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Abstract
In skeleton-based action recognition, graph convolution networks have been widely applied
and very successful. However, because graph convolution is a local operation with a small
field of perception, it cannot investigate well for the connections between joints that are
far apart in the skeleton graph. In addition, graph convolution makes all channels share the
same adjacency matrix, which causes the topology learned to be the same among different
channels, which limits the ability of graph convolution to learn topological information. In
this paper, we propose an enhanced decoupling graph convolution network that effectively
expands the perceptual field of the graph convolution by adding additional graphs, and the
decoupled feature fusionmechanism increases its expressive power. In addition, we introduce
an attentionmechanism in themodel to obtain the important elements in thewhole featuremap
from both spatial and temporal dimensions simultaneously, so that the graph convolution can
focus on the important elements more precisely and efficiently and suppress the influence of
irrelevant elements on themodel performance. To validate the effectiveness and advancedness
of the proposed model, we conducted extensive experiments on three large datasets: NTU
RGB+D 60, NTU RGB+D120 and Northwestern-UCLA. On the NTU RGB+D 60 dataset,
the accuracy of our model archieves 91.6% and 96.5% on the two protocols.
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1 Introduction

Human action recognition are used in a variety of fields, including intelligent video
surveillance, athlete-assisted training, and virtual reality. Both the skeleton-based and the
RGB-based methods are capable of recognizing human body actions. A lot of study and
focus has been put on action recognition techniques based on skeleton data in particular,
because they are robust to changing environments and intricate backgrounds. Additionally,
skeleton data is more compact than RGB data since it just includes the spatial coordinates of
the human body. Skeleton data are compiled into a a sequence of coordinate vectors [1–5]
or pseudo-image [6–9] for feature extraction in early deep-learning-based action recognition
methods. However, as skeleton data are topological data and these methods neglect the inher-
ent association of topological data, their accuracy has been quite subpar. Yan et al. [10] first
applied a spatial-temporal graph convolution network (ST-GCN) to skeleton data, in order to
extract the associations within human joints and between various frames in both the tempo-
ral and spatial dimensions. It enabled graph convolution to obtain the intrinsic dependencies
between human joints.

However, ST-GCN has some shortcomings: (1) The predefined adjacency matrix in ST-
GCN only considers the connection relationship between adjacent nodes, while many actions
of the human body not only produce connections in adjacent joints, but sometimes joints that
are far apart also have strong connections. For example, the joints of the hand and head
in the headphone wearing action and the joints of the hand and foot in the shoe removal
action have strong connections between them although they are far apart in the human body
structure, and it is difficult to have a comprehensive understanding of these actions if the
connections between the two parts are not effectively obtained. Although ST-GCN overlays
multiple graph convolution layers to capture these connections, because the graph convolution
is a local operation, the connections between distant joints can only be acquired indirectly
through many intermediate joints, which hinders information exchange, brings redundant
computation, is very inefficient in computation, still does not effectively expand its perceptual
field, and increases the difficulty of network optimization. In addition, the graph convolution
method proposed in ST-GCN makes all channels share the same adjacency matrix, and the
topology learned by the graph convolution is the same among different channels, which limits
the ability of the graph convolution to learn topological information as well as the expression
ability. (2) Since attention mechanisms have been shown to be effective in many computer
vision tasks, especially for the study of skeleton-based action recognition. In the spatial
structure of the skeleton, different joints of the human body occupy different importance
in different actions. In the temporal dimension, each frame occupies different importance
in different actions because each phase of the action has different importance to the whole
action. The attentionmechanism can help the neural network to better capture this importance
information. However, no attention mechanism is added in ST-GCN, which leads to ST-GCN
cannot focus on the important parts of different frames and different joints effectively.

