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Abstract
In conventional machine learning (ML), a fundamental assumption is that the training and
test sets share identical feature distributions, a reasonable premise drawn from the same
dataset. However, real-world scenarios often defy this assumption, as datamay originate from
diverse sources, causing disparities between training and test data distributions. This leads to
a domain shift, where variations emerge between the source and target domains. This study
delves into human action recognition (HAR) models within an unconstrained, real-world
setting, scrutinizing the impact of input data variations related to contextual information
and video encoding. The objective is to highlight the intricacies of model performance and
interpretability in this context. Additionally, the study explores the domain adaptability of
HAR models, specifically focusing on their potential for re-identifying individuals within
uncontrolled environments. The experiments involve seven pre-trained backbonemodels and
introduce anovel analytical approachby linkingdomain-related (HAR)anddomain-unrelated
(re-identification (re-ID)) tasks. Two key analyses addressing contextual information and
encoding strategies reveal that maintaining the same encoding approach during training
results in high task correlation while incorporating richer contextual information enhances
performance. A notable outcome of this study is the comprehensive evaluation of a novel
transformer-based architecture driven by a HAR backbone, which achieves a robust re-ID
performance superior to state-of-the-art (SOTA). However, it faces challenges when other
encoding schemes are applied, highlighting the role of the HAR classifier in performance
variations.
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1 Introduction

The goal of ML is to use a set of training samples and a suitable objective function to train
a model that minimizes misclassifications when applied to unseen test data. However, this
process usually relies on a fundamental assumption: the training and test data originate from
the same distribution and share similar joint probability distributions. In the real world, such
an assumption often crumbles as training and test sets can stem from distinct feature spaces
or distributions [9]. Challenges arise when classifying new instances that do not match the
training data properties, dimensions, and distribution. This situation can occur due to various
factors, such as collecting new samples from diverse sources, leading to a domain shift.
For instance, this is typical when embedding and deploying a trained model in a real-world
application, where data generally comes from a less controlled environment. However, when
the training data does not accurately reflect the distribution of the test data, the performance
of the trained model is likely to suffer during testing and even more during real operation
and deployment. To address this challenge, researchers have introduced a field in ML known
as domain adaptation. In this context, the training and test sets are called the source and
target domains, respectively. Domain adaptation endeavors to develop a model from labeled
source data that can be effectively applied to a target domain by minimizing the dissimilarity
between their respective data distributions.

Recent advancements in domain adaptation for deep learning (DL)models have addressed
essential challenges. Researchers have explored techniques to adapt pre-trained models to
varying domains efficiently, enhancing domain alignment and performance [28]. Addition-
ally, strategies have been introduced to mitigate domain shift issues and reduce overfitting
when applying pre-trained models to new domains [16, 18]. Interpretability in DL models
has also been addressed due to the growing concerns of adversarial attacks, biases stemming
from contaminated training data, and the legal demand for explanation in intelligent decision-
making systems [3], especially in forensic applications. The applicability and effectiveness
of transfer learning (TL) have been further examined in the context of specialized or niche
computer vision domains [23]. These developments collectively contribute to the ongoing
progress in domain adaptation for different DL models.

In general, TL re-uses knowledge (models) learned from a task to performwell on a related
task with possibly less training. “Domain adaptation is a subcategory of TL. In domain
adaptation, the source and target domains all have the same feature space (but different
distributions); in contrast, TL includes cases where the target domain’s feature space is
different from the source feature space or spaces” [38]. Domain adaptation is often referred
to as domain shift or distributional shift.

Labels play a key role in defining and distinguishing the context and purpose of a dataset
within a specific domain. They serve as the identifiers that categorize data points and guide
the application of ML algorithms. However, it is essential to recognize the type of domain
the dataset belongs to; the same set of features can find application in diverse domains, each
with distinct objectives. Features, such as numerical measurements, text, or images, possess
inherent qualities and patterns agnostic to the domain. As a result, these features may be
reinterpreted to serve different goals across various fields of study. This demonstrates the
versatility of data-driven techniques and their potential to uncover valuable insights beyond
their original context.

It is possible to further distinguish closed-set domain adaptation from open-set domain
adaptation. When the images of the source and target domain represent the same set of
categories, this entails a closed set domain adaptation.However, formost realistic applications

123



Multimedia Tools and Applications

of the adaptation strategy, the assumption that the target domain contains only images of the
same categories as the source domain is too restrictive. For most applications, the target
domain dataset contains many images that do not belong to the classes of interest. For
this reason, [25] proposes open set domain adaptation, which avoids the above unrealistic
assumption.

In this regard, partial domain adaptation arises when the label set in the target domain
is a subset of the labels existing in the source domain [4, 48]. In this context, the source
domain encompasses many classes, while the target domain encompasses only a subset of
these labels, representing fewer classes (domain-related domains/tasks). On the other hand,
when we have a dataset with feature spaces different from those in the target dataset, it falls
under the category of heterogeneous TL (domain-unrelated domains/tasks). It is interesting
to make an example of the role of labels and features when used in different domains. Labels
characterize the kind of domain task, while the same features may be used for different tasks
with different goals. For instance, MEL spectrograms (features) may be used in speaker
recognition (label=identity), emotion recognition (label=emotion), or speech recognition
(label=utterance).

In light of this, the paper examines how HAR models can be reused in the context of a
biometrics-related task. The presented study evaluates various HAR models under different
configurations using unconstrained inputs. As shown in Fig. 1, this entails two experiments
with these inputs:

1. Apartial domain adaptation experiment, namely domain-related,where the label assigned
to the video footage (jogging) is a subset of the labels present in the source domain (which
includes 400 distinct actions [21]).

2. A heterogeneous TL experiment, i.e., a domain-unrelated one, explores HARmodels for
the task of athlete re-ID, which is rather related to biometrics.

The results of these experiments come from both aHAR classifier and a transformer-based
re-ID classifier fed with features extracted from a HAR backbone. The primary goal is to
scrutinize the correlation (indicated as r from now on) between these outcomes, shedding
light on how domain shift impacts the performance of these models in biometrics-related
applications. The main contributions of this work can be summarized as follows:

T1

Classifie
r

T2Classifier

T1 = Domain-related Task

T2 = Domain-unrelated Task

EvalT1

EvalT2

r (EvalT1, EvalT2)HAR
Backbone

Footage Preprocessing

Training Dataset
(Kinetics 400)

Footage

Fig. 1 Domain-shift correlation (in the following indicated as r). We conducted two experiments using uncon-
strained inputs. One experiment is related to the same source domain,while the other is not.We employed seven
pre-trained HAR models (backbones) in these experiments to assess how domain shift affects performance
and correlations of architectures using their extracted features. To achieve this, we modified the contextual
information or video encoding inputs
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– Exploration of task interrelationships. The paper introduces an analysis method to assess
domain shift adaptation by correlating two tasks, namely HAR and re-ID, using the
same input data. This approach provides insights into how different tasks are affected by
domain-related factors.

– The development of a novel transformer-based classifier. We devise a novel transformer
classifier specifically tailored to address the re-ID problem while utilizing pre-trained
models for the HAR task. This classifier design significantly improves the solution for the
re-ID problem. In this case, it works in the context of domain shift adaptation. However,
the transformer can be applied to domain-specific tasks, too. In other words, it has no
unique elements to make it "domain-shift" specialized, but it performs remarkably in this
case.

– Analysis on the influence of Contextual Information. The experiments explore how con-
textual information impacts the evaluation of both HAR and re-ID tasks and reveal that
the richer it is, the more favorable evaluation outcomes it allows to achieve for both
tasks, achieving superior performance compared to the current state-of-the-art (SOTA)
in the re-ID task with the proposed transformer-based architecture when considering
HAR embeddings as input.

– Analysis on the influence of Encoding. Appearance privacy is important as it safeguards
individuals from unwarranted scrutiny and protects their personal autonomy. In this
regard, the results highlight significant challenges in achieving acceptable evaluation
rates when considering the encoding experiment. HAR evaluation rates decline when
using specific encoding schemes. However, a depth encoding approach (MiDaS) per-
forms well on re-ID while poorly on HAR. This finding suggests that the performance
of the HAR classifier is significantly negatively affected when using specific encod-
ing schemes. The results emphasize the importance of selecting appropriate encoding
methods for different tasks.

