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Abstract
Sound noise would interfere with speech signals in natural environments, causing speech 
quality deterioration. Speech denoising aims to denoise effectively with the preservation of 
speech components. Noise estimation is critical for speech denoising. Speech components 
distort when overestimating the noise spectral level. On the contrary, underestimating the 
noise’s spectral level cannot remove noise effectively. Much residual noise exists in the 
denoised speech, resulting in low speech quality. This article presents a multi-model deep-
learning neural network (MDNN) for speech enhancement. Firstly, a harmonic-convolu-
tional neural network (harmonic-CNN) is utilized to classify speech and noise segments by 
spectrograms. The target is manually labeled according to harmonic properties. A speech-
deep-learning neural network (speech-DNN) improves the harmonic-CNN’s recognition 
accuracy. Some robust speech features, including energy variation and zero-crossing rate, 
are also applied to classify speech and noise segments by a speech-DNN. The noise level 
is overestimated in speech-pause parts to suppress noise spectra effectively in the enhanced 
speech. Conversely, the noise level is underestimated in speech-presence frames to reduce 
speech distortion. The experiment results reveal that the presented MDNN accurately clas-
sifies speech and noise segments, effectively reducing interference noise.

Keywords  Speech denoising · Speech and noise separation · Multi-model deep-learning 
neural network · Harmonic convolutional neural network · Speech-deep-learning neural 
network

1  Introduction

In real-life situations, background noise interference is often encountered when making 
phone calls through mobile devices. Examples of such situations include fighter jet cock-
pits, noisy factories, construction sites, trains, subways, crowded places, and more. The 
speech quality is poor, resulting in the recipient hearing annoying sounds. Therefore, it is 
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crucial to utilize speech denoising to enable the recipient to hear clear speech. To effec-
tively suppress the interference noise and retain the speech signal in a noisy background is 
essential, particularly for the neediness of hearing-impairing users [1–4].

Many speech enhancement algorithms have recently been proposed [5–35]. The first 
class uses statistical and transform-based methods [5–18], while the second uses deep-
learning-based approaches [21–33]. In the statistical and transform-based methods, Islam 
et  al. [5] proposed using stationary-wavelet transform with non-negative-matrix fac-
torization for speech enhancement. Wood et  al. [6] presented a codebook-based speech-
denoising system. An atomic speech-presence probability (ASPP) gives a codebook atom 
to encode speech signals in various time slots. Lavanya et al. [7] proposed modifying the 
phase and magnitude spectra for speech denoising. A compensated phase redistributes 
energy to improve the contrast between weak speech and non-speech regions. The compen-
sated phase and magnitude spectra obtained by the log MMSE and speech-presence uncer-
tainty are utilized to reconstruct the speech spectra. Stahl and Mowlaee [8] proposed using 
a Kalman filter adapted by pitch complex values for speech denoising. The inter-frame 
correlation of successive Fourier coefficients and harmonic signal modeling is analyzed 
to determine the model parameters. Lu [9] proposed using a multi-stage speech denoising 
approach to reduce the residual noise’s musical effect. The first stage constitutes the Virag 
[10] and two-step-decision-directed [11] denoising methods. An iterative direction median 
filter is cascaded to reduce residual noise’s musical effect. Lu et al. [12] proposed using an 
over-subtraction factor with harmonic adaptation to improve noise removal. Experimental 
results reveal that the residual musical noise is reduced effectively; weak vowels are pre-
served well. Hasan et al. [13] proposed using an averaging factor to estimate priori SNRs 
in a spectral subtraction speech denoising method. The performance of the averaging factor 
is evaluated using a spectral-subtraction algorithm. Experimental results reveal that this 
method achieves improved results. Plapous et al. [10] presented a two steps noise reduc-
tion (TSNR) approach to refine the priori SNRs by a second step to reduce the bias of the 
decision-directed process. So this method obtains better quality of enhanced speech. Garg 
and Sahu [14] proposed tuning the Wiener filter by reduced mean-curve decomposition 
for speech enhancement adaptively. Jaiswal et  al. [15] proposed an edge computing sys-
tem using a first-order recursive Wiener (FRW) algorithm for speech enhancement. This 
algorithm was implemented on the Raspberry Pi 4 with model B as an edge computing 
application.

