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Abstract
Human cognitive functions such as perception, attention, learning, memory, reasoning, 
and problem-solving are all significantly influenced by emotion. Emotion has a particularly 
potent impact on attention, modifying its selectivity in particular and influencing behavior 
and action motivation. Artificial Emotional Intelligence (AEI) technologies enable comput-
ers to understand a user’s emotional state and respond appropriately. These systems enable 
a realistic dialogue between people and machines. The current generation of adaptive user 
interference technologies is built on techniques from data analytics and machine learning 
(ML), namely deep learning (DL) artificial neural networks (ANN) from multimodal data, 
such as videos of facial expressions, stance, and gesture, voice, and bio-physiological data 
(such as eye movement, ECG, respiration, EEG, FMRT, EMG, eye tracking). In this study, 
we reviewed existing literature based on ML and data analytics techniques being used to 
detect emotions in speech. The efficacy of data analytics and ML techniques in this unique 
area of multimodal data processing and extracting emotions from speech. This study ana-
lyzes how emotional chatbots, facial expressions, images, and social media texts can be 
effective in detecting emotions. PRISMA methodology is used to review the existing sur-
vey. Support Vector Machines (SVM), Naïve Bayes (NB), Random Forests (RF), Recur-
rent Neural Networks (RNN), Logistic Regression (LR), etc., are commonly used ML tech-
niques for emotion extraction purposes. This study provides a new taxonomy about the 
application of ML in SER. The result shows that Long-Short Term Memory (LSTM) and 
Convolutional Neural Networks (CNN) are found to be the most useful methodology for 
this purpose.
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1  Introduction

Digital data is constantly growing and becoming more accessible, making it challeng-
ing for software tools and technologies to display, store, manage, and analyze it [1]. In 
real-world social media, such as Twitter and Facebook, Polyglots are much more likely to 
submit code-switched items by combining two different natural languages [2]. In the data 
mining (DM) and natural language processing (NLP) sectors, these code-switched texts 
have generated a plethora of new research areas, including speech recognition, informa-
tion extraction, language modeling, and lexicon analysis, to mention a few [3]. Emotion 
identification or sentiment analysis for code-switched texts, which aims to find emotions 
or sentiments in a piece of mixed-language literature, is one of the most popular research 
topics [4].

In the past ten years, numerous neural network models have been investigated with 
the aim of code-switched emotion detection. The current approaches are primarily con-
cerned with building robust neural models with intricate features or architectures [5]. To 
enhance the code-switched detection model, CNNs and LSTM with the attention mecha-
nism are applied. These techniques, which take characteristics directly from the code-
switched text itself, might convey different emotions in either one language or both [6]. 
The goal of speech emotion recognition (SER) is to identify emotion in speech, regard-
less of the semantic content. Figure 1 shows the block representation of the SER system. 
The speech is first given to the ML-based training system then it gets pre-processed with 

Fig. 1   Block diagram of SER
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another pre-processing system. After it undergoes feature extraction to specify the features. 
Another text sample with Mel frequency cepstral coefficients (MFCC) and (MEDC)-ena-
bled featured extraction goes to the classifier. The classifier differentiates the difference 
between the two outputs of the feature extractions and then sends a signal to the emotion 
recognition system. The emotional recognition system finally detects the emotions from the 
given speech.

Languages usually have different ways of expressing emotions, which keeps these tech-
niques from progressing. As a result, a successful model ought to be able to more effi-
ciently and effectively mine both monolingual and bilingual data. A parallel translation 
with a bilingual perspective translates texts using code-mixing into both languages. By 
doing this, we can prevent information loss and preserve the original contexts as much 
as we can in both languages [7]. Additionally, the total system can use attention-based 
Bidirectional LSTMs as the shared encoder under adversarial learning to dynamically and 
selectively use both the monolingual private and the bilingual shared features in code-
mixed texts [5]. A bilingual-view parallel translation, which translates code-mixed texts 
into both languages, provides the least amount of information loss while preserving the 
original settings [8]. The task of extracting features from concurrent translation texts in 
two languages is handled by an adversarial dual-channel encoder [9]. Additionally, the total 
system can use attention-based Bidirectional LSTM Networks as the shared encoder under 
adversarial learning to dynamically and selectively use both the monolingual private and 
the bilingual shared features in code-mixed texts [10].

In recent years, the connection between human and machine communication has grown 
in significance. Many studies were conducted in the 1950s to teach robots to recognize 
human voices [11, 12]. To enhance the effectiveness of human-to-machine communica-
tion, the statistics of the human voice must be recognized [13]. A range of circumstances, 
such as educational and therapeutic settings, as well as entertainment and the arts, can ben-
efit from the use of emotional content in speech [14]. Speech signals may now be used to 
communicate between humans and machines thanks to several technological developments 
[15]. Speech recognition and speech-to-text (STT) technology have made mobile phones 
an increasingly popular means of communication [16]. One of the signal recognition fields 
of study that is expanding the quickest is speech recognition. SER is a new area of study 
that has the potential to advance a variety of industries, including automatic translation 
systems and human–machine interfaces [17]. As a result, the study concentrates on a vari-
ety of speech extraction traits, emotion databases, and classification strategies. Figure  2 
shows the implication of CNN methods in the SER.