2 Related work

DL often exploits pre-trained HAR models to TL in tasks like sign language recognition
[17], violence detection [13, 34] or person re-ID [15]. This approachmay seem advantageous
because it generally requires less data to train the final model. However, it comes with several
notable disadvantages that must be carefully considered.

Pre-trained models are often tailored to specific domains and perform exceptionally well
in domain-related tasks [43]. However, the overfitting risk on these tasks when applying
closed-set, open-set, or partial domain adaptation becomes significant. The HAR pre-trained
models are typically trained on large datasets encompassing various actions and scenarios.
Fine-tuning them on a specific task like fight detectionmay lead to the model memorizing too
general characteristics of the source domain data, hindering a sufficient specialization to the
target domain [12]. Consequently, the model might struggle to capture the intricate patterns
and nuances of fight-related actions, leading to sub-optimal performance and the inability to
effectively detect fights in real-world scenarios. In this regard, several works in literature have
dealt with domain-related tasks. Some papers have proposed violence recognition algorithms
using HAR-based models like SlowFast networks [8, 45], or I3D [13]. In healthcare, this
architecture has proven beneficial by employing sensor TL from a deep SlowFast network
on video data to capture physiological data and movement in individuals with spinal cord
injuries [2]. In addition, SlowFast backbones have been used to predict stimming behaviors in
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children with autism spectrum disorder from uncontrolled video recordings [31]. Additional
HAR domain-related applications include educational ones, like the student engagement
recognition network based on I3D presented in [47], as well as the use for anomalous event
detection [22].

Similarly, using HAR pre-trained models for domain-unrelated tasks (heterogeneous TL)
may present challenges [7]. These pre-trained models are designed to recognize a broad
spectrum of actions, making them less specific to the intricacies of other tasks like deepfakes
detection [45]. Consequently, these models may not accurately distinguish between similar
individuals in complex scenarios, leading to misclassification.

Last, domain adaptation poses a significant issue when applying pre-trained models to
target tasks with different environmental settings and camera perspectives. The pre-trained
models’ source domainmay differ significantly from the target domain regarding illumination
conditions, camera angles, and demographics [9]. This domain shift can adversely affect
the model’s ability to adapt, resulting in decreased performance and reduced reliability in
domain-related and domain-unrelated TL tasks.

In this context, efforts have been dedicated to employ HAR-based networks for various
purposes, including detecting manipulated videos to combat the proliferation of fake infor-
mation [45], person re-ID in videos [15], hand gesture recognition [46], wildlife detection
[40], and sporting assessment analysis [14].

In summary, although pre-trained models for HAR provide a promising starting point for
TL, it is crucial to consider the drawbackswhen applying them to domain-related and domain-
unrelated tasks. Potential issues such as overfitting, a lack of task-specificity, challenges in
domain adaptation, interpretability issues, biases, and ethical concerns can all pose obstacles
that may negatively impact the effectiveness and reliability of pre-trained models in these
tasks. Our approach aims to analyze a domain-specific and a non-domain-specific task using
the same inputs, evaluating their performance to explore potential correlations between these
two forms of TL. Firstly, we evaluate over a domain-specific task involving input footage,
such as HAR. Secondly, we test a non-domain-specific task, such as re-ID, using the same
input footage.

3 Overview of the reported analysis

This section focuses on the two pivotal pipelines designed for our experiments. These
pipelines are necessary in our study, each serving distinct purposes within video analysis.
Figure 2 illustrates them. The upper one is highlighted in blue and represents the HAR clas-
sifier used for processing HAR backbone features. The following pipeline, distinguished in
red and fed by the same features, is dedicated to re-ID and incorporates transformer encoder
blocks tailored for this task, which generate embeddings trained with triplets. The upcoming
subsections will explore both pipelines and footage pre-processing in greater detail.

Pre-processing To enhance the quality of the backbone’s embeddings, the input footage
provided to the action recognition networks must be clean and devoid of extraneous ele-
ments [14]. In the case of the dataset used for the experiments presented herein, they are
collected videos from an ultra-distance running competition (see Section 4.1), these extrane-
ous elements include other athletes, race staff, and moving vehicles. Since they are irrelevant
in the HAR context, an initial pre-processing block prepares the raw input data by isolating
the runner of interest. For this purpose, ByteTrack [50], a multi-object tracking network,
accurately tracks the runner within each footage. Subsequently, context-constrained pre-
processing techniques create a suitable scenario for the experiments.
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Fig. 2 Pipelines overview. The experiments rely on two distinct pipelines. The first pipeline (the upper one,
highlighted in blue) specifies the HAR classifier, commonly employed in video analysis models to process
features extracted from the HAR backbone. The second pipeline (the one below, highlighted in red) processes
features extracted from the same HAR backbone, is tailored for re-ID and incorporates transformer encoder
blocks explicitly designed for this task. It produces embeddings trained with triplets. The bottom part of the
figure depicts a single transformer encoder block (highlighted in green)

It was necessary to acquire context-constrained footage frames for a specific runner,
denoted as i , at a given time t within an interval [0, T ] and recorded from a Recording Point
RP (a point where a video camera is positioned) within a range [0, P]. For each runner i , the
Bounding Box BBi (t, RP) encompasses the area covered by the runner’s i body in the frame
recorded at time t from the point RP . Given an original frame Fi (t, RP), two key factors
in this step are the bounding box area of the runner BBi (t, RP), and the average number
of frames denoted as τ(RP), required to create a static background against which the single
runner i is situated in the pre-processed footage. The resulting pre-processed footage frame,
denoted as F ′

i (t, RP), is obtained through a process expressed by the following:

F ′
i [RP] = BBi (t, RP) ∪ τ(RP) (1)

where ∪ denotes the operation that aligns and overlays the BB of runner i to the average
of the selected number of τ(RP) frames (see Fig. 3). The new footage is obtained by the
sequence of pre-processed frames.

Using the average frame is beneficial to capture a clean action recognition pattern and
mitigate the influence of extraneous moving elements. Assuming a static camera, this process
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Fig. 3 Creation of context-constrained footage for the used dataset. For each frame at time t and Recording
Point RP , the procedure extracts the bounding box of runner i , which is aligned and overlayed on a clean
static background obtained as the average of τ(RP) frames

helps to isolate the person of interest and facilitates a focused analysis of actions without
interference from other dynamic elements in the scene.

In scenes where more than one athlete is present, the runner of interest is chosen based
on the specific requirements of the task at hand, namely person re-identification (re-ID).
The utilized dataset provides bounding boxes for the runners, and even if there are multiple
runners in a given scene, the focus is on capturing the action recognition patterns of a specific
individual. Consequently, for the purpose of the re-ID task, the experiments isolate the runner
of interest from the bounding boxes provided by the dataset.

This targeted selection ensures that the subsequent analysis centers on the identified indi-
vidual, accurately allowing the study and characterization of the action recognition patterns.

3.1 Backbones

The transformed input footage, comprising a total of n frames, undergoes a two-step process.
It is first subjected to downsampling and subsequently divided into m video clips denoted as
v1, ..., vm , with each clip encompassing a sequence of q consecutive frames that encapsulate
a snapshot of the activity. In practice, the m clips partially overlap since each clip is one
frame apart from the previous one. These video clips then traverse a pre-trainedHAR encoder
(backbone), yielding r-dimensional feature vectors. Notably, these encoder models have been
previously trained on the Kinetics 400 dataset [21], encompassing a wide range of 400 action
categories. Once the feature vectors for all n video clips are obtained, an average pooling
layer ensures equitable contribution from all clips.

Utilizing HAR models in the initial phase to extract features is a widely employed
technique, as elaborated in the SOTA section. Recently, Chen et al. conducted a study on
unsupervised domain adaptation, as detailed in [6], where they employed backbones such
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as SlowFast in the initial stage. Similarly, our approach leverages various backbones for
this purpose. We have explored seven distinct backbone models, all categorized into five
architectures:

1. C2D (Convolutional 2D). The C2D model is tailored to process 2D spatial images, rep-
resenting individual frames within video clips [37]. It employs a convolutional neural
network (CNN) architecture similar to those in image classification tasks. Typically,
the C2D model incorporates multiple convolutional layers followed by pooling layers,
enabling it to extract progressively intricate features from the input frames. These con-
volutional layers apply learned filters to the input frames, yielding feature maps that
capture spatial information. Subsequently, the pooling layers downsample the feature
maps, reducing spatial resolution while preserving the most salient features. The result-
ing feature maps are then flattened into a feature vector.

