
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-021-11876-y

1161: MULTIMEDIA ALTERNATE REALITIES

Pull-the-strings

Generic mapping model for digital puppetry

Luis Leite1

Received: 7 June 2020 / Revised: 26 July 2021 / Accepted: 23 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Pull-the-Strings presents a mapping model for digital puppetry based on a transparent
framework to support generic device controllers and generic tools. Digital puppetry requires
a creative interaction design, in particular in the way designers map the puppet to the
puppeteer using specific devices. This process depends on a constantly changing interface
technology, which limits the reuse of devices and mappings. This paper proposes a method-
ology and a set of tools that facilitate the mapping process, and promote the recycling of
technologies. A flexible and generic environment independent from device specifications.
By abstracting the hardware layer, the artist is motivated to think in terms of signal flow,
establishing relations through meaningful mappings instead of handling the diverse specifi-
cations of each device and application. Pull-the-Strings is a data-flow ecosystem that focus
on the functional usage of control signals. It provides a scalable environment for build-
ing semantic blocks that connect, transform and generate signals for the manipulation of
virtual objects. Its goal is to make technology as transparent as possible, facilitating con-
nections and reducing the obstacles between the performer and the performing object. On
the other hand, it proposes an interaction design space that takes into account the manip-
ulation and perception distance, responding to the specifications of the digital puppetry
medium. This model was evaluated comparing a set of tools and methods with experienced
and non-experienced users.

Keywords Interaction design · Digital puppetry · Performance animation ·
Node-base interfaces · Real-time mapping

1 Introduction

Animation presents an expressive medium for storytellers. However, animating puppets
using traditional keyframe techniques takes too much time and practice. Digital puppetry
techniques can simplify this process by presenting a performance-driven animation making
the puppet reactive to the motion of the performer in real-time. By turning the production
into real-time, storytellers with no experience in animation can easily build animated plays,

� Luis Leite
luisleite@esmad.ipp.pt

1 uniMAD, ESMAD/P.Porto, Vila do Conde, Porto, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11876-y&domain=pdf
http://orcid.org/0000-0001-5507-2237
mailto: luisleite@esmad.ipp.pt


Multimedia Tools and Applications

exploring their imagination by just pulling the ‘strings’. By observing the feedback of their
motion in real-time, they can practice the performance and adjust the manipulation. The
interaction becomes fluid and intuitive because it is driven by the performer, making the
story comes to life in a spontaneous way. When puppets are performed in a dramatic way,
they produce the illusion of life. However, digital puppetry presents the challenge of map-
ping a set of input signals to a set of output joints that might differ in amount, scale and
property. In particular, when the puppeteer drives a puppet with a large amount of Degrees
of Freedom (DOFs) using a limited input device with few DOFs. Furthermore, when deal-
ing with a known input device we can establish a direct mapping between a specific input
value and the target DOF of the puppet, because the connection relies on underlying hard-
ware specifications. However, if the specifications change through a shift in technology the
previous mappings are lost, and if using an unknown device the mapping becomes a chal-
lenging process. Therefore, it would be desirable to develop a transparent interaction model
for digital puppetry independent from the underlying technology as well from the target
application. In this way, it would be possible to reuse the mappings and continue to animate
the joints with different input devices and with any application. This flexibility presents the
freedom for the designers to choose which applications and devices they want to employ in
a specific context. Much work has been done on digital puppetry technologies, however, few
researchers addressed the problem of interoperability between devices and applications that
could facilitate the mapping between the puppeteer and the puppet. Existing frameworks
are too specific and restricted, focusing on particular technologies, computer platforms, or
target applications. Previous explorations based on interoperable systems applied to digital
puppetry can be seen in projects such as “Digital Theatrograph: Cinematographic Pup-
petry” [13], a live cinematic-puppetry that employs a multi-application setting supported by
an interoperable system, or “Solitária - Gestural Interface for Puppetry Performance” [10],
a multi-dimensional and multi-modal puppetry performance developed with an orchestra of
digital tools and data flow that controls the play. However, these interoperable approaches
were developed to solve specific problems related to each puppet play. On the other hand,
the “Common Spaces: Multi-Modal-Media Ecosystem for Live Performances” [12], aimed
a wider application field, proposing a real-time media convergence interface based on an
interoperable framework. This approach can be applied in different settings with a wide
range of applications. However, it does not facilitate the mapping process and does not
present a robust and generic framework. Pull-The-Strings was developed as an integral
part of a digital puppetry PhD thesis [9] that addresses this problem. This paper starts
by discussing in Section 2 the digital puppetry mechanics proposing a design space for
performance animation. In Section 3 it is described a generic interaction model that sup-
ports the creative tasks of digital puppeteers in a collaborative environment, identifying its
requirments. The set of tools that were developed to support the interaction model are pre-
sented in Section 4. Finnaly, the model is evaluated in Section 5 comparing a set of tools
and methods with experienced and non-experienced users.

