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Abstract
In this paper, we present an innovative framework for 2D-to-3D human pose estimation from
video, harnessing the power of multi-scale multi-level spatial-temporal features. Our frame-
work comprises three integral branch networks: A temporal feature core network, dedicated
to extracting temporal coherence among frames, enabling a comprehensive understanding
of dynamic human motion. A multi-scale feature branch network, equipped with multiple
receptive fields of varying sizes, facilitating the extraction ofmulti-scale features, thus captur-
ing fine-grained details across different scales. A multi-level feature branch network, tasked
with extracting features from layers at various depths within the architecture, providing a
nuanced understanding of pose-related information. Within our framework, these diverse
features are seamlessly integrated to encapsulate intricate spatial and temporal relationships
inherent to the human body. This integration effectively addresses challenges such as depth
ambiguity and self-occlusions, culminating in substantially improved accuracy in pose esti-
mation.Extensive experiments on Human3.6M and HumanEva-I show that our framework
achieves competitive performance on 2D-to-3D human pose estimation in video. Code is
available at: https://github.com/fll123/3Dhumanpose.
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1 Introduction

In recent years, 3Dhuman pose estimation has garnered significant attention due to its promis-
ing applications in behavior recognition [1] and pose tracking [2]. Traditional approaches
to 3D human pose estimation, such as [3] and marker systems [4], have historically relied
on specialized hardware and meticulous setup procedures within controlled environments.
These requirements have imposed significant hardware demands and labor-intensive pro-
cesses, thereby hindering the widespread adoption of 3D human pose estimation solutions
[5]. However, recent strides in deep learning have transformed this landscape, enabling effi-
cient 3D human pose estimation from standard videos and images. This paradigm shift not
only obviates the need for resource-intensive devices and elaborate setups but also propels
the state-of-the-art performance of 3D human pose estimation [6, 7].

Deep learning-based methods for 3D human pose estimation can generally be classified
into two approaches: an end-to-end approach and a two-stage approach. The end-to-end
approach relies on deep neural networks to directly predict 3D human poses in an image
[8–10]. Constructively, the two-stage approach first predicts 2D human joint positions using
dedicated 2D pose estimation methods, and then elevates 2D joint positions to 3D positions
through regression networks [11–14]. Recently, rapid advances in 2D human pose estimation
make the two-step approach a promising approach, which makes 2D-to-3D mapping a hot
topic. 2D-to-3D methods leverage 2D key points to achieve high accuracy.

Many early works on 3D human pose estimation [15, 16] rely on single frame image
analysis. However, as a combination of multiple consecutive frames, a video contains more
complex temporal information. As a result, a single image-based estimation method may
lead to large estimation differences between adjacent frames. In fact, temporal incoherence
and jitter are often obtained from single frame estimations.

For this reason, to produce more robust estimations, some scholars have attempted to esti-
mate the human pose in a particular frame from a sequence of frames in a video. Recurrent
neural network (RNN) is a widely used model that is powerful for modeling sequence data.
Some work [12, 17] uses RNNs to construct regression models for extracting temporal infor-
mation from sequence data. Many results have shown that 3D human pose estimation based
on sequence data is more accurate than a single frame. However, RNNs are prone to gradient
vanishing and explosion problems when dealing with long sequence data. Pavllo et al. [14]
design a temporal convolutional network (TCN) for 3D human pose estimation from 2D
joint motion trajectories. TCN can flexibly capture various-length sequences and can support
causal convolutions to allow online estimation. TCN has yielded dramatic improvements in
2D-to-3D human pose estimation methods.

2D-to-3D human pose estimation is still an ill-posed problem for reasons including depth
ambiguity and self-occlusions. Many works [11, 14, 18] adopt cascaded multi-layer network
architectures, whereas not benefited from model depth. Moreover, the features extracted by
this architecture are simple, which limits interpretability of the model.