Speech contains signals that reveal the speaker, their language, and their emotions in 
addition to the message. The majority of the speech processing algorithms currently in use 

Fig. 2   Application of CNN methodology in SER [158]
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work admirably with neutral studio recordings, but when it comes to emotional speech, 
they struggle [18]. This is because it is challenging to represent and define the emotions 
that are expressed through spoken language [19]. Communication becomes more natural 
when it contains emotional content. By using the appropriate semantics, emotions can be 
used to describe the same idea in a different way [20]. The project’s primary goal is to 
analyze and examine the potential use of ML and DL for emotion-based hazardous speech 
identification [21]. Naive Bayes, Support Vector Machine, and K-Nearest Neighbor models 
are three ML methods are used to check the identify emotion label. The Naïve Bayes model 
demonstrates strong performance with an accuracy of 82.3% in emotion detection. Addi-
tionally, the F1-Score metrics for this model stand at 0.89. This achievement is particularly 
noteworthy in the context of analyzing emotions and identifying them within Tamil song 
lyrics.

This review was formulated by following the steps of the PRISMA methodology and it 
is organized into different sections. Section 2 explains the overview and research gap. Sec-
tion 3 discusses the traditional emotional extraction in speech. Section 4 reviews the previ-
ous works of recent years. The outcomes of the application of the PRISMA approach are 
reported together with the responses to the research questions and the acquired results are 
discussed in Section 5. In Section 6, conclusions and closing remarks are offered.

2 � Overview and research gap

In past years a lot of research has been going on SER. The major focus is on extracting 
emotions like anger, happiness, sadness, fear, surprise, and disgust from the speech but 
almost more than 300 emotions apperars in the speech [22]. It is very difficult to find out 
all emotions from speech and decide whether it is harmful to society. DL techniques are the 
subset of ML that is widely used in extraction from voice, especially data models created 
for the special object for pattern recognition and detection making. One of the frequently 
used approaches is multi-model learning with deeper layers of architecture like RNN, 
Deep Belief Neiwork, Deep Boltzmann Machine (DBM), CNN, and Auto Encoder [23]. In 
recent years, emotional extraction in speech has gained much attention, especially after the 
popularity of social media. The peer-reviewed journals have shown a significant increase 
in the past few years. Science Direct shows 5006 results on the topic out of which 649 are 
review articles, 3,475 are research articles, 67 are encyclopedias, 433 are book chapters, 
72 are conference abstracts, 4 are book reviews, and the rest are other types of articles. On 
the other hand, MDPI shows 62 search results on this topic. Springer shows 19,614 search 
results. Out of this, 6,499 are chapters, 3,956 are articles, 3,788 are books, 5,040 are con-
ference papers and proceedings, the rest are other documents. Finally, IEEEXplore shows 
1,964 search results. This has 1,689 conferences, and 246 journals, the rest are other docu-
ments. Figure 3 shows the year-wise development works from 1999 to 2022. The graph 
shows that in the past three years, there is a huge development in the research work. This 
suggests that this topic is gaining huge attention but there is still too much research work 
that needs to be done in this field. According to the literature, there are significant differ-
ences across the databases in terms of the number of performers, the number of emotions 
recognized, and the methodology. Speech-emotional databases are used in both psycho-
logical investigations to understand the patient’s behavior and in circumstances when it is 
desirable to automate emotion recognition. When real-time data is used, the system gets 



73431Multimedia Tools and Applications (2024) 83:73427–73456	

1 3

complicated and emotion recognition is challenging. Figure 3 hows the advancement of the 
SER papers in the recent years.

Extraction of features and selection is also a major focus of current research, which aims 
to increase performance accuracy by selecting the best characteristics. To improve system 
performance and recognize the appropriate emotions, classifier selection is a difficult pro-
cess, according to data analysis [24]. Although many classifiers have been selected for the 
speech emotion identification system, no clear victor has emerged. SER is a complex prob-
lem. Emotions and facial expressions are two possible ways to recognize emotions when 
conducting sentiment analysis in the future [25]. If a future study is to be done on emotion 
recognition in general or on hazardous speech detection in particular, certain difficulties 
have been noted.

In the past ten years, contributions to the SER system focused on the novel approach 
based on a statistical method name extracted statistical feature works on a unimodal 
approach, gender, speaker-independent, and real-time [26]. Feature learning approaches 
from speech data are used to extract the feature statistically in terms of the degree of stand-
ard derivation [27]. The real-time issue with human–computer interaction is to catch the 
human voice and reply with accuracy like a human. The design to resolve this problem 
used an automatic speech recognition system that can figure out different emotional classes 
coming from the human mind and select the major feature extraction from the speech sig-
nals [28]. The improvement of SER used a novel feature-learning method based on an 
adaptive time–frequency coefficient to improve the accuracy of SER using the simulation 
performance based on the Persian Drama Radio Emotional Corpus, the Surrey Audio-Vis-
ual Expressed Emotion Database, and Berlin Emotional Speech Database [29]. The experi-
mental result set shows that methodology adaptive time–frequency based on FFT with 
Cepstral features works effectively resulting in SAVEE (80% accuracy), EMO-DB(97.57% 
accuracy), and PDREC (91.46% accuracy) data sets [30]. The SER is a complicated prob-
lem because it extracts the natural feature emotion from the real audio data set, and it is 
playing too. SER plays a significant role in human–computer interaction [31]. The study’s 
main goal is to improve classification accuracy and extract eight emotions from human 
speech. Emotion prediction from the speech used MFF-Aug research by white noise injec-
tion, pitch tuning, and noise removal [32]. On pre-processed speech signals, the feature 
extraction techniques MFCC, zero crossing rate, and root mean square [33]. To analyze 
the voice emotional classification and speech representation used the CNN approach. The 