2 Design space for digital puppetry

2.1 Reality interaction space

Digital puppetry requires a specific interface design approach than those oriented for the
classical computer animation tasks. An interaction approach can provide the appropriate



Multimedia Tools and Applications

interface design to handle the multitude of media that characterizes digital puppetry, sup-
porting its expressive manipulation in real-time. The post-WIMP interface approaches seek
interaction styles closer to the real world experiences. Jacob et al. [8] proposes a Reality-
Based Interaction (RBI) framework based on real world knowledge and awareness with
four themes: naive physics, the awareness and skills from the human body; from the
environment; and from the social interaction.

– Naive Physics (NP) - the perception that people have of the basic physical world
principles such as the understanding of gravity;

– Body Awareness and Skills (BAS) - the awareness of our physical bodies and the skills
we have to control and coordinate them;

– Environment Awareness and Skills (EAS) - refers to our physical presence in the
environment and the skills we have for manipulating it or for its navigation.

– Social Awareness and Skills (SAS) - the awareness of other people and the skills for
interacting with them.

These reality-based interaction themes covers the most important manipulation aspects
of puppetry. While the notion of physics (NP) is fundamental for operating a marionette
taking advantage of its weight, the body skills (BAS) allows the puppeteer to use his hand
dexterity for manipulating a glove puppet. The puppeteer uses the surrounding environment
(EAS) to drive the puppet through a wooden floor, and interacts with the audience (SAS)
inviting them to participate, or to colaborate with other puppeteers, when manipulating a
multi-puppeteer puppet, such as the Bunraku. These themes are appropriated for generic
interaction design and provide a good starting point for digital puppetry.

2.2 Digital puppetry mechanics

Digital puppetry presents similar interaction mechanics as the traditional counterpart. The
puppeteer operates a controller that is mapped to a puppet. It involves an input device, a
mapping scheme, and a puppet structure (Fig. 1).

– The input device determines the interaction method, the number of degrees of freedom
(DOF), and which part of the puppeteer’s body is used for manipulation. The interaction
method can be classified according to the degree of abstraction between the puppeteer
and the virtual puppet [3]. With direct manipulation, the body of the puppeteer is
used directly as an input device. With indirect manipulation, the device controller (i.e
gamepad) is the interface between the two agents, providing similar functions as the
traditional marionette controller.

– The mapping scheme is used to transform and assign each DOF from the input device
to the corresponding puppet’s DOF. The mapping scheme is the process that establishes
the necessary connections and semantics between the input signal and the desired out-
put behavior. This is a central process in digital puppetry and is represented in Fig. 1
by pulleys at the center, and by red wires that establishes the connection between the
components.

– Morphology is the rigging structure that supports the puppet’s motion, the number
and type of DOFs. While the input device determines how to capture the input phys-
ical morphology of the puppeteer, the virtual puppet armature defines its morphology
and its behavior. It can replicate the input rigging for direct correspondence, such
as a biped skeleton, or provide different amount of degrees of freedom with indirect
correspondence that requires indirect mapping.



Multimedia Tools and Applications

Fig. 1 Digital puppetry mechanics, the input device captures the puppeteer’s motion, which is mapped to the
puppet’s morphology

These three components form the base aspects of Walther-Franks and Malaka [16] struc-
tural model for interactive animation. They define a triangular conceptual structure based
on the relations between the input device, the mapping and the puppet, identified by: 1)
integration (machine); 2) metaphor (artist); and 3) task (artifact).

1. The integration of control is defined by the input device or by the hardware layer;
2. The metaphor describes the performer engagement with the input device, the mapping

between his intentions and the appropriate interaction with the hardware;
3. The task defines the intended action for the production of animation, which can be

decomposed into a large amount of sub-tasks such as motion creation, motion editing,
and motion viewing.

This conceptual space defines the relations between machine, artist and artifact relying
on a spatiotemporal interaction, which is appropriated for traditional computer animation.

2.3 Digital puppetry interaction design

Digital puppetry relies mostly on real-time interaction, and therefore this space should be
adjusted for performance animation specifications - a design space based on the puppeteer,
controller and puppet relationship, as seen in (Fig. 2). These three elements can be used to
define a triangular relationship for digital puppetry. The physical and perceptual distance
between each vertex can be used to establish the manipulation type, as well as the puppet’s
behaviour.

The distance between each vertex of the triangle can increase or reduce depending on
multiple aspects. This digital puppetry flexible triangular interaction is based on three main
components: 1) puppeteer; 2) controller; 3) puppet.

