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Abstract
Recent generation Microsoft Kinect Camera captures a series of multimodal signals that
provide RGB video, depth sequences, and skeleton information, thus it becomes an option
to achieve enhanced human action recognition performance by fusing different data modal-
ities. However, most existing fusion methods simply fuse different features, which ignores
the underlying semantics between different models, leading to a lack of accuracy. In addi-
tion, there exists a large amount of background noise. In this work, we propose a Vision
Transformer-based Bilinear Pooling and Attention Network (VT-BPAN) fusion mechanism
for human action recognition. This work improves the recognition accuracy in the following
ways: 1) An effective two-stream feature pooling and fusion mechanism is proposed. The
RGB frames and skeleton are fused to enhance the spatio-temporal feature representation. 2)
A spatial lightweight multiscale vision Transformer is proposed, which can reduce the cost of
computing. The framework is evaluated based on three widely used video action datasets, and
the proposed approach performs a more comparable performance with the state-of-the-art
methods.
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1 Introduction

Human action recognition (HAR), simply explained as identifying human behavior, plays
an important role in many engineering practices. The input for action recognition is a video
clip. The general approach is to sample video clips into several frames, which is actually a
video classification task from a presentation perspective. Technically speaking, it is mainly a
spatiotemporal feature learning technique, which involves learning the temporal and spatial
features in a video. Spatial features refer to what people or objects are included in the video;
The temporal feature is how the people or objects in the video move. For example, automatic
navigation systems [1] and AI video surveillance [2]. In addition, it is also important for
many other related fields, including smart cities [3], traffic management [4], etc.

Due to the development of various precise and economical sensors, as well as the new
generation of RGB D cameras. HAR adopts different modes, such as skeleton, depth, radar,
etc. According to the application scenario, RGB-D cameras can capture depth images, bone
state information, and other state information. Multimodal HAR has significant advantages
[5, 6]. The CNN based algorithm is a relatively classic algorithm that is common in practical
application scenarios. Zhao et al. [5] proposed a dual flow network composed of recurrent
neural networks (RNNs) and convolutional neural networks (CNN) for independent process-
ing of RGB and skeleton data. Song et al. [6] proposed a continuous deep CNN learning
framework consisting of two skeleton guided flows, and used this network to extract features
from RGB and optical flows.

Transformer [7] has been considered a new type of deep learningmodel since its inception.
Due to its powerful functionality and broad prospects, it has recently taken a leading position
in the field of machine learning. Recently, Transformer has been applied to critical computer
vision tasks. At present, only a few works [8–10] use Transformers in low-level vision,
and further research is needed. Due to the continuous nature of the video, Transformer
is essentially suitable for video tasks [11, 12], and its performance begins to compare to
traditional CNN and RNN. Most of the current enthusiasm for applying Transformer to
visual tasks began with Vision Transformer (ViT) [13]. An emerging work aims to apply
Transformer to visual tasks such as object detection [14], semantic segmentation [15], 3D
reconstruction [16], medical image segmentation [17] etc. In this paper, we directly establish
a phased model that allows channel expansion and resolution downsampling based on [13,
25]. Our goal is to connect the multi-scale feature hierarchy with the transformer model.

The HAR method based on Transformer’s multimodal fusion still poses challenges in
achieving the goal of effective modal fusion. More specifically, there are at least three chal-
lenges. Firstly, how to obtain greater action context information from multimodal data, and
how to capture richer feature information through attention mechanism integration mod-
els. Secondly, most of the features in the video are extracted from the entire frame, which
includes a large amount of background noise, and the objects that undergo actions are easily
overlooked. Concurrently, it is necessary to consider advanced features that are rough but
complex in space to model visual semantics. Thirdly, most existing multimodal methods
have complex structures and high computational costs. Therefore, it is necessary to design
lightweight channel capacity to effectively solve multimodal HAR problems.

Motivated by the above works, the main contributions of this work are as follows.
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• To enhance fusion accuracy, we employ two complementary flow techniques, namely
a spatial ViT architecture and an attention module designed for visual data modeling.
These components enable effective fusion of multimodal data and facilitate end-to-end
training. Notably, in contrast to the traditional Transformer as mentioned in reference
[25], our approach utilizes Multi-head pooling attention to pool the sequence of latent
tensors, offering multiple channel scales.

