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Abstract
Ensuring public safety in urban areas is a crucial element in maintaining a good quality 
of life. The successful deployment of video surveillance systems depends heavily on the 
acquisition and processing of large volumes of urban data to derive meaningful insights. 
Manual monitoring and analysis of anomalous activities in the surveillance footage is both 
a time-consuming and error-prone process that is not scalable for urban environments 
with high levels of foot and vehicular traffic. Moreover, traditional surveillance systems 
are limited by their inability to process real-time data at scale, which can result in missed 
or delayed detection of potential security threats. This paper tackles this problem by pro-
posing an automatic anomaly detection method via an attention mechanism. The attention 
area is identified using the background subtraction (BG) algorithm which identifies motion 
regions in the video frames. This information is then passed through a 3D convolutional 
neural network (3D CNN) to classify the normal and anomalous events. To evaluate the 
proposed method, experiments and analysis were conducted using the publicly available 
UCF crime dataset, demonstrating its effectiveness with an accuracy of 96.89% compared 
to the state-of-the-art methods. In case an anomaly is detected, an alert is sent to the near-
est authorities to take immediate action to prevent further harm or damage.

Keywords Deep learning · Transfer learning · Attention mechanism · Background 
subtraction · Violence detection

1 Introduction

As the need for safety and security increases, monitoring systems are being installed 
in public facilities and places to evaluate existing aggression. By utilizing surveil-
lance cameras, unusual occurrences like traffic accidents, robberies, and other criminal 
actions can be identified before they happen [1]. However, most existing surveillance 
systems require manual operation and inspection, making them vulnerable to interfer-
ence and causing fatigue to the operator. Thus, intelligent computer vision algorithms 
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for automated anomaly detection and video violence detection have become increas-
ingly critical. To tackle anomaly detection, various algorithms have been developed to 
detect specific types of anomalies, such as violence, battles, and road traffic accidents 
[2, 3]. These algorithms rely on a combination of machine learning, computer vision, 
and deep learning techniques to extract relevant features from the video data and iden-
tify abnormal events. Although these algorithms signify a substantial advancement in 
anomaly detection, their capacity to discern intricate and contextually dependent anom-
alies remains restricted. Additionally, their accuracy can be compromised by variables 
including lighting conditions, camera positioning, and occlusions. Consequently, cur-
rent research endeavors in this domain are focused on the creation of more advanced 
algorithms designed to overcome these constraints and deliver heightened precision and 
dependability in the detection of anomalies within video surveillance data.

A simple and effective microscopic traffic model called the optimal velocity model 
(OVM) is proposed to capture many properties of real traffic flows [4, 5]. This model 
has garnered interest in recent years due to the robustness of convolutional neural 
networks (CNNs) for video action recognition. A large dataset and multiple instance 
learning (MIL) based solution is presented to address the challenge of monitoring 
surveillance camera footage with limited human resources [6–8]. Meanwhile, a local 
region-of-interest (RoI) detection is used to analyze video frames [9, 10]. The authors 
proposed a model for identifying intrinsic anomaly regions and determining the need 
for spatial and temporal information to aid in anomaly detection [11]. However, these 
approaches rely on manual annotation, which can be time-consuming and inefficient. 
In contrast, a different approach is employed by extracting optimal frames based on 
motion data and using the activation map to automatically identify potential attention 
areas where combat actions might occur [10]. They then analyzed the ratio of violent 
and normal activity at each location and used the spatial relationships between human 
offers and activation boxes to identify all relevant local requests within the extracted 
region of attention. Although current algorithms for anomaly detection in video sur-
veillance data have demonstrated efficacy in identifying specific events like fights, vio-
lence, and traffic accidents, it is imperative to recognize that these methods may not be 
suitable for a comprehensive anomaly detection system. This limitation arises because 
anomalies can manifest in diverse forms, necessitating a more intricate and contextually 
attuned approach. Managing unlabeled public video clips presents inherent complexi-
ties, including challenges related to masking, light fluctuations, blurriness, and other 
alterations. Moreover, violence detection in video data introduces additional complexi-
ties such as viewpoint variations, cluttered backgrounds, and the absence of a global 
representation for violent actions due to inconsistencies in individual performance, as 
well as disparities in lighting and scale.

To address these challenges, this paper proposes a method for automatic and effective 
attention zone positioning based on background subtraction. The method involves using a 
robust background subtraction technique to locate the attention zone or movement, which 
is then fed into a 3D CNN motion recognition model. Notably, the proposed system only 
uses the focus regions identified in each frame. Detection is treated as a prediction prob-
lem, with a visual encoder and a highly flexible prediction structure used to predict violent 
actions. The following are the contribution of this research work:

• Proposes a novel approach leveraging deep learning and an attention mechanism to 
automate surveillance systems for the detection and recognition of violent subtypes in 
video data.
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• Presents a comprehensive framework capable of detecting and recognizing various 
types of violent subtypes in video data, which can enhance public safety and security in 
smart cities.

• Develops a texture-based bilateral filter that uses the foreground and background region 
in a video frame to detect the attention region, which is fed into the C3D model for vio-
lence prediction.

• Uses a C3D model to extract learnable features from the video frame and a genetic 
algorithm-based feature selection method to reduce the size of 3D CNN features by 
selecting optimal feature attributes and discarding low-ranked ones.

• Trains a CNN softmax classifier over the GA-based CNN features to classify videos as 
violent or normal. If a frame is classified as violent, the system further recognizes the 
violence subtype and estimates the violence score based on the severity of the violent 
scene.

The paper’s structure can be outlined as follows. Section 2 provides an overview of the 
relevant work that the paper builds upon. In Section 3, the proposed methods are presented 
in detail, which includes the process of extracting attention areas from spatiotemporal data 
and detecting local anomalies. Section  4 evaluates the strategy by analyzing the results. 
Section 5 concludes with observations and conclusions.