In this work, focusing on the two-step approach to 3D human pose estimation from video,
we propose a new framework for 2D-to-3D mapping. The framework contains three branch
networks: a temporal feature core network for exploiting temporal coherence among frames,
a multi-scale feature branch network for exploiting multi-scale features using multiple recep-
tive fields of various sizes, and a multi-level feature branch network for exploiting multi-level
features from layers at different levels. Within our framework, these diverse features are
meticulously exploited to resolve challenges such as depth ambiguity and self-occlusions,
leading to significantly more accurate 3D human pose estimations derived from 2D skeleton
key points.
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Acornerstone of our framework is the spatial-wise separable residual convolutionmodule,
which builds upon the depth-wise separable convolution module introduced in [19]. Notable
improvements in our module include: (1) the strategic swapping of the order between depth-
wise convolution and point-wise convolution, (2) the replacement of the ReLU activation
function with the superior Mish function, and (3) the incorporation of a residual connection.
Empirical results unequivocally demonstrate that our enhanced module delivers superior
performance while requiring fewer parameters.

Extensive experiments conducted on two publicly available datasets affirm the efficacy
of our proposed framework. It not only enhances the accuracy of 3D human pose estimation
but also consistently achieves state-of-the-art performance in the field.

In summary, our main contributions to this paper are as follows:

(1) We propose three branch networks for extracting multi-scale features, multi-level fea-
tures, and temporal coherence features for estimating human pose from videos.

(2) We propose a new framework for 2D-to-3D mapping, which achieves 3D human pose
estimations from 2D skeleton key points by fusing multi-scale, multi-level spatial tem-
poral features.

(3) Extensive experiments on Human3.6M and HumanEva-I show that the proposed method
generally achieves competitive performance.

2 Related work

2.1 Efficient architecture

Convolutional neural networks have been widely used inmany scenarios, such as image anal-
ysis [20], action recognition [21, 22], and human pose estimation [23, 24]. As the demands for
more complex prediction tasks have grown, CNNs have evolved towards increasingly intri-
cate and deeper architectures, presenting significant computational challenges. To address
this issue, a wave of lightweight CNNs has recently emerged.

He et al. introduce ResNet [25], a network incorporating residual connections to mitigate
the vanishing gradient problem and expedite network convergence. Sifre et al. propose depth-
wise separable convolution [19], which decomposes computation into depth-wise and point-
wise convolutions, simplifying standard convolution parameters, thereby reducing model
complexity. MobileNetV2[26] introduce inverted residual blocks with fewer parameters and
lower computational costs on the basis of depth-wise separable convolution[19]. In line with
these advancements, we also focus on depth-wise separable convolution and present a novel
convolution structure tailored for 3D human pose tasks.

2.2 3D Human pose estimation

In the realm of 3D human pose estimation using deep learning, two predominant approaches
have emerged as the mainstay: the end-to-end approach and the two-stage approach. The
end-to-end approach relies on a regression network to directly predict 3D human poses from
input images [8, 9, 27]. Notably, Li et al. [27] introduce a multi-task convolutional neural
network (CNN) that leverages shared network results for joint prediction and detection,
achieving end-to-end 3D human pose estimation. Similarly, Nie et al. [8] propose a Structured
Pose Representation (SPR) that effectively combines person instance and body joint position
representations. Building upon SPR, they developed the SPMmodel, which directly predicts
poses in an end-to-end fashion.
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In contrast, the two-stage approach proceeds with a more structured pipeline, initially
estimating 2D joint positions and subsequently elevating them to 3D positions through a
regression network [11–14]. This method often attains higher average accuracy compared to
the end-to-end approach, prompting itswidespread adoption. For instance,Martinez et al. [11]
introduce a straightforward yet highly effective model for 3D human pose estimation, achiev-
ing impressive accuracy through fully connected layers augmentedwith residual connections.
Hossain et al. [12] employ sequence-to-sequence LSTM networks to extract temporal infor-
mation and enforced temporal smoothness constraints during training. Recently, Zhao et al.
[18] introduce semantic Graph Convolutional Networks (GCN) to enhance graph convolu-
tion performance by learning weights for implicit prior edges in a graph, further improving
the performance of two-stage methods. Additionally, Pavllo et al. [14] harness a temporal
convolutional network composed of dilated convolutions to capture temporal information
from extended sequences, leading to enhanced performance in 3D human pose estimation.

