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Abstract
Image compression is a widely used technique to reduce the spatial redundancy in images.
Recently, learning based image compression has achieved significant progress by using the
powerful representation ability from neural networks. However, the current learning based
image compression methods suffer from the huge computational cost, which limits their
capacity for practical applications. In this paper, we propose a unified framework called
Efficient Deep Image Compression (EDIC) based on three new technologies, including
a channel attention module, a Gaussian mixture model and a decoder-side enhancement
module. Specifically, we design an auto-encoder style network for learning based image
compression. To improve the coding efficiency, we exploit the channel relationship between
latent representations by using the channel attention module. Besides, the Gaussian mixture
model is introduced for the entropy model and improves the accuracy for bitrate estima-
tion. Furthermore, we introduce the decoder-side enhancement module to further improve
image compression performance. Our EDIC method can also be readily incorporated with
the Deep Video Compression (DVC) framework (Lu et al. 2019) to further improve the
video compression performance. Simultaneously, our EDICmethod boosts the coding perfor-
mance significantly while bringing slightly increased computational cost. More importantly,
experimental results demonstrate that the proposed approach outperforms the current image
compressionmethods and is up tomore than 150 times faster in terms of decoding speedwhen
comparedwithMinnen’smethod (Minnen et al. 2018).Moreover, we also evaluate the perfor-
mance of the human-centric task (i.e., face recognition) by using different coding strategies.
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1 Introduction

Image compression aims to reduce the spatial redundancy in images and is widely used
to save bandwidth and storage sizes in lots of applications. Traditional image compression
methods [2, 3, 41, 46] rely on hand-crafted techniques to improve compression efficiency.
For example, JPEG [46] uses the discrete cosine transform (DCT) to convert the images
from the pixel domain to the frequency domain for high compression efficiency. However,
the traditional compressionmethods cannot be optimized by using large-scale training, which
may limit their performance.

Recently, learning based image and video compression methods [6, 7, 10, 11, 25, 28, 30,
33–35, 39, 43–45, 50] attract more and more attention. Ballé et al. [10] propose an end-
to-end optimized image compression approach by using the convolutional neural network
(CNN) based auto-encoder. To further improve the compression efficiency,Minnen et al. [35]
employs the auto-regressive prior information to obtain accurate entropy model and achieve
comparable or even better performance than the traditional codec [2].

Although the current learning based methods [28, 35] improve the compression perfor-
mance, they also increase the computational cost significantly. When compared with the
previous learning approaches [10, 11], the current methods [28, 35] exploit the spatial redun-
dancy in the latent feature space by using auto-regressive prior information. Therefore, the
decoding procedure in [28, 35] is performed sequentially for each pixel, while the previous
approaches [10, 11] can reconstruct all the pixels through convolution layers in a parallel
manner. As shown in Table 1, the average GPU decoding time for images with the resolution
of 768× 512 using Ballé’s method [11] is 0.013 seconds while the corresponding decoding
time using Minnen’s method [35] is 2.426 seconds.

In this paper, we ask the question: Is it possible to improve the compression efficiency
without significantly increasing the computation time? To address this issue, we propose
a unified framework named as Efficient Deep Image Compression (EDIC), which consists of
three new components, including the channel attention module, the Gaussian mixture model
and the decoder-side enhancement module. Specifically, we utilize an auto-encoder style net-
work for building the image compression framework. To further improve the compression
performance, we also exploit the channel relationship in latent features at the encoder side
and use an effective channel attention module to enhance the corresponding representation
power. More importantly, instead of using the single Gaussian model for entropy estimation
like [10, 11, 28, 35], we propose to use Gaussian mixture model (GMM) for more accurate
entropy estimation. Besides, we introduce the decoder-side enhancement module to reduce
the compression artifacts. The channel attention technique, the Gaussian mixture model and
the decoder-side enhancement module are seamlessly combined, which leads to much better
image compression performance with only slightly increased computational cost when com-
pared with auto-regressive prior technique in [28, 35]. Experimental results demonstrate that

Table 1 Decoding Time and
BDBR improvement over
JPEG2000 [41] of different
methods on the Kodak [1] image
dataset

Methods Decoding Time BDBR

Ballé’s [11] 0.013s 29.87%

Minnen’s [35] 2.426s 53.14%

EDIC(Ours) 0.016s 53.35%

The Deoding time is evaluating using one RTX 2080Ti. The full name of
BDBR is “Bjontegaard delta bitrate”, which refers to the bitrate relative
percentage of reduction under the same PSNR
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the proposed image compression approach achieves comparable compression performance
when compared with the current approach [35], while the decoding speed of our method is
over 150 times faster than [35] for images with the resolution of 768 × 512. Our method
can be readily used for video compression and also achieves promising results for video
compression.