Fig. 3   Advancement of the SER research work in recent years
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next step is to compare the LSTM and CNN method. The TESS, CREMA, RAVDESS, 
and SAVEE datasets were used for analyzing the experimental methodology and accuracy 
of 92.6%, 89.94%, 84.9%, and 99.6% [34]. SER has a broad range in the smart applica-
tion field of medical science, human–robot interaction, and online gaming apps [35]. Smart 
SER system applications are two main major problems computational cost and time to 
figure out this issue used preprocessing steps on six databases i.e. EmoDB, RAVDESS, 
IEMOCAP, ShEMO, DEMoS, and MSP-Improv which speech segments with similar for-
mate characteristics [36].

3 � Traditional emotional extraction in speech

Signal pre-processing, feature extraction, and classification are the three core elements of 
emotion identification systems based on digitized speech [37]. To establish meaningful 
units of the signal, acoustic pre-processing techniques like denoising and segmentation are 
used. To find the pertinent features present in the signal, feature extraction is used. Speech 
signal processing, feature extraction, and classification are all covered in-depth in this sec-
tion [38]. Due to their importance to the subject, the distinctions between spontaneous and 
performed speech are also examined. Speech enhancement is carried out in the initial step 
of speech-based signal processing, where the noisy components are eliminated [39]. Fea-
ture extraction and feature selection make up the second stage. The pre-processed speech 
signal is used to extract the necessary features, and the extracted features are then used to 
make the selection. The study of speech signals in the temporal and frequency domains is 
typically the foundation for such feature extraction and selection [40]. In the third stage, 
different classifiers, including Gaussian Mixture Model and Hidden Markov Model, are 
used to categorize these features. Last but not least, several emotions are identified based 
on feature classification [41].

3.1 � Improving speech input data for speech emotion recognition

During the data collection phase, noise frequently taints the input data used for emotion 
recognition. These flaws make the feature extraction and classification less precise. This 
means that for emotion detection and recognition algorithms to function properly, the input 
data must be improved. The speaker and recording variance is removed during this pre-
processing stage while the emotional discrimination is retained [42].

3.2 � Extraction and selection of features in speech emotion recognition

Following augmentation, segments are used to characterize the speech stream. Based on 
the information gathered, pertinent traits are extracted and divided into several groups. 
Short-term categorization, which is based on properties that last just a short while, like 
energy, formants, and pitch, is one type of classification. The other is known as long-term 
categorization, and two often employed long-term features are mean and standard devia-
tion [43]. The intensity, pitch, pace, and variance of uttered words are among the prosodic 
qualities that are typically significant in identifying different types of emotions from the 
input speech signal [44].
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3.3 � Acoustical measures in speech emotion recognition

Each emotion’s information availability is encrypted. Among the most studied subjects 
in this area are vocal parameters and how they relate to emotion identification. Many 
factors are typically taken into account, including spoken word characteristics like inten-
sity, pitch, pace, and quality of voice [45]. The assumption that emotions are separate 
categories with independent existence is a common one in the simple view of emotion. 
In many cases, the relationship between intensity and pitch, and activation is such that 
the intensity value rises with a high pitch and falls with a low pitch [45]. If the speaker 
is acting, whether there are many different speakers, and the person’s mood or person-
ality all have an impact on how acoustic factors transfer to emotion. Emotions in HCI 
are typically not the conventional discrete emotions; rather, they are frequently weakly 
expressed, jumbled, and difficult to identify from one another [46]. Based on the feel-
ings exhibited by a person, emotional remarks in literature are classified as either good 
or negative. Some research suggests that actors exaggerate their emotional expressions 
because listener-based performed emotions are significantly stronger and more accurate 
than real emotions. Areas within the space, according to the study, can describe basic 
emotions. While valence depicts the impact of positivity and negativity on emotions, 
arousal shows the intensity of serenity or excitement [47].

3.4 � Classification of speech emotion recognition features

Different classifiers have been researched in the literature to create systems like SER, 
speech recognition, and speaker verification [48]. On the other hand, the reasons for 
selecting a specific classifier for a given speech task are frequently left out of most 
applications. Typically, classifiers are chosen based on an empirical evaluation of some 
signs or a rule of thumb, as was previously discussed. Ordinarily, the two primary types 
of pattern recognition classifiers used for SER can be broadly divided into linear clas-
sifiers and non-linear classifiers [49]. With a linear arrangement of numerous objects, 
linear classifiers typically conduct classification based on object attributes. Most of the 
time, these objects are assessed as an array known as a feature vector [50]. On the other 
hand, non-linear classifiers are used to characterize things before creating a non-linear 
weighted combination of those objects.