2  Related works

Detecting abnormalities remains the most persistent and challenging problem in computer 
vision, as referenced in several sources [12–17]. Public areas such as runways, courtyards, 
metro stations, and transportation hubs have installed numerous cameras in response to the 
growing need for public safety and monitoring. However, the vast amount of video data 
generated by these cameras makes it difficult and time-consuming for operators to search 
for unusual or suspicious events. To increase productivity while preserving efficiency, 
automated equipment is necessary. Therefore, significant advancements have been made in 
the field of intelligent filmed investigation, and various techniques have been proposed to 
enhance video anomaly detection [18, 19].

Recently, numerous methods for noticing irregular behavior have been advanced. To 
identify violence, use video and audio data from a filmed investigation [20, 21]. To dis-
tinguish between violent and peaceful videos, Mohammadi et al. developed a categoriza-
tion method. A new heuristic approach based on behavior is proposed. In contrast to previ-
ous research, the authors recommend using tracking as an exception to simulate normal 
motion. Many systems employ graph methods [22, 23], interpersonal force models, hybrids 
of impact assessment models, hidden Markov models (HMMs), thematic modeling, mobil-
ity modes, and situational techniques to avoid tracking and interpreting global motion pat-
terns. Melan and his colleagues, the difference between the expected and actual velocity 
obtained using particle starvation, and a social force model is used to calculate the scene 
interaction force [24, 25].

Numerous methods have recently been developed to detect irregular behavior. One 
method involves using video and audio data from a recorded investigation to identify vio-
lent behavior [20]. Mohammadi et  al. developed a categorization method to distinguish 
between violent and peaceful videos [21]. Another approach proposed a heuristic method 
based on behavior, which recommends using tracking as an exception to simulate normal 
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motion, unlike previous research. Many systems use various methods such as graph meth-
ods, interpersonal force models, hybrids of impact assessment models, hidden Markov 
models, thematic modeling, mobility modes, and situational techniques to avoid tracking 
and interpret global motion patterns [22, 23]. Melan and his colleagues used a difference 
algorithm to calculate the scene interaction force, which identifies low-likelihood patterns 
as anomalies based on a training film for specific behavior [24, 25]. A deep learning-based 
approach has also been proposed, where handcrafted features are not used to learn the 
video features. Xu et al. use machine learning infrastructure and singular SVM models to 
score each input’s exception level, and the results are combined for final anomaly detection 
[10]. Hassan and his colleagues use the Conv-AE framework for scene reconstruction to 
calculate the reconstruction cost of anomaly detection [26]. Another approach, proposed by 
Ionescu and colleagues, uses deep neural networks and multiple learning instances to clas-
sify real-world anomalies like accidents, explosions, battles, abuse, and arson [27]. Like 
other approaches, this method considers both normal and abnormal behavior when detect-
ing anomalies. Finally, the research effort introduces the concept of graphic courtesy to aid 
in identifying areas of interest [28, 29].

A framework for online anomaly detection is proposed in this article. In the work pre-
sented here, the support area is managed in response to the dynamic changes in the scene 
[30]. This method identifies features that enhance online performance by concentrating on 
features within a restricted processing area. This assists in narrowing the search for features 
that enhance online performance. Encoding motion dynamics necessitate using low-level 
characteristics, such as information about the optical flow. In the final step, bags of words 
and Gaussian mixed models are employed to identify anomalous events. Local Spatio-
temporal features provide an abstraction of a scene’s behavior by directly analyzing shape, 
trajectory, and size information at the object level. This allows the features to provide an 
abstraction of behavior. Trajectory analysis as a technique for describing video anomalies 
is an effective method. To identify visual anomalies, the trajectory-based method compares 
the degree of similarity or distance between clusters that have been generated. Another 
study proposed a semi-supervised learning technique for detecting violent behavior [31].

This method simultaneously trains a singular dictionary and a linear classifier. Combin-
ing the reconstruction loss and representation constraints of expensive labelled and inex-
pensive unlabeled data defines the objective function of dictionary learning. This is done to 
increase the dictionary’s discriminatory power. To circumvent the constraints imposed by 
k-recent classification, the authors propose using a group of prototype objects as represen-
tations to employ weighted combinations of different types of similarity [32]. The authors 
of the research paper propose a multi-dictionary-based method for hyperspectral anomaly 
detection to circumvent the current limitations of hyperspectral anomaly detection. These 
limitations include dealing with large spectral dimensions and obtaining spectral correla-
tions with difficulty [33].

By training sparse representations based on multiple dictionaries and applying this 
training to different background scenarios for remote sensing, it is possible to acquire 
discriminative features for anomaly detection. The authors used a technique called max-
imum pooling in conjunction with sparse encoding to extract the distinguishing charac-
teristics from the video [34]. A new Motion Weber local descriptor was proposed as a 
possible solution for identifying abnormal motion in video sequences [35]. Low-level 
appearance-based features and kinematic dynamics-defining components are added to 
train the Weber Local Descriptor (WLD). Consequently, identifying violent video con-
tent using manual feature extraction techniques is no longer problematic. In addition, 
these results demonstrated that the WLD descriptor accurately captured motion near the 
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camera. In recent years, long-term, short-term memory, abbreviated as LSTM, has been 
used to solve various issues in speech recognition, natural language processing, and 
motion recognition. LSTM was created to solve the gradient disappearance or explo-
sion problem, which had previously plagued the deep learning research community. In 
the past, the entire deep learning research community was plagued by this crucial issue. 
The research paper’s authors [36] present multiple models of autoencoders in which 
local spatiotemporal and depth features were investigated. The models were investi-
gated. The first autoencoder acquires knowledge using conventional spatiotemporal fea-
tures, while the second autoencoder acquires knowledge end-to-end via a convolutional 
feed-forward architecture. In the research [37], convolutional neural networks (CNNs) 
are trained to use semantic information to detect suspicious video events. This informa-
tion is extracted directly from the videos. In the interim, the authors of the paper [38] 
could achieve the same outcome by employing a network that has been pre-trained on 
the ILSVRC benchmark dataset. The proposed sparse coding method employs recurrent 
neural networks to optimize the parameters and enhance the ability to predict anoma-
lous events [39]. The research paper’s authors used generative adversarial networks to 
reconstruct appearance and motion representations to identify anomalous video events 
[40]. This technique uses the optical flow map of normal frames to model the network. 
Eventually, deviations from the normal model are determined using measurements of 
local differences. A brute-force strategy for detecting video activity is proposed as a 
bidirectional C-LSTM architecture that takes frame difference as its input [41]. They 
encoded spatial information with the VGG16 architecture of convolutional neural net-
works (CNNs) [42], and they derived and encoded temporal dynamics with bidirec-
tional convolutional LSTM. The authors propose a new technique for bidirectional 
temporal coding and maximal feature-by-feature pooling as an alternative to the current 
violence detection models based on spatial–temporal coding. This strategy employs data 
enhancement because, as stated previously, depth models require a substantial quantity 
of data. The author prioritized applying simpler models over representations based on 
deep learning in this work. These representations require voluminous training data to 
learn differentiated and compact event integrations.