The contributions of this paper are summarized in the following aspects. First, to the best
of our knowledge, we are the first to introduce the channel attention technique to improve
image compression efficiency. Second, theGaussianmixturemodel is introduced tomodel the
distribution of the latent representation in a more accurate way. Third, we additionally apply
the decoder-side enhancement module to further improve image compression performance.
Fourth, our proposed EDIC framework achieves promising image compression performance
while significantly reducing the decoding time when compared to Minnen’s method [35].
Fifth, the proposed framework is general and also improve the performance of the recent
learning based video compression system [33].

Similar ideas were also proposed to boost the image compression performance in two
recent works [16, 29]. However, we would like to highlight that our work is a concurrent
work as both works [16, 29] as the dates that the three works appeared in arxiv.org are
very close to each other. Moreover, our work is different with both works [16, 29] in the
following three aspects. First, both works [16, 29] utilize the context information based
on the work [35], which are very slow as the method in [35]. In contrast, our work builds
upon the method in [11] instead of the algorithm in [35], thus our work is much faster than
both works [16, 29]. Second, our proposed attention module is to exploit the channel-wise
relationships of the latent representations, while Cheng et al. [16] introduce spatial attention
scheme for image compression. Third, we also use our newly proposed technologies (i.e.,
GaussianMixture model, Channel attention scheme and Decoder-side enhancement method)
for video compression and achieve promising results on the benchmark datasets, which are
not discussed in [16, 29].

2 Related work

2.1 Traditional image and video compression

The image and video compression techniques are widely used to save the bandwidth and
storage size in practical applications. In the past decades, a lot of image andvideo compression
methods have been proposed and several standards are also successfully built. To improve
the compression efficiency, the traditional image and video compression methods [2, 3, 41,
46] rely on manually designed techniques, such as liner transform and block based motion
estimation and motion compensation schemes.

The image compression methods mainly focus on reducing the spatial redundancy in
images. One straightforward method is to convert the images from the pixel domain to the
frequency domain, which is easier for compression. For example, the JPEG [46] uses the
discrete cosine transform while JPEG2000 [41] employs discrete wavelet transform. After
the transform procedure, these coefficients are quantized, and then are sent to the decoder
side. To further improve the compression efficiency, the quantized coefficients are losslessly
encoded by using the entropy coding tools, such as arithmetic coding [49]. Recently, the
intra prediction technique in video compression is also exploited for image compression. For
example, the BPG [2] standard is based on HEVC/H.265 [42], which achieves better image
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compression performance when compared with the previous image codecs, such as JPEG
and JPEG2000. TheBPG standard adopts the prediction-transform technique and employs 35
encoding modes to obtain the predicted image, which further reduces the spatial redundancy.

Video compression is used to reduce the temporal redundancy in video sequences. Most
video compression algorithms follow the hybrid coding architecture for high compression
efficiency. In particular, H.264 [4] is the most widely used video codec. In H.264, the block
based motion estimation and motion compensation modules are utilized to obtain the pre-
dicted frame. Then we can calculate the residual information, which is compressed by using
linear transform. Recently, HEVC/H.265 [42] and versatile video coding (VVC) are proposed
as the next generation video codecs. These standards build upon the previous hybrid coding
architecture and utilize more advanced techniques for high efficiency coding. For example,
HEVC uses the so-called Coding Unit (CU) Tree technique with the CU size ranging from
64 × 64 to 8 × 8, which provides flexible coding units for different video contents.

2.2 Learning based image and video compression

In the past few years, deep neural network (DNN) has demonstrated its effectiveness for a lot
of computer vision tasks, including super-resolution, denoising, etc. Recently, researchers
try to exploit the powerful representation ability from neural networks to enhance the
image/video compression performance [6, 7, 10, 11, 28, 30, 34, 35, 39, 43–45]. Toderici et
al. proposed the first learning based image compression framework by using recurrent neural
network (RNN). Their approach can generate multiple bitrates through a single model. In
[25], more advanced RNN modules and effective reconstruction techniques are introduced
to achieve comparable or even better performance when compared with BPG in terms of
MS-SSIM [48] However, these methods [25, 44, 45] are designed to minimize the bitrates
instead of considering the rate-distortion trade-off.