2. I3D (Inflated 3D ConvNet). Since it operates on short video clips represented as 3D
spatiotemporal volumes, the I3D model is a pivotal component of our selection [5]. It
employs a two-stream approach, where one stream processes RGB images while the
other processes optical flow images, effectively capturing appearance and motion cues.
The RGB stream is initialized with weights pre-trained on extensive image classification
datasets such as ImageNet. In contrast, the flow stream starts with random initialization
and is fine-tuned with the RGB stream. The ultimate output of the I3D model is a feature
vector that encapsulates appearance and motion information extracted from the input
video clip.

3. I3D NLN (I3D Non-local Network). I3D NLN, a modified iteration of the I3D model,
incorporates non-local operations to enhance the modeling of spatiotemporal depen-
dencies in videos [44]. Like its predecessor, I3D NLN operates on 3D spatiotemporal
volumes and adopts a two-stream architecture comprising RGB and optical flow streams.
However, instead of the Inception module, I3D NLN integrates non-local blocks that
facilitate learning long-range dependencies between any two positions within the input
feature maps. These non-local blocks compute a weighted sum of input features from all
positions based on similarity, allowing for capturing global context information and an
improved representation of temporal dynamics.

4. Slow. The Slow model employs a two-stream architecture to capture short-term and
long-term temporal dynamics within videos [11]. Like the C2D model, Slow processes
high-resolution frames at a reduced frame rate, adding a temporal-downsampling layer to
capture extended temporal dynamics. The reported experiments assessed two adaptations
of Slow, denoted as Slow8x8 (henceforth referred to as S8x8) and Slow4x16 (henceforth
referred to as S4x16). The key difference between them is the number of frames used
for prediction and the respective sampling rates. S8x8 involves the consideration of 8
frames with a sampling rate of 8, while the S4x16 configuration employs 4 frames with
a sampling rate of 16.

5. SlowFast. This model comprises a slow pathway designed to process high-resolution
frames at a lower frame rate, enabling it to capture spatial information and long-term tem-
poral structure [10]. Additionally, it features a fast pathway that processes low-resolution
frames at a faster frame rate, capturing fine-grained motion information and short-term
temporal structure. The slow pathway employs a deep 3D CNN, processing each frame
in a video sequence with a temporal stride of 16 frames, while the fast pathway consists
of a shallower 3D CNN, processing every other frame with a temporal stride of 2 frames.
The final video-level representation is obtained by combining the outputs of these two
pathways through a fusionmodule that employs a weighted sum of the features. Similarly
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to Slow, the experiments used two variations of SlowFast, with the primary distinction
in the fusion kernel size: 5 for SlowFast4x16 (hereafter SF4x16) and 7 for SlowFast8x8
(hereafter SF8x8).

These diverse backbone models present an outstanding opportunity to offer a comprehen-
sive view of our proposal on a larger scale.

3.2 Task-specific classifiers

As anticipated in Fig. 2, while the two tasks use the same backbone trained for HAR, the
pipelines differ for the classifier used afterward according to the kind of task. The domain-
related task still deals with human action (same domain of the backbone) but tackles the
classification of a subset of the actions considered to train the backbone. For this task, a
HAR classifier is used again. The re-id task rather deals with a different kind of problem (not
strictly related to the backbone-related domain). Therefore, a classifier focusing on different
feature patterns is used. The following paragraphs provide further details.

HAR classifier It is used with various video analysis models. Each is designed to process
features extracted from video data, typically for action recognition tasks. On the one hand, all
the models, except for the SlowFast, employ average pooling and ROIAlign for temporal and
spatial feature pooling, respectively. They also include max-pooling operations. A dropout
layer, usually with a 0.5 dropout rate, is applied for regularization. The projection layer
reduces the feature dimension to 400, followed by a softmax activation for classification.
On the other hand, SlowFast includes both slow and fast pathways for feature processing. It
utilizes two sets of temporal and spatial pooling operations, one with a kernel size of 8 and
the other with a kernel size of 32. ROIAlign, max-pooling, dropout, and dimension reduction
are applied to features from both pathways. The projection layer reduces the feature dimen-
sion to 400 before softmax activation for classification. In Slow and SlowFast architectures,
the temporal pooling is performed using a larger kernel size (8) than the others (4). These
classifiers are part of the component in video action recognition models. Their backbones
process spatial and temporal features extracted from video clips and prepare them for classi-
fication tasks. In practice, all HAR models share common classifier properties. Specifically,
the classifier component highlighted in blue within the upper pipeline in Fig. 2 maintains a
consistent architecture across all HAR models, except for the SlowFast model, as elaborated
in this section. While the architectural structure remains the same, it is crucial to emphasize
that the training weights for each model’s classifier differ. Eachmodel’s classifier was trained
in conjunction with its respective backbone on the mentioned Kinetics 400 dataset.

The re-ID embeddings generatorAs illustrated in Fig. 2 with the highlighted portions in
red, the processing of action embeddings involves a sequence of transformations. Specifically,
these embeddings pass through two transformer encoders, followed by a global 1D average
pooling layer, and finally by two fully connected layers. A more detailed depiction of the
employed transformer encoder can be found in the lower section of Fig. 2. This transformer
architecture is applied to a feature vector, as introduced by Vaswani et al. [41]. Subsequently,
the global 1Daveragepooling layer condenses the output tensor from theTransformer encoder
into a feature vector for each data point within the current batch. Following this, a fully
connected layer extracts the pertinent features, and its output is the input for the ultimate
dense layer in the classification head.

Transformers excel in capturing extensive dependencies and contextual information across
sequences of variable lengths. Contrary to convolutional methods [15], Transformers inher-
ently possess positional sensitivity, acknowledging the significance of the order of elements
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within sequences-an essential factor in tasks like the analysis of actions or features spanning
multiple frames, and in particular in the analysis of behavioral biometric traits. Their flexibil-
ity in accommodating diverse sequence lengths, the ability to construct hierarchical feature
representations, and the capacity to mitigate overfitting collectively contribute to the robust
modeling of intricate spatial and temporal relationships.

The resultant embeddings are purposefully crafted to distinguish between different iden-
tities and are compelled to inhabit a d-dimensional hypersphere via L2 normalization of the
final output. The computation of the distance between HAR embeddings employs the L2 dis-
tance function, proposed initially by Schroff et al. [36]. This function calculates the squared
difference between feature vectors (u! and u2) and aggregates these differences (see (2)).
This distance metric is relevant in computing the loss function, which relies on the distances
between embeddings of multiple input samples, contingent on the selected loss function. In
this context, we have evaluated the triplet loss, which entails a comparison of three samples:
an anchor sample, a positive sample (with the same identity as the anchor), and a negative
sample (representing a distinct identity from the anchor) [36]. The formal definition of the
triplet loss function is provided below:

Ltriplet (D1, D2) = max(D2
1 − D2

2 + m1, 0) (2)

Here, D1 represents the distance between the anchor and positive samples, and D2 repre-
sents the distance between the anchor and negative samples. Themargin parameter is denoted
as m1. The objective is to minimize the distance between the anchor and positive samples
while maximizing the distance between the anchor and negative samples.

4 Experimental setup

4.1 Dataset

The experiments reported in this paper were performed on a portion of the dataset initially
presented by Penate et al. [27]. This dataset was gathered during the Transgrancanaria (TGC)
2020 ultra-distance running competition, encompassing multiple race distances for partici-
pants to undertake, totaling up to six variations.

Traditionally, HAR benchmark datasets, while intricate, aim to replicate real-life human
activities within various scenarios. Their primary objective is to represent human behav-
ior as faithfully as possible in diverse settings. Therefore, the paramount consideration in
evaluating a dataset lies in its fidelity to reality, as a close alignment significantly enhances
HAR. In real everyday activities scenes, it is normal to encounter considerable variations
in illumination, scene characteristics, occlusions, and background activities. However, it is
noteworthy that several existing datasets do not prioritize addressing these challenges and
are instead recorded in controlled environments [33]. For this reason, the present study
exploits that annotated dataset collected during the TGC (Trans Grand Canaria) Classic race,
where runners are tasked with completing a grueling 128-kilometer course within a 30-hour
time frame. Using the chosen ultra-distance running competition dataset for the experiment
reported here provides several compelling advantages, since it inherently encapsulates the
intricate and dynamic aspects of real-world physical activity. These competitions develop in
uncontrolled, natural environments, showcasing genuine diversity in light conditions, terrain
variations, and participant interactions. Furthermore, unlike numerous actor-centric HAR
datasets, ultra-distance running competitions feature activities performed by many individu-
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als, making them a closer reflection of real-world scenarios. Last but not least, our selection
of this dataset is strategic as it can be employed for both HAR and re-ID tasks, enhancing its
versatility and relevance to our research objectives.