Deep-learning neural networks are progressively applied in speech enhancement and 
various applications [21–35]. Zheng et  al. [21] proposed using a skip-connected convo-
lutional neural network (CNN) for speech denoising. The primary contribution is to study 
the effects of the skip connection on the neural networks in learning noise characteristics. 
Liu et  al. [22] proposed using an analysis-synthesis framework for speech enhancement. 
A multi-band summary correlogram method is utilized for voiced/unvoiced detection and 
pitch estimation. A speech enhancement auto-encode is utilized to modify line spectrum 
frequencies, enabling the coded parameters of enhanced speech to be obtained. Chai et al. 
[23] presented a cross-entropy guided measure (CEGM) to evaluate speech recognition 
accuracy for the signals with a speech-denoising system as front-end processing. Because 
the CEGM is differentiable, it can also be used as a cost function of a deep-learning neural 
network (DNN) for speech denoising. Bai et al. [24] proposed using DNNs integrated with 
soft audible noise masking for noise removal. Two DNNs were used to estimate the speech 
and noise spectra. Nicolson et al. [25] investigated a DNN that utilizes masked-multi-head 
attention for speech denoising. The study’s results reveal that the proposed DNN can effec-
tively enhance noisy speech recorded in real-world environments. Yuan [26] proposed 
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using a spectrogram-smoothing neural network for speech denoising. The RNN and CNN 
are employed to model the correlation in the frequency and time domains. Wang et al. [27] 
proposed using two LSTMs and convolutional layers to describe the frequency domain’s 
features and textual information. The model also learns the priori-SNR to improve the per-
formance, while the MMSE method is utilized for post-processing. Zhu et  al. [28] pro-
posed using a full CNN (FCNN) for speech denoising in the time domain. The encoder and 
decoder include temporal CNN for modeling the long-term dependencies of speech sig-
nals. Yang et al. [29] proposed using a high-level generative adversarial network for speech 
enhancement. A high-level loss is used in the generative network’s middle hidden layer, 
enabling the network to perform well under low SNR environments. Khattak et  al. [30] 
proposed a speech-denoising method using phase-aware DNN. Noisy speech is decom-
posed by a regularized sparse method to obtain sparse features. Some acoustic features are 
also combined to train the DNN, yielding the improvement of the estimated speech phase. 
Wei et  al. [31] presented an edge-convolutional-recurrent-neural network (ECRNN) for 
enhancing speech features. Although the ECRNN is a lightweight model with depth-wise 
residual and convolution structure, the ECRNN performs well in keyword spotting. Sal-
eem et al. [32] proposed using a multi-objective long short-term memory RNN to estimate 
clean speech’s magnitude and phase spectra. In addition, critical-band importance func-
tions were further employed to enhance the network performance in training.

Based on the above discussion, using DNN to determine parameters performs better 
than empirical methods. This study uses the characteristics of the harmonic spectrum 
during voice frames as the classification criterion. A harmonic CNN can accurately rec-
ognize the speech in the voice interval. However, the detection accuracy needs to be 
higher during consonant periods. Therefore, a speech-DNN is cascaded to improve clas-
sification accuracy. The features: of speech energy and zero-crossing rate are fed into 
the speech-DNN for training and testing, enabling consonant periods to be accurately 
detected. Noise estimation is performed during the speech-absence regions, while the 
noise level is over-estimated if speech-absence frames appear in successive frames. So 
the corruption noise can be effectively eliminated by the proposed multi-model DNN 
(MDNN); meanwhile, the speech components are not severely removed. The major con-
tributions of this research are as follows:

•	 This study presents a demonstration system using a multi-model deep-learning neu-
ral network (MDNN) for speech enhancement; this system assists non-experts in 
quickly understanding the functionality of speech enhancement.

•	 Present a harmonic-convolutional neural network (harmonic-CNN) to classify 
speech-dominant and noise-dominant segments by spectrograms effectively.

•	 Propose using a speech-deep-learning neural network (speech-DNN) to improve the 
harmonic-CNN’s recognition accuracy.