In [10], Ballé et al. proposed a CNN based image compression framework by optimizing
rate-distortion criterion. To improve the accuracy of the entropymodel, a hyper-priormodel is
proposed in [11], where the latent representations are modeled based on zero-mean Gaussian
distribution. In [35], Minnen et al. employed the auto-regressive priors to further improve the
compression and achieve better performance than BPG in terms of PSNR. However, these
CNN based image compression systems have to train different models for different bitrates
and increase the model sizes significantly. In [17], Choi et al. proposed a variable rate deep
image compression framework by using a conditional autoencoder and generates different
bitrates through a single model.

Considering that the quantization procedure itself is not differentiable, it is non-trivial to
optimize the image compression system in an end-to-end manner. In [10], the quantization
operation is approximated by adding uniform noise in the training stage. In [43], the gradients
of quantization operation in the training stage are replaced for end-to-end optimization. To
further improve the compression efficiency, Rippel et al. [39] used the multi-scale image
decomposition technique to exploit the relationship between different scales. Agustsson et
al. [7] proposed a generative adversarial network based image compression system, which
provides a visually pleasing reconstructed image for very lowbitrate compression. In addition,
Li et al. [30] investigated the spatial relation in the latent representations and computed the
importancemap to guide the learning based image compressionmethod. Inspired by the intra-
prediction technique in traditional video coding, Baig et al. used the inpainting method [8] to
obtain the predicted block in the reconstructed frame and encode the corresponding residual
by using neural network. Although the current learning basedmethods [28, 35] achieve better
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performance than the traditional methods such as BPG [2], the computational cost increases
nearly 100 times when the auto-regressive prior [28, 35] is employed. Therefore, it is critical
to build a more efficient image compression framework for practical applications.

Recently, learning based video compression has attacted more and more attention. Wu et
al. formulated video compression as frame interpolation and applied neural network to encode
the residual information. Lu et al. [33] followed the traditional hybrid coding architecture
and employed the neural networks to implement the video compression procedure, which
can be optimized in an end-to-end manner. Cheng et al. [15] used the interpolation loop in the
coding procedure and designed a spatial energy compaction-based penalty term into the loss
function for better coding efficiency. In [22], a 3D autoencoder scheme is proposed for video
compressionwithout computing themotion information. In [19], the proposed framework can
decode the latent representations into motion and blending coefficients. Besides, the residual
information is compressed in the latent space instead of the pixel domain. Recently, some
related works have been proposed for both the compression and machine learning tasks [13,
20, 24, 52].

3 Proposedmethods

3.1 Overall architecture for image compression

In this section, we introduce the proposed efficient deep image compression framework called
EDIC. The architecture of the proposed scheme is illustrated in Fig. 1. Inspired by the recent
progress in learning based image compression [10, 11], we also utilize the auto-encoder
style network for learning based image compression. Specifically, there are four modules
in the proposed scheme, i.e., encoder network, decoder network, hyper-encoder network,
and hyper-decoder network. The encoder network takes the original image x as the input and
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Fig. 1 The framework of our proposed EDIC. Each convolution layer is denoted by the number of filters,
kernel size, and stride. → indicates downsampling, and ← indicates upsampling in each convolutional layer.
N and M are the hyper-parameters to set the number of channels for a specific layer.“GDN” means generative
divisive normalization proposed in [9], and “IGDN” means inverse GDN.“Q” denotes quantization. “AE” and
“AD” represent arithmetic encoder and arithmetic decoder, respectively.“�” refers to the estimated parameters
of the Gaussian mixture model

123



73412 Multimedia Tools and Applications (2024) 83:73407–73425

generates the corresponding latent representations y by using several convolutional layers and
non-linear functions. The latent representations y will be quantized to ŷ. Following arithmetic
coding, like arithmetic encoder and arithmetic decoder, the quantized latent representations
ŷ were sent to the decoder network to reconstruct the final decoded image x̂ . We adopt the
same quantization strategy as [11, 35]. Considering that the image compression methods
aim to achieve high quality reconstructed image at a given bitrate target and entropy model is
used to estimate the bitrate, it is critical to build an accurate entropy model. In the proposed
framework, we follow the pipeline in [11, 35] and apply the hyper-encoder and hyper-decoder
modules to estimate the parameters for the entropy model. Specifically, based on the latent
representations y, the hyper-encodermodule obtains the hyper-prior information and encodes
it to latent representations z. Similarly, the latent representations zwill be quantized as ẑ. Then,
quantized ẑ will be sent by arithmetic coding. Finally, the hyper-decoder will reconstruct the
hyper-prior information by using quantized hyper-latent representations ẑ as the input and
estimate the corresponding parameters� of the entropy model. The entropy model of hyper-
latent representations is the same as [10, 11]. The network architecture and entropy model
in our proposed method will be discussed in the next three sections.

