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Abstract
Tuberculosis (TB) is one of the widespread infectious disease, and the early diagnosis and
treatment can greatly improve the survival rate. Recently, machine learning has been intro-
duced for assisting the diagnosis of TB, and to train a reliable diagnosis model, we need large
amounts of data, which are often distributed in multiple medical centers. To protect the data
privacy of different centers, we introduce federated learning (FL) in tuberculosis diagnosis.
Since the data distributions of TB data vary significantly across different centers, we propose
a personalized FL (PFL) method to explore the specific property of each client (i.e., medical
center), and reduce its negative impacts from other clients. In particular, the contribution
of each layer parameter is quantified by a hyper-network customized by the server for each
client. Besides, a parameterization mechanism is introduced to update the hierarchical aggre-
gation weights. To the best of our knowledge, this is the first PFL method for distributed TB
diagnosis. Experimental results on several public datasets of chest X-ray images show that
the proposed method significantly outperforms the state-of-the-art approaches in terms of
both higher accuracy and faster convergence speed.
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1 Introduction

Tuberculosis (TB) is one of the major global health threats, and the second leading cause
of death from infectious diseases (after COVID-19) [1, 2]. There are around 10.6 million
new TB patients diagnosed in 2021, and nearly 2 million of them died from TB [2]. Early
diagnosis of TB and administration of antibiotic therapy can greatly improve the chance of
survival [3–5]. Early screening using the chest X-ray medical image, as one of the most
commonly used method for TB diagnosis, is important for the early detection, treatment and
prevention of TB [1, 2, 5, 6]. However, radiologists often make errors on chest radiographs
since it is often difficult for the human eye to quickly distinguish TB areas from other normal
areas [1, 2]. According to [7], experienced radiologists only have an accuracy of 68.7%when
the TB area is not obvious, while such area is critical for early diagnosis.

Besides, manual screening for large amounts of chest X-ray images is labor-intensive
and time-consuming, and thus machine learning is introduced to assist the diagnosis of
TB. Recently, due to the powerful representation capability, deep learning (DL) has been
demonstrated to greatly improve diagnosis performance. Training a reliable deep learning
model often requires large amounts of labeled data, which are hard to collect from a single
medical center, and it is desirable to utilize data from multiple centers. However, due to
privacy concerns about medical data, we may not be allowed to simply aggregate (merge)
data across medical centers. Therefore, federated learning (FL) [8] is introduced to train a
unified model using data from multiple centers without accessing to their original data. In
FL, clients (i.e., medical centers in this paper) can keep their data private and share only the
weights or gradients for model updates. Due to the privacy protection property, FL has been
successfully applied to various tasks in medical image analysis [9–11].

A major challenge of FL in real-world applications is that the data are often non-IID
(non-independent identically distributed) across different clients. This may lead to slow
convergence and very poor inference performance when directly applying the learned global
model to each client. This motivates the personalized federated learning (PFL), which allows
each client to train a model adapted to local data [8]. However, existing PFL approaches
usually simulate federated scenarios by regarding different groups of data in a single dataset
as the different clients. The heterogeneity between different groups are often not that large
compared with the real-world medical scenario, where the data properties and distributions
of different medical centers may vary significantly.

There exists some tries that apply personalized federated learning for specific medical
applications, such as federated domain adaptation for fMRI classification [9], federated nor-
malization for pathology section staining [11], and federated contrast re-localization forCMR
segmentation [10]. However, these approaches can only performwell for certain datasets and
under certain settings (see our experiments). Besides, for datasets with large heterogeneity
and small data volume, the existing PFL approachesmay be inferior to the training using only
local data. To this end, we propose a novel PFL method termed hyper-network guided per-
sonalized federated learning (HPFL) for distributed TB diagnosis, inspired by the dynamic
models based on parameter isolation in continuous learning [12–14].

Specifically, our method consists of two main components: 1) To address the challenge of
large heterogeneity across clients, the contribution of each layer parameter is quantified by
a hyper-network customized by the server for each client. This allows clients to make truly
beneficial updates to their own local models and thus enables each client to copewith possible
catastrophic forgetting caused by the parameters of other clients that have very different data
distributions; 2) To address the challenge of limited data in a single center and for many
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atypical symptoms, a parameterization mechanism is introduced to update the hierarchical
aggregation weights. This allows each client to gradually exploit the complementarity of
different data among clients to reduce the requirements of data and communication overhead
for model updates and thus accelerate the convergence.