In the context of human action recognition, spatial and temporal information are often
intertwined, and capturing the connections between distant joint points also becomes cru-
cial. To enhance the ability to aggregate spatial features and extract relevant spatio-temporal
attention information,we introduce twomodules: the enhanced decoupling graph convolution
(ED-GC) module and the spatial-temporal union attention (STA) module. These modules,
along with the temporal convolution module, form the enhanced decoupling graph con-
volution network (ED-GCN), enabling improved representation for accurate human action
recognition. ED-GCNhas twomain contributions: (1) TheED-GCmodule add two additional
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graphs on basis of the adjacency graph, expanding the perceptual field of graph convolution.
It also decouples the graph convolution operations and groups the channels so that each group
of channels has an independent trainable adjacency matrix to extract information, effectively
increasing the expressiveness and flexibility of the graph convolution and improving its abil-
ity to learn topological information. (2) The STA module captures important information
from the input features in spatial and temporal elements within different channels, high-
lighting important features with high contributions in space and time, enabling the model to
focus more effectively on these important features and suppressing the influence of useless
features.

Our extensive experiments on three large datasets: NTU RGB+D 60 [11], NTU
RGB+D120 [12] and Northwestern-UCLA [13] demonstrate that our model achieved supe-
rior performances.

2 Related work

2.1 Graph convolution network

Convolutional neural networks can successfully process Euclidean data, such as images,
but it cannot directly handle non-Euclidean data, such as skeleton graphs. In recent years,
skeleton data processing has been guided by graph convolution networks (GCNs) [14–22], a
methodwhich is highly good at handlingnon-Euclideandata. The twomainkinds ofGCNsare
spectral perspective [14, 20, 21, 21, 22] and spatial perspective methods [17–20]. (1) Spectral
perspectivemethods is to apply the Laplacematrix to the graph and study the properties of the
graph according to its eigenvalues and eigenvectors. Considering the nodes’ own properties
of the graph as signals on the graph, the convolution can be defined as the multiplication
of the signal and the filter in the Fourier domain. However, it is computationally costly.
(2) Spatial perspective methods is based on the spatial connection between nodes, using
the aggregation information of neighboring nodes. By defining an aggregation function to
aggregate the central node and its neighboring nodes. Here we use the spatial perspective
method to implement a graph convolution neural network.

2.2 Skeleton-based action recognition

Skeleton-based action recognition has garnered significant attention due to the rich infor-
mation conveyed by human body dynamics, enabling the understanding of intricate human
behaviors. Early approaches to modeling skeletons relied on hand-crafted components or
traversal rules, which resulted in limited expressiveness and generalization difficulties, grad-
ually fade out from the stage of frontier research.

Yan et al. [10] introduce ST-GCN, a model for dynamic skeletons. By automatically learn-
ing spatial and temporal patterns from data, ST-GCN overcame previous constraints, leading
to enhanced expressive power and stronger generalization capability. Traditional GCN-based
approaches utilizedmanually set and fixed graph topologies, limiting adaptability. To address
this, Shi et al. [23] introduce a two-stream adaptive GCN (2s-AGCN). By learning graph
topology and incorporating second-order information of skeletons, the recognition accuracy
of their method is significantly improved. To further heighten the performance, Shi et al. [24]
pioneer the multi-stream attention-enhanced adaptive graph convolutional neural network
(MS-AAGCN) dedicated to skeleton-based action recognition. They also offer a distinctive