The whole learning based image compression framework is optimized by considering the
rate-distortion trade-off in the following way:

L = λD + R = λd(x, x̂) + H(ŷ) + H(ẑ), (1)

where D and R represent the distortion and bitrate, respectively. λ is the trade-off parameter.
d(·) is the distortionmetric (mean square error orMS-SSIM [48]). H represents the bitrate for
encoding latent representations ŷ and ẑ. In the proposedmethod, the bitrate is approximatedby
using the entropy of the corresponding latent representations, i.e., H(ŷ) = E[−log2(pŷ|ẑ(ŷ |
ẑ))] and H(ẑ) = E[−log2(pẑ(ẑ))] pŷ|ẑ(ŷ | ẑ) and pẑ(ẑ) represent the distributions of ŷ and
ẑ, respectively.

3.2 Channel attention scheme

In [28, 35], the auto-regressive prior model which captures the spatial relationship in latent
representations is used to improve the compression performance. Meanwhile, some works
have applied spatial attention mechanisms implemented by non-local blocks [47] to image
compression [14, 32], which aims to reduce the spatial redundancy. Based on the afore-
mentioned two motivations and inspired by [23], we propose to use a light-weight channel
attention technique to exploit channel attention in the latent representations ŷ and ẑ. The
architecture of the proposed attention module is shown in Fig. 2. Let us denote the input
feature map asX,X ∈ R

I×J×C , where I , J , and C denote height, width and channel dimen-
sion of the feature map, respectively. First, we apply global average pooling to obtain the
channel-wise statistics t ∈ R

C , which is formulated bellow:

tc = 1

I × J

I∑

i=1

J∑

j=1

xc(i, j), (2)

where tc means the c-th element of t, and xc(i, j) represents the c-th channel specific value
of the input feature map X. Then, we apply several non-linear transforms to capture the
channel-wise relationship. Specifically, the non-linear transforms are described in the fol-
lowing formula:

s = σ(W2δ(W1t)), (3)
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Fig. 2 The structure of our channel attention module.“GAP” represents global average pooling. “FC” means
fully-connected layer

where s refers to the output channel-wise attention value, andW1 ∈ R
C
r ×C andW2 ∈ R

C× C
r

denotes the fully-connected layers, δ is the ReLU activation function [36] for non-linear
transform, and σ represents sigmoid activation. For reducing the dimension, we set r as 16.
Finally, we re-scale the input feature mapXwith s. In addition, we add the residual operation
in our implementation.

As shown in Fig. 1, the proposed channel attention module is integrated into the encoder
network and hyper encoder network and utilized to exploit the channel relationship for high
quality compression. We apply the re-weighted feature map to the following quantization
and entropy coding modules.

3.3 Gaussianmixturemodel for entropy estimation

In the learning based image compression methods, accurate bit rate estimation is critical. In
[28, 35], the learning based systems adopt the hyper-prior compression scheme and the latent
representations ŷ are modeled as Gaussian distribution as follows:

pŷ‖ẑ(ŷ‖ẑ) ∼ N (μ, σ ), (4)

where pẑ(ẑ) is represented by using the factorized entropy model [10]. The goal of hyper-
encoder and hyper-decoder is to estimate the parameters μ and σ of the Gaussian model.

Although the single Gaussian based entropy model has achieved significant improve-
ments when compared with the previous work [10], the representation ability of a single
Gaussian model is still limited, especially for complex contents. Therefore, we utilize the
Gaussian mixture model to further improve the efficiency of the image compression system.
Specifically, the distribution of ŷ is formulated as follows:

pŷ‖ẑ(ŷ‖ẑ) ∼
F∑

i=1

ωiN (μi , σi ), (5)

where ωi represents the weights for different Gaussian models. F is the number of Gaussian
models. As shown in Fig. 3, we design three convolutional layers with two LeakyReLU layers
to estimate the parameters � of the Gaussian mixture model. In our implementation, F is set
as 2. So the output channel number K of the GMM module is set as 5 × N , the first 4 × N
channels are used to estimate the mean and variance of two Gaussian models, respectively. In
order to estimate the weights of each gaussianmodel.We add a sigmoid layer on the output of
the last N channels. If the weight of one Gaussian model isw, the weight of another Gaussian
model is (1− w). Specifically, if we design F(F ≥ 3) Gaussian models, we can change the
number of output channels of the GMM module to 3 × F × N (K = 3 × F). Similarly, the
first 2× F × N channels estimate the mean and variance parameters of F Gaussian models.
In particular, we add the softmax layer after the last F × N channels to calculate the weight
of each Gaussian model.
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Fig. 3 The structure of our GMM
Module. N denotes the
hyper-parameter to set the
number of channels for a specific
layer, and K depends on the
number of Gaussian models. (See
Section 3.3 for more
explanations)