3 Multi-scale multi-level spatial temporal feature network

In this section, we introduce our multi-scale multi-level spatial temporal feature network
for 2D to 3D human pose estimation. The network generates a sequence of 3D coordinates
rooted at the pelvis root joint from a sequence of 2D pose predictions from a video. The 2D
to 3D pose mapping process is illustrated in Fig. 1.

3.1 Structure of our network

Figure 2 depicts the overall architecture of our network, which consists of three branch
networks, as outlined by the three dashed rectangles. The branch network in the blue dashed
rectangle is the core network for extracting temporal features. The branch network in the
orange dashed rectangle is the multi-scale feature branch network for extracting multi-scale
features. The branch network in the orange dashed rectangle is the multi-level feature branch
network for extracting multi-level features.

The three branch networks are build on basic modules, including Expand_Conv module,
SSDR_Convmodule and SSSR_Convmodule. The structures of the basicmodules are shown
in Fig. 3.

The multi-scale feature branch network, which performs multi-scale processing on
the input and learns more feature representations, is built on expanded convolution

2D Pose 
Estimation

3D Pose 
Estimation

ReconstructionInput Video Input 2D Keypoints 

Expand_Conv

SDSR_Conv

SSSR_Conv

1
*
1

_
C

o
n

v

Fig. 1 Schematic of the 2D to 3D mapping. The input is a skeleton with 2D key points, and the output is a 3D
pose reconstructed from the corresponding 2D key points
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Fig. 2 An instantiation of our network architecture for 3D human pose estimation. The input consists of 2D
key points for a receptive field of 243 frames with J = 17 joints. The tensor sizes as shown in parentheses, e.g.,
(81x1024) denote 81 frames and 1024 channels

(Expand_Conv) modules. An Expand_Convmodule consists of a 1D convolution with kernel
size k and stride factor s. The temporal feature core network contains spatial separable dilated
residual convolution (SSDR_Conv) modules to capture long-range temporal relationships
across frames, thereby significantly enhancing temporal consistency. A SSDR_Conv module
is built on SSDR_Conv blocks with a dilation factor d. The multi-level feature branch net-
work consists of spatial separable strided residual convolution (SSSR_Conv)modules, which
refines the shallow features of the model to obtain higher-level features. A SSSR_Conv mod-
ule is built on SSSR_Conv blocks with a stride factor s.

In our network architecture, each block is followed by a 1D convolution with kernel size
1. We adopt the temporal feature core network as the baseline model.

3.2 Spatial-wise separable residual convolution

Inspired by depth-wise separable convolution, we introduce spatial-wise separable residual
convolution to capture temporal information of long sequences.

Depth-wise separable convolution involves both spatial dimension and depth dimension.
As shown in Fig. 4, its operation contains two parts, depth-wise convolution and point-wise
convolution. Depth-wise convolution is a separate convolution operation on each channel
of the input image, which extracts features from each channel. Point-wise convolution is
a spatial 1x1 convolution operation for fusing the feature map across channels. Splitting
traditional convolution into depth-wise convolution and point-wise convolution reduces the
number of convolution parameters.

However, depth-wise separated convolution does not perform as well as standard convolu-
tion, as features extracted from each channel may lose some valuable information, leading to
a degradation in performance. To mitigate this negative effect, we make some modifications:
we swap the order of depth-wise convolution and point-wise convolution, use Mish function
to replace the ReLU activation function, and add a residual connection. The modifications
do not bring additional parameters.
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Fig. 3 The component modules. (a) The Expand_Conv module; (b) The basic block of TCN; (c) The spatial-
wise separable residual convolution module parameterized with dilation; (d) The spatial-wise separable
residual convolution module parameterized with stride

The main significance of activation functions in neural networks is to introduce nonlin-
earities that enable the network to learn complex patterns in the data. A commonly used
activation function is the rectified linear activation function (ReLU) [28] defined as:

f (x) = max(0, x). (1)