In our domain-related task, we aim not to scrutinize all 400 actions that HAR models can
recognize; instead, we aim to focus on a single action-specifically, jogging-and evaluate the
classifiers’ performance in this subtask. In our investigation, jogging serves as the reference
action, representing the most relevant and widespread activity within the sporting environ-
ment under examination. Metrics such as jogging frequency and confidence are utilized to
assess both the prevalence of jogging actions and the accuracy of the classifiers in identifying
this specific activity.

In the context of our domain-unrelated task, the original dataset includes annotations
for nearly 600 participants across six RPs. The experimental setup described in this paper
primarily focused on the final three RPs. To enhance readability, these RPs are referred to
as RP1, RP2, and RP3, which correspond to RP3, RP4, and RP5 in the original dataset.
These RPs encompass data recorded beyond the 84-kilometer mark. The unused RPs in the
original dataset align with nighttime captures because the race typically commences around
midnight. In the present experiments, we opted not to factor in this additional covariate
to better concentrate on context and encoding. Figure 4 illustrates samples of these three
selected RPs. It is possible to observe that RP1 captures the runners navigating through an
environment characterized by rocky terrain (see upper left image in Fig. 4), RP2 captures
images with a road parapet on the background (middle left image in Fig. 4), and finally, RP3
portrays runners traversing a conventional road (bottom left image in Fig. 4). The mentioned
RP selection allowed evaluating the performance of the consideredmodels in the latter phases
of the race, involving 214 runners who are the ones considered for the presented experiments.
Having three RPs, it is possible to consider two race stages: stage 1 from RP1 to RP2, and
stage 2 fromRP2 to RP3. Stages allow getting valuable insight into video sequences. Notably,
111 runners appear in RP1, RP2, and RP3, consistently contributing to 333 videos allowing
to analyze transitions across stage 1 and across stage 2. Further 18 runners only appear in
RP2 and RP3 (transition across stage 2, 36 videos) while one runner appears in RP1 and
RP2 (transition across stage 1, 2 videos). Additionally, a single runner is present in both
RP1 and RP3 (2 videos). It is worth pointing out that this specific runner is not considered
for sequence transitions for the re-ID task described in the following, but only as a negative
instance for the triplet loss metric. Lastly, 83 runners only appear in a single RP video,
either RP1, RP2, or RP3, providing 83 videos. Also these samples are negative instances
for the triplet loss metric in the re-ID task evaluation. In summary, the analysis involved all
214 runners, collectively contributing to the comprehensive dataset of 456 videos, and it is
noteworthy that these figures align with the counts reported by the original paper [27].

4.2 Experimental scenario

Figure 4 illustrates the two analyses conducted in this study: the context analysis and the
encoding analysis.

Context analysis This analysis aims to emphasize the pivotal role of context information.
The experiments investigate predictions from seven cutting-edge action recognition models
across various context scenarios. The goal is to discern how different levels of contextual
awareness impact the prediction accuracy, guiding the analysis from the runner’s immediate
Region of Interest (ROI) to the broader context of the entire footage, as shown in the left
column of Fig. 4.
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Fig. 4 Experimental scenario. The figure summarizes the visual characteristics of the input video clips or
portions of clips used in each experiment. The images correspond to frames captured from each considered
RP after the prep-processing steps detailed in Section 3. All three RPs appear in both experimental setups. The
left column shows the context experiment configuration, where the input for the HAR model is highlighted in
red and either comprises the runner’s Region of Interest (ROI), the runner’s PATH, or the complete footage.
The right column presents the variations of the video encoding inputs used in the second experiment: MiDaS,
RAFT, and AFD, respectively. These video encoding inputs are placed alongside with the traditional RGB
input for comparison. In this second experiment, the complete footage is always used, as underlined by the
red highlighting

The context analysis begins with exploring the restrictions associated with contextual
information. Initially, this examination centers exclusively on scrutinizing predictions gen-
erated from the runner’s ROI. This approach offers valuable insights into the immediate
environment surrounding the runner.

Continuing our exploration, the attention shifts to a comprehensive exploration of the
runner’s trajectory. Predictions stemming from the runner’s Path Region of Interest (PATH)
provide an intricate insight into actions occurring along the route. PATH is computed from
the sequence of locations traversed by the runner’s BB (Bounding Box) in a pre-processed
video, i.e., from the sequence of BB coordinates. In coding terms, it encompasses the entire
area defined by the coordinates between (minROI.x, minROI.y) and (maxROI.x, maxROI.y).
Here, minROI.x and maxROI.x, as well as minROI.y and maxROI.y, represent the minimum
and maximum x and y coordinates traversed by the moving BBs.

The exploration culminates in thoroughly examining the entire visual scene, the com-
plete footage. Here, the analysis considers all video elements, providing the richest context
information. This approach encompasses the runner’s actions within the broader context,
considering interactions with the environment, potential obstacles, and intricate component
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dynamics. Predictions from this comprehensive analysis yield a profound understanding
of the runner’s actions and interactions, offering a comprehensive view of their dynamic
engagement with the environment.

Encoding analysisThe experiments investigated three SOTAapproaches for video encod-
ing, comparing them to the standard RGB input: AFD, MiDaS, and RAFT.

AFD, designed for scenarios like camouflage detection, showcased the models’ capability
to function without static appearance information [19]. AFD was constructed from motion
data extracted from the UCF101 dataset through advanced optical flow estimation. This
approach emphasizes the importance of temporal encoding over static details. It highlights
the interpretability of the exploited models, underlining that optical flow or similar represen-
tations are not intrinsic to the tested networks [19]. This encoding method proves valuable
when individuals’ identities must remain concealed to protect their privacy. Despite being a
relatively recent development, AFD has already found applications in video self-supervised
learning [35].

MiDaS, developed for obtaining accurate depth data at scale, calculates relative inverse
depth from individual images. It encompasses a range of models, including compact, high-
speed options to highly accurate, large-scale variants [29]. These models were trained on ten
diverse datasets, utilizing multi-objective optimization to ensure exceptional performance
across a wide range of input scenarios. Additionally, invariant loss functions were employed
to address compatibility challenges between datasets, enabling trainingwith data fromdiverse
sensing modalities [29]. In recent years, this encoding technique has seen extensive adoption
in various domains, including monocular depth estimation [49], image segmentation [32],
and video anomaly detection [1] that can be used in turn to fed video-surveillance, HAR, and
re-ID.

Finally, the evaluation of input encoding for action recognition models includes RAFT,
short for Recurrent All-Pairs Field Transforms. It introduces an innovative deep network
architecture for optical flow estimation [39]. RAFT’s unique approach comprises three key
components: a feature encoder, a correlation layer, and a recurrent GRU-based update opera-
tor. The feature encoder extracts feature vectors for each pixel, the correlation layer generates
a 4D correlation volume for pixel pairs, and the recurrent operator iteratively refines the flow
field [39]. RAFT excels in accuracy across diverse datasets, exhibits robust cross-dataset
generalization, and impresses with computational efficiency [39]. While many HAR tech-
niques incorporate flow information to enhance their robustness, it is worth noting that this
encoding method has also gained widespread utilization across different domains, such as
motion aggregation [20] and ball trajectory prediction [26] whose applications intersect HAR
and re-ID.

In order to ensure a fair comparison, all the results presented here are derived from the
training and testing conducted according to the same specified procedure, as detailed in
Section 4.3. Additionally, given the intended focus on examining architectural behavior in
the context of video encoding,we have refrained from retraining the backbones, primarily due
to the absence of resources like AFD,MiDaS, or RAFT for Kinetics. This is reasonable since
our aim is not to showcase the best performance method but to highlight the performance
differences among various networks when exposed exclusively to dynamic information and
to explore their correlations with domain-specific and non-domain-specific tasks.

4.3 Metrics

This section describes the protocol used for both tasks in the reported study to evaluate
the performance of various HAR and re-ID models on a large-scale dataset. The eval-
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uation metrics differ due to the nature of the experiments concerning different kinds of
tasks.