To summarize, the main contributions of this paper are:

• We propose a novel PFL method for distributed TB diagnosis. To the best of our knowl-
edge, this is the first PFL work for TB diagnosis, where the data heterogeneity issue is
particularly served;

• We design hyper-networks to demonstrate the advantages of layer-wise aggregation over
model-wise approaches in PFL among heterogeneous FL clients;

• We validate the effectiveness of our method on multiple real-world medical datasets and
achieve better performance in terms of all metrics than some recent and competitive PFL
counterparts.

2 Related work

2.1 Computer-aided tuberculosis diagnosis (CTD)

Owing to the sensitive nature of TB data and the difficulty in diagnosing TB using a gold
standard, the availability of publicly accessible TB datasets is severely restricted [7]. Due to
the scarcity of data, conventional CTD methods are inadequate to train deep Convolutional
Neural Networks (CNNs). Traditional techniques primarily rely on hand-crafted features and
binary classifiers [15]. Jaeger et al. [5] proposed a graph cut segmentation method [16] to
segment the lung area. They then extracted hand-crafted texture and shape features from
the segmented region and employed a binary classifier, i.e., support vector machine (SVM),
to differentiate normal and abnormal X-rays. Candemir et al. [6] utilized patient-specific
adaptive lung models based on image retrieval and a nonrigid registration-driven robust
lung segmentation method to facilitate traditional lung feature extraction. Chauhan et al. [3]
designed aMATLAB toolbox, TB-Xpredict, which usedGist [17] andPHOG[18] features for
discriminating between TB and non-TB X-rays without requiring segmentation. Karargyris
et al. [19] extracted shape features to define the overall geometrical characteristics of lungs
and texture features to represent image characteristics.

Contrary to using hand-crafted features, Lopes et al. [20] employed the pre-trained fixed
CNNs from ImageNet [21] as the feature extractors to generate deep features for X-ray
images. They then employed SVM to classify these deep features. Hwang et al. [4] trained
an AlexNet for binary classification (TB and non-TB) using a private dataset. Rajaraman and
Antani [22] proposed a methodology for explicit collective learning to enhance abnormal-
ity detection in CXRs. The approach involved combining model predictions using various
ensemble strategies to reduce prediction variance and sensitivity to the training data, thereby
improving overall performance and generalization.

2.2 Federated learning with non-IID data

The standard setup of FL seeks to train a single global model that can perform well on
generic data distributions [23]. As clients’ data are kept separate, mainstream algorithms
like FedAvg [8] take a multi-round approach. Within each round, the server first broadcasts
the global model to the clients, who then independently update it locally using their own
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(often limited) data. The server then aggregates the local models into the global model and
proceeds to the next round. This pipeline is shown promising if clients’ data are IID (i.e.,
with similar data and label distributions), which is, however, hard to meet in reality and
thus results in a performance drop. Several approaches have been proposed to enhance its
performance. Some studies concentrate on optimizing local learning algorithms by leveraging
well-designed objective regularization and local bias correction. For instance, FedProx [24]
introduces a proximal term to the local training objective, ensuring that updated parameters
remain close to the original downloadedmodel.However, inmedical image analysis, the target
distributions between medical institutions often suffer non-IID data problems, and a single
global model may not be adequate [25]. In standard federated learning, due to the utilization
of a shared global model across all clients, achieving desirable results in non-IID scenarios
can be challenging without careful adjustments. Conversely, personalized federated learning,
which allows for customized models at each local client, often exhibits greater robustness in
non-IID scenarios.

2.3 Personalized federated learning

Several popular personalized FL methods can be found in the literature, including multi-task
learning with model dissimilarity penalization, such as Ditto [26], and parameter decoupling
of feature extractor and classifier, such as FedPer [27] and FedRep [28]. However, existing
client-specific FL methods are often developed by heuristically evaluating model similarity
or validation accuracy and must balance communication/computation overhead with person-
alization effectiveness. FedBN discovered that local models with Batch Norm layers could
exclude these parameters from the aggregating steps during training, reducing communi-
cation costs while enhancing personalization [29]. More recently, FedBABU maintains the
global classifier unchanged during feature representation learning and performs local adap-
tation by fine-tuning [30]. FedRoD proposed using a balanced softmax for learning a generic
model and vanilla softmax for personalized heads [31]. However, these literatures has yet
to consider the layer-wised utility for personalized aggregation. The distance metric used to
describe the similarity among models can be inaccurate and may lead to sub-optimal perfor-
mance. This motivates us to explore a fine-grained aggregation strategy to adapt to a broad
range of non-IID clients.