Conv(3×N)×1×1/1

LeakyReLU

Conv(4×N)×1×1/1

LeakyReLU

Conv(K×N)×1×1/1

We provide further analysis of the GMM module. As shown in Fig. 4, we visualize the
bit allocation map of the latent representations ŷ. Specifically, the left column is the original
image from Kodak. The middle left column is the bit allocation map of ŷ after using a single
Gaussian model as the entropy model. The middle right column is the bit allocation map
of ŷ after using the Gaussian mixture model as the entropy model. The right column shows
the estimated bit allocation map difference of the latent representations ŷ between the single
Gaussian model and the Gaussian mixture model. In Fig. 4, the brighter region indicates
that the Gaussian mixture model saves more bits, and it is clear that the Gaussian mixture
model can save more bits, especially in the edge regions, which further demonstrates the
effectiveness of the Gaussian mixture model.

3.4 Decoder-side enhancement

Since the proposed compression scheme is a lossy procedure, the reconstructed image has
compression artifacts inevitably. To further improve the reconstructed quality, we introduce
an enhancement module at the decoder side after image reconstruction. We adopt several
residual blocks to restore the original image based on the input reconstructed image. Inspired
by the network design strategy for super resolution [31], we introduce the residual block to
learn the high frequency information for image compression. As shown in Fig. 5, we first
add a convolution layer to increase the channel dimension from 3 to 32. Then, we apply three

Fig. 4 Bit allocation map of the latent representations ŷ. The left column is the original image fromKodak [1].
The middle left column is the bit allocation map of ŷ after using a single Gaussian model as the entropy model.
The middle right column is the bit allocation map of ŷ after using the Gaussian mixture model as the entropy
model. The right column is bit allocation difference between them. We take “kodim20.png” for visualization
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Fig. 5 The structure of our decoder-side enhancement module. “RB” refers to the residual block

enhancement blocks to the output of the convolution layer. Every enhancement block has
three residual blocks. Finally, we add a convolution layer and residual operation to obtain
the reconstructed image. Moreover, the decoder-side enhancement module can be readily
integrated into the whole compression system and optimized in an end-to-end manner with
high efficiency.

3.5 Extension for video compression

In order to further demonstrate the effectiveness of our newly proposedmethod, we also apply
our proposed method for the video compression task. In our work, we choose DVC [33] as
our baseline algorithm.

The overall framework is shown in Fig. 6. {x1, x2, ..., xt−1, xt} denote the current video
sequences. xt refers to the frame at time-step t . x̂t represents the reconstructed frame. mt

and rt are the motion and residual information, respectively. The procedure of our video
compression framework is shown as follows.

3.5.1 Motion estimation and compression

We utilize the CNN model proposed by [38] to predict optical flow, which represents the
motion information vt . Instead of encoding the motion information vt directly, we send vt to
the encoder network of the motion compression module to obtainmt , Then, we will quantize
mt and reconstruct the motion information v̂t by using the decoder network of the motion
compression module.

123



73416 Multimedia Tools and Applications (2024) 83:73407–73425

Encoder

Decoder

Q

Motion

Compensation

Module

Bitrate

Estimation

Module

Decoder

Encoder

Q

Optical

flow net

Loss

Current

 frame

Residual

Compression

Module

Motion

Compression

Module
Decoded

Frames

Fig. 6 The framework of our video compression method. The network structures of the residual compression
module and the motion compression module are the same as in the Fig. 1. The bitrate estimation module is
our method for estimating the bitrate of the latent representations. “Q” denotes quantization

3.5.2 Motion compensation, residual compression and frame reconstruction

The motion compensation module takes the previous reconstructed frame x̂t and motion
information v̂t as the input, and obtains the predicted frame x̄t , which is supposed to be as
close to the current frame xt as possible. After that, we use the original frame xt and x̄t to
obtain residual information rt , where rt = xt − x̄t . The encoder network of the residual
information module encodes the resiudal information rt , and quantizes rt to obtain the latent
representations yt . Similarly, the decoder network of the residual information module recon-
structs the residual information r̂t . Then, the final reconstructed frame x̂t can be obtained,
where x̂t = r̂t + x̄t .