3  Methodology

This section presents the methodology of the proposed framework for automating the sur-
veillance system using deep learning and an attention mechanism. Figure 1 illustrates the 
entire architecture of the proposed approach. The proposed framework is composed of four 
main components: 3D convolution network (C3D)-based feature extraction, genetic algo-
rithm-based feature selection, anomaly prediction, and visual attention detection.

3.1  Detecting and implementing violent event actions

This section provides a detailed explanation of the proposed scheme for detecting violent 
event actions, encompassing three key components: 3D CNN-based feature extraction from 
the video data, GA-based optimal learnable features, the optimization of GA hyperparam-
eters, and evaluation criteria, along with the anomaly prediction score estimation scheme.
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3.1.1  Features extraction mechanism

3D Convolutional Neural Networks (CNNs) are widely used in computer vision for 
tasks such as classification, detection, and identification [43]. The 3D CNN model com-
prises layers such as aggregation, fully connected, and complicacy. In its natural state, 
each layer is connected to the previous layer via a core of a fixed size [44, 45]. This 
algorithm is based on the idea that a moving object is always associated with a clus-
ter of pixels in the feature space. The model architecture uses various types of layers 
and stimulation purposes to achieve improved characterization structures compared to 
ergonomic engineering programmable software [46, 47]. Figure  2 depicts the overall 
proposed framework for features extraction. In this Figure, we have chosen the popular 
3D convolution network (C3D) as the pre-trained feature extractor due to its high per-
formance and efficiency.

Recent studies have shown that pre-trained Sports-1  M dataset models produce 
excellent classification and detection performance. During the training process, 
CNN 3D receives video clips as a general representation and fine-tunes the model to 

Fig. 1  The proposed framework for anomaly violence detection using C3D features and CNN regression 
model

Fig. 2   2 C3D-based features extraction and feature vector generation from input frames
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display the unique characteristics of the video clip while still being able to broadcast 
the exclusive film clip. This learning strategy employs mixed sampling and cross-
validation implicitly [48].

3.1.2  Genetic algorithm‑based features selection

The genetic algorithm is an advanced optimization technique that has many applications in 
data mining and computer vision research. This model is an evolutionary search approach 
that imitates selection, mutation, and crossover in natural settings [49]. The genetic algo-
rithm is a metaheuristic feature selection method that starts the search and finds several 
solutions to the problem. It selects the best answer from a list of responses to the problem 
and reduces the size of the feature vector by selecting the best features, making the training 
and validation process more efficient.

In the context of violence detection and subtype classification, the features for each 
sample (video frame) are extracted using the C3D method and represented as a vector with 
a dimension of 1 × 1000. The GA method takes the features and labels of video frames as 
input and returns a list of the best feature attributes. The reduced features vector consists 
of optimal features that not only improve the classification but also make the training and 
validation process more efficient by reducing the size.

In the first stage of the presented procedure, a population that is both random and uni-
form is produced, and the chances of mutation and crossover during each generation are set 
at 0.3. The model starts with an initial population that is entirely random, and each chro-
mosome includes several gene characteristics, with each gene assigned a specific number. 
The chromosomes are represented graphically using the following equation:

where, L, Ci, and ni represent the set of selected features, specific feature characteris-
tics, and the total number of features extracted using a CNN, with a dimension of 1 × 1000 
features, respectively. This notation clearly indicates that L represents a set of selected fea-
tures where Ci does not belong to the closed interval [0, 1].

3.1.3  Hyperparameters of the genetic algorithm

In our proposed method, the Genetic Algorithm plays a crucial role in feature selection to 
enhance violence detection and subtype classification. We acknowledge the significance of 
disclosing hyperparameters for reproducibility. The key hyperparameters for our GA are as 
follows:

1. The GA begins with an initial population that is both random and uniform. This popula-
tion is generated with a predefined size, which we set to [Specify the population size, 
e.g., 100 individuals] in our experiments.

2. During each generation, the GA employs crossover and mutation operations to explore 
the search space effectively. In our experiments, we set the probabilities of mutation 
and crossover to [Specify mutation rate, e.g., 0.3] and [Specify crossover rate, e.g., 0.3], 
respectively.

3. Each chromosome in our GA represents a potential solution (i.e., a feature subset) to 
the feature selection problem. We represent chromosomes as sequences of genes, where 

(1)L =
{[
Ci|Ci ∉ (1, 0)

]}
, ni = 1
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each gene corresponds to a feature. The equation used for chromosome representation 
is as follows:

  L = [Ci|Ci ∈ {0, 1}] for i = 1 to 1000. Here, C_i takes a binary value (0 or 1) to indi-
cate whether the corresponding feature is included or excluded in the feature subset.

3.1.4  Evaluation criteria

To assess the effectiveness of our GA-based feature selection method, we employ the fol-
lowing evaluation criteria:

1. The fitness function in our GA quantifies the quality of each feature subset. We calculate 
this fitness using a classification accuracy measure. The higher the accuracy, the better 
the feature subset is considered.