2.4 Hyper-networks

Hyper-networks [32] are utilized to generate model parameters for other neural networks,
such as a target network, by mapping the embeddings of the target tasks to correspond-
ing parameters. Hyper-networks have found extensive use in diverse machine learning
applications, including language modeling [33, 34], computer vision [35, 36], 3D scene rep-
resentation [37, 38], hyperparameter optimization [39–42], andmeta-learning [43]. Shamsian
et al. [44]were the first to apply hyper-networks in FL, enabling the generation of personalized
and effectivemodel parameters for each client.Ma et al. [45] demonstrate that hyper-networks
can evaluate the importance of individual model layers and enhance personalized aggregation
in non-IID scenarios (Figs. 1, 2 and 3).
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Fig. 1 Framework of our HPFL, which mainly consists of five steps: 1) local training using private data; 2)
each client sends the update of parameters �θi to the server; 3) the server updates the aggregation weight
matrix αi by hyper-networks HNi (vi ; ψi ) according to �θi ; 4) the server performs weighted aggregation
and outputs personalized model θ̄i for the corresponding client; 5) the sever sends the personalized model θ̄i
to each client

3 Methodology

3.1 PFL formulation

Personalized federated learning (PFL) aims to collaboratively train personalized models for
a set of N clients, each with its own personal private data mi . Unlike conventional FL, each
client i is equipped with its own data distribution Pi on X × Y . Assume each client has

access to mi samples from Pi ,Si =
{(

x(i)
j , y(i)

j

)}mi

i=1
. Let �i : Y × Y → R+denote the

loss function corresponds to client i , and Li the average loss over the personal training data
Li (θi ) = 1

mi

∑
j �i

(
x j , y j ; θi

)
. Here θi denotes the personal model of client i . The objective

Fig. 2 Illustration of one hypernetwork framework used in HPFL. The hypernetwork HNi takes the embed-
ding vector vi as input, and outputs the aggregation weight matrix αi . After the weighted combination with

intermediate parameters
{
θ l1, . . . , θ ln

}
and aggregation weight matrix αi , client i can make local training on

private data. Note that both vi and ψi are updated during training
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Fig. 3 A randomly selected sample from each data set. Due to the differences in collection devices, collection
subjects, and collection methods, there are significant differences in the data from different datasets

of PFL is to optimize

�∗ = argmin
�

N∑
i=1

mi

M
Li (θi ) , (1)

where � = {θi , . . . , θN } is the set of personalized parameters for all clients. M is the total
amount of data in all clients. mi is the amount of data owned by the i-th client. Li is loss
function of i-th client associated with dataset Di .

3.2 The proposed HPFL

In this section,we present our proposedPFL algorithmHPFL,which evaluates the importance
of each layer from different clients to achieve layer-wised personalized model aggregation.
We apply a dedicated hyper-network for each client on the server and train them to gen-
erate aggregation weights for each model layer of different clients. Unlike the general FL
framework that generates only one global model, HPFL maintains a personalized model for
each client at the server. Clients with similar data distribution should have high aggregation
weights to reinforce the mutual contribution from each other. This approach can expedite
model convergence and effectively reduce the computational burden on the client side. This
is particularly advantageous for deployment in economically underdeveloped regions, where
the prevalence of tuberculosis tends to be higher due to economic backwardness [7].

Our HPFL applies a set of aggregation weight matrix αi at the server side to progressively
exploit the inter-user similarities at the layer level, which is defined as

αi =
[
αl1
i , αl2

i , . . . , αln
i

]
=

⎡
⎢⎢⎢⎢⎣

α
l1,1
i α

l2,1
i . . . αln

i
α
l1,2
i α

l2,2
i . . . α

ln,2
i

...
...

. . .
...

α
l1,N
i α

l2,N
i · · · α

ln,N
i

⎤
⎥⎥⎥⎥⎦

, (2)

where αln
i represents the aggregation weight vector of n-th layer in client i , while α

ln,N
i

represents the aggregation weight for client N in n-th layer. For all n layers,
∑N

j=1 α
ln, j
i = 1.