3.5.3 Optimization of the framework

The overall framework is optimized by minimizing the following Rate-Distortion trade-off:

Lt = λDt + Rt = λd(xt , x̂t ) + H(r̂t ) + H(m̂t ), (6)

where Lt is the loss at the current time step t , d(·, ·) is the distortion between the current frame
xt and the reconstructed frame x̂t , and H(r̂t ) and H(m̂t ) are the bitrates of the latent repre-
sentations r̂t of residual information and the latent representations m̂t of motion information,
which are estimated by the bitrate estimation module.

DVC utilizes the method proposed by Ballé [11] to compress the residual information,
and Ballé’s method [10] to compress the motion information. In our work, we propose to use
our proposed EDIC image compression framework to compress both the residual and motion

123



Multimedia Tools and Applications (2024) 83:73407–73425 73417

information. Specifically, in the encoder network of the residual compression module and
the motion compression module, we utilize the proposed channel attention scheme described
in Section 3.2 to reduce the redundancy of the latent representations of residual and motion
information. In terms of bitrate estimationmodule,we introduce the newly proposedGaussian
mixture model as the entropy model described in Section 3.3 to estimate the bitrates of
the latent representations more accurately, in which the hyper-encoder and hyper-decoder
network are used to estimate the parameters of Gaussian mixture model. Furthermore, in the
decoder network of the residual compression module and the motion compression module,
we add the decoder-side enhancement module in Section 3.4 to improve the reconstructed
qualities of the residual and motion information effectively.

4 Discussion

Differences and dependencies of the three modules. (1). Differences. Firstly, the channel
attention module is employed to exploit the latent representations’ channel relationship. Sec-
ondly, theGaussianmixturemodel is introduced specifically for the entropymodel, enhancing
the accuracy of bitrate estimation. Lastly, the decoder-side enhancement module is utilized
to improve both the reconstructed quality and overall image compression performance. (2).
Dependencies. It is worth mentioning that these three modules are proposed independently,
with each module serving a unique purpose.
The advantages of EDIC. In this paper, we enhance image compression efficiency by incor-
porating the channel attention technique. Additionally, we improve the accuracy of modeling
the latent representation distribution through the Gaussian mixture model. Moreover, we
implement the decoder-side enhancement module to further optimize the image quality
and improve the image compression performance. By integrating these three modules, our
proposed EDIC framework achieves superior image compression performance while sig-
nificantly reducing decoding time compared to Minnen’s method (see Table 1 of the main
paper). Furthermore, our framework is applicable to a wide range of scenarios and exhibits
improved performance in the field of learning-based video compression.

5 Experiments

In this section, we perform extensive experiments to demonstrate the effectiveness of our
proposed EDIC framework, which consists of the attention module, the GMM module and
the decoder-side enhancement module. With regard to image compression, we adopt 20745
high-quality images from Flick.com

and randomly take 256 × 256 cropped patches for training. For performance evaluation,
we calculate the Rate-Distortion (RD) performance, which is averaged over all images in the
Kodak PhotoCD image dataset [1]. For video compression, we use Vimeo-90k [51] dataset,
which has 89,800 video clips with the resolution of 256 × 256, as our training dataset, and
evaluate our model on the HEVC Standard Test Sequences (i.e., Class B, Class C, Class D,
Class E) [42], which is widely used for evaluating video compression methods. Our EDIC
framework is implemented on the PyTorch [37] platform. All the experiments are conducted
on the GPU NVIDIA 2080Ti server with 11 GB memory.
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Fig. 7 Rate-distortion curves of our proposed EDIC method and the competitive methods for image compres-
sion when using the PSNRmetric. The “Context Model” is fromMinnen’s work [35], which must be executed
sequentially in the inference stage

5.1 Performance and implementation details for image compression

For image compression with the quality metric as the MSE loss function, we train our model
using different λ values (i.e., 256, 512, 1024, 2048, 4096, 6144 8192). In the first stage, we
train the high bitrate point in the Rate-Distortion (RD) curve with λ as 8192. The model is
trained on 1 GPU with the batch size of 4. We apply Adam optimizer [27] with the learning
rate of 1 × 10−4 in the first 3,000,000 iterations and 1 × 10−5 in the remaining 500,000
iterations. For other bitrates, we just adopt the model trained on high bitrate (λ = 8192) as a
pre-trained model and fine-tune our model. We use Adam optimizer with the learning rate of
1 × 10−4 in the first 500,000 iterations, and 1 × 10−5 in the remaining 500,000 iterations.
Other training settings remain the same. When our model is optimized with other quality
metrics, such as the MS-SSIM loss function, we adopt the model optimized by the MSE loss
function with λ of 8192 as our pre-trained model. Then, we change the MSE loss function to
the MS-SSIM loss function and fine-tune the pre-trained model with different λ values (i.e.,
16, 32, 64, 128, 256, 384, 512). We train the model with the learning rate of 1 × 10−5 for
500,000 iterations. Besides, we set N to 320 and M to 480.