3.5 � Databases for recognition of speech emotion

Many academics use speech emotional databases for several research projects. The most 
crucial aspects of evaluation for emotion recognition are the caliber of the databases 
used and the performance attained. Depending on the reason for developing speech 
systems, different techniques and goals are used to collect voice databases [51]. The 
basic categories of speech databases are used to construct emotional speech systems. 
The speech data in these databases was captured by skilled and seasoned actors. This 
database is regarded as the one that makes it easiest to collect the speech-based dataset 
of different emotions out of all the others [52]. It is estimated that this method is used 
to compile over 60% of speech datasets. This is a different kind of database where the 
emotional set is gathered by fabricating a fake emotional circumstance. This is done 



73434	 Multimedia Tools and Applications (2024) 83:73427–73456

1 3

without the artist or speaker’s awareness. This database is more lifelike than actor-based 
databases [53].

The speaker should be aware that they have been videotaped for research purposes, 
therefore an ethical question might arise. These databases are tough to collect owing to 
the difficulties in recognition even though they are the most realistic. Conversations from 
contact centers, the general public, and other situations are typically recorded for natural 
emotional speech databases [54]. When research on speech-based emotion identification 
began to take off in the early 1990s, researchers frequently started using acted databases 
before switching to realistic databases [55]. The most often utilized performed databases 
are the 10 actors’ recorded voices included in the Berlin emotional speech database and the 
Danish emotional speech database [56]. Four test subjects were asked to speak a variety of 
words in five distinct emotional states. German-Aibo emotion and Smart-Kom data, where 
the actors’ voices are captured in a lab, are included in the data. Additionally, real-world 
call center interactions captured during live recordings have been utilized [57]. Accord-
ing to the literature, there are significant differences across the databases in terms of the 
number of performers, the number of emotions recognized, and the methodology [58]. 
Speech-emotional databases are used in both psychological investigations to understand 
the patient’s behavior and in circumstances when it is desirable to automate emotion recog-
nition [59].

4 � Methodology

This literature review uses the PRISMA methodology. We screened 46,131 articles from 
the WoS and Scopus websites. To find relevant articles, we use an advanced filtering sys-
tem on different scientific websites. We use logical operators to find the most relevant 

Fig. 4   Flowchart of the used PRISMA methodology
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documents. Figure  4 shows the flowchart of the PRIMSA methodology used to select 
the papers. Table 1 shows the methodology used for shorting the relevant papers for this 
review.

Table 1   Keyword filtering system used for shorting the papers

Springer: 23,350 documents
  Keywords used for Filters Number of 

docu-
ments 
found

  Emotion speech ML OR semantic DL 4,059
  Emotion, NLP “OR” audio, DL 13,303
  Emotion, NLP “OR” speech, extraction, CNN 739
  Speech, emotion, LSTM “OR” extraction, CNN 607
  Speech, emotion, MFCC “OR” extraction, Perceptual Linear Predictive 105
  Speech processing, fast Fourier transform “OR” human emotion, extraction, Discrete 

Cosine Transform
157

  Speech, CNN “OR” extraction, SVM 3,310
  Speech, Linguistic Features, neural network “OR” emotion, acoustic features 1,270

IEEE Xplore: 13827
  Emotion, speech, ML “OR” semantic, DL 2,288
  Emotion, NLP “OR” audio, DL 2,374
  Emotion, NLP “OR” speech, extraction, CNN 304
  Speech, emotion, LSTM “OR” extraction, CNN 3,602
  Speech, emotion, MFCC “OR” extraction, Perceptual Linear Predictive 43
  Speech, fast Fourier transform “OR” human emotion extraction, Discrete Cosine Trans-

form
383

  Speech, CNN “OR” extraction, SVM 4,699
  Speech, Linguistic Features, neural network “OR” emotion, acoustic features 134

ScienceDirect: 8,599
  Emotion, speech, ML, semantic DL 1,250
  Emotion, NLP, audio, DL 1,508
  Emotion, NLP, speech, extraction, CNN 623
  Speech emotion, LSTM, extraction, CNN 562
  Speech emotion, MFCC, extraction, Perceptual Linear Predictive 132
  Speech processing, fast Fourier transform, human emotion extraction, Discrete Cosine 

Transform
84

  Speech, Linguistic Features, neural network, emotion, acoustic features 478
MDPI: 355

  Emotion speech, ML “OR” speech, DL 21
  Emotion, NLP “OR” audio, DL 18
  Emotion, NLP “OR” speech extraction, CNN 2
  Speech, emotion, LSTM “OR” extraction, CNN 207
  Speech, emotion, MFCC “OR” extraction, Perceptual Linear Predictive 1
  Speech, fast Fourier transfosrm “OR” Speech, Discrete cosine transform 1
  Speech, CNN “OR” extraction, SVM: 103 103
  Speech, Linguistic Features, neural network “OR” emotion, acoustic features 02
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5 � Literature review