Video, image, and voice communication are the primary mediums during social 
interactions. The transmission of voice signals within a social network often suffers 
from background noise interference. Achieving speech denoising through explain-
able AI is essential in understanding the critical factors in denoising computations. 
Enhancing voice quality has a pivotal impact on improving the signal quality of social 
media, making it a vital aspect of this article, which falls under the topic of  explain-
able AI for human behavior analysis in the context of social networks.
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The rest of the paper is organized as follows. Section 2 introduces the proposed multi-
model deep-learning neural networks (MDNN) for speech denoising. Section 3 describes 
the speech presence recognition method. Section  4 demonstrates experimental results. 
Finally, Section 5 concludes.

2 � Proposed multi‑model deep‑learning neural networks for speech 
denoising

Figure 1 illustrates the flowchart of the MDNN for speech denoising. Firstly, an observed 
signal is framed and transformed into the frequency domain. Hence, speech-presence 
frames are recognized by a harmonic CNN. Because the harmonic CNN cannot identify 
the onset and offset of vowels well, each frame’s zero-crossing rate and log energy are ana-
lyzed and fed into a speech-DNN to refine recognized recognition speech-presence frames. 
Next, the spectrum’s noise magnitude is estimated during speech-pause frames. Hence, 
a spectral subtraction method with over-subtraction removes interference noise spectra. 
Finally, the inverse Fourier transform is performed to obtain the denoised speech.

A subtraction-based algorithm can be utilized for estimating the power spectrum of 
enhanced speech |Ŝ(l, k)|2 , given as

where Y(l, k) denotes the noisy spectrum at the kth subband of the lth frame. γ is a over-
subtraction factor. |D̂(l, k)|2 represents the magnitude of noise spectrum estimate.

A speaker does not speak immediately when the microphone is turned on. No speech 
exists at the beginning of an utterance. One can use the beginning of the observed spec-
tra to estimate noise statistics. A time-smoothed mechanism updates the magnitude of the 
noise spectrum estimate |D̂(l, k)|2 , given as

where � is the smoothing factor for updating the estimated power of the noise spectrum.
As the number of speech-pause frames increases, the suppression factor could increase 

to suppress more corruption noise. The cumulated number of speech-pause frames can be 
expressed by

where F(l) denotes the speech-presence flag, its value is unity if the lth frame is speech 
present.

2.1 � Refinement of noise magnitude estimation

A speaker is not speaking when the cumulative number of speech-pause frames exceeds a 
threshold NT

sp
 ( NT

sp
≥10). Overestimating the noise magnitude improves noise reduction for a 

spectral subtraction algorithm. The noise estimate is expressed by

(1)|Ŝ(l, k)|2 =
{ |Y(l, k)|2 − �|D̂(l, k)|2, if |Y(l, k)|2 ≥ |D̂(l, k)|2

0 , otherwise

(2)|D̂(l, k)|2 = � ⋅ |D̂(l − 1, k)|2 + (1 − �) ⋅ |Y(l, k)|2

(3)Nsp(l) =

{
Nsp(l − 1) + 1, if F(l) = 0

0 , otherwise
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As shown in (4), the noise spectrum’s intensity is peak locking when no speech exists 
in a particular section. Thus, the intensity of the noise spectrum is the maximum value 
of the previous intensity, enabling the interference noise to be removed thoroughly 
using a spectral subtraction-based algorithm.

(4)|D̂max(l, k)|2 = max
(
D̂max(l − 1, k)|2, |Y(l, k)|2

)

Fig. 1   Flowchart of the MDNN for speech denoising
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The noise spectrum’s intensity should underestimate during speech-presence regions. 
The noise spectrum’s power value is reduced to the average estimate as given in (2). So the 
speech distortion caused by the speech denoising reduces. The noise spectrum’s power can 
be obtained by

As shown in (5), the noise spectrum’s power is peak locking when speech-pause frames 
appear continuously. Thus, it enables the corruption noise to be removed thoroughly by 
a spectral subtraction algorithm; the noise spectrum power updates during speech-pause 
frames. Conversely, the noise estimate keeps unchanged during speech-presence frames.