Domain-related task Concerning HAR classification, the experiments involve using pre-
trained full model, which includes one of the backbones described in Section 3.1, along with
the classifier components. Since the task develops in a related domain, there is no need for
further training, and it is possible to perform inference on the specified inputs. The analysis
focusing on action recognition requires utilizing various statistical measures to glean insights
from a dataset. These measures include the mode, mode frequency, jogging frequency, and
jogging confidence, being the latter two related to the dataset at hand. Among thesemeasures,
one prominent indicator is the mode, representing the action that emerges with the highest
frequency within the dataset. In essence, the mode is the action that appears most frequently,
serving as a central reference point for understanding the prevailing actions observed across
videos. Furthermore, the mode frequency (denoted as Mode Freq.) provides a quantitative
assessment of the prevalence of the mode within the entire dataset. Expressed as a percent-
age, it denotes the proportion of videos in which the mode action is present. This measure
offers a vital glimpse into the distribution of actions, highlighting the dominance of the most
frequent action and its significance within the analysis context. In the present exploration,
the action of “jogging” represents the baseline, deeming it the most fitting action for the
sporting environment under consideration. Consequently, the jogging frequency (denoted as
Jogg. Freq.) assumes significance. This metric signifies the percentage of videos in which the
jogging action is detected. As the baseline action, jogging frequency provides a benchmark
against which other actions can be compared, facilitating the assessment of the prevalence
of actions beyond the mode. Jogging confidence (denoted as Jogg. Conf.) is another statisti-
cal metric contributing to this analysis. This measure represents the mean confidence level
each classifier assigns to the jogging action. It quantifies the classifiers’ certainty in iden-
tifying jogging actions within the dataset. This parameter offers valuable insights into the
accuracy and reliability of the classifiers in recognizing the jogging action, shedding light on
their performance and the overall consistency of their predictions. In summary, the analysis
involves integrating these statistical measures to better understand the actions in the dataset.
By assessing these parameters, we gain a comprehensive view of the prevalence, significance,
and reliability of specific actions within the sporting environment, ultimately enhancing our
ability to interpret the dynamics of action recognition in the context of interest. In particu-
lar, the jogging confidence score was used to compute the correlation with the performance
achieved for the second task.

Domain-unrelated task In the context of re-IDclassification, the chosen evaluationmetric
isMean Average Precision (mAP), which is widely employed for re-ID tasks. mAP is derived
by first calculating the Average Precision (AP) individually for each class and subsequently
determining the mean of these AP values across all classes. AP is the area beneath the
Precision-Recall curve (PR curve) corresponding to each class.

Let N denote the total number of classes (i.e., identities). The average precision for class
i APi can be computed as:

APi = 1

R

R∑

k=1

Pi (k) · rel(k) (3)

where R is the total number of ground truth positives, P(k) is the precision at cutoff k and
rel(k) is a relevance function. This relevance function is an indicator function with a value
of 1 if the ID at rank k is relevant and a value of 0 otherwise.
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The mAP can be calculated using the following equation:

mAP = 1

N

N∑

i=1

APi (4)

Since there is no inherent connection between the training (HAR) and testing (re-ID)
tasks, it becomes necessary to train the classifier using the backbone-returned embeddings
to adapt it to the characteristics of the new domain. To ensure the robustness of findings,
the experiments followed a 10-fold cross-validation strategy for training the classifier. This
method partitions the dataset into ten equal-sized folds, each containing an equivalent num-
ber of samples. Within each fold, one subset of the data serves as the test set, while the
remaining nine act as the training set. This process is iterated ten times, each subset serving
as the test set once. The performance metric is averaged across all folds, yielding the final
evaluation scores. In addition, due to the often incompatible characteristics of the produced
embeddings, the cross-foldingwas performed separately for each backbone. It is worth point-
ing out that, for instance, the SlowFast-crossfold-trained classifier cannot be directly applied
to test on C2D-produced embeddings. Although this 10-fold cross-validation approach has
limitations due to the dataset’s constrained number of test samples per fold-resulting from
its inherent characteristics- it remains a valuable evaluation protocol to assess the re-ID
model.

The experimentswith the re-ID taskwill exploit the introduced concept of stage in handling
the used dataset videos. Each race stage provides 11 to 12 test runners per fold. In detail the
set of 112 runners appearing in stage 1 divided in 10 folds contributes 11 test runners per fold
(in the approximation the training set is privileged), while the set of 120 runners appearing in
stage 2 divided in 10 folds contributes 12 test runners per fold. The training set comprises the
images of the remaining 202 or 201 runners, which amounts to 202 images when considering
a total of 214 runners. Because the data split is based on individual runner IDs, we ensure
that the training and testing sets do not include the same runner to maintain our evaluation’s
integrity. The 111 positive pairs for the first stage and 18 for the second stage, for 129
positive video pairs, may not appear sufficient for generalizable results. Despite this, the 10-
fold cross-validation strategy comprehensively assesses the model’s performance on diverse
dataset subsets, ensuring unbiased evaluation results [30]. In addition, this 10-fold cross-
validation process was repeated ten times, with different random data splits into folds. This
repetition helps mitigate the impact of data variability and provides a more stable estimate
of the model’s performance.

Domain shift correlation (r) Computing the correlation between both task metrics, the
mAP and the jogging confidence scores, is a valuable analytical step in assessing the models’
overall performance and reliability. As aforementioned, the mAP provides an insightful
measure of the model’s ability to accurately rank and retrieve relevant images, thus capturing
the quality of predictions. On the other hand, using output confidence scores measures the
models’ certainty in their predictions. It is possible to better understand domain shift by
calculating the correlation between these twometrics. A positive correlation suggests that the
models tend to have higher confidence in their predictions as the mAP improves (indicating
better ranking performance). Conversely, a negative correlation might indicate situations
where high confidence scores are associated with lower mAP, highlighting cases where the
models may be overconfident but less accurate. This analysis can help to identify scenarios
where the models’ predictions align or diverge.
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5 Experiments and results

5.1 Context analysis

Domain-related experiment Tables 1, 2, and 3 report the experimental results achieved at the
respectiveRP. These are in terms of the statisticalmeasures introduced in Section 4.3 forHAR
classification using the backbones described in Section 3.1. Each table further encompasses
the different extents of contextual information entailed by the setup for this task. The results
reveal profound insights into the dynamics of the presented HAR analysis. This considers
the trajectory followed by the runner and the dynamic elements that encompass it within the
frame. By subjecting these statistical measures to scrutiny, we thoroughly comprehend the
predictive behavior of HAR models across diverse contexts. Central to this analysis is the
careful examination of how the trajectory of the runner and the contextual elements converge
to shape the predictions made by the HAR models.

Each RP contributes a distinct part to the analysis. For instance, since RP1 captures the
runners navigating through an environment characterized by rocky terrain (see upper left
image in Fig. 4), this sets the stage for a unique pattern of predictions. Conversely, RP3 por-
trays runners traversing a conventional road, presenting a different layer of complexity in the
predictive dynamics (bottom left image in Fig. 4). The runners’ trajectory further accentuates
the intricacies of the predictions derived from theHARmodels. InRP2, the runners’ trajectory
moves from the upper segment of the frame to the lower portion, a scenario that inherently
challenges the predictive accuracy of the models. On the contrary, RP3 demonstrates runners
moving horizontally from left to right, manifesting a trajectory that is fundamentally more
intuitive and aligns with conventional expectations (refer to the images in the left column
of Fig. 4). These disparate trajectories across different RPs contribute to the diversification
of predictions, providing invaluable insights into how HAR models interpret varying motion
patterns and adapt their predictions accordingly.

The tables testify that a ROI limited to the runner bounding box fails to activate the relevant
jogging action at any RP. Unlike specific actions like smoking, jogging inherently requires
a broader context for comprehension. Running implies movement within a space, and as a
result, a ROI limited to the runner’s body does not account for this contextual aspect, leading
to action triggers that are dependent on the specific gestures of the runners. Tables 1, 2, and
3 for the respective RPs demonstrate that for most classifiers, the actions detected are flying
a kite, motorcycling, and checking tires, respectively.