As a developing field of ML research, DL has attracted more attention in recent years [60]. 
DL techniques for SER have several advantages over conventional techniques, including 
the ability to recognize composite systems and structures without the need for tuning and 
physical feature extraction, the capacity to work with unlabeled data [61], and a propensity 
to extract low-level features from raw data. For a machine, identifying human emotions is a 
challenging task, but for us, it is straightforward [62]. To improve communication between 
humans and robots, an emotion recognition system makes use of knowledge about emo-
tions [63]. The basic frequencies, Linear Prediction Cepstrum Coefficient, and Mel Fre-
quency Cepstrum Coefficient are a few of the speech aspects that have been researched 
[64]. There is a possibility of speaker-dependent or speaker-independent emotional infor-
mation recognition. Other classifiers include K-nearest Neighbors (KNN), SVM, CNN, 
and others [65]. Various strategies for identifying emotional states in speech using selected 
papers from the period 2005 to 2018 help to create a model that can recognize and clas-
sify six different emotions using a Deep Neural Network (DNN) for emotion identification 
[66]. The research concludes by averaging the accuracy of the two databases, which were 
used in the study. Both sets of data are utilized to extract features using MFCC, SVM, 
and Gaussian mixture models using the retrieved feature to categorize the speaker’s age 
[67]. The emotional approach utilized in the study, which focuses on transformation, is 
then used to forecast the training data. Real-time CNN models were suggested as a way 
to recognize emotions [68]. This paradigm includes subcategories for being angry, joyful, 
and depressed. The model’s accuracy is 66.1% on average. A few different emotions were 
identified. It is therefore difficult to predict any other feeling but their own [69]. Text cat-
egorization was employed to examine the content of speech. The main method for translat-
ing emotions from audio to text is text mining. Huang and his coworkers created a novel 
method for identifying emotions. Using a nonlinear SVM classifier, four kinds of emo-
tions were identified [70]. The Deep Belief Network model took too long to extract fea-
tures compared to other feature extraction techniques, which was the flaw in this unique 
approach [71].

2010 through 2022 saw the exploration of this work. All ML techniques are combined 
with "hate speech identification" in the inquiry. It had been done to categorize the proce-
dure using an ML approach. The state-of-the-art review methodology had been modified 
from [77–89]. Tables 2 and 3 provided a quick summary of some current research in this 
area.

A 1D CNN performs better in classification tasks than traditional machine learning 
algorithms. By learning low-level or spectral information, SER technology is used to cat-
egorize emotions. A CNN-based method for identifying emotions employs feature space 
for low-level data such as pitch and energy as well as spectral information such as a log-
Mel spectrogram, STFT. Calculating the spectral flux, which assesses the spectral change 
between two frames, involves squaring the difference between the normalized magnitudes 
of the spectra of two successive short-term windows [90].

where ENi(K) is the Kth normalized discrete Fourier transform, i is the frame, Wf is the 
weighted frequency, N is the bin number, and F(n) is the center frequency of the bin 
(Table 4).

F1(i,i−1) =

WfL
∑

K=1

(

ENi(K) −WNi−1(K)
)2
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Subjectivity analysis can separate objective sentences from subjective statements and 
remove the latter from the corpus. A rule-based classifier for identifying hate speech was 
constructed using a vocabulary built on semantic, anti-, and theme-based components. Two 
machine learning methods that can be used directly to raise precision and recall scores are 
SVM and maximal entropy [99]. MFCC and Gaussian Mixture Models are widely com-
bined to identify or forecast the presence or severity of depression in speakers [100]. The 
context of the discussions, which may include the speakers’ emotions or mood, is inferred 
by the BigEAR architecture using a psychological audio processing chain (PAPC). The 
advantage of the BigEAR framework is that psychologists are no longer required to evalu-
ate the expanding body of acoustic big data, which calls for them to carefully listen to 
each audio recording and classify emotions [101]. Bi-grams, SentiWordNet, and stop word 
removal have all been demonstrated to improve accuracy when it comes to Twitter fea-
ture selection [102]. The most popular machine learning algorithms for sentiment analysis, 
emotion analysis, and hate speech identification on social media platforms are shown in a 
block diagram in Fig. 5. This demonstrates that LSTM and SVM algorithms are frequently 
used to produce the most accurate outcomes (Table 5).

6 � Results and discussion

6.1 � Methods for identifying emotions in speech

The fundamental ER system is made up of the processes listed below, according to speech 
as depicted in Fig. 6.

The speech samples are utilized as input in the initial stage. If a standard database is not 
used, samples are preprocessed to eliminate noise using a variety of trade-offs, including 
Audacity, WavePad, Sony Creative Noise, Once Audio, and PRATT Reduction [110]. To 
obtain the final result, a classification is then applied to the samples. The main reason for 
doing this is to get signals with high-frequency characteristics.

Fig. 5   Accuracy of most suitable ML algorithms application in hate speech detection
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6.2 � Standard SER systems

Traditional SER Systems follow the steps of speech normalization, feature extraction, fea-
ture selection, and classification, as indicated in Fig. 7 which  illustrates the fundamental 
process for identifying emotions in incoming speech. Following the separation of the noise 
components, feature extraction and selection are carried out in the process of normaliz-
ing speech [111]. The first step in the analysis of speech signals for emotion detection is 
the extraction and counting of speech features. The majority of the time, a time- and fre-
quency-domain analysis of the spoken data produces the speech features [112]. The crea-
tion of a database of speech features generated from input voice signals follows. The classi-
fiers can identify emotions in the final stage. In order to recognize emotions, classifiers use 
a variety of pattern-matching algorithms [113].