Figure  2 illustrates the spectrogram of denoised speech using (1) and (5), where the 
speech signal is deteriorated by white Gaussian noise with SNR equaling 10 dB (Fig. 2a). 
The whiter color denotes the more substantial energy. As illustrated in Fig.  2b, the har-
monic speech spectra are well maintained; meanwhile, the noise spectra are removed effec-
tively in speech-stop regions.

Figure 3 illustrates an example of speech waveform plots. The speech portion is well 
preserved during speech-activity regions, while interference noise is suppressed effectively 
during speech pause. Accordingly, the proposed MDNN is effective for noise removal.

(5)����D (l, k)
���
2

=

⎧
⎪⎪⎨⎪⎪⎩

����Dmax (l, k)
���
2

, if Nsp (l) ≥ NT
sp
and F (l) = 0

����Davg (l, k)
���
2

, if Nsp (l) < NT
sp
and F(l) = 0

����Davg (l − l, k)
���
2

, otherswise

Fig. 2   An example of speech 
spectrogram;(a) an utterance 
deteriorated by white Gauss-
ian noise with input Seg-
SNR = 10 dB; (b) enhanced 
signal using (7) and (8)
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3 � Speech presence recognition

This paper proposes using the MDNN to recognize speech-presence frames for various 
noise-corruption environments. First, the harmonic-CNN is employed to identify speech-
presence frames. The recognized results are further refined by a speech DNN, where the 
speech features are considered, including the zeros-crossing rate and log energy.

3.1 � Harmonic‑CNN training

A vowel contains harmonic spectra. The existence of harmonic spectra can identify 
whether a frame is a speech present. Here we train a harmonic CNN to recognize the har-
monic spectrum. Sampling successive short-term spectrograms as patterns can train a har-
monic CNN. In the training phase of the harmonic-CNN, a self-recorded Mandarin Chi-
nese-spoken corpus was utilized. This corpus consists of recordings from 20 male and 20 
female speakers, each delivering a news script speech on current affairs. The length of the 
script varies, leading to varying durations for each speech segment.

Figure 4 illustrates an example of the short-term spectrogram. The harmonic structure is 
evident in a vowel frame, whereas the harmonic structure is absent in a non-speech frame. 
The sampled short-term spectrograms are labeled manually as either speech or non-speech. 
Hence, 70% of these spectrograms can train a harmonic CNN. The remaining part is used 
for the validation.

Speech spectrograms were used for training the harmonic CNN. Figure 5a illustrates the 
variation of accuracy rates with different numbers of convolutional layers, which impact 
the harmonic-CNN performance. Three convolutional layers achieve the best performance 
in the validation set. The number of filters on the convolutional layer also affects the per-
formance of harmonic CNN. Figure 5b illustrates the variation of accuracy rates with dif-
ferent numbers of filters in the convolutional layers. Adequate increasing the number of 
filters improves the accuracy rate. Selecting the number of filters to be fifteen achieves 
the best performance. Therefore, the numbers of filters and convolutional layers are set to 
15 and 3 in the experiments, respectively. The detailed structure of the harmonic CNN is 
shown in Table 1.

Fig. 3   Waveform plots; (a) an 
utterance corrupted by white 
Gaussian noise with input 
SegSNR = 10 dB; (b) denoised 
speech using Eqs. (1) and (5)
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Figure 6 illustrates the training trajectory of harmonic-CNN with three convolutional 
layers and 15 filters. The accuracy rate of the validation set reaches 97.1%. Figure 7 illus-
trates an example of speech-presence frames recognized by the harmonic CNN, where 
the speech signal is corrupted by white Gaussian noise with input SNR = 10  dB. The 
speech-presence regions are denoted as high, whereas speech-pause areas are represented 
as low. One can find that the harmonic-CNN can effectively recognize the vowel frames.

As shown in Fig. 7, the harmonic-CNN can recognize most speech-presence regions well. 
However, some apparent classification errors occur at the position with extended speech-
pause areas, where the neighboring frames of the error classified frame are all speech-pause 
frames. The majority decision rule can correct the classification error, given as

where F(l) and l denote the noise flag and frame index, respectively.
As shown in (6), speech-pause frames appear continuously. A recognized speech-pres-

ence frame should be classified as speech-pause if its previous and successive two frames 

(6)F(l) =

{
0, if all of F(l − 2) − F(l + 2) = 0

F(l), otherwise

Fig. 4   An example of short-term 
spectrogram
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are classified as speech-pause. By applying (6) to Fig.  7a, the spurious speech-presence 
frame, which is an error recognized, can be corrected. Figure 7b shows the updated results.