2. We determine the convergence of the GA by monitoring the change in the fitness of the 
best solution over generations. Convergence is achieved when the fitness values stabilize 
or exhibit minimal improvement over a certain number of generations.

3.1.5  Implementation methods of anomaly prediction

The proposed flowchart for visual attention-based anomalous prediction/detection is shown 
in Fig. 3. The visual features are extracted using the full connection FC6 layer of the C3D 
system. Prior to feature computation, each video frame is resized to 239,318 pixels, and 
the frame rate is adjusted to 29 frames/second. The C3D is computed for every 16-image 
frame video clip, and l2 normalization is applied before averaging the features of the 16 
images to obtain the video clip features [47]. A three-level FC neural network is used to 
process these 4096-dimensional features. All 160 frames (i.e., all the C3D extracted files) 
are used to determine the existence of an exceptional scenario. The regression network pro-
duces scores for anomalous events, which can range from 0 to 1 or be binary and represent 
the probability of an anomalous event occurring within the limited fragment under inves-
tigation. Following the approach in [6], we use the MIL rank loss as a sparse and smooth 
constraint and treat each video clip as an instance of a package. The abnormal score sc(N) 
of the video must satisfy the following criteria. The C3D system’s full connection FC6 film 
is used to export visual features. Before computing the characteristics, we enlarge each 
video frame to 239,318 pixels and adjust the frame frequency to 29 frames/second. Before 
applying the l2 normalization, for every video clip of the 16-image frame, we calculate the 
C3D. We average the 16 image clip features in a video clip to get its features [47].

Fig. 3  Anomaly prediction based on full connection FC6 layer of the C3D system
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A three-level FC neural network is fed these features (4096D), which can be seen in 
Fig. 3. We gradually deduce that all 160 frames (all C3D extracted files) are used to per-
suade the exception scenario of its existence. The regression network generates video 
exception scores. Scores ranging from 0 to 1 or binary can be interpreted as the likelihood 
of an anomalous occasion taking place inside the limited fragment under investigation. 
Inspired by the work [6], we use MIL rank loss as a sparse and smooth constraint and treat 
each video clip as an instance of a package. The following requirements must be met when 
capturing the abnormal sc(N) of video, as shown below.

Equation 2 sets the criteria for determining the abnormality sc(N), based on the nature 
of the video clip N, which can either be "irregular" or "regular." The sc(N) reflects the like-
lihood of an abnormal event occurring within a specific segment under investigation. When 
N is identified as "irregular," the abnormality sc(N) must satisfy the condition that it falls 
within the range of 0 to T. This indicates that for irregular video clips, the score can take 
values greater than or equal to 0 and less than T. The function f(x) is employed to charac-
terize this scenario. On the other hand, if N is considered "regular," the abnormality sc(N) 
should be constrained to the range of T to 1. This implies that for regular video clips, the 
score can take values greater than or equal to T and up to 1.

Table 1 shows the parameters employed for features extraction. The barrier T is respon-
sible for classifying videos as normal or abnormal. For exception clips, the goal is to have 
a value less than or equal to 1, while for regular videos, the target should be less than or 
equal to 0 [50]. In most cases, T is set at 0.5. The rectifier linear activation unit (ReLU) 
activation function is used between fully connected (FC) layers, and there is a 50% dropout 
regularization between them [51]. For training, a 16-million frame video clip is used, with 
each frame representing various local regions from previous stages. To train the locali-
zation model, the UCF Crime dataset is used, which contains 800 normal films and 810 
abnormal videos. The author describes 14 distinct types of occurrences in the dataset [62].

3.2  Visual attention detection

Visual attention detection is a technique used to identify regions of interest in an image or 
video. This can be achieved using deep learning algorithms that are trained to detect pat-
terns and features in the data. The system can be trained to detect suspicious activity or 
objects in the video feed, and alert security personnel if necessary. However, to maintain 
the edges of the viewing area and remove noise effectively, a texture-based bilateral BG 
subtraction method is used. This method ensures a permanent BG structure and identifies 
the visual feature area as a spatial cognition point while considering the rest as indifferent 

(2)
{

0 ≤ sc(N) < T , if N is irregular; f (x)

T ≤ sc(N) ≤ 1, if N is regular; f (x)

Table 1  The variables and hyper-
parameters used for extracting 
deep features using C3D

Parameters Value

Size of the individual batch 29
Dropout ratio 50%
Video frame resolution 140 × 180
Number of layers responsible for features extraction 7
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[52]. The approach utilized in our situation is capable of preventing the loss of edges in the 
viewing area. Figure 4 depicts the detection of fighting events using two commonly used 
background subtraction (BG) techniques, namely the hybrid Gaussian enhanced model 
(MOG2) and the K-Nearest Neighbor method (KNN). In these methods, the input images 
are analyzed on a per-pixel basis to distinguish between foreground and background 
regions. However, in certain scenarios, such as those involving shadow interference and 
intermittent motion, noise may be falsely identified as moving pixels, leading to incorrect 
results [53–55].

Figure 4(b and c) presents the application of two widely used background (BG) subtrac-
tion techniques, namely the hybrid Gaussian enhanced model (MOG2) and the K-Nearest 
Neighbor method (KNN), for detecting fighting events in a video. However, these methods 
may encounter certain scenarios, such as those involving shadow interference and intermit-
tent motion, that result in the misclassification of noise as moving pixels, leading to errone-
ous detection. To overcome this challenge, we propose a two-sided texture-based approach 
that can effectively eliminate noise and extract the correct area. In both Fig. 4(b and c), the 
foreground regions containing noise and misclassified pixels, including most of the shad-
ows that are falsely identified as moving pixels, are erroneously detected. Consequently, 
the crucial foreground regions are removed from the images because the pixels are errone-
ously classified as background.