As shown in Fig. 7, we adopt peak signal-to-noise ratio (PSNR) as the quality metric. We
compare our EDIC method with the well-kown image compression standards, like BPG [2],
JPEG [46], JPEG2000 [41], and recent neural networks methods, like Ballé’s work [11],
Minnen’s work [35] and Lee’s work [28]. The results of Lee’s work [28] are from their
released source code1. The results of Ballé’s work [11] and Minnen’s work [11] are based on
our implementation. When compared with the traditional methods, our EDIC has surpassed
BPG[2], JPEG [46], JPEG2000 [41] by a largemargin.When comparedwith the existing deep
learning based methods, our EDIC achieves significant improvement over Ballé’s work [11].

1 https://github.com/JooyoungLeeETRI/CA_Entropy_Model
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As far asweknow, themethodproposedbyMinnen et al. has achievedpromisingperformance
for image compression. Our method has comparable results with Minnen’s work [35] and
Lee’s method [28] at low bitrates, and achieves apparent performance improvement over
Minnen’s work [35] and Lee’s method [28] at high bitrates. In addition, Minnen’s work and
Lee’s method are very slow, because their inference strategies are sequential. By contrast,
our method can be readily parallelized. As a result, our method is very efficient, which is very
important for practical application scenarios. Furthermore, the attention module, the GMM
module, and the Decoder-side Enhancement module are all independent modules and can be
easily incorporated with other methods. As shown in Fig. 7, when we incorporate our method
into Minnen’s work [35], which has the context model for estimating more accurate entropy
parameters, our EDIC method with context model also achieves over 0.2 dB improvement
when compared with our EDIC method. which again demonstrated the effectiveness of our
proposed schemes.

As shown in Fig. 8, we also conduct the experiments in terms of theMS-SSIMqualitymet-
ric. In order to describe the improvement more clearly, we report the MS-SSIM values using
decibels (i.e.,−10 log10(1−MS-SSIM)). It is clear that our EDIC is better than BPG [2],
JPEG [46], JPEG2000 [41], and Ballé’s [11]. When compared with the other methods, our
EDIC is comparable with Minnen’s method [35] and lower than Lee’s work [28] at low
bitrates. However, our EDIC is apparently superior to their methods at high bitrates.

5.2 Performance and implementation details for video compression

For the implementation details on video compression, we follow the settings of DVC [33].
Each video clip in the Vimeo dataset consists of 7 frames. The HEVC test dataset contains
the videos with different resolutions and different contents. We set N to 192 and M to 288
in Fig. 1. Other modules of our video compression framework is same as DVC [33]. In the

Fig. 8 Rate-distortion curves of our proposed EDIC method and the competitive methods for image compres-
sion when using the MS-SSIM metric
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training process, when using the quality metric as theMSE loss function, we select λ = 4096
to obtain our pre-trained model for 2,000,000 iterations with the learning rate of 1 × 10−4.
Then, we apply different λ values (i.e., 256, 512, 1024, 2048) to fine-tune this pre-trained
model with the learning rate of 1 × 10−5. When optimized by using the MS-SSIM loss
function, we fine-tune the model at high bitrates from the MSE loss function for 80,000
iterations with the learning rate of 1 × 10−5. The remaining training strategies are similar to
the implementation details of image compression described in Section 5.1.

As shown in Fig. 9 and Fig. 11, we compare our method with the traditional video com-
pression standards, like H.264 [4], H.265 [5], and the deep learning based method DVC [33].
To obtain the compressed frames by the H.264 and H.265, we apply the FFmpeg with very
fast mode, and set the GOP sizes of the HEVC dataset to 10. As for the Rate-Distortion(RD)
curves, in terms of the PSNR quality metric, our method is much better than DVC [33] and
H.264 [4], and it achieves comparable performancewithH.265 [5].With regard toMS-SSIM,
it is clear that our newly proposed method is superior to DVC [33], H.264 [4], and H.265 [5]
for almost all the HEVC test classes.