• An effective data preprocessing method has been adopted for RGB videos and skele-
ton sequences, which can help networks capture richer feature information and more
accurately capture human actions.

• The proposed VT-BPANmodule effectively handles spatial roughness but complex high-
level features to model visual semantics. In addition, a spatial lightweight improvement
of the ViT that can reduce computational costs has been proposed.Through experimen-
tal analysis of multimodal datasets, the proposed VT-BPAN module has significantly
improved in action recognition compared to existing research results.

The remainder of this paper is organized as follows. An overview of the related work
is given in Section 2. Section 3 describes the proposed VT-BPAN in detail, and then its
experimental implementation setup and the experimental results and discussion are presented
in Section 4. Finally, Section 5 concludes the paper.

2 Related works

2.1 Human action recognition integrating RGB video and skeleton data

RGBmode is typically captured usingRGBcameras,whereas skeleton data naturally encodes
joint positions through coordinates. Consequently, this skeleton information possesses a
higher level of abstraction compared to RGB data. Additionally, it demands fewer com-
putational resources and offers enhanced robustness. The human skeleton’s structure can
be portrayed as a graph, with each vertex representing a human joint, and the connections
between these vertices forming the human skeletal structure. In their work, Simonyan and
Zisserman [18] introduced a classic dual-flow framework encompassing spatial and temporal
networks. Furthermore, they proposed a long-term recursive convolutional network (LRCN)
composed of 2D cellular neural networks in [19]. This network’s purpose is to extract RGB
features at the frame level and subsequently generate a single action label using LSTM.
Yan et al. [20] introduced the spatiotemporal GCN (ST-GCN) for human action recogni-
tion based on skeleton data. Another approach, the two-stream adaptive GCN (2S-AGCN),
was presented in [21]. Moreover, Chi et al. [22] introduced InfoGCN, which incorporates
information bottlenecks to facilitate the learning of complex actions.

Transformers have demonstrated significant potential in processing sequential data. In
[23], Qiu et al. proposed a spatio-temporal tuple Transformer (STTFormer) framework.
Plizzari et al. [24] introduced a spatiotemporal transformation network (ST-TR) structure,
which considers learning inter-frame motion dynamics and intra-frame joint interactions
through spatial and temporal self-attentionmodules.Additionally, in [25], aMultiscale Vision
Transformer (MViT) was proposed for video and image recognition. The MViT combines
a multi-scale feature hierarchy with Transformer architecture, incorporating several chan-
nel resolution scale stages. These stages start from the input resolution and small channel
dimensions, progressively expanding channel capacity while reducing spatial resolution.
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2.2 Multi-modal data fusionmethods

The exploration of deep learning architectures that seamlessly integrate RGB andHAR skele-
ton features has garnered significant attention. Zolfagari [26] applied a 3DCNN to process
both pose and motion information extracted from the original RGB images. They employed
Markov chain models to fuse this flow of information for action classification. In a more
recent development, Li et al. [27] introduced a two-stream model comprising R (2+1) D
networks, ST-GCN networks, and guided blocks that enhance action-related information in
videos. Subsequently, they employed score fusion techniques for model classification. Build-
ing upon a 3DCNN network, Das et al. [28] proposed a method utilizing RGB video as input.
They devised a pose-guided spatiotemporal attention network to capture relevant information
effectively. In a different approach, Xu et al. [29] introduced the BPANmodel, incorporating
spatiotemporal bilinear pooling and attention fusion techniques, which proficiently achieved
feature fusion.

3 Proposedmodel

In this section, the data preprocessing module and feature extraction strategy are introduced,
and the feature fusion strategy is explained. Two deep learning frameworks are used to extract
features separately, and the features are fused through the VT-BPAN module.

3.1 Preprocessingmodule

In this paper, we utilize the approach detailed in [29] to direct the focus of video detection
towards the human body in RGB video, as depicted in Fig. 1. We achieve this by cropping
the actions of the human body in the input RGB image through pose mapping.