1. The puppeteer uses his body for manipulation and can employ multiple senses at the
same time. As in traditional puppetry, multiple puppeteers can manipulate one puppet,
or one puppeteer can manipulate multiple puppets;



Multimedia Tools and Applications

Fig. 2 Digital puppetry interaction scheme based on the relations between the puppeteer, the controller, and
the puppet

2. The controller provides the interface for the puppeteer to manipulate the puppet,
combining the physical device with the strings attached to the marionette;

3. The puppet is the performing object, developed to respond to specific tasks or actions
supported by a morphology that will define its movement. It can assume many different
forms. The puppet’s appearance and behavior influences the puppeteer’s manipulation.

Each edge of the triangle defines an action. The puppeteer uses an 1) interface for manip-
ulation, capturing his signals that are 2) processed and mapped to the puppet, which 3)
behaves according to its morphology.

1. The Interface, defines the puppeteer’s manipulation method through input devices spec-
ifying the number and type of DOFs to be controlled simultaneously. It concerns the
hardware and software dimensions allowing the puppeteer to operate the puppet;

2. Mapping, describes how the morphology of the puppeteer’s physical input, captured
by the input device, corresponds to the output morphology of the puppet. The mapping
process transforms the input signals to fit into the desire output behavior;

3. The behavior of the puppet is determined by its morphology, defined by a structure that
makes it move. A rigging armature with a set of controllers that deforms or articulates
the shape of the puppet.

Similar to the Walther-Franks and Malaka’s approach, the orchestration process occupies
the center of the triangle. This is a critical process in a live digital puppetry show because
it defines how to change the mapping schemes, how to switch between puppets, or how
to select the input devices during a performance. For instance, the puppeteer may want to
switch the input method, switching the manipulation from voice input to hand manipulation,
as well as the target, changing from facial expression control to a full-body driven puppet.
This switch requires a change in the mapping setup. Furthermore, designing a complete



Multimedia Tools and Applications

digital puppetry performance requires the configuration of lights, sound, cameras, and other
media according to each cue of the play.

The distance between each vertex of the triangle influences the relationship between the
puppeteer and the puppet.

1. Embodied distance: The distance between puppeteer and controller (interface) influ-
ences the performer’s interaction experience determining the directness level. It is based
on the interface quality and features. The number of DOFs provided by the input device
and the interface ergonomics and sensibility constraint the performer’s manipulation.
On the other hand, the number of DOFs controlled simultaneously by the puppeteer, can
increase the distance and the complexity of the manipulation. It determines the motor
coordination as well as the engagement with the device (i.e. an embodiment interface);

2. Action distance: The distance between the action performed by the puppeteer through
the interface, and the reflected action in the puppet (mapping) is central for establishing
direct or indirect manipulation. It can be used to simplify the operations, or to increase
the manipulation possibilities. The correspondence between the input and the output
DOFs contributes to the distance between the puppeteer and the puppet. This distance
contributes to the cognitive load of the puppeteer;

3. Feedback distance: The distance between the puppet’s action and the puppeteers per-
ception of the action (behavior) influences the puppeteer’s manipulation. The motion
response of the puppet to the controller, can be modified by external factors, such as
gravity, and influence its movement. The rigging structure that supports the puppet’s
morphology is also determinant to constraint the motion of the puppet, that may respond
with unexpected behavior forcing the puppeteer to adapt the manipulation. (feedback
distance)

The distance between the components is determined by: 1) human factors; 2) manipula-
tion factors; 3) design aspects of the puppet and interface as in Table 1.

These factors are interrelated, for instance the amount and placement of the input DOFs
to be controlled simultaneously influences the motor coordination of the puppeteer. The
morphology of the puppet determines its mechanics as well as the controller interface,
and consequently influences the way the puppeteer synchronizes his body to perform
each action. The mapping scheme influences the cognition load of the puppeteer, its
design depends upon the selected interface and both influence the engagement level of the
puppeteer.

3 Generic interaction model

Puppets present a variety of shapes, control methods and degrees of freedom making them
an ideal interface for creative and collaborative work. No matter if the puppet is physical or

Table 1 Factors and aspects that influence the distance between the puppeteer and the puppet

Human factors Manipulation factors Design aspects

Motor coordination Number of DOFs Ergonomics

Motion synchronization Morphology Mechanics

Cognition load /engagement Interface Mapping



Multimedia Tools and Applications

virtual, the relation between puppet and puppeteer is umbilical, as Francis states “The con-
trol may be through corporeal contact (hands-on, hands-in), or via strings, wires, wooden or
metal rods. The figure animated electronically or even remotely is still a puppet if the per-
former is present at the other end of the cable or the machinery, controlling the movements,
just as at the end of a simple string or rod.” [6, p.13]. On the other hand, the puppeteer
is a multidisciplinary artist that combines creation with performance. The puppeteer can
explore many skills and disciplines, from modeling to acting, from writing to producing.
This multitude of skills, puppet types, control rigs, and manipulation methods require a
generic interaction approach.