In contrast, Fig. 4(d) demonstrates the efficacy of our proposed bilateral BG subtraction 
method, which accurately delineates the precise area of interest. By removing the noise and 
precisely extracting only the relevant area, our method achieves more precise and accurate 
results for detecting fighting events in videos.

Although prior studies have shown more complete split foreground objects [56], 
misclassified areas can affect the extraction of regions of interest (ROI). Therefore, 
in our proposed anomaly detection process, bilateral BG subtraction can be used to 
obtain visual areas of attention more accurately and efficiently [57]. The comparative 
analysis depicted in Fig. 4 is based on a UCF-Crime dataset containing various unusual 

Fig. 4  Visual attention detection using various background subtraction methods. a Original image, b BG 
subtraction based on MOG2, c KNN-based BG subtraction, and (d) Proposed bilateral-based BG subtrac-
tion method
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activity categories. This method can be performed at up to 100 frames per second on 
the graphics processing unit (GPU) for input sizes of 240* 320 pixels. Consequently, 
this approach effectively identifies areas before using the deep learning pipeline to 
detect anomalies [58, 59].

To start, we apply bilateral filtering to frame I of the input image, then label the 
resulting grayscale image as "bilateral." We create a structure using non-overlaying 
slabs with two sides, where "bilateral" is split into slabs that are the same size as a 
pixel. In our system, the value of n is 4. Next, we generate a binary bitmap by calculat-
ing the average of each block and comparing it to the pixel values within the block.

This results in a  BMbil bitmap, where pixels below the average are assigned a binary 
value of 0, and those above the average are assigned a binary value of 1. The rules we 
use to update the background (BG) model and determine appropriate learning rates are 
similar to those we have used previously. As each new frame is processed, we calculate 
the fencing distance to every block to determine if the detected background block is 
within the awareness zone. The matching bit number for the block’s location (i,j) is 
represented as  bij. Although the two-sided filter is slower than most filters, it keeps 
the edges of the active area clear. To process input frames, we use CUDA’s texture 
memory and apply two-sided GPU filters instead of using global memory. The algo-
rithm combines BG subtraction with two-sided filters. Two-sided filters are utilized 
in our approach to reduce the noise in the incoming public unstriped frames. The BG 
subtraction method is then employed to recover the foreground, which comprises the 
candidate note area to be recorded. Finally, a deep learning pipeline is employed to 
predict the attention areas of various exceptional events. Figure 5 illustrates the traffic 
event accident using the incremental generation of texture information for clarity. This 
Figure provides a simple example of how texture data can be generated on a single 
44-pixel block.

Figure 6 demonstrates how a picture can be created using various block sizes with 
recommended descriptive shapes. In Figs. 6a, too much detail has been removed, while 
in Figs. 6d, there is too much unimportant detail. The texture descriptor is valid, and 
the block size is a good choice, as demonstrated in Fig. 6.

Figure 7 showcases the proposed framework for detecting attention regions in video 
frames and predicting the anomaly score using a CNN regression model. The figure 
consists of three main phases: input frame loading, attention region detection, and 
anomaly score prediction. In the first phase, an input video frame is loaded into the 
framework. In the second phase, attention regions are detected from the input frame, 
and C3D features are extracted from these regions. This step helps to narrow down the 
focus to the relevant parts of the frame, thereby reducing the computational burden 
and improving the accuracy of anomaly detection. In the third and final phase, the pro-
posed CNN regression model takes the optimal features and predicts the anomaly score 
for each frame in the video. This score reflects the degree of anomaly in the frame, 
with higher scores indicating a greater likelihood of an anomaly event occurring. By 
predicting the anomaly score for each frame in the video, the framework can effec-
tively identify and flag any anomalous activity, enabling prompt response and action.

(3)Dist
(
BMbilobs

,BMmod

)
=

n∑

i=1

n∑

j=1

(
b
bilobs
ij

+ bmod
ij

)



73374 Multimedia Tools and Applications (2024) 83:73363–73390

1 3

Fig. 5  The proposed GPU-based bilateral filter for attention region detection in video Frames

Fig. 6  The proposed texture descriptor visual results with a block size of 2, 4, and 6
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3.3  Evaluation metrics

To evaluate the proposed framework, we employed the following evaluation metrics: 
true positive rate (TPR), false positive rate (FPR), accuracy, ROC curve, confusion 
matrix, precision, recall, and F-measure. The ROC curve visually represents a clas-
sifier’s diagnostic ability by comparing TPR against FPR at various threshold values, 
and the AUC metric represents the overall performance of the classifier. The confusion 
matrix provides a detailed breakdown of correct and incorrect predictions, from which 
precision, recall, and F-measure can be calculated. A robust model should achieve 
high TPR and accuracy, low FPR and false alarm rates, and high precision, recall, and 
F-measure values for typical clips.

3.4  Computational complexity

In this study, we also evaluate the computational efficiency of our proposed method by 
examining the time complexity of its primary components: the attention mechanism and 
BG algorithm, the 3D Convolutional Neural Network (3D CNN) model for violence 
prediction, the Genetic Algorithm (GA) for feature selection, and the texture-based 

Fig. 7  An essential module of the proposed violence recognition system, showcasing the detection of visual 
attention regions and their use in a deep learning model for recognizing various violent scenes
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bilateral filter. As detailed in Table 2, the time complexity of each component depends 
on specific variables related to their operations.

The attention mechanism and BG algorithm have an O(N) time complexity, where N 
represents the number of video frames being processed. This denotes a linear relationship 
between the number of frames and the computational time, which is ideal for real-time 
applications. The 3D CNN model, utilized for violence prediction, has a time complexity 
of O(N ∗ M2 ∗ K2 ∗ C2 , where M is the dimension of the input matrix, K is the size of the 
kernel, and C is the number of channels. The CNN’s complexity highlights its comprehen-
sive processing to derive meaningful insights from the video frames. The Genetic Algo-
rithm-based feature selection process exhibits a time complexity of O(G ∗ P ∗ f ) , where 
G represents the number of generations, P is the population size, and F is the computa-
tional complexity of the fitness function. The complexity of the GA mirrors its extensive 
search across generations and populations to select the most optimal features. Lastly, the 
texture-based bilateral filter, which helps detect the attention region, has a time complexity 
of O(W ∗ H) , where W and H are the width and height of the video frames, respectively. 
This complexity reflects the spatial operation of the filter across the frame dimensions.