3.2 � Refinement of speech presence

The harmonic CNN can well recognize speech-presence regions in noisy environments. 
However, some speech-presence parts during the onset and offset of a vowel may be 
missed recognized. The speech features: log-energy and zero-crossing rate, are further 
considered to refine speech-presence frames. Accordingly, each frame’s recognized 

Fig. 5   The accuracy rate versus 
various training parameters in the 
convolutional layer; (a)various 
numbers of convolution layers; 
(b) various numbers of filters
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results of harmonic-CNN, log-energy, and zero-crossing rate are fed into a speech-DNN 
to identify speech-presence frames.

Figure 8 shows the training flowchart of speech-DNN- initially, the Hanning window 
frames noisy training speech. Computing log energy and the zero-crossing rate obtains 
acoustic features for each frame. The harmonic-CNN recognizes whether the frame is 
speech present according to the short-term spectrogram. The harmonic-CNN’s recog-
nized result, zero-crossing rate, and log energy are utilized for training a speech-DNN.

Table 1   Detailed layers of the harmonic CNN

Layer number Layer name Parameters

0 Image input Image size = 200 × 200x1
1 Convolution layer Window size: 3 × 3, filter number: 6, zero padding: 1

Batch normalization
ReLU activation
Max-pooling Window size: 2 × 2, stride: 2

2 Convolutional layer Window size: 3 × 3, filter number: 15, zero padding: 1
Batch normalization
ReLU activation
Max-pooling Window size: 2 × 2, stride: 2

3 Convolutional layer Window size: 3 × 3, filter number: 20, zero padding:1
Batch normalization
ReLU activation
Max pooling Window size = 2 × 2, stride = 2

4 Convolutional layer Window size = 3 × 3, filter number = 16, zero padding = 1
5 Fully-connected layer Class number: 2

Softmax layer
Classification layer

Fig. 6   Training trajectory of harmonic-CNN with three convolutional layers and 15 filters; (upper)variation 
of accuracy rate; (bottom) variation of loss values
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Zero-Crossing Rate (ZCR) is widely used in speech signal processing. One can dis-
tinguish the sound type according to the number of times the waveform crosses zero. 
The value of ZCR Z(l) can be computed by

where sign(.) denotes the sign operator.

(7)Z(l) =

N−1∑
n=0

|sign(x(l, n) − sign(l, n + 1))∕2

Fig. 7   An example of recognized speech-presence frames; (a) recognized results using the harmonic-CNN; 
(b) recognized results using the harmonic-CNN with majority modification by (6)
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Figure 9 shows an example of the variation trajectory of the ZCR. The ZCR of the fast-
changing interference noise is larger than the vowel section. However, the ZCR difference 
between interference noise and the consonant is not apparent. It is difficult to distinguish 
between consonants and noise, according to the ZCR.

In the speech-presence area, the log-energy is greater than the speech-pause segment. So 
the log energy E(l) can be employed to recognize speech-presence frames in an utterance, E(l) 
can be calculated by

Figure  10 shows the log-energy trajectory. The magnitude of log energy during a 
speech-presence region is higher than that of a speech-pause part. So the log-energy 
feature can be employed to recognize speech-presence areas.

Figure  11 shows the recognized results of speech-presence areas. Although the har-
monic-CNN can recognize speech regions according to harmonic spectra, it cannot 

(8)E(l) = 10 ⋅ log10

(
N−1∑
n=0

x2(l, n)

)

Fig. 8   Training flowchart of speech-DNN
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identify consonant areas, as shown in Fig.  11b. The primary reason is the absence of 
harmonic properties during consonant intervals. The consonant has high ZCR and weak 
log energy. Utilizing the ZCR and log energy as speech features enable speech-DNN to 
recognize the consonant regions well, as shown in Fig. 11c. Furthermore, the offset and 
onset of a vowel can also be identified, increasing the speech-presence region’s recogni-
tion accuracy.