3.1 Digital ecosystem

In order to manipulate a puppet the puppeteer chooses the appropriate method based on
multiple factores: a) the puppet type and morphology; b) the intended action; c) the artistic
decisions; d) the puppeteer’s own expertise. On the other hand, a digital performance may
not rely on a specific manipulation technique, but rather, on multiple interaction methods
which are identified during the collaborative creation process. This creation process is char-
acterized by a dialog between the members of the chain, through a constant coming and
going, through trial and error, through multiple iterations. They begin by cutting the main
problem into little blocks of problems, that simplify the process, and allow them to focus
on small issues at a time. Each element of the team contributes to the process and they must
work together. While working in a collaborative environment, each element of the team may
require specific features. On a digital puppetry performance, the mapping designer and the
animator-puppeteer that we can consider the “animateer” [9], require distinct control inter-
faces (hardware and software). The mapping designer may require a mouse device and a
software environment to link the input DOF to the output DOF, and the “animateer” a con-
trol interface for manipulation and a visual feedback of the puppet’s motion. These distinct
interfaces can be considered units of an interoperable collaborative system, that are inte-
grated in a larger pipeline. By establishing a data flow framework and a communication
layer that connects the different units (signal flow), each process can be done with variety
of applications. By implementing a standard digital signal flow in the interface, we can map
any control device (generic devices) to the puppet. A modular toolkit can be designed based
on this flow of signals, to capture, process, map the input data and visualize the anima-
tion in real-time (Fig. 3). By working with independent tasks with a higher-level of control,
the system becomes flexible. A generic interaction model can be conceptualized to support
the creative tasks of digital puppeteers in a collaborative environment, based one the pro-
posed design space. A methodology for performance animation to enhance the storytelling
experience.

A critical aspect in a digital puppetry performance is to provide the appropriate feedback
to the animateer. By producing an action, the performer expects the system to respond with
the feedback from this action. This action-reaction is fundamental for the performer to be
able to manipulate a puppet in an expressive way. This real-time inter-action is what makes
digital puppetry possible, and the performer understands this relation as a direct manipu-
lation. The motion energy from the puppeteer should be routed to the performing object
through a chain of units and procedures. In each procedure the data suffers transformations,
for instance the movement produced by the performer is captured into digital signals. These
signals are processed through filters, then scaled and normalized. Finally the signals are
mapped into the performing object establishing the puppet-to-puppeteer control relationship
producing the motion (Fig. 4).



Multimedia Tools and Applications

Fig. 3 Digital Ecosystem - An interoperable multimodal environment for digital puppetry

3.2 Signal flow

The interaction designer must choose the best strategies to extract meaningful data from the
multitude of signals/devices available for capturing the motion of the performer. Today, all
sort of devices provide some kind of sensing capability. Reading these sensors is now triv-
ial with all sorts of Internet of Things (IOT) techniques. These sensors and devices can be
combined in a network of signals providing powerful means of digital manipulation. In this
way, it is important to develop a model capable of converging these signals providing meth-
ods to synchronize them, and extract meaningful data, as well, to process and route these
signals to the desire actions and applications. Rather than thinking in specific interaction
methods (i.e. press button, move the mouse), we could treat all data as abstract but nor-
malised digital signals (1 to 0). These signals can be processed and mapped to specific tasks
in a variety of tools. In this way, the model will be functional with today’s technologies or

Fig. 4 Action > InterAction - real-time feedback is fundamental for the performer’s acting



Multimedia Tools and Applications

with the next generation devices. Humans can interact with computers with a multitude of
senses, which requires certain cognitive skills. Technology is advancing towards a omni-
sensing, to a multitude of input sensors providing the most rich and natural interaction. A
multimodal approach can extend the interaction experience. Thus, rather than restricting
users to interact with limited input devices available or with just one specific application, we
can combine input devices from several applications/computers and share these resources
among an interoperable network environment. This also applies to the outputs, and to the
performing objects in particular, which can assume many different forms. Thus, using a sim-
ilar interoperable approach it would be possible to take advantage of distinct animation tools
to render a specific performing object and then, combining all performing objects together
in another application. Hypothetically we could combine a 2d animation program with a
word processing application and overlap them, creating a puppet above a text scenario.