The attention mechanism and BG algorithm exhibit an O(N) space complexity, where 
N is the number of video frames processed. This linear space complexity demonstrates 
that our system can manage increased data load by proportionally expanding memory 
usage. The proposed 3D CNN model for violence prediction has a space complexity of 
O(N*M^2*C), where M represents the input matrix’s dimension, and C represents the 
number of channels. This complexity reflects the storage required for the multi-dimen-
sional matrices used in the convolutional layers. The Genetic Algorithm-based feature 
selection operates with a space complexity of O(P*F), where P is the population size, and 
F is the size of the feature set. This component’s space complexity underlines our method’s 
capacity to handle extensive feature sets and large populations for more accurate feature 
selection.

Finally, the texture-based bilateral filter displays a space complexity of O(W*H), where 
W and H denote the width and height of the video frames, respectively. This reaffirms 
the scalability of our approach as the spatial dimensions of the video frames increase. 

Table 2  Time complexity of 
components in the proposed 
scheme

Notations:
• N is the number of video frames,
• M is the dimension of the input matrix for the CNN,
• K is the size of the kernel in the CNN,
• C is the number of channels,
• G is the number of generations in the GA,
• P is the population size in the GA,
• F is the computational complexity of the fitness function in the GA,
• W and H are the width and height of the video frames, respectively, 
for the texture-based bilateral filter

Component Time complexity

Attention mechanism and BG algorithm O(N)

C3D model for violence prediction O(N ∗ M
2 ∗ K

2 ∗ C
2)

Genetic algorithm-based feature selection O(G ∗ P ∗ F)

Texture-based bilateral filter O(W ∗ H)
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Examining space complexity assures that our proposed system can efficiently handle large-
scale video surveillance data, an essential requirement in real-world urban surveillance sys-
tems (Table 3).

4  Results

The experiment utilized a core i7 CPU, 32 GB RAM, and a graphics card. To extract spati-
otemporal features, Matlab 2018b was used as the framework along with a disciplined C3D 
model. Table 4 displays statistics for violent regions in the UCF-Crime big video reposi-
tory used for model training and validation, while localized exception areas are illustrated 
in various categories. The UCF-crime dataset’s surveillance video was obtained from Live-
Leak and YouTube. To test the accuracy of the experiment, a reference set consisting of 3 
types of data from the UCF-crime dataset was used. Each evaluated film was given a real 
label in a binary format, making it easy to completely evaluate the exam.

Figures 8, 9, 10, 11, 12, and 13 provide qualitative comparisons of unusual events in the 
UCF-Crime dataset, such as explosions, road accidents, theft, abuse, and normal events. 
Figure 8 presents visual results for normal and explosion violence recognition with four 
subplots. The first two subplots show input video frames, while the remaining two display 

Table 3  Space complexity of 
components in the proposed 
scheme

Notation:
N is the number of video frames,
M is the dimension of the input matrix for the CNN,
C is the number of channels,
P is the population size in the GA,
F is the size of the feature set for the GA,
W and H are the width and height of the video frames, respectively, 
for the texture-based bilateral filter

Component Space complexity

Attention mechanism and BG algorithm O(N)
C3d model for violence prediction O(N*M^2*C)
Genetic algorithm-based feature selection O(P*F)
Texture-based bilateral filter O(W*H)

Table 4  This table displays 
numbers for the UCF-crime 
dataset, which has been detected 
and localized. The quantity 
between the brackets indicates 
the number of videos that are 
included in the training data

Category Rate

Videos quantity Violent: 948 (808),
Normal: 949 (798)

Frame frequency 30 FPS
Original resolution 512 × 512x3
The typical overall number of frames 12.8 million
Length of dataset 126 h
Irregular programs checked Fighting, Road 

Accidents, and 
Robbery
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Fig. 8  Visual result of normal and explosion violence recognition

Fig. 9  The visual result of normal and road accident violence recognition
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anomaly scores calculated by the proposed model. Anomaly scores for normal and explo-
sive video frames are shown in the third and fourth subplots, respectively, highlighting an 
increase in the anomaly detection score for the explosive frame.

Figure 9 illustrates a visual comparison between normal and road accidents, as recog-
nized by a violence recognition system. The first two subplots depict normal traffic and 
road accident at a junction. In contrast, the third and fourth subplot displays an anomaly 
score estimated by the proposed model for road accident detection. The anomaly scores for 
normal frame ranged from 1 to 5%, indicating no anomalies. However, the anomaly scores 
for normal frame rose to 100%, demonstrating a high probability of an anomaly.

Figure  10 demonstrates vehicle anomaly detection using the proposed system. In the 
first subplot, an input frame with no anomalies is accurately detected. The second subplot 
shows a complex scene with multiple closely spaced and overlapping vehicles. Despite this 
complexity, the model correctly identifies this frame as normal, with no increase in the 
anomaly score, indicating the absence of anomalies..

In Fig. 11, a scene depicts a man stealing from a store. In the first image, where no steal-
ing occurs, there is no increase in the stealing score. However, in the second image from 
the theft scene, the anomaly score rises, indicating an anomaly in the video. These images 
effectively and confidently identify thefts, as demonstrated in the highlighted frames from 
800 to 1400.

Figure 12 depicts the visual results of normal and abuse violence recognition through 
subplots. The first and second subplot shows a normal and physical abuse scene between 
a patient and a nurse, as detected by the proposed system. The third and fourth subplot 
exhibits the estimated anomaly detection score, The anomaly detection score is higher 
in the fourth subplot, indicating an increase in anomaly detection due to the occur-
rence of physical abuse. The concept of BG subtraction demonstrates that our method is 

Fig. 10  The visual result of a normal video scene (no violence detected)
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capable of locating anomalous areas. In industrial applications, focusing on the appro-
priate abnormal area rather than performing comprehensive audits can help safety man-
agers focus on the appropriate abnormal area.