123



73292 Multimedia Tools and Applications (2024) 83:73289–73304

representation by converting the skeleton data into a directed acyclic graph, grounded in the
kinematic relationships existing between joints and bones within the human body [25]. In
a quest to delve deeper into action-specific latent dependencies, Li et al. [26] propose an
actional-structural graph convolution network (AS-GCN) with the A-link inference module,
an encoder-decoder structure engineered to directly capture actional links from actions. Liu
et al. [27] introduce a MS-G3D feature extractor to enhance long-range modeling and facili-
tate direct information propagation within the spatial-temporal graph. To enhance the model
to leverage temporal dependencies between non-continuous frames and varying sequence
lengths. Zhang et al. [28] introduce a Spatial Attentive and Temporal Dilated Graph Convo-
lutional Network (SATD-GCN), which utilizes self-attention to select relevant body joints,
and extracts temporal features across time scales. Chi et al. [29] focus on embedding skeleton
information into latent representations, proposing InfoGCN with an information bottleneck-
based learning objective and attention-based graph convolution. Duan et al. [30] introduce
PoseConv3D, a 3D heatmap-based approach that addressed robustness, scalability, and gen-
eralization challenges. While recent trends leaned toward deep feedforward neural networks
for joint coordinate modeling, considerations of computational efficiency were lacking. To
bridge this gap, Zhang et al. [31] proposed a semantics-guided neural network (SGN) for
skeleton-based action recognition, enhancing feature representation by explicitly incorporat-
ing high-level joint semantics. Furthermore, Cheng et al. [32] tackled the limitations of heavy
computational complexity inGCN-basedmethods by introducing a novel shift graph convolu-
tional network (Shift-GCN). This approach achieved superior performance with significantly
reduced computational requirements. While these methods exhibit promising performance,
there remains a need for increased focus on the interplay between spatial and temporal
information, as well as the linkage between distant joint points. Additionally, the equilibrium
between recognition performance and computational efficiency also require further attention.

3 Method

3.1 Preliminaries

3.1.1 Notations

The human skeleton is represented as a graph, where the joints are the vertices and the
bones are the edges. The graph is represented as G = (V , E), where V = {v1, v2, ..., vN }
denotes the set of N joints and E denotes the set of edges of the skeleton represented by
the adjacency matrix A ∈ R

N×N . If there is a skeleton connection from joint vi to v j , then
Ai, j = 1, otherwise Ai, j = 0, since G is an undirected graph, the adjacency matrix A is a
symmetric matrix. A sequence of human action diagrams is represented as a set of joint point
feature maps X = {xc,t,n |c = 1, 2, ...,C; t = 1, 2, ..., T ; n = 1, 2, ..., N }, where C is the
number of dimensions of the feature, T is the number of frames of the skeleton sequence,
and N is the total number of human joints in a frame. So that the input action is adequately
described structurally by A and feature-wise by X .

3.1.2 Graph convolution network

In ST-GCN, the adjacency matrix of the graph divides the root node and its neighbor nodes
into three parts according to the division strategy: (1) The graph A1 composed of the root

123



Multimedia Tools and Applications (2024) 83:73289–73304 73293

node itself. (2) The graph A2 composed of centripetal nodes, the neighbor nodes closer to
the center of gravity of the skeleton than the root node. (3) The other neighboring nodes are
centrifugal nodes and comprise the graph A3. For the skeleton input defined by the feature
map X , the formula of ST-GCN for performing the graph convolution can be represented as:

X (l+1) = σ(

3∑

k=1

D
− 1

2
k Ak D

− 1
2

k X (l)Wk
(l)) (1)

Where Dk is the degreematrix of Ak , X (l) is the featuremap of the layer l.Wk
(l) represents

the weight matrix of layer l in a convolution network, which is a learnable parameter, and σ

is the activation function.

3.2 Enhanced decoupling graph convolution network

In order to increase the diversity of input features and make the model learn more diverse
and rich features from the skeleton sequence, we adopts a framework of multi-stream fusion.
Since both visualized joints and bones can help humans judge actions, the preprocessed input
features in this paper are divided into two main categories: joint stream and bone stream.
The ED-GCN network is trained separately using different input features, and the output
classification results are fused.

The overview of the proposed ED-GCN is shown in Fig. 1. ED-GCN stacks 10 basic
blocks together, each including a serially connected ED-GC module, a simplified multi-
stage temporal convolutional network (MS-TCN) module and a STA module. The output
channels of each block are 64, 64, 64, 64, 128, 128, 128, 256, 256, 256. ED-GCN aggregates
features using a global average pooling layer at the end of the network, and uses a fully
connected layer for classification. To avoid overfitting, a dropout layer is added before the
final fully connected layer and set to 0.4. The dropout layer can cause some neurons to stop
working randomly while the network is being trained. All activations in our model use the
Mish activation function [33], which is similar to the ReLU function, but is smoother than it.

