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Abstract
Deep convolutional neural networks (CNNs) have great improvements for single image super
resolution (SISR). However, most of the existing SISR pre-training models can only recon-
struct low-resolution (LR) images in a single image, and their upsamling factors cannot be
non-integers, which limits their application in practical scenarios. In this letter, we propose a
multi-scale cross-fusion network (MCNet) to accomplish the super-resolution task of images
at arbitrary scale. On the one hand, the designed scale-wise module (SWM) combine the
scale information and pixel features to fullly improve the representation ability of arbitrary-
scale images. On the other hand, we construct a multi-scale cross-fusion module (MSCF)
to enrich spatial information and remove redundant noise, which uses deep feature maps
of different sizes for interactive learning. A large number of experiments on four bench-
mark datasets show that the proposed method can obtain better super-resolution results than
existing arbitrary scale methods in both quantitative evaluation and visual comparison.
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1 Introduction

Image super resolution is a basic image processing technology, which aims to generate high
resolution (HR) images on the basis of degraded low resolution (LR) images. In recent years,
the single image super resolution (SISR)method based ondeep convolutional neural networks
(CNNs) has been significantly developed compared with the conventional SISRmodels [1–3,
3–14], and has been widely applied in various fields such as medical images [15, 16] and
satellite imaging [17]. However, most existing SISR pre-training models can only perform
single image restoration for LR images, which consumes additional computer resources.
In addition, the fact that upsampling factors can only be integers limits its application in
real-world scenarios.

In order to overcome the above problems, the up-sampling network is redesigned. Lim et
al. [18] developed a multi-scale deep super resolution architecture (MDSR), which uses three
different upsampling branches (×2, ×3, ×4) to generate HR images of different sizes from
degraded images in the samemodel. In order to extend the scale factor to non-integer domains,
Hu et al. [19] proposed a new advanced method for image reconstruction at arbitrary scale,
called magnification-arbitrary network (Meta-SR), which uses several fully connected layers
to predict the corresponding pixel values in HR images. This new network is a pioneering
work in super resolution of arbitrary scale images. By using local implicit image function
(LIIF) to learn the continuous representation ofHR images,Chen et al. [20] achieved attractive
SR results, which not only eliminated checkerboard artifacts in MetaSR, but also generated
images with higher (×6, ×8) resolution, while maintaining considerable visual perception.
Lee et al. [21] use two-dimensional (2D) Fourier space to form a local texture estimator
(LTE). In terms of backbone network, Wang et al. [22] developed dynamic scale-wise plug-
in module (ArbSR) based on the existing SISR network to complete the task of image
super resolution at arbitrary scale. Compared with the upsampling strategy LIIF, this specific
neural implicit function can capture more image details. Li et al. [23] propose an enhanced
dual branches network (EDBNet), which mix up pixel embedding and scale information to
generate arbitrary-scale SR images in the upsampling network.

Compared to the traditional single scale upsampling module, the above arbitrary scale
upsampling network method has better adaptability and flexibility. There is no denying that
ArbSR does improve the backbone’s representation ability to encode arbitrary-scale images
with plug-and-play modules. However, it has a large number of parameters and image pro-
cessing is slow. In addition, othermethods have also been adjusted in the up-samplingmodule,
but we think it can be further improved.

In this letter, we design a novel multi-scale cross-fusion network (MCNet), which has an
excellent performance in arbitrary scale reconstruction. Firstly, the scale-wisemodule (SWM)
combines the scale information and pixel features to effectively improve the representation
capability of the backbonenetwork for arbitrary scale images.Moreover,wedesign apowerful
multi-scale cross-fusion module (MSCF) after the backbone network to enrich the spatial
information and remove the redundant noise from the deep features. In our MSCF, deep
feature maps in different sizes are used to conduct interactive learning from each other. The
experiments with four benchmark datasets show the highly advantageous performance of our
MCNet method.

The main contributions of this letter focus on the following aspects: 1)We propose a novel
multi-scale cross-fusion network (MCNet), which not only removes the blurring artifacts for
efficient and accurate image reconstruction but also delivers the most advanced results com-
pared with other SRmethods. 2) To see further improvement in feature representation ability,
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we use the scale-wisemodule (SWM) to combine scale informationwith pixel features, effec-
tively fusing two independent variables together. 3)We design a multi-scale cross-fusion
module (MSCF) after the backbone network, which consists of two basic components: a)
multi-downsampling convolution layer (MDConv) uses convolutional layers of different ker-
nel sizes to generate smaller feature maps, and b) dual-spatial mask (DSM) is a dual spatial
mask module that learns interactive information from the features with different scales.