6.3 � Speech normalization

Speech normalization is the process of the emotional data that is recorded and is usually 
diminished by outside noise (like the "hiss" of the recording device). This change will lead 
to inaccurate feature extraction and categorization. Therefore, normalization is an impor-
tant step in the identification of emotions [114]. With the preservation of emotional distinc-
tion, this pre-processing stage gets rid of speaker and recording fluctuation. The two most 
popular methods of normalization are energy normalization and pitch normalization [115].

6.4 � Selection and extraction of emotional speech features

After being normalized, the emotional speech signal is divided into segments and then 
decomposed into meaningful units. These components often express the speaker’s emo-
tional state through speech signals [116]. The following step is the feature set extraction 

Fig. 6   Emotion recognition system [157]

Fig. 7   Standard SER
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as shown in Table  6. These emotional speech characteristics can be categorized in a 
variety of ways.

Two categories can be used to separate long-term and short-term traits. Examples of 
short-term qualities are formants, pitch, and energy because they only last for a small 
period. Long-term characteristics are a statistical tool for examining a digital audio 
stream. The Mean and Standard Deviation are two of the most often applied long-term 
measures. If more features are employed, the categorization process will be more accu-
rate [117].

6.5 � Training data

Numerous databases have been created by the voice-processing community [118]. The 
databases contain training and test data sets. There is an English version of the emo-
tional prosody speech and documents database from 2002. Three different types of data-
bases are used by SER, and the review in Table 6 shows examples of some researche 
works which works on the training datasets in order to extraction emotions from the 
speech. The Table 6 also discuss the type of databases they used and what kind of emo-
tions they were abled to figures out form the the available sources of database (Table 7).

Type 1 emotional speech includes personal labels. Acting out or simulating speech is 
done professionally. To obtain these, actors are requested to speak with a specific emo-
tion, such as DES or EMO-DB [122]. Realistic, human-like expressive speech is type 2. 
Natural speech is simply unplanned speech that conveys an individual’s actual feelings. 
These databases are based on actual applications from the real world, like contact cent-
ers. Instead of labeling, the speaker employs self-reporting to elicit feelings in Type 3 
to manage to label. Emotional speech is prompted by type 3. Expressed long short-term 
memory speech is not fictional or neutral [119].

6.6 � Classifiers for emotion recognition

Only a few systems have had classifiers explored in the literature: SER, voice recog-
nition, and speaker recognition [120]. In contrast, most implementations hardly ever 
explain why a particular classifier was chosen for a specific speech task. Selecting clas-
sifiers often involves either a general rule or empirical analyses of some indicators.

Table 6   Characteristics of emotions

Emotion Anger Happy Surprise Fear Inquiry

Pitch range High Very high High High High
Mean High Incline Medium Very High Very high
Variance Moderate High More Medium Incline
Rate of speaking More High Medium High Moderate
Contour Very high High Medium High Very High
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6.7 � MFCC

The MFCCs represent some aspects of human speech perception and production. For 
instance, MFCC displays the logarithmic volume and pitch perception of the human audi-
tory system [121]. The MFCC cepstral coefficients are produced using a twist frequency 
scale centered on human auditory perception. By using windowing, the voice signal is first 
divided into frames before being subjected to MFCC computation [122]. Since their ampli-
tude is smaller than that of low-frequency formants, high-frequency formants are high-
lighted. This guarantees that the amplitude of each formant is the same. After windowing, 
Fast Fourier Transform is used to get the power spectrum from each frame [123]. After 
that, filter banks are processed on the power spectrum using mel-scale. After the power 
spectrum has been transformed into the logarithmic domain, the speech signal is subjected 
to the function to derive the MFCC coefficients [124].

6.8 � Feature extraction and feature set classification

A crucial step in emotion identification is selecting and extracting relevant characteristics. 
The overall performance of the system. They can be classified into two primary groups: 
Spectral Features and Prosodic Features. The features are selected using a variety of tech-
niques in order to be processed. Using LPA[125], PLPCS, PLP, FT, RASTA, MFCC[126], 
and FFT to extract emotions such as burden, anxiety, surprise, natural, grief, and happi-
ness, the CASIA and EMODB dataset has an average recognition rate of 87.5% [127].

6.9 � The ML and DL methods for researching emotions

Speech Emotion Recognition is a field of study that seeks to infer the speaker’s emotional 
state from speech data. Progress in emotion identification, according to various surveys, 
would simplify many systems. Consequently, raising the standard of living [123]. We’ll 
go over SER’s applications in more detail in the section that follows. For instance, it is not 
possible to reliably deduce an emotion from the surroundings, culture, a person’s facial 
expression, or speech corpus. One of the last significant challenges that an operating sys-
tem in the actual world must overcome is the knowledge of dealing with bilingual inputs 
[128].