3.2.1 Enhanced decoupling graph convolution module

The utilization of a predefined adjacency graph limits itself to considering connections
between individual nodes and their immediate neighbors. Consequently, this results in closer
nodes and nodes with higher degrees carrying more weight in the network learning process.
As a consequence, a significant portion of learned information becomes concentrated within
these nodes. Meanwhile, connections between distant nodes necessitate multiple layers of
graph convolutions to be stacked, leading to inefficiency in learning these relationships. In
order to appropriately expand the perceptual field of graph convolution, we add two addi-
tional graphs to the three graphs proposed by ST-GCN: (1) graph A4 consisting of 2-hop
edges. (2) graph A5 consisting of 3-hop edges.

The graph convolutionmethod proposed in ST-GCNmakes all channels of the featuremap
share the same adjacency matrix, and the graph convolution aggregates features of the same
topology among different channels. However, each channel of the feature map represents a
different type of feature, so its expressiveness will be limited.

To better optimize the topology represented in each adjacencymatrix, a trainable attention
matrix Bk ∈ R

4×N×N is used multiplied with a trainable scale factor α, which is then
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Fig. 1 An overview of the proposed ED-GCN model. For the STA module, r = 2 is utilized to compact the
features, where SP denotes spatial pooling, TP denotes temporal pooling, ConvS denotes the convolution along
spatial dimension, ConvT denotes the convolution long temporal dimension

combined with the adjacency matrix. This process is expressed using the formula as follows:

Ãk = Dk
− 1

2 AkDk
− 1

2 + αBk (2)

were Ãk ∈ R
4×N×N , Bk is initialized to some randomvalue close to 0 as a trainable parameter

that can be optimized along with the network, adjusting the strength of the connections
between joints defined in the matrix Ak , not only to create new edges but also to remove old
ones. The scale factor α is initialized to 0 and is learned entirely from the data, controlling
the effect of the attention matrix Bk on the overall graph convolution operation. It makes the
graph convolution process more flexible.

The scale factor α plays a crucial role in controlling the impact of the attention matrix Bk

on the overall graph convolution operation. At the outset, it is initialized to 0. As training
progresses, α is modified based on themodel’s understanding of the task and the relationships
between nodes in the graph. This adjustment enables the model to effectively determine how
much attention-based information should be integrated alongside the structural information
during the graph convolution operation.

The scale factor α acts as a weighting factor that balances the contributions of the attention
matrix Bk and the degree matrix Ak in the graph convolution operation. A smaller value of
α puts more emphasis on the structural relationships captured by Ak , essentially relying on
the inherent graph topology. Conversely, as α increases, the attention matrix Bk gains more
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importance, enabling the model to focus on finer relationships indicated by the attention
mechanism. The flexibility of α allows the model to dynamically shift its focus between the
two sources of information based on the data’s characteristics and the learning objectives.

In summary, the scale factor α is not static; it is learned, adjusted, and fine-tuned as the
model trains on data. Its value determines the extent to which attention-based connections
influence the graph convolution process in conjunction with the structural information. This
adaptability empowers the model to effectively capture both local and global dependencies,
ultimately enhancing its ability to extract meaningful patterns from the data.

We divide the channels of the whole feature map into four groups, and each group of
channels has a separate learnable adjacency matrix. The process of the ED-GC module is
expressed using the formula as follows:

X (l+1) = σ(

5∑

k=1

( Ã1
k X

(l)
0: C4 ,:,:‖ Ã2

k X
(l)

C
4 : C2 ,:,:‖ Ã3

k X
(l)

C
2 : 3C4 ,:,:‖ Ã4

k X
(l)

3C
4 :C,:,:)Wk

(l)) (3)

Where Ãi
k ∈ R

N×N represents the subset i of Ãk , ‖ represents the channel-wise concate-
nation, σ represents the activation function. Wk

(l) represents the learnable weight matrix of
layer l.

3.2.2 Temporal convolution module

The temporal information is crucial for continuous video frames because it include a lot of
associate information, particularly for analyses like action recognition. The performance of
the prior temporal convolution module, which merely used basic temporal convolution to
extract the temporal information from activities, has been subpar.