Including the PATH significantly expands the scope of the ROI, offering classifiers a
more comprehensive context. In the case of RP1, characterized by a rugged terrain and a
non-horizontal trajectory from top to bottom, most classifiers struggle to accurately identify
jogging as the actionwhen the PATH is considered. Instead, rock climbing emerges as the pre-
dominantly selected action across various HAR classifiers, as evident in Table 1. Conversely,
the scenarios in RP2 and RP3 prove more intelligible to the HARmodels, with jogging being
the most frequently inferred action. Just as when considering only the ROI, contextual factors
influence the classifier’s decision-making. For instance, RP3 focuses on a paved road, leading
PATH to trigger the recognition of alternative actions such as motorcycling and pushing a
car, as Table 3 shows.

Lastly, the model gains a comprehensive contextual perspective when analyzing the
FOOTAGE. This is evident in Tables 1, 2, and 3, where jogging emerges as the predom-
inant action. Furthermore, there is a notable increase in jogging confidence for each classifier
compared to the consideration of the PATHalone. The sole exception is the I3DNLNclassifier
when applied to RP2, which struggles to identify this action across all contexts accurately.
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Domain-unrelated experiment Table 4 offers a comprehensive summary of the perfor-
mance exhibited by the evaluated backbone models starting from various contexts. Each
sub-table encompasses seven rows corresponding to the HAR backbones, as detailed in
Section 3.1. Each row presents the mAP values for the triplet loss, introduced in Section 4.3.
The first column lists the backbone models, while the second column specifies the number of
frames the model utilizes for generating HAR embeddings. It is important to emphasize that
each transformer classifier was trained with its respective backbone using default settings,
including the number of frames per prediction, sampling rate, backbone depth, and more.
Maintaining these settings is crucial, as they are those benchmarked against the Kinetics
dataset. In the following columns, the mAP values for each model can be seen at the two
different race stages under consideration to tackle this problem [15]. The notation is as fol-

Table 4 mAPs achieved by each considered context experiment

Backbone #Frames mAP
RP1→RP2 RP2→RP3 Average

ROI

C2D 8 60.1% 63.4% 61.7%

I3D 8 62.7% 64.8% 63.7%

I3D NLN 8 63.7% 70.5% 67.1%

S4x16 4 64.4% 66.4% 65.4%

S8x8 8 62.3% 66.6% 64.4%

SF4x16 32 62.7% 68.0% 65.3%

SF8x8 32 62.3% 71.3% 66.8%

RPs Average 63.7% 66.6% 65.1%

PATH

C2D 8 59.2% 67.2% 63.2%

I3D 8 61.3% 66.1% 63.7%

I3D NLN 8 64.7% 70.6% 67.7%

S4x16 4 68.5% 69.7% 69.1%

S8x8 8 62.3% 66.6% 64.4%

SF4x16 32 66.0% 67.8% 66.9%

SF8x8 32 62.3% 71.3% 66.8%

RPs Average 63.4% 68.5% 66.0%

FOOTAGE

C2D 8 63.8% 73.4% 68.6%

I3D 8 66.7% 80.7% 73.7%

I3D NLN 8 71.0% 74.4% 72.7%

S4x16 4 73.6% 75.3% 74.4%

S8x8 8 68.9% 76.2% 72.6%

SF4x16 32 71.2% 72.8% 71.9%

SF8x8 32 70.4% 73.6% 72.0%

RPs Average 69.4% 75.2% 72.3%

The tables are organized according to the backbones. The second column shows the number of frames the
backbone requires to make a prediction (see Section 3.1). Moreover, two competition stages are analyzed
using scheme A→B, where A stands as the RP considered for the gallery (reference video) and B as the probe.
The average columns show the mean mAP for each backbone, whereas the last row shows the mean mAP at
each stage
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lows: the first term before the → symbol represents the gallery, and the second term after the
→ symbol represents the probe. Additionally, the table includes the average mAP calculated
across these reference stages.

The results underline that a broader context also positively influences the re-ID perfor-
mance in a significant way. Specifically, a more extensive context consistently leads to
enhanced performance. In the initial race stage, RP1 to RP2, the Slow 4x16 model con-
sistently outperforms all the other HAR models. During the subsequent race stage, RP2 to
RP3, the SlowFast 8x8 model excels in a constrained context. However, it is surpassed by the
Slow models (S8x8 and S4x16) and the I3D ConvNet when a richer context is considered.
The presented table also reveals that the number of frames incorporated into the HAR model
does not substantially influence the model’s performance. The SlowFast (SF) models, which
utilize more frames, perform worse than the Slow (S) models. Consequently, the model’s
architectural design, rather than the quantity of input frames, plays a more relevant role in
determining performance outcomes.

Finally, the last row in the table presents the mAP values, averaged across all models for
each reference stage. These mAP values shed light on the performance of the athlete re-ID
system, revealing that the system performs more effectively during the second stage (RP2 to
RP3) than the initial stage (RP1 to RP2). Moreover, it is noteworthy that employing a more
extensive context input (FOOTAGE) results in a 7.3% higher mAP than using the ROI input.
These findings suggest that the system accurately identifies athletes as they progress through
the race and performs better when provided with more input information. In the context
of the SOTA comparison, the proposed transformer approach demonstrates a remarkable
11.1% enhancement compared to the results reported in [15]. This mentioned investigation
relied on a classifier featuring two 512 dense layers separated by a batch normalization layer.
The findings presented there identified the Slow4x16 backbone as the top performer, with a
63.3%mAP. In contrast, the transformer-based classifier presented here fed by the Slow4x16
(S4x16) backbone achieves a significantly highermAP of 74.4%. It is worth pointing out that,
as stated before, the aim of the present study is not to showcase the method for achieving the
best performance. Instead, the aim is to highlight the performance differences among various
networkswhen exposed exclusively to dynamic information and to explore the correlation that
they are able to maintain between domain-specific and non-domain-specific tasks. Therefore,
further comparisons would not be significant since, to the best of our knowledge, no other re-
ID approach incorporates HAR techniques. Using seven different backbones for the analysis
should provide a comprehensive basis for comparison.

5.2 Encoding analysis

Domain-related experiment Similarly to the context analysis, Tables 5, 6, and 7 delve into
the statistical data at each RP, offering insights into the intricacies of the performed HAR
analysis. This group of experiments exclusively relies on the FOOTAGE configuration, which
was encoded using AFD,MiDaS, and RAFT. This choice can be reasonably motivated by the
remarkable performance of the FOOTAGE configuration, surpassing all other configurations,
particularly when evaluating the jogging class (the shared analysis baseline).

What is particularly intriguing is that the results in this section exhibit a stark departure
from those in the previous section. Curiously, no jogging action emerges as the predominant
pattern amongvideo clips at anyRP, regardless of the classifier or encodingmethod employed.
This observation introduces a new perspective to the analysis. This further enhances the
overall comprehension of the underlying dynamics within the domain-adaptation context
explored in this paper.
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Among the various encoding approaches, AFD stands out as the one thatmost significantly
alters the predictions based on training RGB images. Interestingly, the I3D classifier is the
model that shifts itsmode value prediction at eachRP. In contrast, the C2D, S8x8, and SF4x16
models maintain a consistent mode value throughout all RPs. What is particularly interesting
is that the inferred actions, such as “blow leaves”, exhibit no discernible connection to jogging.
This represents a distinct scenario where the backbone models fail to activate the relevant
signals for jogging. Intriguingly, the confidence in jogging detection is lightly pronounced
only in the case of SF8x8 at RP2.

MiDaS yields results comparable to those obtained with AFD. The depth inputs, however,
prove to be excessively noisy for the backbone models. As evident in Fig. 4, the encoding
approaches in this section strip away a significant amount of contextual information. As
expected, this is consistently reflected in the outcomes. Like AFD, MiDaS does not succeed
in identifying jogging as the dominant action (mode) for any classifier. Nevertheless, despite
the backbones falling short, the mode frequency is lower than that observed with AFD,
indicating higher uncertainty in the selected actions. In contrast toAFD, there is one backbone
that consistently triggers jogging: SF8x8. Its jogging confidence increases from 2.8% at RP1
to 5.4% at RP2 and 10.7% at RP3. This observation is interesting, particularly considering
that, in Section 5.1, the baseline jogging achieves higher confidence as the RP moves further
in the FOOTAGE context.