5.3 Ablation study

5.3.1 Effiectiveness of each module

In order to verify the effectiveness of each proposed module, we perform ablation study for
image compression in this section. For the baselinemodel, we utilize a single Gaussianmodel
as our entropy model. When implementing the baseline model, we just remove the GMM
module, the attention module and the decoder-side enhancement module (See Fig. 1). After
that, the last convolution layer of the hyper decoder is 2 ∗ N , so the first N channels are used
to estimate the mean parameters and the last N channels are used to estimate the variance
parameters of a single Gaussian model. Then, we add each module to the baseline model,
respectively. When we utilize the Gaussian mixture model as our entropy model, we add the
GMM module described in Fig. 4 based on the baseline model to estimate the parameters
of the Gaussian mixture model. As shown in Fig. 10, we compare the performance of the

Fig. 9 Rate-distortion curves of our proposed EDIC method and the competitive methods for video compres-
sion when using the PSNR metric
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Fig. 10 Effectiveness of each module in our newly proposed framework

baseline model, the baseline model with an additional attention module, the baseline model
with an additional decoder-side enhancement module, the baseline model with additional
GMMmodule, our proposed EDIC method without decoder-side enhancement module, and
our overall EDIC method consisting of the GMM module, the attention module and the
decoder-side enhancement module. For all experiments, we use the same training strategy
described in Section 5.1. As shown in Fig. 10, we observe that each module brings significant
performance improvement when compared to our baseline model. For the attention module,
the baseline model with the attention module is about 0.2 dB better than to the baseline
model. The baseline model with the GMM module is also superior to the baseline model,
which demonstrates the effectiveness of the Gaussian mixture model. Furthermore, when we
add the decoder-side enhancement module to anymodels, we can achieve better performance
(Fig. 11).

Fig. 11 Rate-distortion curves of our proposed EDIC method and the competitive methods for video com-
pression when using the MS-SSIM metric
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BPG(Bpp:0.213,PSNR:35.572)

JPEG(Bpp:0.228,PSNR:30.718) Minnen's(Bpp:0.212,PSNR:36.362)

EDIC(Bpp:0.207,PSNR:36.432)

Ground TruthOriginal Image Ballé's(Bpp:0.251,PSNR:36.031)

Fig. 12 Visualizationof reconstructed sample images of ground truth, JPEG[46],BPG[2],Ballé’smethod [11],
Minnen’smethod [35] and our proposed EDICmethod.We take “kodim23.png” fromKodak [1] for illustration

5.4 Visualization

In order to demonstrate the effectiveness of our EDIC more clearly, we provide some visual-
ization results. We compare the reconstructed sample images of our proposed EDIC method
and other competitivemethods in Fig. 12. The results of the learned image compressionmeth-
ods are optimized by MSE loss function. The reconstructed image of our method achieves
higher quality in both PSNR metric and qualitative viewing when the compression ratios of
all methods are close.

5.5 Extension on compressed images on face recognition

Performance on face recognitionWe have also conducted a comparison on the face recog-
nition task by using MobileNetV2 [40] backbone network. All experiments are established
based on the criterion of ArcFace [18] with m = 0.5. Based on the above settings, we
implement experiments on training datasets of MS-Celeb-1M [21] and VGG2-Face [12],
and evaluate the performance on MegaFace [26]. Specifically, in Table 2, we compressed the
testing MegaFace dataset by using different coding strategies. When compared with other
coding methods, our coding strategy achieves the best results at 105 and 106 distractors.

6 Conclusion

In this paper, we have proposed a unified framework EDIC to boost image compression
performance while keeping fast inference speed for practical scenarios. We first adopt a

Table 2 Rank-1 accuracy with
different distractors on MegaFace

Method Distractors
105 ↑ 106 ↑

Baseline (Upper Bound) 94.56 90.25

Ballé [11] 93.82 89.50

Minnen’s [35] 94.07 89.63

Ours 94.46 90.05
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lightweight channel-wise attention mechanism to reduce channel-wise redundancy of the
latent representations. Moreover, we propose to use the Gaussian mixture model to estimate
the bitrate more accurately, which has been shown to be very useful for edge regions. Finally,
we introduce a simple decoder-side enhancement module to further improve image com-
pression performance. Our framework can be trained in an end-to-end fashion and readily
used for video compression. Experimental results have demonstrated the superiority of our
proposed EDIC method for image and video compression over the existing methods.

Data Availability The datasets generated during and/or analysed during the current study are available online.
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