In [27], it is suggested to use the MS-TCN module to collect temporal information. This
method has achieved outstanding performance, However, its excessive branching reduces the
speed of inference.

We reduced on some dilated convolution branches while increasing the size of convolution
kernel to increase receptive field. The capacity ofMS-TCN to extract information is preserved
while the complexity of model are significantly reduced. The same fantastic results are
obtained with this procedure. The overview of the simplified MS-TCN module is shown in
Fig. 1.

3.2.3 Spatial-temporal union attention module

The overview of the proposed STA module is shown in Fig. 1. In order to reduce the number
of parameters and computation of the model, the STA module first compresses the channel
dimension of the feature map using 1×1 convolution, then the temporal attention branch
compresses the spatial dimension of the feature map using average pooling, then extracts the
temporal attention information in the temporal dimension using convolution, and normalizes
the temporal attention information after the Sigmoid activation function, and the importance
of temporal features is scored to derive the score of temporal attention informationwithin each
channel. The spatial attention branch uses a similar method to extract the spatial attention
information of the feature map. Finally, the outputs of these two branches are summed
to obtain the attention scores of each joint in the whole action sequence. The process of
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processing data by the STA module can be expressed in the following formula:

X ′ = g(X ) (4)

X ′′ = σ (gt (pools(X
′))) + σ (gs(poolt (X

′))) (5)

Xout = X � X ′′ (6)

where pools denotes the average pooling operation in the spatial dimension, poolt denotes
the average pooling operation in the temporal dimension, gt denotes the convolution oper-
ation along the temporal dimension, gs denotes the convolution operation along the spatial
dimension, σ denotes the Sigmoid activation function, g denotes the 1×1 convolution oper-
ation, and Xout denotes the final output feature map incorporating spatial-temporal attention
information.

4 Experiments

4.1 Datasets

4.1.1 NTU RGB+D 60

The most reputable and popular large skeleton-based action recognition dataset is NTU
RGB+D 60 [11]. It has a total of 56,880 skeleton sequences and 40 distinct people. Each
video is taken using three cameras at the same height but with various horizontal angles:
-45◦, 0◦, and 45◦. The KinectV2 depth sensor is used to determine the 3D joint position
coordinates of the human body for each frame. There are 60 different action classes. Each
skeleton sequence has a maximum of 2 subjects, each with 25 joints. Two protocols are
suggested by the authors of the study that proposes the dataset: (1) In cross-subject (X-Sub),
40 subjects are splited into a training group and a test group depending on their IDs, and
including 40320 samples in the training group and 16560 samples in the test group. (2) In
cross-view (X-View), 18960 samples from camera 1 are used as the test group, and 37920
samples from cameras 2 and 3 as the training group.

4.1.2 NTU RGB+D120

The biggest skeleton-based large action recognition dataset currently available is NTU
RGB+D120 [12], which is an upgraded version of NTU RGB+D 60. There are 120 action
classes, 114,480 skeleton sequences, 155 camera viewpoints, 96 distinct backdrops, and data
from 106 people in this dataset. The people were from 15 different nations, with ages ranging
from 10 to 57 and heights varying from 1.3 to 1.9 meters. As can be seen, there is a lot of
variance across the participants, which further improves the dataset’s quality. Two protocols
are suggested by the authors of the study that proposes the dataset: (1) In cross subjects
(X-Sub120), 106 subjects are separated the into two groups depending on their IDs, one for
training and one for testing, with the training group including 63026 samples and the test
group containing 51454 samples. (2) In cross setting (X-Set120), 54471 samples are used as
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the training group and 60009 samples as the test group, with the groups being split according
to the people’ locations and backgrounds.

4.1.3 Northwestern-UCLA

Three Kinect cameras are used to record the Northwestern-UCLA dataset. It has 1494 video
clips in 10 different categories. There are ten actors involved in each action. We follow the
protocol in [13] for this analysis, using the samples from the first two cameras as training
data and the samples from the second camera as testing data.