In addition, for skeleton sequences, in order to better describe the spatiotemporal sequence
of the skeleton, we used time difference and relative coordinates. As shown in Fig. 2, the
relative coordinate xr can be obtained based on the distance between all joints in each frame
and the distance between the center joints. xt represents the time difference, which can be
calculated as follows.

xt = x [t + 1] − x [t] (1)

where the notation x[t] signifies the data at frame t , and the final input data is concatenated
and combined from x , xr , and xt . Building upon the framework of 2S-AGCN [21], where
the original channel C is set to 3 to denote the three-dimensional coordinates of each joint,
we employ preprocessing modules to extract additional information features. This module
expands the input channel C to 9. Within 2S-AGCN, a spatial GCN block is introduced,
which can be computed using the following equation.

fout =
Kv∑

k

Wk fin (Ak + Bk + Ck) (2)

where Kv denotes the dimension of the kernel, AK corresponds to the adjacency matrix, Bk

bears a similarity to Mk as seen in ST-GCN, and Ck represents the learned sample graph.
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Fig. 1 An overall of skeleton preprocessing and the architecture of R(2+1)D network

3.2 Feature extractionmodule

In this section, the R (2+1) D network [30] and the 2S-AGCN network [21] are used for
feature extraction, respectively. Specifically, for RGB video streams, pre training is required
on Kinetics-400 [31]. The schematic diagram of the R (2+1) D recognition block is shown in
Fig. 1. A complete 3D convolution can be more conveniently approximated through 2D and
1D convolutions, dividing spatial and temporalmodeling into two separate steps.The network
architecture of R(2+1)D is composed of Mi 2D convolutional filters of size Ni−1 ×1×d×d
and Ni 1D time convolution filters of size Mi × t×1×1. The hyperparameter Mi determines
the dimension of the intermediate subspace, where the signal is projected between spatial and
temporal convolutions.As the input, it regards the video datawith the size of 3×T×112×112,
where 3 represents the number of RGB channels, 112 corresponds to the image height and
width, as well as T corresponds to the length of the sequence.

Regarding the 3D skeleton stream,we employ the 2S-AGCNnetwork. Initially, we acquire
and process the skeleton data, as illustrated in Fig. 2. The skeleton sequence is characterized
by dimensions T × C × V × M , where T denotes the frames in the sequence, C denotes
the number of channels, V represents the joints, and M represents the skeletons within each
frame. Following the application of R(2+1)D blocks, the 2S-AGCN network, and subse-
quent dimensional transformation, the resulting features are standardized to have the same
dimension.

Fig. 2 An overall of skeleton preprocessing and the architecture of 2S-AGCN with temporal difference
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3.3 Feature fusionmodule

RGB features and skeleton features are often fused in computer vision tasks, particularly
in HAR and pose estimation, because they capture different aspects of visual information
and complement each other. The fusion of these features is designed to enhance the overall
understanding of the scene or task, rather than leading to information redundancy. Here are
explanations of how redundancy is mitigated in the fusion of RGB and skeleton features:

1). Complementary Information: RGB features capture visual information about the
appearance and color of objects and scenes in a video or image. On the other hand, skele-
ton features capture information about the spatial and temporal positions of key body joints
or key points. These two types of features provide complementary information. RGB fea-
tures can help recognize objects and their interactions, while skeleton features are valuable
for understanding human pose and movement. 2). Robustness: Fusing RGB and skeleton
features can enhance the robustness of a computer vision system. RGB features may be sen-
sitive to changes in lighting conditions, occlusions, or cluttered backgrounds, which skeleton
features are less affected by. By combining both, the system can better adapt to varying
real-world scenarios. 3). Improved Accuracy: Integrating RGB and skeleton features often
results in improved recognition or classification accuracy. The fusion allows the model to
capture both the appearance and motion cues, which can lead to more discriminative and
informative representations for tasks like action recognition, gesture recognition, or human
pose estimation.

In this section, we introduce the incorporation of Transformer and Bilinear Pooling tech-
niques [32, 33] to combine the features extracted by two preprocessing models. We begin by
elucidating the Multi Head Pool Attention (MHPA), a self-attention mechanism that facili-
tates adaptable resolution modeling within the Transformer block. This enables the operation
of multi-scale converters at gradually changing spatiotemporal resolutions. The VT-BPAN
module we propose is visualized in Fig. 3. This module seamlessly integrates the familiar
structure of the Transformer block, as depicted in Fig. 4, offering a lightweight enhancement
that efficiently fuses multimodal information for RGB-D action recognition. Here, we denote
FRGB and FSK E as the features extracted from the RGB and skeleton modules, respectively.