3.3 Generic device

Signal abstraction presents an important paradigm for creating a flexible and scalable envi-
ronment. This signal abstraction could be supported by a generic device. The concept of
generic purposes devices is not new, and many authors have been studying devices and
interaction models to support and enhance the user manipulation. Ed Anson [1] presented
a device model for interaction based on objects that a user can handle directly to create the
feeling that he is manipulating things. This concept is based on states, events, and actions.
Ed Anson compares devices to programming variables in the sense that both report val-
ues or states that can be tracked and manipulated through user actions. In this way, it is
possible to think in abstract devices for generic purposes, and although a specific device
may be unknown in advance, its features can be connected and tuned. An interactive sys-
tem can be designed by defining the features that are required for specific tasks and by
defining their interconnections. This modular concept is simple, and well structured. On the
other hand, virtual devices are software device abstractions implemented in the operating
system. These software-based devices can be used to create composite devices combining
software and hardware devices. These abstract devices act as an interface between other
devices and applications, as an intermediary between the type of the device and the interac-
tion method itself. They present some limitations extending the hardware input devices [7].
Card et al. [4] based on the Mackinlay work developed tools to describe the semantics of
a device measuring its expressiveness. He employed the human performance theories to
evaluate effectiveness of points in the design space. They have presented the notion of com-
posite operators, where one input is connected to another input generating a different setting
with three distinct composite operators: the merge composition, the layout, and the connect
composition. The merge refers to the combination of devices through a cross product, the
layout composition groups the two devices without exchanging their input domains, and the
connect composition referes to the mapping of the output domain of one device into the
input domain of another device. This architecture provides the basis for a simple interac-
tion system. The term mapping is thus used as the computation of control values, and these
values depend on the incoming data and state machines. The incoming data from devices
is then mapped to specific features on the puppet. This mapping is defined by the designer
that specifies how this signal is going to be interpreted and connected. However, the map-
ping process presents logical and artistic problems. The interaction designer cannot make
arbitrary connections between a pair of input and output signals without any reasoning and
expect a perfect match, that meets the objectives of the puppeteer. It is fundamental to estab-
lish logic connections between signals, where its nature depends on a particular device,



Multimedia Tools and Applications

Fig. 5 Signal flow model for a generic interaction, user input signals are processed through the physical
interface and mapped through the virtual interface to the performing object

and combine this decision with a broader artistic intentions from the puppeteer towards its
specific context (Fig. 5).

3.4 Requirements

It is important to identify the major requirements for the design of a digital puppetry generic
framework based on input and output abstraction. This framework should allow non-expert
programmers to easily create, analyze and tune the mappings in real-time through a creative
iterative process, providing the appropriate feedback to the user. The workflow should focus
on the logic and semantic programming rather than on the device issues. It should provide
interchangeable devices, and reuse the mappings in an ecological thinking. The ecological
thinking concept is based on the way designers can recycle old device controllers and appli-
cations that were built, with other purposes than those from the digital puppetry, as well as
the reuse of mappings as being a part of the ecosystem, as a creative process itself. This
framework should not focus on specific devices neither specific puppet types, but rather
support reusable modules, and provide a generic mapping design. The major requirements
for this framework are: flexibility, usability, scalability, extensibility. The framework should
also fulfil the following requirements: cross-platform, open source, readily-available device
communication protocol, and with a visual-programming paradigm.

– Usability: can be seen as the technical skills that are required for the user to produce
the necessary changes on the system, as well as the speed he establishes and tests a
new mapping setup. The system should be highly interactive, avoiding scripting and
providing instant feedback without depending on code recompilations every time the
user makes a change. A graphical user interface presents the ideal iterative environment
for exploring creative mapping in real-time, for changing the parameters interactively,
and to establish their interdependencies.



Multimedia Tools and Applications

– Flexibility: to provide a highly flexible environment such as those that we can find in
traditional programming languages. On the other hand, these traditional programming
environments do not present the most intuitive interface in terms of usability, in particu-
lar for non-programming users. Thus, it would be preferable to combine a visual-based
authoring environment with the unlimited computational features of programming lan-
guages that could run in-between input devices and animation applications. There are
several visual-based programming environments that support multiple input devices
such as TouchDesigner, Pure Data or Node-RED. These tools share the same iterative
paradigm based on graphs using a data-flow approach, where nodes or computa-
tional units process and generate output data from the input data. These nodes can be
combined and establish complex mappings through a network of simple mappings.

– Extensibility: to support new features added through external plugins or scripts and
extend the system’s functionalities. This can be achieved by loading dynamic shared
objects at runtime or implementing a script interpreter such as Lua or Python. This
architecture allows adding new node functionalities without the need to recompile the
code, acting as runtime extensions. These extensions should follow some specifications,
such as the number of inputs and outputs, as well as the data type. With this approach,
it would be possible to create new operator nodes as well as to define their data types.