ReLU has good non-saturation properties, but it directly sets negative values to zero,
resulting in a certain amount of feature loss. To compensate for it,we adopt the non-monotonic
neural activation function (Mish), which is defined as:

f (x) = x tanh(ln (1 + ex )) (2)
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M x channel input M x Filter M x Maps M x Maps N x Filter N x Maps

Depth-wise Convolutional Point-wise Convolutional

Fig. 4 The process of depth-wise separable convolution. This process includes depth-wise convolution and
point-wise convolution

Mish and Relu are compared in Fig. 5. TheMish function has the advantages of being non-
monotonic and smooth. A smooth activation function allows information to better percolate
into the neural network, resulting in better accuracy and generalization. Therefore, to predict
more accurate 3D human poses, we use Mish function in our modules.

For facilitating the comparison, the structures of the depth-wise separable convolution
and our spatial-wise separable residual convolution are respectively shown in the sub-figures
of Fig. 6. In our network, the SSDR_Conv blocks adopt our spatial-wise separable residual
convolution parameterized with a dilation factor, and the SSSR_Conv blocks use our spatial-
wise separable residual convolution parameterized with a stride factor.

3.3 Multi-scale andmulti-level features

We use multi-scale and multi-level features to construct structures with powerful multi-scale
feature extraction capabilities to enable highly accurate 2D to 3D human pose estimation.

Multi-scale Feature.Many previous works [29–31] have found that multi-scale features
enable models to learn both local and global features. Using deep learning for 3D human
pose estimation, multi-scale features are crucial to pose understanding.

Fig. 5 Comparison of Mish and Relu activation functions
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Fig. 6 Comparison of the structure of depth-wise separable convolution and our convolutional structure. (a)
Structure of depth-wise separable convolution; (b) Structure of our spatial-wise separable residual convolution

Multi-level Feature.Newell et al. [32] found that features in the shallow layers of the net-
work are equally valuable for research. Therefore, we extract multi-level features in shallow
layers and believe that this can also bring valuable information for the final prediction.

As shown in Fig. 7, we use the Expand_Conv module to upgrade the channel of input
features and process multi-scale receptive fields in the multi-scale feature branch network.
Features are fused to each layer of the network to propagate richer features. In the multi-
level feature branch network, we use the SSSR_Conv module to refine the output of the
0th SSDR_Conv layer and the 0th Expand_Conv layer to obtain higher-level features that
accumulated into the subsequent layers of the model.

4 Experiments

4.1 DataSets and evaluation protocols

To validate the effectiveness of the proposed method, we conduct experiments on twomotion
capture datasets of Human3.6M [33] and HumanEva-I [34] using two standard evaluation
protocols.

4.1.1 DataSets

Human3.6M dataset is one of themost widely used dataset for 3D human pose estimation and
it contains data captured through four synchronized cameras at 50 Hz. This dataset contains
3.6 million video frames for recording 11 professional actors performing 15 different actions
including sitting down, sitting, purchasing, eating, talking on phone, etc. HumanEva-I is a
much smaller dataset and it contains data captured through three cameras at different views
at 60 Hz. HumanEva-I contains 7 calibrated video sequence, which are synchronized with
3D body poses obtained from a motion capture system. HumanEva-I contains video frames
of 4 subjects performing 6 common actions such as walking, jogging, gesturing.

4.1.2 Evaluation protocols

In our experiments, we use two evaluation protocols as in previous studies [14, 30, 35]. Proto-
col#1 uses the mean per-joint position error (MPJPE) performance metric, which represents
the mean Euclidean distance between the estimated result of an algorithm and the corre-
sponding ground truth. Protocol#2 applies a procrustes analysis with the ground truth as a
pre-processing step in MPJPE calculation. Performance metric of protocol #2 is abbreviated
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Fig. 7 Multi-scale and multi-level features. (a) The multi-scale feature branch network;(b) The multi-level
feature branch network

to P-MPJPE. These evaluation protocols compute the distance errors between the predictions
and the ground truth of the joints’ positions.

4.2 Implementation details

The proposed model is implemented in PyTorch framework on a GeForce RTX 3090 GPU.
We train the model using the Ranger optimizer.