3.4 Multi head pooling attention

Consider the C-dimensional input tensor X with a sequence length of L and X ∈ RL×C .
According to MHA [25], MHPA projects input X into the intermediate query tensor Q̂ ∈
RL×C , key tensor K̂ ∈ RL×C , and value tensor V̂ ∈ RL×C through linear operations

Q̂ = XWQ K̂ = XWK V̂ = XWV (3)

Define the pooling operator P (·;�), where � := (k, s, p), P (X;�) ∈ RL̃×C , L̃ =
T̃ × H̃ × W̃ . The operator uses the pool kernel k of dimension kT × kH × kW , the stride size
s of corresponding dimension sT × sH × sW , and the padding p of corresponding dimension
pT × pH × pW to reduce the input tensor of dimension L = T × H × W to L̃,

L̃ =
[
L + 2p − k

s

]
+ 1 (4)

We default to using overlapping kernels k with conformal padding p in the pooling attention
operator, so that the sequence length of L̃, the output tensor P (·;�), undergoes an overall
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Fig. 3 The VT-BPAN model features a comprehensive architecture with two distinct streams: a skeleton
sequence and an RGB frame. The 2S-AGCN network is dedicated to extracting skeleton features, whereas the
R(2+1)D network specializes in extracting RGB features. These extracted features are categorized into three
components: RGB features, skeleton features, and the ultimate fusion features. The network is meticulously
designed to facilitate effective feature fusion

reduction of sT sH sW factors.

Q = P
(
Q̂;�Q

)
K = P

(
K̂ ;�K

)
V = P

(
V̂ ;�V

)
(5)

A standard Transformer block typically comprises several components: multi-head atten-
tion layers, feed-forward networks (FFN), layer normalization, and shortcut connections. In
practice, a group of query attention functions must be calculated concurrently and organized
into matrices denoted as Q, with K and V representing the key and value matrices. The
attention output and pooling attention can then be computed as follows:

Attention (Q, K , V ) = so f tmax

(
QKT

√
dk

)
V , (6)

Fig. 4 (a, b) Block-wise comparison between the standard Transformer block and the MHPA light-weight
Transformer
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PA (·) = so f tmax

(
P

(
Q;�Q

)
P(K ;�K )T√
d

)
P (V ;�V ) (7)

where dk represents the dimension of the Key vector, and for simplicity, we set d = dk .
Subsequently, each distinct head receives its unique set of query matrices, key matrices,
and value matrices. This arrangement enables the input vectors to be projected into distinct
representation subspaces. Furthermore, theMHAmechanismpermits themodel to emphasize
information from various subspaces at different spatial locations. This process is illustrated
as follows.

MHA (Q, K , V ) = Concat (head1, . . . , headh)W
O (8)

where headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
, the projections arematrices of parameters

with the followings dimensions WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dv , and

WO
i ∈ Rhdv×dmodel .
Every encoder layer consists of both a fully connected FFN and an attention layer. We

can represent each encoder layer as the following function:

FFN(x) = max (0, xW1 + β1)W2 + β2 (9)

where W1 and W2 denote weight vectors, β1 and β2 denote bias vectors.
The design of the spatial lightweight Transformer encoder layer draws inspiration from

ST-TR [24] and DelighT [34]. It incorporates an enhanced network architecture and adjusted
weight dimensions, as depicted in Fig. 4(b).

We consider the input tensor X , which has a shape of T × dm × C , where dm = H × W .
The initial focus is on compressing the output feature information.

Sk = σ
(
W̃1ReLU

(
XW̃2

)
+ b

)
(10)

where W̃1 ∈ R
dm
r ×dm×C and W̃2 ∈ RC×1×dm representweight vectors, do = dm

r .σ represents
the Sigmoid activation function. b is the bias vector.