4 � Experimental results

The experiment employs speech signals (spoken by female and male speakers) to train the 
harmonic CNN and speech-DNN. Various types of noise deteriorated the noise-free speech 
signals with various input SNRs (0, 5, and 10  dB). Four speech enhancement methods 

Fig. 9   An example of ZCR variation trajectory; (a) speech interfered with by white Gaussian noise (input 
SNR = 10 dB); (b) ZCR variation trajectory

Fig. 10   Energy trajectory plot; (a) a speech signal interfered with by white noise (input SNR = 10 dB); (b) 
log-energy trajectory
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are conducted for performance comparisons, including the Hasan [13] method, the Over-
Subtraction with harmonic (OS-H) approach [12], the TSNR method [10], and the first-
order recursive Wiener (FRW) algorithm [15]. The enhanced speech quality is evaluated 
by comparing the waveform plot, spectrogram, and average segmental-SNR improvement 
(Avg_SegSNR_Imp).

4.1 � Avg_SegSNR improvement comparisons

The Avg_SegSNR can measure the quantities of speech distortion, noise reduction, and 
residual noise, which can be obtained by

where s(l, n) and ŝ(l, n) denote clean speech and denoised one. l and n are frame and sample 
indices. {I} denotes speech-presence frames. N and L are the numbers of samples per frame 
and of speech-presence frames, respectively.

Table  2 shows the Avg_SegSNR_Imp comparisons for various speech-denoising 
approaches, where the best performance is bolded. The higher value of the Avg_Seg-
SNR_Imp denotes better speech quality. The FRW, OS_H, and MDNN methods all employ 
the over-subtraction factor for background noise removal. These three methods effectively 
eliminate background noise. In environments with high input SNR (10  dB), the OS_H 
method significantly outperforms the FRW method regarding denoised speech quality. The 
primary reason is that OS_H considers the harmonic characteristics of speech to adapt the 
speech denoising gain. As a result, it can effectively remove interfering noise in regions 

(9)Avg_ SegSNR =
1

L

�
l∈{I}

10 ⋅ log10(

N−1∑
n=0

�s(l, n)�2
N−1∑
n=0

�s(l, n) − ŝ(l, n)�2
)

Fig. 11   Recognized results of speech-presence frames; (a) harmonic CNN recognized results; (b) Recog-
nized results using harmonic CNN, ZCR, and log energy
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without vowels while preserving speech containing harmonic spectra, leading to superior 
denoised speech quality.

The proposed MDNN employs the harmonic CNN to identify the harmonic spectra of 
speech. If the input speech lacks harmonic spectra, MDNN applies substantial suppres-
sion, effectively removing background noise. Conversely, in speech regions with harmonic 
spectra, excessive reduction of those components is avoided to ensure speech quality. So 
MDNN achieves the highest Avg_SNR improvement.

The human throat produces speech signals with vowels, causing vocal cords to vibrate 
and generate harmonic spectra. Thanks to the Harmonic-CNN within MDNN, it can accu-
rately recognize the harmonic spectra of speech. During denoising, these harmonic spectra 
are preserved, reducing speech distortion. In segments without speech, where harmonic 
spectra are absent, the audio signal is heavily suppressed, effectively removing background 
noise and resulting in a higher Avg_SegSNR.

4.2 � Recognition of speech‑presence frames

There is a distinct harmonic spectrum in sections of the spectrogram with voiced consonants and 
vowels. Conversely, in segments without speech, this harmonic spectrum is absent. Harmonic-
CNN can accurately identify the presence of harmonic spectra in the spectrogram of a given sound 
segment, enhancing speech detection accuracy within the segment. The signal components con-
taining harmonic spectra are preserved in speech denoising to ensure speech quality. Significantly 
suppressing the signals during the intervals lacking harmonic spectra, which primarily consist of 
noise, can effectively remove background noise and achieve precise noise reduction. Therefore, 
harmonic CNN enables accurate recognition of the presence of speech in the spectrogram.

Figure 12 shows the recognized results of speech-presence frames by the proposed 
MDNN, including a harmonic CNN and a speech-DNN. The recognized results reveal 
that the MDNN identifies speech-presence frames accurately.