– Interoperability: The framework should be able to establish a conversation between
distinct applications and devices and act as an interface. A middleware agent that
extends the functionalities of applications and devices by combining them in a digi-
tal ecosystem. One single environment might present limited functionalities in certain
domains or even lack of the desired features. What if these required features could be
borrowed from other applications? This framework could unite all the resources avail-
able in our computational environment, being hardware or software, located in our
local computer or distributed among the network. To enable interoperable operations,
the framework should be supported by a communication protocol. Open Sound Con-
trol (OSC) is one of the most popular high-level protocol that runs through UDP/IP and
TCP/IP. This transport independent protocol is available in a wide range of multimedia
applications, allowing the user to specify its custom messages through a name space
similar to the Uniform Resource Locator (URL) structure. The advantage in customiz-
ing the messages provided by this open standard is clear, but this customisation can
also present compatibility problems. The lack of a standard namespace prevents appli-
cations and devices from an immediate communication. In this way, it is not possible
to establish a dialog between unknown applications or devices without a first contact,
without establishing their syntax rules. Thus, it would be desirable to establish uni-
form namespaces or common guidelines for compatible purposes [18]. OSC provides
communication and resource sharing across multimedia applications and devices.

– Scalability: To be able to grow when needed. By using the network environment we can
connect multiple computers and mobile devices and expand the workflow. In this way,
it is possible to create a collaborative play, where each computer acts as an instrument
of a digital orchestra. It also contributes to decrease the computation power in each
node, distributing the tasks through the available resources. The OSC protocol could be
used to support the scalability. One OSC message could be sent to distinct applications
within the local computer, or within a network of computers if available. The system
grows by adding more devices to the network adjusting the system resources to the
project requirements. This modular workflow based can be used in the hardware dimen-
sion, as well in the software dimension. By adopting the same logical workflow and
communication protocol, such as the OSC, in the authoring environment as the internal



Multimedia Tools and Applications

messaging system, the same message used to control an external device can be used
to control and change states in the authoring environment itself. This transparent envi-
ronment allows the same message to flow within the entire ecosystem. There are other
data-flow methods capable of transporting generic information such as JSON, but its
not supported by many animation packages. A scalable and flexible model contributes
to an efficient system. Each computer becomes a node in this modular framework and
expands the interaction capabilities, and the computational power.

3.5 Node-base programming (String-based)

Each digital puppetry performance requires specific mapping schemes that can be pro-
grammed through predefined operator nodes, or computation units. These nodes are
building blocks designed to solve common mapping problems, such as value interpolation,
scaling functions, or other mathematical operations. Typically in a node-base program-
ming the user is free to connect nodes and define his own logic and data flow. This visual
approach, presents a transparent and intuitive programming for establishing a semantic map-
ping. However, these environments presents limitations and constraints, in particular when
handling with complex and long programs. This programs can be confusing, difficult to
debug, or to manage sequences in time, such as triggering cues in a specific order. An impor-
tant aspect to consider, when using these environments through the network, is to facilitate
the device discovery and establish automatic connections. Connecting multiple devices can
be time consuming. To speed up this process, we can use techniques such as Zero Con-
figuration Networking (Zeroconf1). This set of techniques, which are based on the Internet
Protocol (IP), provide automatic discovery of namespaces, and IP addresses on a network,
without the need for user manual intervention. Zeroconf automatically manages the port
allocation and distributes the data to the available clients on the network without requir-
ing previous knowledge about the network settings. In this way, connecting all devices with
virtual “strings” can be fast and easy.

3.6 Node-based environments

There are multiple node-base environments that fulfil partially the requirements presented
previously. They demonstrate the relevance of the transparent, modular, and visual approach
environments, in particular the use of the data-flow paradigm. There are many free and
cross-platform environments such as NodeBox or Fugio. Node2 box is a visual program-
ming environment based on Python for creating visuals developed by Frederik De Bleser
and Tom De Smedt [2]. It supports OSC as an experimental feature, requiring to enable the
Device Support. Another flow-based programming environment for creativity that supports
OSC is Fugio3, a tool developed by Alex May oriented for projection mapping and video
streaming. On the other hand the evolution of the Web technology transformed the Internet
browsers from simple hypertext navigators into powerful tools. Browsers are now able to
support features that were only possible with stand-alone applications years ago. It is now
possible to edit video or work in 3D environments Online inside a browser and in a collab-
orative way. Browsers provide a natural cross-platform environment and can be accessed

1Zeroconf web site – http://www.zeroconf.org
2Node Box 3: https://www.nodebox.net/node/
3Fugio Web site: https://www.bigfug.com/software/fugio/

http://www.zeroconf.org
https://www.nodebox.net/node/
https://www.bigfug.com/software/fugio/