Subsequently, we obtain the matrices XQ ∈ RT×C×1×dk , XK ∈ RT×C×1×dk , and XV ∈
RT×C×1×dv by rearranging the input data. This transformation is applied independently to
each frame within the T dimension. The matrices Q, K , and V are derived by multiplying
WQ ∈ Rdo×1×C , WK ∈ Rdo×1×C , and WV ∈ Rdo×1×C with their respective inputs and
subsequently undergoing dimensional transformation.

In contrast to the conventional spatial self-attention module, our approach begins by
compressing the embedded dimension within each spatial lightweight Transformer encoder
layer. Here is the formula used to compute the self-attention matrix:

Attention (Q, K , V ) = so f tmax

((
WQXQ

)
(WK XK )T√
dk

+Sk

)
(WV XV ) (11)

Attention (Q, K , V ) = so f tmax

(
P(WQXQ ;�Q)(WK XK ;�K )T√

dk

+Sk) P (WV XV ;�V )

(12)

Because the dimension of T varies within the batch, it is possible to efficiently share
parameters along the time dimension, applying transformations independently to each frame.
Following the transformations described above, the self-attention matrix yields an output
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shape of T × do × dv . Consequently, we can obtain the output of our model through a
straightforward reshaping process.

Figure 4(b) illustrates the integration of a spatial lightweight transformation into the Trans-
former block. When comparing this configuration with the standard Transformer block and
the lightweight Transformer block, the computational cost associated with calculating atten-
tion is denoted as O(dmn2) and O(don2), respectively, where it’s important to note that
do < dm . Consequently, the lightweight Transformer block succeeds in reducing the atten-
tion calculation cost by a factor of dm

do
. In our experiments, we specifically set do = dm

16 ,
which resulted in a 16-fold reduction in multiplicative addition operations when compared
to the original Transformer structure. It’s worth highlighting that the advantage of the dot
product lies in its speed and spatial efficiency during operation, mainly because it allows for
the utilization of highly optimized matrix multiplication routines in its implementation [7].

Consider a lightweight FFN architecture. In this structure, the first layer reduces the input
dimension from dm to dm

r , and the second layer subsequently expands it back to dm , where
r represents the reduction factor. This lightweight FFN design significantly decreases the
number of parameters and computational operations in the FFN, achieving a reduction factor
of r ·d f = dm , where d f is the original FFN dimension. In a standard Transformer model, the
FFN typically expands the dimension by a factor of 4. For our experiments, we have chosen
to set r = 4. Consequently, this lightweight FFN results in a remarkable 16-fold reduction
in the number of FFN parameters.

3.5 Compact bilinear pooling

In this study, we employ the compact bilinear pooling (CBP)method [33] to handle the fusion
feature. The CBP method is explained as follows

〈FRGB(X ), FSK E (Y)〉 =
∑

s∈S

∑

u∈U
〈xs, yu〉2 ≈

∑

s∈S

∑

u∈U
〈φ(x), φ(y)〉

≡ 〈C(X )C(Y)〉 (13)

Define C(X ) as the summation of φ(xs) over all elements s in set S, and C(Y) as the
summation of φ(yu) over all elements u in set U . Here, C represents the feature channel. We
introduce Ff usion as the fusion feature. Subsequently, it can be subjected to L2 regularization
for normalization.

Ff usion = Ff usion∥∥Ff usion
∥∥
2

(14)

Next, we take the obtained Ff usion and pass it through both a fully connected layer and a
ReLU layer. Consequently, we describe the resulting new fusion feature as Z f usion ∈ RC×1.

Z f usion = ReLU
(
W̃ · Ff usion

)
(15)

where W̃ ∈ RC×C2
represents the weight matrix, the network is structured to enhance feature

expressiveness through attention mechanisms, following a design similar to ECANet. To
compute attention weights, Conv1d is employed.

Then, we can compute YRGB and YSK E as

YRGB = FRGB � σ
(
Conv1D

(
Z f usion

))
(16)

YSK E = FSK E � σ
(
Conv1D

(
Z f usion

))
(17)
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where σ represents the Sigmoid activation function, and � denotes the Hadamard product.
In this study,we incorporate amultilayer perceptron (MLP) as our classificationmodule. In

this module, a batch normalization layer and the ReLU activation function are sequentially
connected. Subsequently, a softmax function is applied to normalize the predictions into
probabilistic distributions. Finally, the two features are combined through summation to
yield the ultimate fusion feature denoted as Fend .