Due to the ubiquity of mixed-language speech in everyday situations, cross-language 
recognition demands more performance experience. A survey was carried out to better 
understand speech emotion identification. The method of feature extraction is used to iden-
tify the most crucial components of a signal. The extracted feature vectors are mapped to 
the appropriate emotions in the final stage using classifiers. In-depth discussions of feature 
extraction, classification, and speech signal processing can be found in [129, 133]. The dif-
ferences between spontaneous and performed speech are also looked at because they are 
important to the topic [130]. A noisy component is removed in the first stage of speech-
based signal processing. The second stage is divided into two components: feature extrac-
tion and feature selection. The desired features are extracted from the preprocessed voice 
input and used to make a selection [94]. Speech is recorded via microphone sounds and 
utilized by the system. The sound card of a computer is then used to build a digital repre-
sentation of the received sounds. Feature extraction and selection Out of the 300 different 
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emotional states, the returned speech features are selected based on emotional relevance 
[131]. Figure 8 shows the increasing development of the SER topics in the scientific areas 
that makes it one of the most vulnerable topic areas.

The main objective of speech emotion recognition systems is classification. It is chal-
lenging to classify emotions because the average set of emotions includes more than 300 
different emotional states. Since some of the most frequent human emotions are fear, sur-
prise, fury, joy, contempt, and sadness, the naturalness of a speech emotion recognition 
system is what is evaluated [132]. ML algorithms can be used to recognize emotions in 
speech. It has been done using a variety of methods, including RF, SVM [133], GMMs, 
HMMs, CNNs, KNN, and MLP. In the past, these algorithms have been routinely used to 
identify emotions.

6.10 � Emotions and database type

The two basic methods for categorizing emotions are the dimensional approach and the use 
of categories. The category method breaks down emotions into more manageable catego-
ries. The six main emotions are anger, joy, happiness, sadness, fear, surprise, and disgust 
[134]. There are two categories for emotions, the second of which is axis-based and has 
several dimensions [135]. Tao found 89.6% of the emotions in the CASIA Chinese emo-
tion corpus using a decision tree diagram. In the work of [136], a GMM was employed 
as a classifier to categorize emotion-founded MFCCs. Several Berlin emotional datasets 
were identified using a three-stage classical SVM. In order to categorize emotions in the 
Marathi voice dataset, MFCCs extracted the features from the Berlin EmoDB database 
[137]. To determine the emotional content of a person’s speech, the KNN algorithm was 
applied. The Berlin emotive speech database operated flawlessly 90 to 99.5 percent of the 
time. Hossain and Shamim presented cooperative media systems in 2014 that make use of 
MFCCs and standard characteristics like emotions from voice signals. To identify emotions 
in speech, Alonso et  al. exploited paralinguistic and prosodic characteristics. They used 
SVM, a radial basis function neural network, and an auto-associative neural network after 
integrating two characteristics from a music library, the residual phase and MFCCs [138]. 
Researchers used a database of scholarly publications from China to investigate SVMs and 

Fig. 8   Recent development of SER using ML and DL techniques
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DBNs. DBNs had an accuracy of 94.5% whereas SVMs was about 85% accurate. High-
order statistical traits and characteristics based on particle swarm optimization were used 
in this work. Following the extraction of spectral information from voice recordings, [139] 
categorized speech emotions using an HMM and SVM. Performance analysis for differ-
ent languages uses a variety of ML techniques. The comparison shows that different ML 
methods have been used to identify speech emotions for several languages. In light of this, 
the best-case accuracy for the best-case scenario has been determined. Although emotions 
vary, the research selects the most accurate example utilizing a variety of feature extraction 
techniques and ML techniques [140].

In a range of research projects, several academics use emotional speech databases. 
The performance and quality of the databases employed are the most important factors 
in assessing emotion recognition systems [141]. Depending on why speech systems are 
being developed, different data collection techniques and objectives may be used. Table 8 
provides a summary of several publicly accessible datasets of emotional speech [142]. The 
creation of emotional speech systems uses three different types of speech databases. A 

Table 8   ML comparison of speech features

Feature/Characteristics Purpose of approach

MFCC Insight between music and spoken words. It’s more 
common for lower-order MFCCs to include more 
speech particular data than it is for higher-order 
MFCCs to contain music-specific data

MFCCs, coefficients, power coefficients, log fre-
quency

The four-emotion classification system in Mandarin 
Chinese. This study takes into account feelings of 
anger, happiness, neutrality, and sadness

An amalgamation of MFCCs and minimally useful 
characteristics

Emotional speech databases in Swedish and English 
were used to classify emotions

Vowels stressed and unstressed are included in the 
MFCC (class-level MFCCs)

Emo-DB and LDC datasets are used to classify emo-
tions in English

FFT and Chirp modifications were used to extract 
spectral information from the data

The emotional states of people under pressure are 
being modeled

Fig. 9   Emotions and their complexities [159]
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continuum that can be used to illustrate database classification is shown in Fig. 9. The intri-
cacy of several emotion recognition databases is represented in the image.

Actors with a high level of training and experience recorded the voice information in 
these databases [143]. From any of the previous databases, this is the simplest way to get 
a speech-based dataset of various moods. It is estimated that this method is used to collect 
around 60% of speech datasets.