Multimedia Tools and Applications

from any device. There are multiple advantages in using Web technology, even though there
are still many limitations and constraints such as compatibility and performance issues.
Many Flow-based programming (FBP) environments run in a browser, such as NoFlo, RPD,
or Node-RED. NoFlo is a flow-based programming environment for JavaScript that works
above the asynchronous programming library Node.Js. NoFlo is a library to develop flow-
based programs in JavaScript and there is a component for working with the OSC protocol.
Another visual programming environment for the Web is the RPD4, which stands for Reac-
tive Patch Development. It is a node-based user interface based on the Funcional Reactive
Programming (FRP) library Kefir.js. It provides multiple rendering styles or interface skins
that simulate the Quartz Composer or Pure Data visual environments. Node-Red5 is another
flow-based programming for the Internet of Things (IoT). Node-Red started to be devel-
oped in 2013 by Nick O’Leary and Dave Conway-Jones from IBM as a proof-of-concept
for visualizing and manipulating mappings. It is a tool for wiring together hardware devices
and applications, built on top of Node.Js. Node-RED is now open-source, and supports OSC
through a third party extension.

These environments respond to most of the requirements such as being open-source,
cross-platform, developed with a visual-programming paradigm. However, none of them
presents a truly OSC-based environment, making use of the URL scheme as their internal
data flow syntax to communicate among all types of nodes. Some environments sup-
port OSC messages which are converted to their specific data flow, and so, you can send
and receive messages. However, if the system integrates OSC as its own messaging sys-
tem, you could also send control messages. In this way, it would be possible to control
the entire environment remotely, becoming a truly transparent ecosystem. This aspect
is determinant to achieve a transparent and abstract framework compatible with multi-
ple creative tools that already support this protocol, such as the IanniX [5]. A graphical
open-source sequencer for digital art, that generates OSC signals sent as control events
to manipulate graphics and produce sounds in all sorts of applications that support OSC.
Even though there are no digital puppetry dedicated authoring environments, it is possi-
ble to produce performance animation with game engines (Unity3D, Unreal Engine), 3D
animation packages (Motionbuilder, iClone), or with interactive visual tools (Touchde-
signer). Some of these tools gather functionalities previously identified as requirements,
however, none them presents an abstract and transparent framework directly. Thus, it is
necessary to develop a new environment from scratch that acts as a middle layer, dia-
loguing with different interlocutors, capable of integrating distinct technologies, as well as
functionalities.

4 Puppet tools - An interoperable environment

Based on the mapping model, an interoperable system was implemented with a set of tools
developed in C++ and C# programming languages. These units constitute the modular mar-
ionette ecosystem known as the Puppet Tools. They are a combination of “middleware”,
“software”, and “plugins” that work together in a sort of orchestra. These tools, “talk” to
each other through a network of virtual wires creating an interplay of signals, as strings from

4RPD Web site: https://shamansir.github.io/rpd/
5Node–RED web site: https://nodered.org

https://shamansir.github.io/rpd/
https://nodered.org


Multimedia Tools and Applications

Fig. 6 Pull-The-Strings ecosystem - A control space based on small apps connected with virtual strings that
link the performer to the puppet

a marionette controller. It is possible to run the same tool in several computers and distribute
the computation power, or share resources from each system in a collaborative play.

These tools were designed to facilitate the sharing of resources among devices and appli-
cations, as well to route and process signals and to orchestrate the data flow (Fig. 6). The
Puppet Tools communicate together through OSC using automatic feature discovery facili-
tating the connection and resource sharing. These tools are divided into three categories: 1)
Input strings; 2) Output strings; 3) Orchestration strings.

1. The input strings establish the connection to input devices extracting their signals. They
are middleware apps that capture the inputs of the performer, from voice to full body
capture;

2. The orchestration strings handle the data-flow, allow the user to establish the mappings.
These tools are responsible for tying up the virtual strings to external engines. They
are applications that receive the input strings and manage the data flow. These apps
generate, modulate, and route signals, as well as establish the connection with external
engines such as Unity3D;

3. The output strings are attached to performing objects and make them move and feel
alive. These apps produce the animation and the audiovisual result allowing the cre-
ation of a virtual puppet show. The output strings materialize the signals coming from
the orchestra into moving images, sound, lights, cameras and all the motion data that
constitutes a virtual puppet show. These strings, can be wrapped into a puppet show
animation engine, or distributed through a set of modular apps that handle the audio
and the visuals.