2 Proposedmethod

2.1 Outline

As shown in Fig.1, our MCNet framework mainly consists of three parts: 1) feature extrac-
tion network, 2) multi-scale cross-fusion module (MSCF) and 3) arbitrary-scale upsampling
network.

First, the extracted features Fd is obtained by performing a 3× 3 convolutional layer and
an existing SISR backbone network on the input LR image; i.e.,

Fd = Eφ(Conv3×3(X)) (1)

where Eφ denotes the backbone network with multiple stacked residual blocks [18] and
novel SWM modules. We will discuss the new module in more depth in the next section.
The second part of the MCNet framwork is our proposed MSCF, which makes a significant
contribution to generating clean and abundant features Frid given by

Frid = Q(Fd) (2)

where Q(·) will be described in more detail in a later section.
In the upsampling network, we incorporate scale information for image reconstruction

by adding a new SGU module to another branch, which can accomplish a tailored image
restoration task for our SR model. After the enrichment of features, Frid and its mapping
coordinate C in HR image space are used to facilitate the next stage on image upsampling
network. Similar to the LTE [21], an HR image Y is generated through a continuous image
upsampling module with local texture estimator Glte; i.e.,

Y =
3∑

i=1

Wi � Glte(Fi ,Ci ) (3)

where i is the index of an offset latent code around Frid and Wi is the corresponding weight
of each coordinate.
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Fig. 1 The network structure of our proposedMCNet, which contains threemain parts for: 1) feature extraction
network, 2) cross-fusion module and 3) image reconstruction network
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Consider a set of (I LRi , I H R
i )Ni that contains N LR − HR pairs, where I LRi is an input

LR image and I H R
i stands for the corresponding ground-truth(GT) image. We choose the L1

loss function to optimize our network during training.

�∗ = argmin
�

1

N

N∑

i=1

‖�(I LRi ) − I H R
i ‖1 (4)

where � denotes the set of learning parameters in our proposed model.

2.2 Scale-Wise Module (SWM)

Inspired by the idea of multi-modal [24], a great number of researches have taken full advan-
tage of multimodal fusion algorithm to combine two independent variables. For example, the
study of reading image information is to input two independent variables, such as image and
text, into the backbone network to form two interleaving branches so that the corresponding
information can communicate with each other. Among them, the researchers choose to design
a fusion module between the two branches, which can perform multi-modal learning on two
completely different variables to establish a close relationship (Fig. 2).

On the basis of the prior information above,we design a plug and playmodule, called scale-
wise module, after each residual block of the EDSR [18] backbone network. Compared with
ArbSR, this module requires less computation and fewer parameters, which can effectively
combine the scale information with the image pixel features and fully improve the ability of
backbone network to represent multi-scale images.

As shown in Fig. 3, we assume that F represents the pixel feature of the image and S is
arbitrary-scale information, so that the working principle of the intelligent scale module can
be expressed as

WFS = δs [ f1(F) ⊗ f2(S)] (5)

where δs is the sigmoid activation function, fk(k = 1, 2, 3) represents different 1×1 con-
volution layers, and ⊗ denotes the matrix multiplication algorithm. WFS is the pixel-scale
weight matrix, which represents the result of the activation function mapping from 0 to 1
after the communication of image pixel features and scale information. This process is called
pixel-scale attention manipulation. Then, the attention matrix WFS is dotted with F through
the convolution layer, passing more useful spatial information to the next residual block of
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Fig. 2 Architecture of the multi-scale cross-fusion module (MSCF)
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Fig. 3 Architecture of scale-wise
module(SWM)
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the EDSR [18].
FS = WFS · f3(F) + f3(F) (6)

It should be noted that the attention matrix WFS ∈ RB×1×HW and the pixel feature matrix
f3(F) ∈ RB×C×HW , so the pixel-scale attention operations are spatial attention mechanisms
that perform the same operations on all channel dimensions. TheweightmatrixWFS , which is
obtained by multiplying pixels and scale feature matrix, can be adapted to scale information
to further discriminate the whole image space. Finally, we apply the reshape function to
transform the tensor FS with a shape of B × C × HW into B × C × H × W . This tensor
will serve as the input for the next residual block in the encoder.