Due to the fact that they collect emotional data by creating an artificial emotional state, 
these databases are also known as induced databases [144]. The speaker or performer is 
unaware that this is taking place. Compared to actor-based databases, this database is more 
naturalistic. There can be an ethical issue because the speaker should be aware that they 
are being filmed for research [145]. Natural databases are the most realistic because they 
are the hardest to recognize, but they are also the hardest to obtain. Typically, emotional 
speech databases are compiled from conversations in contact centers, the general public, 
and other sources [146]. Emotion Recognition is used by contact centers to classify incom-
ing calls according to their emotional content. Emotion Recognition as a performance cri-
terion for conversational analysis can be used to determine satisfied and dissatisfied clients 
[147]. The SER in-car board system can intervene to keep the driver safe and prevent acci-
dents when it recognizes the driver’s mental state.

The performance evaluation provided in [148] investigates a variety of speeches’ acous-
tic properties and classifier algorithms, which helps explore modern ways of emotion rec-
ognition. The design of DL makes it possible to utilize it for modalities other than NLP, 
like SER and voice recognition. It is possible to use the RNN for natural language phrase 
classification and natural image processing [149]. As a final point, DL is replacing tradi-
tional SER techniques as the favored approach. Unsupervised and multimodal SER, as well 
as NLP and speech recognition, are all on the rise [150]. It is effective to identify emotions 
while simultaneously employing both aural and visual information. This trait to incorpo-
rate is a crucial decision in the development of any vocal system [151]. The features cho-
sen should represent the information being delivered through them. The representation of 
speech information by various speech components, speaker, emotion, speech, etc. substan-
tially overlaps [152]. The speech characteristics comparison is shown in the table below. 
As a result, many features in speech research are chosen experimentally, while others are 
picked with the use of Principal Component Analysis [153]. The ML comparison of the 
speech features for various techniques is shown in Table 8.

The impact of emotional expression is also influenced by the speech’s linguistic sub-
stance [154]. To increase the precision of emotion recognition, emotional speech can be 
utilized to identify prominent words and traits that can be recovered from these words, in 
addition to more conventional aspects [155]. A real-time application where it is crucial 
to authenticate requests is call monitoring in the ambulance and fire brigade. Under the 
umbrella of emotion verification, pertinent aspects and models may be researched in this 
regard [156]. Figure 10 shows the most used keywords for the emotion extraction. In this 
research, LSTM, MFCC, RNN, CNN are found to be the most useful keywords.

7 � Conclusion and future work

A new taxonomy was introduced, and the main ML techniques for hate speech identifi-
cation were illustrated. According to the study, among the various DL techniques, RF, 
CNN, SVM, and LSTM had the greatest practical uses. These algorithms work well for 
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sentimental and emotional analysis as well as the detection of hate speech. Incontrovert-
ible analytical data from a range of sources, such as common documents, business reports, 
social media monitoring, and customer support tickets, are provided by emotional analysis. 
On the other hand, DL enables the employment of more potent tools and algorithms for 
data analysis. The classifier and database to use to accurately assess emotions can be cho-
sen using the data presented in the earlier articles. The most often searched-for emotions 
are neutral, disgust, happiness, and sadness, along with other characteristics like a burden, 
joy, surprise, and fear. The classifier used has an impact on the extraction rate. Due to the 
drawbacks of using subpar sample recordings in the databases, the accuracy in DBN net-
works is between 56 and 57 percent, and the recognition ratio has decreased. In this paper, 
both deep learning and machine learning for SER have been carefully analyzed.The paper 
includes a block diagram of the voice emotion detection system and a brief introduction 
to SER. To classify a speech recognition system, they must be able to distinguish between 
isolated, connected, spontaneous, and continuous words. There are several different tech-
niques to research and assess approaches for recognizing emotions, including Emotion 
Recognition, DL, and ML. Researchers have recently paid a lot of attention to the topic of 
speech-based emotion recognition. This study examined a huge number of research publi-
cations using databases, feature extraction, and classifiers. The research on emotion recog-
nition systems conducted between 1994 and 2022 is summarized in this document. In order 
to improve performance accuracy, current research has placed a lot of emphasis on the 
extraction of features and feature selection. Data analysis shows that classifier selection is 
a challenging task to enhance system performance and recognize the proper emotions. No 
obvious winner has emerged despite the selection of several classifiers for the speech emo-
tion identification system.

This work gives an in-depth analysis of all the properties, databases, classifiers, and 
methods utilized to address the complicated challenge of SER Inferring that SVM per-
forms better than the other model across all studies is possible. In the future, sentiment 
analysis may be used to identify emotions through facial expressions and emotions. We 
hope to be able to recognize offensive speech in the future from a variety of monitoring 
data. We want to consider visual information in addition to comment text to distinguish 

Fig. 10   Most used keywords for the emotion extraction
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between dangerous emotions. Online texts can also be handled using the adaptive bagging 
approach, which enriches the processing at the level of dynamic processing by processing 
the texts as streams. Future research on this subject might examine how to improve the per-
formance of our model by using BERT to build the embedding layer.
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