4.2 Implementation details

To verify the advancement and the efficiency of ED-GCN, the ED-GCN model is com-
pared with the state-of-the-art methods on the NTU RGB+D 60, NTU RGB+D 120,
and Northwestern-UCLA datasets, respectively. All experiments were conducted on two
RTX3090 GPUs using the Pytorch deep learning framework [34], and our models used an
SGD functionwithmomentumof 0.9 andweight decay of 0.0001 as the optimization strategy.
The learning rate is set to 0.1 and multiplied by a factor of 0.1 for epochs 20 and 30. For NTU
RGB+D 60 and NTU RGB+D 120, with a total of 80 training epochs, we sample the data
from each sample so that each sample contains 100 frames and the batch size is set to 32. For
the X-View protocol, we use the data preprocessing method [31]. For Northwestern-UCLA,
with a total of 200 training epochs and batch size set to 16.

Table 1 Classification accuracy
comparison against
state-of-the-art methods on the
NTU RGB+D 60 dataset

Methods Accuracy (%)
X-Sub X-View

ST-GCN [10] 81.5 88.3

AS-GCN [26] 86.8 94.2

SGN [31] 89.0 94.5

PA-ResGCN-B19 [35] 90.9 96.0

ED-GCN (Joint only, ours) 90.8 95.7

ED-GCN (Bone only, ours) 90.2 95.1

3s-AdaSGN [36] 90.5 95.3

4s-Shift-GCN [32] 90.7 96.5

DC-GCN+ADG [37] 90.8 96.6

MST-GCN [38] 91.5 96.6

InfoGCN (6 ensemble) [29] 93.0 97.1

2s-AGCN [23] 88.5 95.1

SATD-GCN [28] 89.3 95.5

DGNN [25] 89.9 96.1

MS-AAGCN [24] 90.0 96.2

MS-G3D [27] 91.5 96.2

ED-GCN (ours) 91.6 96.5

X-Sub and X-Set represent cross-subject and cross-view, respectively
The bold entries represent the best results in each group
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Table 2 Classification accuracy
comparison against
state-of-the-art methods on the
NTU RGB+D 120 dataset

Methods Accuracy (%)
X-Sub120 X-View120

AS-GCN [26] 77.9 78.5

SGN [31] 79.2 81.5

PA-ResGCN-B19 [35] 87.3 88.3

ED-GCN (Joint only, ours) 86.3 87.8

ED-GCN (Bone only, ours) 86.1 87.3

3s-AdaSGN [36] 85.9 86.8

4s-Shift-GCN [32] 85.9 87.6

DC-GCN+ADG [37] 86.5 88.1

MST-GCN [38] 87.5 88.8

InfoGCN (6 ensemble) [29] 89.8 91.2

2s-AGCN [23] 82.9 84.9

MS-G3D [27] 86.9 88.4

InfoGCN (Joint+Bone) [29] 88.5 89.7

ED-GCN (ours) 88.2 90.0

X-Sub120 and X-Set120 represent cross-subject and cross-setup splits,
respectively
The bold entries represent the best results in each group

4.3 Comparisons with the State-of-the-Arts

The comparison results are listed in following tables, respectively. Tables 1, 2 and 4 are
divided into three parts based on the number of streams utilized by the models. The top
part features models employing a single stream, the bottom part showcases models with two
streams, and the middle part presents models integrating more than two streams.

From Table 1, it can be observed that ED-GCN achieves 91.6% and 96.5% classification
accuracy on the two protocols of the NTU RGB+D 60 dataset, respectively. Compared with
the most popular backbone model for skeleton-based action recognition, i.e. ST-GCN, ED-
GCN exceeds it by 10.1% and 8.2% on two protocols, respectively. Moreover, ED-GCN
performs better than all of 1-stream and 2-stream models. It should be noticed that DC-
GCN+ADG and MST-GCN achieve slightly higher accuracies than ours on the X-View
protocol, and the performance of InfoGCN is also ahead of our on two protocols. These
methods have a common characteristic, which is the strategy of fusingmore than two streams.
This strategy fuses additional motion information, which may enhance the representation of
cross-view skeleton features. The superior performance of these models is achieved at the
expense of model complexity and computational costs.