Different from previous PFL algorithms, instead of applying identical weight values for all
layers of a client model, HPFL considers the different utilities of neural layers and assigns a
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unique weight to each of them to achieve fine-grained personalized aggregation. In addition,
unlike traditional methods that mathematically calculate the weights using a distance metric
among the entire model parameters, HPFL parameterized the weights during the training
phase via a set of dedicated hyper-networks. The layer-wised weights are determined by
the hyper-networks, which are alternatively updated with the personalized model. In such
way, we can obtain effective weights as their update direction is in line with the optimization
direction of the objective function. In the following, wewill elaborate on the updating process
of the aggregation weight matrix α of HPFL.

Each hyper-network consists of several fully connected layers, whose input is an embed-
ding vector that is automatically updated with the model parameters, and the output is the
weight matrix α. Define the hyper-network on client i as

αi = HNi (vi ;ψi ) , (3)

where vi is the embedding vector and ψi is the parameter of client i ’s hyper-network. Let{
θ l1, θ l2, . . . , θ ln

}
be the intermediate parameters of all clients after local training, θ ln ={

θ ln1 , θ ln2 , . . . , θ lnN

}
is the set of n-th layer of all clients, where θ lnN are the parameters of

n-th layer in client N . In HPFL, the model parameters of client i is obtained by weighted
aggregation according to αi , i.e.,

θ̄i =
{
θ̄ l1i , θ̄ l2i , . . . , θ̄ lni

}
=

{
θ l1, θ l2, . . . , θ ln

}
∗ αi , (4)

where θ̄ lni can also be expressed as:

θ̄ lni =
N∑
j=1

θ lnj α
ln, j
i (5)

Thus, the objective function of our HPFL can be derived by reformulated (1) as

argmin
V ,�

N∑
i=1

mi

M
Li

({
θ l1, θ l2, . . . , θ ln

}
∗ HNi (vi ;ψi )

)
, (6)

where V = {v1, . . . , vN } , � = {ψ1, . . . , ψN }. Consequently, HPFL transforms the opti-
mization problem for client parameters θi into the hypernetwor k’s embedding vector vi and
parameters ψi . In the following, we introduce the updated rules of V and �.

3.2.1 Update vi andÃi

Inspired by [44], using the chain rule we have ∇viLi = (∇vi θ̄i
)T ∇θ̄i

Li , and we can have the
gradient of vi and ψi from (6):

∇viLi = (∇vi θ̄i
)T ∇θ̄i

Li =
[{

θ l1, θ l2, . . . , θ ln
}

∗ ∇vi H Ni (vi ;ψi )
]T ∇θ̄i

Li , (7)

∇ψiLi = (∇ψi θ̄i
)T ∇θ̄i

Li =
[{

θ l1, θ l2, . . . , θ ln
}

∗ ∇ψi H Ni (vi ;ψi )
]T ∇θ̄i

Li , (8)

where∇θ̄i
Li can be obtained from client i ’s local training in each communication round and

∇vi /ψi H Ni (vi ;ψi ) is the gradient of αi in directions vi/ψi . We use a more general way to
update vi and ψi , i.e.,

�vi = (∇vi θ̄i
)T

�θi =
[{

θ l1, θ l2, . . . , θ ln
}

∗ ∇vi H Ni (vi ;ψi )
]T

�θi , (9)
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�ψi = (∇ψi θ̄i
)T

�θi =
[{

θ l1, θ l2, . . . , θ ln
}

∗ ∇ψi H Ni (vi ;ψi )
]T

�θi , (10)

where �θi is the change of model parameters in client i after local training. In accordance
with (9) and (10), HPFL updates the embedding vector and parameters of hypernetwork for
client i at each communication round, and then update the aggregation weight matrix αi .

In order to facilitate more efficient convergence, the parameters of models are initialized
using pre-trained weights from ImageNet. In each communication round, the clients first
download the latest personalized models from the server, and then train several epochs based
on the private data. After that, the model update �θi for each client will be uploaded to the
server to update the embedding vector V and the parameter �.