2.3 Multi-Scale Cross-Fusionmodule (MSCF)

To further improve the quality of the reconstruction images in backbone network, we design
a powerful module consisting of multi-downsampling convolutional architecture (MDConv)
and dual spatial mask (DSM). Referring in Fig. 2, in MDConv module, a set of convolutional
layers are conducted to downsample the deep features Fd delivered by the SR backbone
network; that is,

Fk
td = Conv ↓k (Fk

d ) (7)

where k(k = 1
8 ,

1
4 ,

1
2 , 1) represents the downsampling factor. Ftd is the downsampled feature

with a specific scale, which contains more plentiful global features of images. By performing
the interpolation in space and concatenation in channel, the generated feature Fk

td is used to
redefine the new feature map Fk

cd . Note that we use bilinear interpolation to make feature
maps of different scales the same size. MDConv provides many feature maps with different
receptive fields and structural information for the next step. Then, the multi-scale features
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Fcd are fed into our MSCF sub-module dual spatial mask (DSM) in succession through
performing the communication as follows:

D
1
4 ,C

1
4 = DSM1(F

1
4
cd , F

1
8
d ) (8)

D
1
2 ,C

1
2 = DSM2(F

1
2
cd ,C

1
4 )

D1 = DSM3(F
1
cd ,C

1
2 )

Fod = Coi(D
1
4 , D

1
2 , D1) (9)

where Dk and Ck are the corresponding outputs by the DSMmodule, and Coi represents the
corresponding operation of interpolation and concatenation. The operator DSMi (·) denotes
our dual spatial mask (DSM), which learns attention weights from two feature maps with
different scales and its detailed structure is shown as follows:

F = F · SM(C ↑2) + F

C = C · SM(F) + C (10)

where F and C denote two different inputs of the mask module, ↑2 is the operation for ×2
upsampling. SM(·) is the spatial gate mechanism. Note that, two inputs of different sizes are
adjusted to the same shape through the processing of our DSM. Dk is served as a part of the
final output fromMSCF, whileCk is used for the interactive learning in the next sub-module.
They are utilized to learn additional textures and structures from each other.

3 Experiment results

3.1 Implementation details

As same as the setting in EDSR [18], we train our MCNet with DIV2K datasets. For testing,
our MCNet are evaluated by using four standard benchmark datasets: Set5 [7], Set14 [25],
B100 [26] and Urban100 [27]. During training, 16 degraded patches of size 48*48 are used
as a batch input. For upsampling part, we sample random scale factors in uniform distribution
U(1, 4). Each example in a batch has different upsampling target. Adam [28] optimizer with
β1 = 0.9, β2 = 0.999 is utility in theMCNet for 1000 epochs. The learning rate is initialized
to 1 × 10−4 and decreased by factor 0.5 at [200, 400, 600, 800].

3.2 Performance evaluation

Six SOTA SR networks are used to compare with our proposed MCNet method, including
EDSR [18], Meta-SR [19], ArbSR [22], LIIF [20], LTE [21] and EDBNet [23]. Table 1 dis-
plays the Peak Signal-to-Noise Ratio (PSNR) values for four benchmark datasets at upscaling
factors ranging from ×2 to ×8. It is important to note that EDSR [23] belongs to the cat-
egory of single-scale image super-resolution models, and we only conducted training and
testing on standard scales of ×2, ×3 and ×4. We can find that our proposed MCNet sig-
nificantly outperforms EDBNet [23] on the urban100 dataset. Specifically, compared with
the EDBNet [23] model and our MCNet method, the PSNR results show improvements at
medium scales of our model. Furthermore, we also show a visual comparison in Fig. 4. For
the challenging details in “img044” and “img054”, most previous work lost some crucial
details when restoring the images. On the contrary, our MCNet achieves better results by
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Table 1 Quantitative Results of Sate-of-The-Art Arbitrary-Scale SR Methods

Method Scales EDSR
[18]

Meta-SR
[19]

ArbSR
[22]

LIIF
[20]

LTE
[21]

EDBNet
[23]

MCNet

Set5 [7] ×2 38.05 37.97 38.04 37.97 38.04 38.07 38.16

×3 34.39 34.37 34.43 34.41 34.46 34.53 34.61

×4 32.13 32.04 32.07 32.24 32.25 32.29 32.40

×6 − 28.68 28.70 28.94 28.96 28.98 29.05

×8 − 26.70 26.72 26.97 27.06 27.07 27.16

Set14 [25] ×2 33.60 33.60 33.68 33.61 33.65 33.70 33.79

×3 30.32 30.31 30.35 30.33 30.37 30.43 30.51

×4 28.58 28.53 28.58 28.61 28.67 28.67 28.73

×6 − 26.31 26.34 26.48 26.50 26.52 26.60

×8 − 24.79 24.79 24.97 24.97 25.00 25.07

BSD100 [26] ×2 32.19 32.17 32.22 32.17 32.19 32.20 32.32

×3 29.09 29.09 29.13 29.09 29.12 29.15 29.24

×4 27.57 27.56 27.59 27.59 27.60 27.62 27.71

×6 − 25.76 25.79 25.84 25.85 25.87 25.93

×8 − 24.72 24.73 24.81 24.82 24.83 24.89

Urban100 [27] ×2 32.14 32.11 32.24 32.15 32.24 32.34 32.46

×3 28.17 28.12 28.24 28.22 28.30 28.36 28.43

×4 26.06 25.95 26.05 26.14 26.19 26.27 26.35

×6 − 23.59 23.69 23.77 23.83 23.87 23.96

×8 − 22.29 22.37 22.45 22.53 22.55 22.64

Boldface Indicates the Best (PSNR (dB))

img_092(×3.5)

img_093(×4)