FromTables 2 and 3, it can be observed that ED-GCN achieves classification accuracies of
88.2% and 90.0% on the two protocols of the NTU RGB+D 120 dataset, and an accuracy of
95.1% on the Northwestern-UCLA dataset. These performances outperform all the models
in the two tables, except for InfoGCN (6 ensemble). Surprisingly, our model is superior to
InfoGCN (Joint+Bone) on the X-Set120 protocol of NTURGB+D 120 dataset. It is indicated
that our model is not inferior to InfoGCN, if they all utilize two streams (Joint+Bone).

To verify the efficiency of ED-GCN, we also compare the model complexity in terms of
FLOPs and number of parameters (# Param.) on the X-View protocol of the NTU RGB+D
60 dataset. The results are listed in Table 4. Since the FLOPs and the parameter numbers of
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Table 3 Classification accuracy
comparison against state-of-the-
art methods on the
Northwestern-UCLA dataset

Methods Accuracy (%)

Lie Group [39] 74.2

HBRNN-L [1] 78.5

Ensemble TS-LSTM [40] 89.2

AGC-LSTM [41] 93.3

4s-Shift-GCN [32] 94.6

InforGCN (6 ensemble) [29] 97.0

ED-GCN (Joint only, ours) 94.6

ED-GCN (Bone only, ours) 93.8

ED-GCN (ours) 95.1

The bold entries represent the best results

some models are not found, and the size of input skeleton sequence of SGN and 3s-AdaSGN
is different from other models, the FLOPs and the parameter numbers of these models are not
presented in this table. It is evident that our proposed ED-GCN exhibits the lowest FLOPs
while sharing a parameter count similar to that of 4s-Shift-GCN, yet remaining smaller than
the other models. Moreover, ED-GCN is about 1.78x faster and 3.30x smaller than InfoGCN
(6 ensemble) with the SOTA accuraucy. The results show that our proposed ED-GCN model
is a powerful and efficient model in the field of skeleton-based action recognition.

Table 4 Model complexity comparison against state-of-the-art methods on X-Sub of NTURGB+D 60 dataset

Methods FLOPs (×109) # Param. (×106)

ST-GCN [10] 16.32 3.10

AS-GCN [26] 26.76 9.50

SGN [31] - -

PA-ResGCN-B19 [35] 18.52 3.64

3s-AdaSGN [36] - -

4s-Shift-GCN [32] 10.00 2.76

DC-GCN+ADG [37] 25.72 4.96

MST-GCN [38] - 12.00

InfoGCN (6 ensemble) [29] 15.50 9.22

2s-AGCN [23] 37.32 6.94

SATD-GCN [28] - -

DGNN [25] - 26.24

MS-AAGCN [24] - -

MS-G3D [27] 48.88 6.40

ED-GCN (ours) 8.71 2.79

The bold entries represent the best results in each group
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Table 5 The comparison of
model accuracy under different
settings

Settings Accuracy (%)

ST-GCN (baseline) 81.5

ED-GC (w/o A4&A5) 90.0

ED-GC 90.8

w/o means delete this part

4.4 Ablation experiments

In this section, we analyze the contributions of different components in the proposed ED-
GCN, including the ED-GC module and the STA module. We choose the ST-GCN as the
baseline model. All experiments are studied on the NTU RGB+D 60 dataset using a single
joint stream on the X-Sub protocol.

4.4.1 Effectiveness of ED-GCmodule

The ED-GC module contains two extra graphs, namely A4 and A5, to expand the perceptual
field. To evaluate the impact of these additional graphs on the model, we conducted separate
tests with and without their inclusion, and the corresponding results are summarized in
Table 5. The findings demonstrate that the absence of these two additional graphs led to a
drop in accuracy to 90.0%, underscoring the significant improvement in action recognition
accuracy due to their incorporation. Furthermore, our model’s accuracy surpasses that of the
baseline significantly, further affirming the effectiveness of the ED-GC module.