For Human3.6M, we set the batch size b = 1024, set the initial learning rate to 1e-3, apply
a shrinkage factor a = 0.95 after each epoch, and the model is trained for 80 epochs. As in
many related works [14, 35], we adopt a 17-joint human skeleton compatible with 2D human
pose estimation. We employ action sequences S1, S5, S6, S7, S8 for training and S9, S11 for
testing. For HumanEva-I, we set b = 128 and a = 0.995 and train for 1000 epochs. We train
and test with video sequences of "Walk" and "Jog" actions performed by subjects S1, S2 and
S3 in the HumanEva-I dataset. We build three models with T=27, T=81, and T=243, where
T denotes the size of the receptive field.
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4.3 Comparison with state of the art methods

We compare the performance of the proposed method with some state-of-the-art methods.
As in some previous work [14, 30, 35, 36], we use two types of 2D joint data for per-

formance evaluation on Human3.6M: the 2D key points detected from Cascaded Pyramid
Network (CPN) [37] and the ground truth 2D key points. The results of the experiments
of MPJPE are presented in Tables 1 and 2, and those of M-MPJPE are provided in Table 3.
Our method achieves competitive performance on Human3.6M underMPJPE and P-MPJPE.
When using ground truth 2D keypoints, our method achieves an error reduction of approxi-
mately 11% compared to TCN [14]. Some qualitative comparisons of our method and TCN
are shown in Fig. 8.

To further investigate the performance of ourmethod and TCN, we compare the prediction
accuracy between our method and TCN with various receptive fields. As shown in Figs. 9
and 10, our method achieves a smaller estimation error and a shorter runtime. In addition,
we compare the prediction accuracy for the actions between our method and TCN. As shown
in Table 4, our approach performs better than TCN for all actions, especially for the three
heavily occluded actions of sitting down, sitting, and purchasing. There is a 3.1mm reduction
in error for sitting down in the performance metric of MPJPE. The results confirm that our
approach can mitigate the issues of depth ambiguity and self-occlusion.

The duration of a video in the HumanEva-I dataset is usually much shorter than that in
the Human3.6M dataset, so We evaluate our method with a receptive field size of 27 under
P-MPJPE. As in previous works [14], we adopt Mask R-CNN [38] to obtain 2D poses as
input. The empirical results of our method on HumanEva-I are presented in Table 5.

Finally, we compared the complexity of our model with other methods, as shown in
Table 6. The comparison mainly focuses on the number of parameters in the models and the
expected floating-point operations, specifically matrix multiplication. As seen in the table,
liu et al. [35]’s method has slightly fewer model parameters than ours, but their floating-
point calculation times are considerably higher. Overall, our model demonstrates lower
complexity.

Input TCN Ours GT Input TCN Ours GT

Fig. 8 Qualitative results of our method and TCN on Human3.6M [33]
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Fig. 9 Comparison with TCN with different receptive fields on Human3.6M

4.4 Ablation studies

In our ablation study, we use 2D pose predictions of CPN on the Human3.6M dataset for
evaluating the impact of each component in our network.

4.4.1 Spatial-wise Separable Residual Convolution

Our spatial-wise separable residual convolution contains three modifications: (1) the order of
depth-wise convolution and point-wise convolution are swapped; (2) a residual connection
is inserted; (3) the Mish activation function is used to replace the RelU activation function.
These three modifications are applied independently to reveal the effect of eachmodification.

Fig. 10 Comparison of the running time of the TCN model with different receptive fields
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Table 5 Quantitative evaluation results on HumanEva-I under P-MPJPE (mm). Mask R-CNN detections of
2D key points are used as input

Method Walk Jog Avg.
S1 S2 S3 S1 S2 S3

Martinez et al. [11] 19.7 17.4 46.8 26.9 18.2 18.6 24.6

Pavlakos et al. [40] 18.8 12.7 29.2 23.5 15.4 14.5 19.0

Lee et al. [17] 18.6 19.9 30.5 25.7 16.8 17.7 21.5

Pavllo et al. [14] 13.9 10.2 46.6 20.9 13.1 13.8 19.8

Ours (T=27 Mask R-CNN) 13.513.513.5 10.010.010.0 27.427.427.4 17.317.317.3 12.312.312.3 12.912.912.9 15.615.615.6

Ours (T=27 GT) 8.0 6.7 11.6 10.3 7.7 8.9 8.9

Note: Best: bold and red; Second best: underlined and blue

The results are shown in Table 7. Performance progressively improves as the convolutional
structure changes.