HR LR

HR LR

Bilinear Bicubic

Meta-SR LIIF LTE Ours

Meta-SR LIIF LTE Ours

Bilinear Bicubic

Fig. 4 Qualitative comparison of different methods on Urban100 datasets
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Table 2 Memory usage and time
consumption compared with
other arbitray-scale SR models
for ×2 upsampling

Query Method Params. Mem.(MiB) Time(ms)

262144 MetaSR 1.7M 2369 81.8

(512 × 512) LIIF 1.6M 2257 177.5

LTE 1.7M 2191 238.4

EDBNet 1.8M 2219 245.3

MCNet 2.0M 2293 263.7

recovering more detailed components. In addition, as shown the cost consumption of four
arbitrary-scale image super-resolution models in Table 2, we can find that the MCNet model
only increases a little additional computation resources. In a word, compared with other arbi-
trary scale super-resolution methods, our model has the most advanced image reconstruction
performance although it adds extra computational cost.

3.3 Ablation study

To confirm the effectiveness of the scale-wise module (SWM), we compared ArbSR’s Scale-
Aware Feature Adaption (SAFA) to the plug-and-play module in this letter. Table 3 shows
that SWM has a very small number of parameters and consumes less computer resources.
Moreover, SWM module has better performance for SR image restoration than the SAFA
module of ArbSR. The PSNR results is tested on Urban100 with ×4 upsampling. All in all,
it is very rare that our SWM module is more superior than SAFA module with very little
resource consumption.

We all know that if the image is downsampled continuously, the small scale image will
have more comprehensive global information and less noise. In order to generate cleaner and
richer high-resolution images, we design a Multi-Scale Cross-Fusion Module (MSCF) after
the feature extraction network of the model, which includes multi-downsampling convolu-
tional architecture (MDConv) and dual spatial mask (DSM). After several down-sampling
processes, MDConv can obtain feature maps of various sizes . The multi-scale texture and
structure information in different feature maps provides an important information basis for
later learning of DSM. Diverse information uses DSM interactive learning to absorb more
semantic information from each other, so that the output high-dimensional feature map con-
tains clean and rich texture and structure information.

Table 4 shows the ablation experiments of the DSM and MDConv. In our two variants,
we validate the effectiveness by performing on the dataset Urban100 with six scale factors
from 2 to 8. All networks are pre-trained on the EDSR [18] backbone for 1000 epochs. The
definitions of -D, -M indicate that MCNet removes the corresponding components of DSM,
and MDConv. Compared MCNet with MCNet(-D), We observe that using DSM achieves
further improvement particularly with the upsampling scales that in training distribution,
which is consistent with our motivation. To confirm the validation of MDConv, we also
compare MCNet to MCNet(-M), which enhances the quality of both in-scale and out-of-
scale factors.

Table 3 Computer resource
consumption compared with
ArbSR method for ×2
upsampling

Method Params. Mem.(MiB) Time(ms) PSNR

ArbSR(-SAFA) 4.2M 2297 296.4 26.28

MCNet(-SWM) 1.7M 2281 223.8 26.31
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Table 4 An Ablation
Investigation of Two Variants
Performed on the Dataset
Urban100

Variant In-scale Out-of-scale
2× 3× 4× 6× 8 ×

MCNet 32.46 28.43 26.35 23.96 22.64

MCNet(-D) 32.39 28.41 26.32 23.91 22.59

MCNet(-M) 32.38 28.39 26.30 23.88 22.57

4 Conclusion

In this letter, we propose a novel scale-guidance fusion network (MCNet) for the existing
SISR network with arbitrary scaling factors. The designed scale module (SWM) integrates
the scale information and pixel features to effectively improve the representation ability
of arbitrary scale images. In addition, the multi-scale cross-fusion module (MSCF) cleans
redundant noises of deep feature maps and provides abundant space embedding for subse-
quent image restoration. The comprehensive evaluation has demonstrated that our MCNet
achieves superior performance compared to state-of-the-art arbitrary-scale works.
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