Figure  13 illustrates the attentional regions assigned to the machine learning pipe-
line, highlighted in red. Regions that are not of interest will appear blurred and will not 
contribute significant visual features during retrieval, training, and reasoning processes, 
as the brain does not allocate attention to them.

We draw a comparison between the methodology we provided and Sultani et al. prior 
work [6]. Their techniques are limited to a specific type of abnormal event, like a battle 
situation, as proposed in [10], despite many research studies utilizing location to detect 
anomalies. The suggested approach is compared to the full-frame technique to analyze 
a large number of exception occurrences. Figure 14 shows the confusion matrix of the 
proposed model on the UCF-Crime dataset, obtained using a testing set consisting of 

Fig. 12  The visual result of normal and abuse violence recognition

Fig. 13  Manually segmented the violent and normal frames of the UCF-Crime dataset
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30% of the total dataset. The confusion matrix displays the number of true positives 
(TP), false positives (FP), false negatives (FN), and true negatives (TN) for each class.

The proposed positioning method can be used to achieve higher accuracy on multiple 
tested videos, as shown in Table 5. In addition, this table also shows the accuracy achieved 
in percentage between entire frame violence recognition and proposed localized region-
based violence detector. Table 5 presents the evaluation of a proposed violence recogni-
tion system, as well as a comparison with a state-of-the-art system [6]. For the existing 
system, the accuracy is reported as 97.93%, 99.90%, and 77.70% for robbery, fighting, and 
road accidents, respectively, while the overall accuracy is reported as 91.84%. For the pro-
posed model, the accuracy for recognizing violent activities is reported as 97.00%, 99.00%, 
96.35%, 95.00%, 94.50%, 93.80%, 97.20%, 96.70% and 96.89% for Robbery, Fighting, 

Fig. 14  Confusion matrix for our 
proposed violence recognition 
model

Table 5  Evaluation of the proposed model using a validation set and comparing the performance with a 
state-of-the-art violence recognition system

Technique Categories Accuracy Precision Recall F1-score AUC score

Existing system [6] Robbery 97.93% 97% 98% 97.5% 98.5%
Fighting 99.90% 99.5% 99.9% 99.7% 99.8%
Road Accident 77.70% 76% 80% 78% 79.0%
Average 91.84% 90.8% 92.6% 91.7% 92.4%

Proposed model Robbery 97.00% 97.20% 97.5% 97.35% 97.8%
Fighting 99.00% 98.80% 99.1% 98.95% 99.2%
Road Accident 96.35% 96.10% 96.7% 96.40% 96.6%
Arson 95.00% 94.70% 95.3% 95.41% 95.2%
Vandalism 94.50% 93.30% 92.7% 92.50% 92.6%
Burglary 93.80% 96.50% 94.1% 98.10% 94.0%
Explosion 97.20% 97.00% 97.3% 93.15% 97.4%
Shooting 96.70% 96.50% 96.8% 96.65% 96.9%
Average 96.89% 96.26% 96.19% 96.06% 96.21%
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Road Accident, Arson, Vandalism, Burglary, Explosion and Shooting, respectively, with 
an overall accuracy of 96.89%. The accuracy of each test video is calculated using each 
fragment containing an exception event. Robberies, for example, can be found in video 
clips 14 through 15, fights in clips 4 through 18, and traffic accidents in clips 5 through 
7. As a result, the accuracy should be assessed across multiple fragments and an average 
score calculated. We propose methods that, on average, achieve consistent accuracy across 
all videos tested as shown in Table 5. We also extracted the appropriate C3D features of 
approximately 135 test filmed clips from the UCF-Crime datum to compare the learning 
model’s accuracy. To calculate accuracy, multiply lots of videos examined by the properly 
anticipated quantity. 133 of 135 videos were correctly labeled, and 134 of 135 videos were 
correctly classified using the visual attention learning we presented.

Several events can occur in a CCTV video in real-world scenarios. For example, a thief 
tries to steal something and is retaliated against by the victim. As a result, we chose a vis-
ual representation of a video that had been tested on YouTube at random. A thief attempts 
to rob an assembled multitude inside a train junction but is unsuccessful, and the people 
successfully defend themselves against their belongings. Like earlier UCF-Crime assess-
ments is shown in Fig.  13, we analyze respectively filmed clips in depth by examining 
and determining their correctness. Although previous work failed to locate an assembly of 
persons and the bandits were forced to flee the spot, the proposed local approach detects 
two separate pieces of anomalies, as shown in the qualitative measures below. Ground truth 
is manually annotated by inspecting each frame individually. Frame No from 1–1100 con-
tains normal video frames. The video frames Between 1101 and 1640 belong to a violent 
class, similarly, the video frames from 2300 to 2600 contain violent scenes. The accuracy 
of the violent scene classification can be seen in Table 5.

The performance of the model in terms of accuracy and ROC can be evaluated using 
the measures from the confusion matrix, as demonstrated in Fig. 15. These measures are 
crucial for assessing the model’s ability to correctly classify instances of anomalies and 
normal behavior in surveillance videos.

Table  6 presents a performance comparison of several anomaly detection models for 
surveillance video analysis, including Anomaly-Event Detection (AED), Spatio-Temporal 
Low-rank Fusion (STLF) Autoencoder, Convolutional 3D (C3D) Multiple Instance Learn-
ing (MIL-DeepRank), Graph Convolutional Network (GCN) Anomaly Detection, C3D-
based Local Adaptive Weighted Surrogate (CLAWS) Anomaly Detection, and the pro-
posed Anomaly Detection Model that utilizes a C3D backbone and Evolutionary Search 
(ES) technique. The evaluation of each model was based on two metrics, namely False 

Fig. 15  Shows the performance 
comparison of the proposed 
model with state-of-the-art using 
a ROC curve
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Alarm rate and the Area Under the Curve (AUC) of the Receiver Operating Characteristic 
(ROC) curve.