Due to the presence of two main tasks and the fact that multitask learning is based on
multiple objective optimization models. We give a loss function that sums the losses of these
two tasks, which can be computed as follows.

Ltotal = λ1LRGB + λ2LSK E (18)

where λ1 and λ2 are weighting factors, while LRGB signifies the loss from the RGB stream,
and LSK E represents the loss from the skeleton stream.

4 Experiments

We perform a series of experiments on three publicly available datasets to assess the efficacy
of our proposed VT-BPAN for HAR. Additionally, we conduct a comprehensive ablation
study to examine the performance of each individual module.

4.1 Datasets

1) NTU-RGB+D dataset [36] :The dataset is considered one of the most widely utilized
datasets in the field of HAR. It comprises a total of 56,880 video samples, encompassing
60 distinct action classes. Furthermore, it offers two evaluation scenarios: cross-subject
(CS) and cross-view (CV). The experiments were conducted with respect to both of these
evaluation scenarios, and we report the highest achieved recognition accuracy in each
case.

2) MSR daily activity dataset [37] : The MSR daily activity dataset serves as a benchmark
dataset focused on 3D human-object interaction actions. It encompasses 320 RGB-D
videos featuring 16 unique actions performed twice by each of the 10 participants. These
actions were executed once in a sitting position and once in a standing position.

3) NTU-RGB+D 120 dataset [38] : NTU-RGB+D 120 has more action classes, with a total
of 120 action classes that are classified into three major categories, including 82 daily
actions, 26 interactive actions as well as 12 health-related actions. It is composed of
114,480 RGB+D video samples coming from 106 different human participants.

4.2 Implementation details

We conducted all experiments using two NVIDIA TITAN RTX GPUs within the PyTorch
framework. Specifically, for the RGB stream, we resized RGB frames to 112×112, set the
video sequence length to 20, and utilized an RGBmodel pre-trained on the Microsoft Kinect
V2 [31]. Regarding the skeleton stream, we kept the skeleton sequence length at 50, and the
remaining parameters followed the choices detailed in [21].

Our model’s weight decay and learning rate were set to 0.0001 and 0.01, respectively, and
we employed stochastic gradient descent for optimization with cross entropy serving as the
loss function for backpropagation. The learning rate was set at 0.01.
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4.3 Ablation study

In this section, to showcase the model’s performance, we assess training and testing at the
conclusion of each epoch, and we meticulously record the model’s accuracy for each epoch.

1) Impact of fusion schemes: We evaluated several feature fusion methods, including aver-
aging, multiplication, summation, concatenation, and maximum fusion. The outcomes
are presented in Table 1. Notably, as Table 1 illustrates, the fusion technique led to a sub-
stantial enhancement in recognition accuracy, reaching an impressive 95%. Remarkably,
the VT-BPAN fusion module exhibited the highest accuracy compared to the aforemen-
tioned models.

2) Impact of feature extraction mdels: In this paper, our video HAR approach can be suc-
cinctly summarized in twomain paradigms.Onone hand,we commonly employ a 2D+1D
framework, wherein a 2D CNN is used to process each frame individually, followed by
a 1D module that consolidates features from each frame. On the other hand, we also
explore an alternative approach utilizing a 3D CNN with stacked 3D convolutions to
jointly model temporal and spatial semantics.
Drawing from the insights presented in [29], we conduct a comparative analysis of

recognition accuracy across three convolutional neural network architectures: the 3D
ResNet, MC3 ResNet [30], and the R(2+1)Dmodel built upon the foundation of ResNet-
18. The results unambiguously demonstrate that theR(2+1)Dmodel consistently achieves
the highest accuracy among the tested architectures.

3) Visual analysis: To enhance the illustration of VT-BPAN’s self-attention impact, we
conduct a comparative evaluation between the ECANet attention and the fusion self-
attention generated by VT-BPAN. The outcomes of this analysis are presented in
Fig. 5. Notably, the saliency maps derived from these attention mechanisms provide
insights into the significance of individual pixels within each input image. It is evident
from the results that VT-BPAN excels in capturing more meaningful pixels, underscoring
its effectiveness in highlighting important image features.