4 Experiments

4.1 Datasets

To validate the performance of HPFL onmulti-center diagnosis, we construct a real-world FL
benchmark frompublicly available datasets. Those datasets are collected in different countries
(US,China, India,Qatar andBangladesh) different years. The details are illustrated inTable 1.
For the real challenge with a small amount of golden standard data, in addition to the routine
experiments of using 80% training and 20% testing, we also conducted experiments using
20% training and 80% testing.

4.2 Implementation details

We conducted several experiments based on ResNet50 [48], Swin Transformer-tiny [49],
ConvNeXt V2-A [50], and finally chose ConvNeXt V2-A, which is both lightweight and
stable, for the more detailed experimental analysis later (see Table 2). The network is opti-
mized using Adam with a batch size of 32. The total communication rounds is 300, with the
local training epoch set as 1. The learning rate is reduced by half every 50 rounds. Unlike
the common federated setting of dividing multiple clients in a dataset, we set each dataset
as a client in order to follow the real medical scenario. Since 5 datasets are used, 5 clients
are naturally formed. Since different federated learning algorithms have different optimal

Table 1 Chest X-ray datasets
used in our experiments

Dataset Year Samples of all Samples of TB

Montgomery [46] 2014 138 58

India [3] 2014 278 125

Shenzhen [46] 2014 662 336

TB-Chest [47] 2020 4200 700

TBX11K [7] 2020 11200 800*

*In TBX11K, only the training set has labels for 800 TB samples
Due to the difficulty in obtaining the gold standard for TB and the high
degree of privacy involved, the data volume of commonly used public
datasets is currently small
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Table 2 Comparison of micro-average performance using different backbones

ResNet50 [48] SwinT-Tiny [49] ConvNeXt-V2A [50] Average
Method AUC ACC AUC ACC AUC ACC AUC ACC

Local-only 96.26 94.82 96.12 95.14 97.98 96.61 96.79 95.52

FedAvg [8] 96.60 94.43 97.73 95.18 98.46 96.51 97.60 95.37

AISTATS’17

FedPer [27] 97.45 95.67 98.17 96.58 98.71 96.37 98.11 96.21

arXiv’19

FedBN [29] 96.65 95.00 97.41 94.96 97.88 95.99 97.31 95.32

ICLR’21

Ditto [26] 96.61 94.42 97.57 94.47 98.41 96.37 97.53 95.09

ICML’21

FedRep [28] 96.77 94.75 97.55 95.53 97.09 93.57 97.14 94.62

ICML’21

FedBABU [30] 95.85 92.61 96.84 94.57 98.60 96.68 97.10 94.62

ICLR’22

FedRoD [31] 96.18 92.08 96.80 90.77 97.36 92.08 96.78 91.64

ICLR’22

HPFL (ours) 98.16 96.70 98.57 97.33 99.07 97.60 98.60 97.21

80% of the data was used for training and 20% for testing

Table 3 Results of AUC comparison with advanced methods

Method Montgomery India Shenzhen TB-Chest TBX11K Average

Local-only 46.47 91.81 88.62 99.86 98.63 85.08

± 2.68 ± 0.63 ± 0.04 ± 0.05 ± 1.12 ± 0.81

FedAvg [8] 84.83 83.83 92.14 99.80 99.83 92.09

AISTATS’17 ± 1.68 ± 1.84 ± 0.36 ± 0.07 ± 0.04 ± 0.68

FedPer [27] 84.38 85.45 91.66 99.64 99.80 92.18

arXiv’19 ± 2.16 ± 0.80 ± 1.56 ± 0.14 ± 0.05 ± 0.71

FedBN [29] 84.49 79.33 88.00 99.56 99.78 90.23

ICLR’21 ± 2.19 ± 2.42 ± 1.59 ± 0.11 ± 0.07 ± 1.08

Ditto [26] 85.28 85.43 89.46 99.70 99.79 91.93

ICML’21 ± 1.03 ± 1.69 ± 2.29 ± 0.09 ± 0.07 ± 1.00

FedRep [28] 77.69 81.27 86.13 98.33 98.93 88.47

ICML’21 ± 2.70 ± 2.19 ± 0.86 ± 0.03 ± 0.16 ± 0.76

FedBABU [30] 84.33 84.15 91.49 99.71 99.76 91.89

ICLR’22 ± 3.00 ± 0.42 ± 1.07 ± 0.07 ± 0.04 ± 0.88

FedRoD [31] 75.47 74.38 80.76 98.51 99.23 85.67

ICLR’22 ± 0.92 ± 1.76 ± 0.90 ± 0.07 ± 0.10 ± 0.55

HPFL (ours) 87.81 92.94 92.23 99.87 99.84 94.54

± 0.94 ± 0.75 ± 0.20 ± 0.03 ± 0.02 ± 0.31

To address the challenge of scarce gold standard data in real scenarios, only 20% of the data is used for training,
and the remaining 80% is used for testing. Experiments for each method were repeated three times
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learning rates, we compared four initial learning rate settings of 1e-3, 1e-4, 1e-5, and 1e-6
for the sake of fairness of the experiments.