Finally, it is worth noting that RAFT consistently delivers superior jogging confidence
results. This outcome aligns with expectations since these models are designed to handle
flow information (as explained in Section 3.1). Interestingly, “Flying Kite” emerges as the
action mode most frequently obtained by these models. However, in the absence of scene
information and relying solely on the runner’s flow, the model’s inference can occasionally
lead to confusion. Notably, during the context experiments with ROI as the context, some
models also inferred “Flying Kite”. In general, both Slow models (S8x8 and S4x16) consis-
tently outperform others in jogging confidence across all three RPs. Furthermore, jogging
ranks as the third most frequent action for both Slow models at RP1 (refer to Table 5), the
third most frequent action for S8X8 and SF8x8 at RP2 (refer to Table 6), and the second
most frequent action for I3D, I3D NLN, and S8x8, with S4x16 and SF8x8 placing third at
RP3 (refer to Table 7).

Unrelated-domain experiment Table 8 presents an overview of the performance of the
considered backbone models across various encoding information scenarios. For the sake
of comparison, we have included the RGB approach in the same FOOTAGE context setting
used in Table 4. In fact, all considered encoding methods of this part of the analysis utilize
the FOOTAGE context setting. Each sub-table consists of seven rows corresponding to the
HAR backbones, as detailed in Section 3.1. The mAP values for the triplet loss are provided
within each row. The first column enumerates the backbonemodels, while the second column
specifies the number of frames utilized for generatingHARembeddings. Subsequent columns
display the mAP values for each model at two distinct race stages, RP1 → RP2 and
RP2 → RP3, addressing the problem as outlined in [15]. The average mAP across these
reference stages is also included for each model.

In contrast to the context experiment, the encoding information in this analysis exhibits
a distinct lack of incremental relation. The selected encoding methods are fundamentally
disparate. To elaborate, it is worth reminding that RAFT generates flow video clips where
only moving elements are discernible, and MiDaS generates depth video clips, retaining the
silhouettes of objects near the camera. AFD produces a more challenging-to-interpret flow-
encoded video sequence, even for human observers. The results offer intriguing insights.
AFD performs notably poorly in the re-ID task to the extent that, for the first time, the first
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Table 8 mAP achieved by each considered encoding experiment

Backbone #Frames mAP
RP1→RP2 RP2→RP3 Average

AFD

C2D 8 34.2% 35.6% 34.9%

I3D 8 40.1% 32.0% 36.1%

I3D NLN 8 37.3% 35.4% 36.3%

S4x16 4 34.6% 35.7% 35.1%

S8x8 8 29.9% 35.4% 32.7%

SF4x16 32 36.2% 40.5% 38.3%

SF8x8 32 38.8% 36.9% 37.8%

RPs Average 35.9% 35.9% 35.9%

MiDaS

C2D 8 63.8% 68.0% 65.9%

I3D 8 60.3% 68.7% 64.5%

I3D NLN 8 67.3% 69.8% 68.6%

S4x16 4 67.2% 69.0% 68.1%

S8x8 8 61.0% 69.7% 65.4%

SF4x16 32 62.4% 67.6% 65.0%

SF8x8 32 61.4% 61.4% 61.4%

RPs Average 63.6% 67.5% 65.6%

RAFT

C2D 8 54.4% 45.9% 50.1%

I3D 8 52.3% 46.0% 49.1%

I3D NLN 8 51.2% 45.7% 48.4%

S4x16 4 51.8% 48.4% 50.1%

S8x8 8 51.2% 45.5% 48.4%

SF4x16 32 44.4% 43.0% 43.7%

SF8x8 32 45.9% 42.3% 44.1%

RPs Average 50.2% 45.3% 47.8%

RGB

C2D 8 63.8% 73.4% 68.6%

I3D 8 66.7% 80.7% 73.7%

I3D NLN 8 71.0% 74.4% 72.7%

S4x16 4 73.6% 75.3% 74.4%

S8x8 8 68.9% 76.2% 72.6%

SF4x16 32 71.2% 72.8% 71.9%

SF8x8 32 70.4% 73.6% 72.0%

RPs Average 69.4% 75.2% 72.3%

The tables are organized according to backbones. The second column shows the number of frames the backbone
requires to make a prediction (see Section 3.1). Moreover, two competition stages are analyzed using scheme
A→B, where A stands as the RP considered for the gallery and B as the probe. The average columns show
the mean mAP for each backbone, whereas the last row shows the mean mAP at each stage
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race stage yields superior mAP rates compared to the second stage. This is intriguing as
RAFT, another flow-related encoding approach, encounters a similar issue. The generated
features for the second race stage are positioned further in the feature space due to the flow
encoding approach. Among AFD approaches, SF4x16 fares the best with a 38.3% mAP.

RAFT outperforms AFD, but its mAP generally remains below 50%. Remarkably, all
models exhibit strikingly similar performance, which is particularly noteworthy considering
that all HAR classifiers in the previous experiment share the same subset of mode actions,
namely, “FlyingKite” and “DancingBallet”. This limiteddiversity inmodesmaycontribute to
the consistent mAP results, suggesting that these models potentially lose crucial information
for their predictions.Within theRAFTencoding approach, S4x16 attains the highest accuracy.

Lastly, MiDaS surpasses all other encoding approaches. Furthermore, MiDaS demon-
strates competitive results compared to the ROI and PATH context configurations in Table 4.
In this encoding setting, the second race stage outperforms the first. The most effective
approach uses I3D NLN, a variant of I3D designed to address the covariance shift problem
in the batch normalization layer. Additionally, S4x16 reports intriguing mAP rates.

Finally, the last row of the table presents the mAP values averaged across both reference
stages for each model. These mAP values provide insights into the performance of the athlete
re-ID system, revealing that the system operates more effectively during the second stage
(RP2 to RP3) than the initial stage (RP1 to RP2) using the best encoding approach. Notably,
when employing the more informative MiDaS encoding, the results are approximately 15%
and nearly 30% better than the two flow-based approaches, RAFT and AFD, respectively.

5.3 Domain shift correlation

In the following, the Pearson correlation coefficient will be used to express the correlation
between the two distinct tasks, HAR and re-ID, while utilizing seven different HAR back-
bones. This procedure offers a valuable analytical approach.

The Pearson correlation between two variables X and Y can be computed using the
following equation:

ρXY = cov(X , Y )

σXσY
(5)

where cov(X , Y ) is the covariance between X and Y, and σX and σY are the standard devia-
tions of X and Y , respectively.

In the first place, Pearson correlation provides a robust and easily interpretable measure of
linear association, enabling a quantitative assessment of how changes in performance on the
domain-related task of HAR correspond to changes in the unrelated-domain task of athlete
re-ID across various backbone models. This allows investigating whether improvements in
one task may lead to improvements in the other, shedding light on potential synergies or
dependencies between the considered tasks. Furthermore, using a statistical measure like
this ensures the reliability and consistency of the assessment, offering a clear and intuitive
interpretation of the task correlations.

This can be pivotal for researchers and practitioners seeking to optimize model perfor-
mance and gain insights into the relationships between distinct but interrelated tasks. Of
course, the same analytical approach could be used for other pairs of tasks with similar
sharing of underlying features.

Table 9 illustrates the correlation of the tasks in different contexts. Each row corresponds
to a specific backbone model. The second column represents the average jogging confidence
for each model when considering different contexts: ROI, PATH, and FOOTAGE. The re-ID
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Table 9 Context-based analysis of tasks correlation

Backbone Domain-related task Domain-unrelated task Pearson
μROI , μPAT H , μFOOT AGE Correlation (r)

C2D 3.4%, 24.3%, 69.7% 61.7%, 63.2%, 68.6% 99.5%

I3D 4.6%, 36.8%, 75.2% 63.7%, 63.7%, 73.7% 88.9%

I3D NLN 4.3%, 14.0%, 32.8% 67.1%, 67.7%, 72.7% 97.1%

S4x16 4.3%, 34.7%, 65.0% 65.4%, 69.1%, 74.4% 99.5%

S8x8 2.4%, 30.1%, 68.8% 64.4%, 64.4%, 72.6% 90.1%

SF4x16 7.5%, 41.5%, 76.8% 65.3%, 66.9%, 71.9% 96.2%

SF8x8 9.6%, 45.9%, 76.6% 66.8%, 66.8%, 72.0% 84.1%

The Pearson correlation coefficient (r) is computed for each backbone architecture. In the context of the
domain-related task, which entails HAR classification, the computation averages (μ) the jogging confidence
score at each RP. For the unrelated-domain task, the computation is based on the average (μ) results of the
re-ID mAP

average results for re-ID mAP are displayed in the third column. The last column showcases
the Pearson correlation (r) between both tasks.