False Alarm rate indicates the percentage of normal frames that were wrongly classi-
fied as anomalous, while AUC measures how well the model differentiates between anom-
alous and normal frames overall. Among all the models, the proposed Anomaly Detec-
tion Model, which employed a C3D backbone and Evolutionary Search (ES) technique, 
achieved the lowest False Alarm rate of only 0.021% and the highest AUC of 89.33%. 
This outstanding performance suggests that the proposed model is a suitable choice for 
video surveillance analysis since it can accurately detect anomalous events with minimal 
false alarms. The other models also showed good performance, with AUC values ranging 
from 50.60% to 88.75%. However, they had higher False Alarm rates compared to the pro-
posed model, which may limit their practical application in real-world scenarios. Overall, 
the results of Table 6 highlight the importance of evaluating the performance of anomaly 
detection models using multiple metrics and the potential of C3D-based models and evolu-
tionary search techniques for accurate and efficient video surveillance analysis.

This table compares the performance of different methods for anomaly/event detection 
[1] using video data. The methods vary in terms of their approach, including Anomaly-
Event Detection (AED), MIL-DeepRank (C3D) [2], Spatio-Temporal Low-rank Fusion 
(STLF) Autoencoder [4], Graph Convolutional Network (GCN) Anomaly Detection [5], 
C3D-based Local Adaptive Weighted Surrogate (CLAWS) Anomaly Detection [6], and the 
proposed method which uses Attention C3D + ES [7].

The table shows the false alarm rate and AUC score for each method, which are met-
rics used to evaluate the effectiveness of the anomaly detection models. A lower false alarm 
rate indicates that the model is less likely to generate false positives (i.e., identifying normal 
events as anomalies), while a higher AUC score indicates that the model is better at distin-
guishing between normal and anomalous events. The proposed model has also been system-
atically evaluated and has shown better performance by comparing it with two state-of-the-
art models that are based on graph CNN and clustering-based unsupervised learning [60, 61].

Overall, the proposed method has the lowest false alarm rate (0.0105) and the highest 
AUC score (89.33%), indicating that it performs better than the other methods in detect-
ing anomalies in video data. It’s important to note, however, that the performance of these 
methods may vary depending on the specific dataset and task they are applied to.

Some of Advantages in proposed attention mechanism and BG (Background) algorithm 
Inference Speed exhibit linear time complexity, denoted as O(N), where N represents the 
number of video frames processed. This linear relationship between the number of frames 
and computational time is highly advantageous for real-time applications. In our experi-
ments, this characteristic allowed us to process video frames rapidly, ensuring timely vio-
lence prediction and incident detection. The Efficient Time Complexity using the GA for 
feature selection operates with a time complexity of O(G*P*F), where G represents the 
number of generations, P is the population size, and F is the computational complexity of 
the fitness function. Despite its extensive search across generations and populations, the 
GA demonstrates efficient performance in selecting optimal features. Experimental results 
confirm that our approach efficiently narrows down the feature set, enhancing inference 
speed without compromising predictive accuracy. Advantages in Computational Efficiency.

Both the attention mechanism and BG algorithm have advantages in Computational 
Efficiency by achieving linear space complexity, O(N), where N represents the number 
of video frames processed. This means that our system can effectively manage increased 
data loads by proportionally expanding memory usage. In practical terms, it ensures that 
our method can be deployed in scenarios involving large-scale video surveillance data, 
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which is crucial for urban surveillance systems. The GA-based feature selection process 
has a space complexity of O(P*F), where P is the population size, and F is the size of 
the feature set. This space efficiency allows our method to handle extensive feature sets 
and large populations while keeping memory requirements manageable. Our experi-
ments confirm that this approach balances computational efficiency with feature selec-
tion accuracy. The texture-based bilateral filter, used for attention region detection, has 
a space complexity of O(W*H), where W and H denote the width and height of video 
frames, respectively. This scalability ensures that our approach can efficiently process 
video frames with varying spatial dimensions.

5  Conclusion

This article presents a computer vision model that utilizes deep learning to ensure safety 
and provide assistance to individuals in an intelligent city surveillance system. The pro-
posed model has the capability to recognize various types of violent and normal situ-
ations. This technology can be deployed by law enforcement agencies to prevent and 
address any suspicious activity that may endanger public safety and property. The study 
found that identifying a local attention area in each video segment is useful for detect-
ing anomalies. The results demonstrate that the proposed approach is highly accurate 
in identifying a wide range of events such as traffic accidents, robberies, and fights. 
Moreover, combining robust BG subtractions can help identify the most crucial area of 
interest. The proposed visual attention model has an impressive precision rate of 99%. 
However, simply installing video surveillance cameras is not enough to reduce criminal 
activity. To provide rapid assistance to victims and actively pursue offenders, a mecha-
nism must be implemented that involves continuous and thorough monitoring of video 
surveillance footage, which may require significant human resources. Therefore, a real-
time automated system for detecting anomalous individual interactions may be a prom-
ising solution to these issues. This approach can be applied in various public spaces, 
including schools, colleges, airports, bus stops, hospitals, and train stations. For exam-
ple, it can detect a traffic accident and automatically contact an ambulance. By leverag-
ing the intermediate outcomes of the adaptive video classification system, a precise and 
real-time anomaly detection system can be developed. The proposed method surpasses 
other existing approaches in terms of both precision and speed. In future research, we 
aim at improving the system by expanding our efforts to optimize human-AI collabora-
tion for monitoring and decision-making processes related to anomaly violence detec-
tion in video. Additionally, we plan to extend the system’s capabilities to seamlessly 
integrate data from multiple surveillance cameras, allowing for the comprehensive 
tracking of individuals and objects across various camera feeds. This approach will sig-
nificantly enhance situational awareness within urban environments and contribute to 
more effective violence detection.
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