4.3 Experimental analysis

Comparing Tables 2 and 3, we can see that the larger the test set relative to the training set,
i.e., the more data not seen in training, the more obvious the advantage of federated learning
over training with only local data.

In whichever configuration, our PHFL has superior performance in multi-center TB diag-
noses than the state-of-the-art PFL methods. It is interesting to note that among the various
SOTA that emerged after FedAvg, only FedPer exceededFedAvg in terms of average accuracy
and AUC-ROC. We analyze that the reason for this result is that PFL methods are usually
trained and tested with datasets such as CIFAR-10, CIFAR-100, Tiny-ImageNet, etc. These
image datasets cannot be aligned due to the different label classes, so most PFL methods
are tested by simulating the federated within each dataset. However, medical data in real
scenarios, especially TB chest X-rays, have small differences within each dataset and large
differences between datasets. On the one hand, since the weight of parameter updates is given
according to the amount of data in federated learning, centers with limited data and large het-
erogeneity are easily carried away from the local distribution by centers with large amounts

Fig. 4 Under three times random seeds, most methods, including FedAvg, give the best results at a learning
rate of 1e-4, while our method demonstrates the best, fastest, and most stable convergence
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of data. On the other hand, small data sets can also lead to the overfitting of personalized
federated methods when the local data distribution is not representative enough and when
inappropriate personalization is performed.

It can be seen that different personalized federatedmethods have their own suitable dataset
and settings, and there is no one constant aggregation and optimization method for all scenar-
ios. And for datasets with large heterogeneity and small data volume, such as India, existing
personalized federated methods bring negative optimization that is inferior to local training.

To deal with these problems, our approach quantifies the contribution of each layer param-
eter through a server-tailored hyper-network for each client, allowing each client to make
truly beneficial updates to its own local layer granularity without being negatively impacted
by the different data distribution of other centers. Learn the distribution of different datasets

Fig. 5 As the learning rate decreases, the convergence of the various methods becomes more stable, but too
low a learning rate can also lead to incomplete optimization
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Fig. 6 Some of the methods, including FedRep and FedRoD, are suitable for SGD optimization but not for
Adam. But in practice, using only SGD optimization is not only slow to converge but also requires a lot of
tuning work to achieve the desired optimization results

Fig. 7 Compared to other methods, our method is optimal at almost all initial learning rates and is also more
robust to excessive learning rates
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through dynamic personalization. As can be seen from Tables 2 and 3, our approach yields
optimal results regardless of the backbone and the dataset. The comparison of Figs. 4, 5 and
6 shows that most of the algorithms fail to converge when the learning rate is 1e-3, but our
method can be optimized adaptively at a later stage (Fig. 7).

5 Conclusion

Early diagnosis is very important for the treatment and prevention of TB, a major infectious
disease. However, accurate diagnosis of TB remains a major challenge. Inspired by the
success of deep learning, deep learning-based computer-aided tuberculosis diagnosis (CTD)
has become a promising research direction, but the issue of data silos may lead to poor
performance.

To address the challenge of large data heterogeneity, we propose a novel PFL method
to explore the specific property of each client (i.e., medical center) and reduce its negative
impacts on other clients. In particular, the contribution of each layer parameter is quantified
by hyper-networks customized by the server for each client. From the extensive experiments
onmultiple real-worldmedical datasets, wemainly conclude that: 1) existing PFL approaches
may performworse than the simple FedAvg in the TB diagnosis, while our HPFL consistently
outperforms FedAvg; 2) the personalized heads of higher layers often contribute more for
each client, while the higher granularity aggregationmethod gives better results. In the future,
we intend to design more sophisticated strategies for personalized parameter aggregation and
update.
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