Remarkably, both tasks exhibit a strong positive correlation in this context-based experi-
ment. Notably, the C2D and S4x16 backbones show the highest correlation between the tasks.
Interestingly, the C2D backbone consistently does not deliver the best results individually,
but it strikes a balanced performance when bridging the gap between domain-related and
domain-unrelated-domain tasks. In contrast, the SF8x8 backbone, widely used in literature
for HAR-triggered transfer learning (see Section 2), demonstrates the weakest correlation.
It excels primarily in jogging confidence for HAR but struggles to enhance its mAP when
transitioning from ROI to PATH context. This challenge is observed in other models like I3D
and S8x8, contributing to the limitation in achieving a stronger correlation.

Furthermore, the table underlines how the domain-specific task noticeably improves as
the context widens, while the non-domain-specific tasks face challenges. Additionally, the
table highlights the absence of a straightforward relationship between HAR classification
performance and re-ID evaluation. Somemodels with subpar HAR performance, such as I3D
NLN, achieve moderate to high performance in re-ID. This divergence could be attributed to
classifier-related issues, where the HAR head encounters difficulties with these embeddings
that the re-ID head does not experience.

Table 10 offers a distinctive perspective on the correlation aspects when the analysis
is based on different encodings. In this context, models exhibit suboptimal performance
when fed by-products of image encoding. As observed in the second column, the average
jogging confidence scores at each RP are noticeably impacted by image encoding, in stark
contrast to the RGB-based contextual approaches shown in Table 9. This outcome aligns
with expectations, given that the training data primarily consisted of RGB videos.

However, it is important to emphasize that our objective, as outlined in Section 4.2, is not
to showcase the method for achieving the best performance. Instead, we aim to elucidate the
performance disparities among networks exposed exclusively to dynamic information and
explore their correlations when tackling domain-specific and non-domain-specific tasks.

In this context, RAFT emerges as the top performer in the HAR task, likely owing to the
inclusion of flow information during the training process, making recognizing actions more
familiar to themodels, as explained in the previous section. Intriguingly, this behavior does not
translate similarly to the re-ID task, where theMiDaS encoding approach outperforms RAFT
andAFD.This discrepancynotably impacts the correlation, resulting in a predominantlyweak
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Table 10 Encoding-based analysis of tasks correlation

Backbone Domain-related task Domain-unrelated task Pearson
μAFD , μMiDaS , μRAFT Correlation (r)

C2D 0.0%, 0.6%, 4.8% 34.9%, 65.9%, 50.1% 0.00%

I3D 0.0%, 0.3%, 9.5% 36.1%, 64.5%, 49.1% −0.05%

I3D NLN 0.6%, 0.2%, 9.6% 36.3%, 68.6%, 48.4% −0.13%

S4x16 0.0%, 0.0%, 13.9% 35.1%, 68.1%, 50.1% −0.05%

S8x8 0.0%, 0.3%, 14.2% 32.7%, 65.4%, 48.4% −0.02%

SF4x16 0.0%, 0.0%, 5.1% 38.3%, 65.0%, 43.7% −0.33%

SF8x8 3.6%, 6.3%, 15.4% 37.8%, 61.4%, 44.1% −0.04%

The Pearson correlation coefficient (r) is calculated for each backbone architecture. In the context of the
domain-related task, which involves HAR classification, the computation involves averaging (μ) the jogging
confidence score at each RP. For the domain-unrelated task, the calculation is based on the average (μ) results
of the re-ID mAP

negative linear relationship between the evaluations of the two tasks. It is worth underlining
that, on the contrary, dynamic features as conveyed by a flow should improve the re-ID based
on personal kinematic strategies that underlie individual walk and run patterns [24, 42].
The strongest correlation occurs when SlowFast (SF4x16) is considered, and it is negative,
implying that as one task improves its evaluation, the other task tends to decrease. Other
correlations are closer to zero, indicating a weak or negligible relationship between the two.

In Fig. 5, we showcase the behavior of the models achieving the highest correlation
between the domain-related task (DRT) and the domain-unrelated task (DUT) -specifically,
C2D and S4x16 in the context-based analysis, and I3D NLN and SF4x16 in the encoding-
based analysis. In the context-based analysis, the positive correlation is evident from the
closely aligned performances of the orange and blue lines with their dotted counterparts,
reflecting consistent model behavior across varying contextual parameters. Conversely, the
encoding-based experiment unveils a notable negative correlation, illustrated by the divergent
trends of the purple and green lines in contrast to their dotted counterparts. This disparity
emphasizes these models’ sensitivity to the encoding task’s intricacies and underscores the
need for a nuanced understanding of their performance characteristics.

Fig. 5 Correlation Analysis. The figures provide a concise overview of the correlation analysis conducted on
the models achieving the highest task correlation (according to Tables 9 and 10) in two distinct experiments:
the context-based experiment (depicted on the left) and the encoding-based experiment (depicted on the right).
In these visualizations, dotted lines represent outcomes from the domain-unrelated task (DUT), while solid
lines illustrate findings from the domain-related task (DRT)
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6 Conclusions

This paper introduces an innovative analysis to assess domain shift adaptation by correlating
two distinct tasks: a domain-related task (HAR) and a domain-unrelated task (re-ID), both
utilizing the same input data. To conduct this correlation analysis, the experiments employed
seven different pre-trained backbone models feeding the ad-hoc devised architectures. The
best performing among themwas a novel transformer classifier specifically tailored to address
the re-ID problem while utilizing pre-trained models for the HAR task. The scope of the
presented research is delineated by two primary analyses: a contextual information-based
analysis and an encoding-based analysis. The former seeks to elucidate how contextual
information impacts the evaluation of both tasks, while the latter delves into evaluating these
tasks when image encoding comes into play.

The reported findings from the contextual analysis reveal that the correlation between tasks
is notably high when the same training encoding scheme (RGB) is employed. Furthermore, it
becomes evident that the richer the contextual information, the more favorable the evaluation
outcomes for both HAR and re-ID. In this scenario, we have achieved superior performance
compared to the current state of the art in the re-ID task within this unconstrained sporting
environment. However, our results also highlight the considerable challenges in achieving
acceptable evaluation rates when considering the encoding experiment. In this scenario, HAR
evaluation rates tend to decline,with onlyMiDaS (depth images) providing noteworthy results
in re-ID. Interestingly, whenMiDaS is employed, the HAR task exhibits subpar performance.
This underscores an intriguing point, suggesting that the HAR classifier may contribute to
this decline in HAR performance, as the features extracted from the identical backbones yield
promising results for re-ID. Conversely, this issue is less pronounced when AFD or RAFT
encoding schemes are used, as the resulting features are inadequate for either task.

This research offers relevant insights into domain shift adaptation and task correlations
using shared inputs. Understanding how tasks influence each other with shared data is essen-
tial for robust AI systems. Additionally, it investigates contextual and encoding impacts
on performance, benefiting applications like HAR and person re-ID, which are relevant in
surveillance and sports analytics. This work advances adaptable and reliable AI models in
complex environments, crucial for real-world AI applications.

The conclusions from this research suggest several directions for future work. Firstly,
exploring advanced encoding schemes beyond RGB, MiDaS, AFD, and RAFT could yield
insights into their impact on task correlations between Human Activity Recognition (HAR)
and person re-identification (re-ID). Experimenting with diverse encoding strategies may
address challenges in achieving acceptable evaluation rates, particularly in the HAR task.

In particular, investigating the observed decline in HAR evaluation rates with specific
encoding schemes, such as MiDaS, requires attention. Understanding the interplay between
encoding processes and the HAR classifier’s performance may lead to refinements in model
architectures or training strategies to mitigate challenges. Moreover, the potential impact of
the HAR classifier on performance decline, especially when features from identical back-
bones yield promising re-ID results, deserves exploration. Fine-tuning the HAR classifier to
align with encoding schemes may be a promising avenue for future research.

Furthermore, extending the study to diverse sporting environments could enhance gen-
eralizability. Assessing the adaptability of the proposed models across different settings
and activities would contribute to the robustness of AI systems in complex, dynamic envi-
ronments. In summary, future work involves a deeper exploration of encoding strategies,
addressing observed declines in HAR evaluation rates, refining the interplay between the
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HAR classifier and encoding schemes, and broadening application scenarios to validate
model adaptability. These efforts collectively advance the understanding and applicability of
domain shift adaptation in AI models.
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