4.4 Comparisons with the state-of-the-art

To ensure a fair and meaningful comparison, we assess our method against algorithms that
also combine RGB and skeleton features, sharing similarities with our approach. Adhering
to the evaluation criteria established in the original framework, we provide accuracy results
for the NTU-RGB+D, NTU-RGB+D 120, and MSR daily activity datasets, as shown in

Table 1 Impact of fusion scheme
on performance

Methods Accuracy

Average 93.07

Multiplication 92.20

Sum 93.09

Concatenation 93.16

BPAN (Resnet 18) 94.85

HAMLET (MAT-CONCAT) [48] 95.12

VT-BPAN [ours] 95.55
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Fig. 5 Visualization results of ViT fused MPHA module

Table 2 Comparison of
NTU-RGB+D dataset model with
the state-of-the-art

Methods year Multi-model CS CV

BI-LSTM [39] 2019 Yes 85.4 91.6

FUSION [40] 2020 Yes 91.8 94.9

MSAF [41] 2020 Yes 92.24 -

MMTM [42] 2020 Yes 91.9 95.3

VPN(I3D) [43] 2020 Yes 93.5 96.2

BPAN (Resnet 18) [29] 2021 Yes 94.85 97.4

VT-BPAN [ours(a)] 2022 Yes 95.12 97.37

Table 3 Comparison of MSR
daily activity dataset model with
the state-of-the-art

Methods year Multi-model Top-1 Accuracy

SBR [44] 2019 � 91.10

MCRL [45] 2019 � 94.38

VT-BPAN [ours] 2022 � 94.53

Table 4 Comparison of attention module and Transformer module in the MSR daily activity dataset

Methods Multi-model Top-1 Accuracy

VT-BPAN [ECA attention] � 94.50

VT-BPAN [ECA attention+MPHA Transformer] � 95.55

Table 5 Comparison of
NTU-RGB+D 120 dataset model
with the state-of-the-art

Methods year Multi-model C-Sub C-Set

separable STA [46] 2019 Yes 83.8 82.5

Verma et al. [47] 2020 Yes 76.7 77.9

VPN(I3D) [43] 2020 Yes 86.3 87.8

BPAN (Resnet 18) [29] 2021 Yes 86.6 88.1

VT-BPAN [ours(a)] 2022 Yes 86.3 88.2
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Tables 2, 3, 4 and 5. We conduct an extensive comparative analysis between our method
and other techniques, including simpler fusion-based methods (e.g., BI-LSTM [39]) and
attention-based approaches (e.g., MMTM [42] and BPAN [29]).

The comparison between the ECA attentionmodule and the ViTmodule on theMSR daily
activity dataset is presented in Table 4. The experimental findings indicate that the combi-
nation of the Transformer module and ECA attention enhances accuracy by approximately
1.05%. Based on the above experimental results, the methodology employed in this paper
combines Transformer-based bilinear pooling with an attention-driven approach, utilizing
Resnet 18 as the backbone network. This amalgamation consistently outperforms the current
state-of-the-art results, highlighting the advancement in action recognition achieved by our
approach.

5 Conclusion

This paper introduces a novel multimodal HAR model, integrating both temporal and spatial
feature extraction techniques by utilizing R(2+1)D and 2S-AGCN. Additionally, we propose
theVT-BPANmodule, designed to enhance feature expressiveness through feature fusion and
the incorporation of a vision Transformer attention mechanism. Furthermore, we introduce
a streamlined Transformer improvement. To validate the efficacy of the VT-BPAN module,
we conduct a comprehensive comparison of various fusion strategies. Ultimately, we employ
fully connected perceptrons to derive the final fusion features, enabling an end-to-end training
process.

We evaluate our model on three benchmark datasets: NTU-RGB+D, NTU-RGB+D 120,
and MSR daily activity dataset. Our experimental results demonstrate superior performance
compared to existing methods. Considering the existing network limitations, our future
research will focus on refining fusion methods for multimodal data and addressing chal-
lenges posed by heterogeneous networks.
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