Table 2   Performance comparison 
of speech quality regarding the 
Avg_SegSNR_Imp for various 
denoising approaches

The bold font represents the best performance among the compared 
methods

SNR Avg_SegSNR_Imp

Noise type (dB) Hasan TSNR OS_H FRW Proposed

0 3.86 6.82 7.83 6.62 15.48
White 5 2.87 4.79 5.64 4.28 11.43

10 1.87 3.04 3.44 1.66 7.86
0 3.33 4.99 5.98 5.75 8.78

F16 5 2.43 3.52 4.53 3.69 7.40
10 1.49 2.32 2.89 1.38 5.27
0 3.04 4.71 5.62 5.13 9.39

Factory 5 2.22 3.37 4.17 3.29 8.02
10 1.38 2.23 2.53 1.20 5.81
0 4.03 6.75 6.34 7.00 14.41

Helicopter 5 3.00 4.87 4.99 4.58 11.52
10 1.96 3.24 3.28 1.96 7.67
0 2.33 2.34 4.22 3.98 8.38

Babble 5 1.62 1.68 3.26 2.53 7.95
10 0.90 1.14 2.25 0.70 5.28
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4.3 � Waveform plot comparisons

Figures 13 and 14 illustrate two examples of speech waveform plots. Noise-free speech 
is corrupted by white and factory noise (input SegSNR = 0  dB). In Figs.  13c-g, the 
Hasan approach cannot remove interference noise effectively among the compared tech-
niques. The MDNN outperforms the TSNR, FRW, and OS_H methods and significantly 
outperforms the Hasan method in removing noise.

As shown in Fig.  14, the Hasan, TSNR, FRW, and OS_H methods cannot remove 
interference noise effectively. It is due to the factory noise varies quickly and sud-
denly. A significant quantity of residual noise exists, particularly during speech-absence 
regions. Only the MDNN removes interference noise effectively. Accordingly, the pro-
posed MDNN does not only remove stationary noise, such as white Gaussian noise but 
can also remove non-stationary noise, such as factory noise.

By observing Figs. 13 and 14, MDNN can preserve the contours of the speech wave-
form just like other methods without the issue of speech distortion during the solid 
speech signals. MDNN can also retain the signal in weak speech segments while sig-
nificantly reducing noise without severe speech distortion. MDNN exhibits notice-
ably superior noise suppression capabilities in segments without speech, making the 
denoised speech sound less annoying.

4.4 � Spectrogram comparisons

Observing the speech spectrograms, which reveal spectra in the time–frequency 
domain, can subjectively evaluate the quantity of speech distortion and residual noise. 
Figures  15 and 16 illustrate spectrogram comparisons for different speech-denoising 
approaches. A speech signal (spoken by a female speaker) is interfered with by fac-
tory noise (Avg_SegSNR = 5 dB), as shown in Fig. 15b. Much residual noise exists in 
the enhanced speech obtained by the Hasan method (Fig.  15c) and OS_H (Fig.  15e) 
method, causing the processed speech to sound annoying. Much residual noise also 

Fig. 12   Recognized results of speech-presence frames using the proposed MDNN for various input SNRs; 
a speech signal is interfered with by white Gaussian noise with various SNRs; (a)10 dB; (b) 5 dB; (c) 0 dB
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exists in the enhanced speech obtained by the TSNR approach (Fig. 15d), particularly 
in speech-stop regions. The MDNN (Fig. 15f) significantly outperforms the compared 
methods in noise removal.

A speech signal is interfered with by F16 cockpit noise with an average SegSNR 
equaling 5 dB, as shown in Fig.  16b. The noise majorly distributes around 2.75 kHz. 
Therefore, much residual noise exists at approximately 2.75 kHz in the enhanced speech 
obtained by the Hasan approach (Fig. 17c) and OS_H (Fig. 16e) method. The proposed 
MDNN (Fig.  16f) and TSNR method (Fig.  16d) can remove background noise effec-
tively. However, much residual noise still exists in the denoised speech obtained by the 

Fig. 13   Waveform plot comparisons; (a) noise-free speech, (b) noisy speech (corrupted by white noise with 
Avg_SegSNR = 0 dB; enhanced speech using the (c) Hasan, (d) TSNR, (e) OS_H, (f) FRW approaches, (g) 
proposed MDNN

Fig. 14   Waveform plot comparisons; (a) noise-free speech, (b) noisy speech (corrupted by factory 
noise with Avg_SegSNR = 0  dB; enhanced speech using the (c) Hasan, (d) TSNR, (e) OS_H, (f) FRW 
approaches, (g) proposed MDNN
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TSNR method (Fig. 16d), particularly during the speech-stop region at the end of the 
utterance. Accordingly, the proposed MDNN slightly outperforms the TSNR approach 
and significantly outperforms the Hasan and OS_H approaches in removing interference 
noise.

