 189 6.2 5.8
YOLOv8n 172 32 3.7

computational complexity, and YOLOV5n still appeared most efficient. That is why we chose
YOLOV5n to be our detection module.

4.4.2 Results for re-identification model

Table 5 shows the experimental results with publicly recognized CUHKO3 and proposed
BKREID datasets. In addition, two different versions of our model were investigated. The
first model is a native Tensorflow model, and the second one is a TensorRT-converted model.
There was no difference in accuracy or parameter count between the two versions of
our models. However, the converted model exhibited superior speed and memory utilization
performance. In addition, our proposed model has shown results that are on par with state-
of-the-art models in the CUHKO03 dataset while also delivering superior speed and memory
consumption efficiency compared to these models. Our model’s exceptionally lightweight
and fast characteristics made it highly suitable for our proposed system. As the number
of cameras increased, this model did not significantly burden the system when executed
multiple times. Even the author of the DiP model [34] does not disclose the number of
parameters; this state-of-the-art model employs a vision transformer as its backbone, with
the base version having 86 million parameters. Thus, our model exhibited a weight reduction
of over a hundredfold compared to this model. Moreover, in terms of frames per second (FPS),
the performance of our converted model showcased a remarkable enhancement, exhibiting
a speed that is more than 9 times faster post-conversion. This speed advantage extended to
over 150 times compared to the lightMBN model and nearly 35 times compared to the FPB
model. Additionally, our approach also produced decent results on the BKREID dataset.

4.4.3 Results for system

In our work, we have tested with two-person re-identification scenarios. The first scenario
consisted of two Jetson Nano devices and a server, while the second scenario consisted of
a Jetson Nano device, a Google Coral device, and a server. At the time of our testing, the
results show that both test scenarios are good and stable. The system speed averages around

Table 5 Results of feature extraction models on the CUHKO03 and BKREID datasets before and after conver-
sion

Model GPU Memory  #Params FPS CUHKO03 BKREID
(MB) M) (mAP) (mAP)

Ours (Before conversion) 924 0.63 199 0.850 0.734

Ours (After conversion) 390 0.63 1810 0.850 0.734

LightMBN[33] 1120 9.15 12 0.851 -

DiP [34] (ViT [35] backbone)  non-disclosed  non-disclosed non-disclosed 0.856 -

FPBI[36] 2864 27.08 52 0.838 -
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Fig.4 The operation of our system

13-15 FPS. The first scenario had a higher accuracy of person re-id than the second scenario.
The discrepancy in accuracy can be attributed to the fact that the first scenario’s model only
required a conversion from FP32 to FP16 datatype, whereas the second system’s model
required a conversion from FP32 to INTS8 datatype. The operation of our system may be
observed in Fig. 4.

5 Conclusion

Our manuscript investigates and proposes an end-to-end person re-identification approach
for resource-constrained devices. This approach incorporated object detection, tracking, and
feature extraction. In addition, a novel architecture for the feature extraction model is also
presented, as well as a new dataset, BKREID. Our proposed model achieved both fast infer-
ence speed and accurate results on evaluated datasets. TensorRT and TFLite were utilized
to optimize our models, which can now operate efficiently on edge devices, such as Jetson
Nanos. We tested our entire pipeline and its individual modules on numerous datasets and
obtained satisfactory results.

A possible direction for future improvement is to use quantization and to efficiently opti-
mize each model so that all of the models could be implemented on edge devices without
the help of an additional server. Our system is scalable and can be investigated with various
real-life applications, like supervision in schools, supermarkets, or stores.
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