4.4.2 Effect of activation function

We investigate the effectiveness of activation functions as shown in Table 8. MPJPE achieved
with Mish function is 1.2 mm lower than ReLU on our baseline model with receptive field
size T=27.

4.4.3 Effect of the number of channels

We study how the number of channels C affects the performance of the baseline model. As
shown in Figure 11, the error gradually decreases as the number of channels increases. For
channel values between 128 and 512, MPJPE decreases significantly. When the number of
channels is larger than 512, the MPJPE reduction is significantly smaller. When the number
of channels increases from 1024 to 2048, the error is reduced by up to 1.7%. However, model
parameters grow exponentially and training is significantly slower. Hence, we set the number
of channels to 1024 in the following experiments.

Table 6 Computational
complexity of various models
under Protocol#1 trained on
ground-truth 2D poses

Model Parameters ≈FLOPs

Hossain et al.[12] 16.96M 33.88M

Liu et al. (T=243)[35] 14.52M 97.78M

Lee et al. [17] 31.00M —

Pallo et al. (T=27)[14] 8.56M 17.09M

Pallo et al. (T=81) 12.75M 25.48M

Pallo et al. (T=243) 16.96M 33.87M

Ours (T=27) 4.48M 8.92M

Ours (T=81) 10.90M 17.53M

Ours (T=243) 15.22M 30.34M
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Table 7 Ablation study on the spatial-wise separable residual convolution structure under MPJPE (mm) and
P-MPJPE (mm)

Method Params MPJPE ↓ P-MPJPE ↓
The Standard Convolution 16.95M 46.8 - 36.5 -

The Original Structure 8.58M 49.0 - 38.6 -

+Modify The Order of Execution 8.58M 46.8 2.2 36.9 2.0

+Residual Connection 8.58M 47.4 1.6 37.3 1.3

+Activation Function (Mish) 8.58M 47.7 1.3 37.7 0.9

Our Network (T=243 CPN) 8.58M 45.9 3.1 36.4 2.2

Table 8 Ablation study on
feature networks in our method
under MPJPE (mm) and
P-MPJPE(mm)

Activation Function Params MPJPE ↓ P-MPJPE ↓
ReLU 4.37M 49.5 - 38.5 -

Mish 4.37M 48.3 1.2 37.4 1.1

Fig. 11 Ablation studies on a different number of channels under MPJPE(mm). CPN: CPN detection of 2D
key points, and GT: ground truth of 2D key points

Table 9 Ablation study on
feature networks in our method
under MPJPE (mm) and
P-MPJPE(mm)

Method
Model

T = 27 T = 81 T = 243

Baseline (CPN) 48.3 37.4 46.9 36.8 45.9 36.4

+Multi-scale (CPN) 47.6 37.3 46.4 36.6 45.4 36.1

+Multi-level (CPN) - - 46.3 36.2 45.3 35.6

Our (CPN) 47.6 37.3 46.0 36.1 44.8 35.5

Our (GT) 37.0 27.9 35.5 26.1 33.3 25.4
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4.4.4 Effect of multi-scale andmulti-level features

To evaluate the impact of multi-scale and multi-level features, we test the performance of
our network model with and without the multi-scale feature branch network or multi-level
feature branch network.

The results in Table 9 show that, introducing multi-scale and multi-level features into our
model with receptive field size 243 reduces the error by 1.1 mm.

5 Conclusions

In this work, we use multi-scale and multi-level features to build the powerful feature extrac-
tion capability and fuse three branch networks to better mitigate depth ambiguity and resolve
self-occlusion. Quantitative results demonstrate that our approach can effectively improve the
accuracy of 3D pose estimation. In future work, we will focus on more efficient architecture
to extract more advanced features.
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