In traditional graph convolution, a shared spatial aggregation kernel is the norm, typically
embodied by an adjacency matrix. However, this convention imposes a constraint on the
potential depth of spatial aggregation. While augmenting the number of adjacency matrices
can partly alleviate this concern, it unavoidably leads to a proportional surge in computa-
tional demands, thus compromising efficiency. Enter ED-GCmodule,where the channel-wise
features undergo a clever division into four distinct groups, each bestowed with its own train-
able adjacency graph. This ingenious approach imbues spatial aggregation with heightened
expressiveness. Notably, ED-GC module introduces a dual cadre of connections, which sig-
nify long-range nodal associations, effectively broadening the network’s receptive field. This
strategic augmentation of connectivity remarkably enhances spatial aggregation’s expres-
siveness, all the while sidestepping any substantial escalation in computational overhead.

4.4.2 Effectiveness of STAmodule

To explore the effectiveness of the STAmodule and its impact on the model, we removed this
module from the model and tested it. In Table 6, it can be observed that the addition of the
STAmodule has improved the accuracy of the model, and it has improved the accuracy of the
model by 1.1% and brought the model to the highest accuracy of 90.8%. The STA module

Table 6 Impact of STA module
on model accuracy

Settings Accuracy (%)

ED-GCN (w/o STA) 89.7

ED-GCN 90.8

123



Multimedia Tools and Applications (2024) 83:73289–73304 73301

Table 7 Comparison of
multi-stream and single-stream
methods

Settings Accuracy (%)

Joint 90.8

Bone 90.2

Joint+ Bone 91.6

performs spatial and temporal attention in parallel, and then fuses the attention information
to obtain a global spatio-temporal attention feature, which is finally multiplied with the
featuremaps. This not only effectively considers the correlation between spatial and temporal
attention but also greatly reduces the computational cost and improves the inference speed
of the model. Given that ED-GCN groups features along the channels and requires a large
number of learned adjacency matrices, it is necessary for the attention module to extract
spatial feature importance information to enable the model to emphasize the connection
between distant nodes with strong correlation. At the same time, learning temporal attention
information allows the model to consider the spatiotemporal attention correlation, utilize
limited parameters to focus on learning important frames in the features, and achieve better
results. Therefore, the STA module is very important for the ED-GCN network.

4.4.3 Effectiveness of multi-stream network

In order to test the performance of the proposed two streams, experiments were conducted
and the results are shown in Table 7, where Joint denotes the joint stream and Bone denotes
the bone stream. It can be observed that the performance of the model is relatively low when
only a single joint stream is used, and the best performance of the ED-GCNmodel is obtained
when both streams are superimposed and used together, each of which allows the model to
learn different aspects of information effectively, and the multi-stream fusion approach is
clearly superior to the single-stream approach and can effectively improve the performance
of the model.

On the X-Sub protocol of NTU RGB+D 60 dataset, we compared the accuracy of ED-
GCN and the baseline model ST-GCN on each category, and the results are shown in Fig. 2.
As can be seen, our proposed ED-GCN performs much better than the baseline and even
increases accuracy by more than 20% in categories 10,11,12,29,31,32 and 33.

Fig. 2 Comparison of the classification accuracy of ED-GCN and ST-GCN for each category on the NTU
RGB+D 60 dataset. We use numbers to denote the name of each category
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5 Conclusion

In this paper, a novel enhanced decoupling graph convolution network is proposed for
skeleton-based action recognition. the ED-GC module effectively expands the perceptual
field of the graph convolution, increasing its expressive power and flexibility. In addition, the
STA module is embedded into each basic block, while finding and fusing important spatio-
temporal features in thewhole skeleton sequence fromboth temporal and spatial perspectives,
embedding attention information into the model, thus helping the model to focus on impor-
tant elements and extract features more efficiently. Extensive experiments on three datasets
demonstrate the effectiveness and advancedness of the ED-GCN model in skeleton-based
action recognition.
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