4.5 � Demonstration system

Figure  17 shows a snapshot of the proposed MDNN speech-denoising system. https://​
www.​youtu​be.​com/​watch?v=​UpOh3​i0t9-w provides the hyperlink for the demo video of 
the graphic user interface.

The computer hardware environment used in the experiment is as follows: The CPU 
processor is AMD Ryzen 9 5900 HS with Radeon graphics 3.30 GHz, 32 GB of DRAM, 
and the GPU is nVidia GeForce RTX 3060. The system’s complexity can be evaluated 
in real-time through speech processing. Table 3 presents the denoising times for different 

Fig. 15   Speech spectrogram comparisons, (a) clean speech uttered by a female speaker, (b) noisy speech 
(interfered with by factory noise with an Avg_SegSNR equaling 5  dB), denoised speech using the (c) 
Hasan, (d) TSNR, (e) OS_H approaches, (f) proposed MDNN

https://www.youtube.com/watch?v=UpOh3i0t9-w
https://www.youtube.com/watch?v=UpOh3i0t9-w
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Fig. 16   Speech spectrogram comparisons, (a) clean speech uttered by a female speaker, (b) noisy speech 
(interfered with by F16-cockpit noise with an Avg_SegSNR equaling 5 dB), denoised speech using the (c) 
Hasan, (d) TSNR, (e) OS_H approaches, (f) proposed MDNN

Fig. 17   GUI of the MDNN speech enhancement system
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utterance lengths, each being actual recorded speech. The ‘tic’ and ‘toc’ commands pro-
vided by the Matlab language are utilized to initiate and conclude timing measurements. 
The average length of the utterance is 4.56 s (ranging from 1.41 to 8.29 s). The average 
denoising processing time is 1.03  s, which means the denoising processing time is only 
0.23 times the length of the speech.

The primary purpose of this system is to present a demonstration of a speech-
denoising system, allowing users to experience the functionality and principles of 
speech-denoising easily. If this system is applied to actual speech denoising, it must 
address potential latency bias. As shown in Table  3, the time required for speech 
denoising is directly proportional to the length of the utterance. In real-time denoising, 
the utterance must be segmented into smaller sections and synchronized in the speech-
pause regions. Only the speech segments undergo denoising, introducing latency, 
while the synchronization in speech-pause regions creates the perception of very low 
overall latency in speech denoising. This segment processing and synchronizing pro-
cessing achieves the goal of real-time denoising.

5 � Conclusions

This article uses two deep-learning neural networks to extract speech features for recog-
nizing speech frames. A harmonic CNN uses a two-dimensional spectrogram to identify 
harmonic spectrum for classifying speech frames. However, the harmonic spectrum is 
not evident for a consonant. So, the consonant frame may be recognized as non-speech 
by the harmonic CNN. A speech-DNN corrects harmonic-CNN’s classification errors 
and improves the accuracy of speech-presence classification. The noise spectrum is esti-
mated by the harmonic CNN and speech DNN. The magnitude of the noise spectrum is 
overestimated during speech-pause frames to ensure that interference noise is removed 
thoroughly. The experimental results show that the MDNN can effectively remove back-
ground noise. Consequently, the enhanced speech sounds more clearly and more com-
fortable than the compared methods.

Table 3   Elapsed time for speech 
enhancement

Speech ID Utterance length (sec) Elapsed 
time (sec)

1 1.41 0.52
2 3.84 0.83
3 7.90 1.65
4 4.13 1.12
5 6.85 1.50
6 8.29 1.76
7 4.38 0.99
8 2.53 0.55
9 3.65 0.78
10 2.62 0.60
Average 4.56 1.03
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