To demonstrate this interoperable environment, a set of Puppet Tools were initially
designed supporting the proposed modular framework (Table 2). Some of these tools were



Multimedia Tools and Applications

Table 2 Puppet tools: applications that support the interaction model

String type Name Description

Mapping and orchestration strings Pull-The-Strings (PTS) Marionette programming engine

Stringless (STS) Interface for different applications

Script IT (SCP) Script for show control

Input Strings Leap IT (LS) Hand String: Leap Motion

Wiimote IT (WS) Hand String: Wii remote

Move IT (MS) Hand String: Move controller

Touch IT (OS) Hand String: Touch surface

Kinect IT (KS) Body Strings: Depth sensor

Face IT (FS) Face Strings: Video camera

Speak IT (SS) Voice Strings: Microphone

Think IT (IS) Brain Strings: BCI device

Output strings Show IT (SWO) Puppet show animation engine

already released and are available for download at the Virtual Marionette6 Web site or at the
Github repository7.

Digital signals flow through this ecosystem of tools, a network of applications that can
run in parallel in one or several machines acting as one unique system. The data can be
synchronized, mixed, or combined in a scalable and generic way. In this way, it is possible
to connect new computers or devices acting as nodes of the same engine.

4.1 Pull-The-Strings (PTS) - The marionette programming engine

Visual Programming Languages (VPL) have been developed for a long time. Environ-
ments such as the GRaIL (GRaphical Input Language) system from 1968 provided the
first intimate interface experience for users to interact with, which are appropriate for
non-programmers. Visual programming languages are based on data-flow. Flow-Based Pro-
gramming (FBP) is a component-oriented paradigm where applications are designed and
developed by linking blocks of processes in a chain. It was invented or “discovered” by
Paul Morrison in the early 1970’s [14]. Rather than sequential processing, FBP is based on
a network of asynchronous processes that communicate through streams of data chunks,
or information packets (IPs). The way the data flows through these blocks or components
defines the logic of the program. In FBP the data packets have a defined lifetime, named
ports, and separate definition of connections. FBP is based on asynchronous processes that
flow as chunks of data from node to node. A visual flow-based programming provides an
environment where the programmer connects reusable components together inside a graph
through “strings”. Graphs provide an appropriate model for prototyping ideas. Humans
respond faster and better to visual impulses and can recognize certain visual aspects very
quickly. This aspect was verified by Rudraraju’s [15] from observations of using a particular
visual mapping software, the Vizmapper. After some time of experience, users do not need
to pay attention to textual labels because of the visual arrangements. While graphs provide

6Virtual Marionette website: http://virtualmarionette.grifu.com
7Puppet Tools Github repository: https://github.com/grifu

http://virtualmarionette.grifu.com
https://github.com/grifu


Multimedia Tools and Applications

a visual medium for solving logical problems, interactive graphs provide an ideal sand-
box for experimentation and real-time prototyping. This seems to be the most appropriate
environment for the digital puppeteer to design its mappings.

Pull-The-Strings (PTS) is inspired by Flow-based programming (FBP) which promotes
code reuse, and combines it with a visual programming environment providing intuitive
coding. It was developed as a modular system where the programming is made through a
chain of nodes of processes, that act as building blocks. The designer connects these black
boxes through strings to exchange data and establish the program logics. They can connect
these nodes in many different ways to produce distinct behaviors.

Pull-The-Strings (PTS) (Fig. 7) is a central application in the proposed ecosystem, a
virtual marionette programming approach. It is an authoring environment for processing,
routing and mapping signals from the puppeteer to the puppet. A framework for artists
without programming experience, inspired by the strings from the marionette controller and
the patch cords from the video synthesizers. By pulling the strings from node to node, the
artist establishes semantic connections, thus constituting a real-time programming paradigm
that supports easy prototyping.

Pull-The-Strings environment is based on well-defined tasks presented as black box
components. These components can be connected with each other in several ways creating
different semantics. In this way, the components are being reused. This authoring environ-
ment can be consider as a digital mediator between devices and applications providing the
logics for the digital puppeteer to establish the manipulation metrics. Developed in C++
using Openframeworks, it was designed with a minimalistic, but intuitive interface, and
designed as a OSC-based system to achieve a transparent environment. The internal data-
flow is based on OSC, and all nodes communicate through this message format internally.
The nodes respond in a similar manner if the message is received from an internal node,
as well from an external device. In this way it is possible to control nodes from external
applications creating a transparent and scalable environment. It supports Bonjour protocol

Fig. 7 Pull-The-Strings is a virtual marionette programming environment



Multimedia Tools and Applications

Fig. 8 PTS presents operators for capturing, processing and routing signals using the strings of a marionette
as metaphor

to facilitate device and App discovery (i.e. TouchOSC). It is possible to access and control
the program features through remote applications, for instance using the RemoteUI. PTS
presents many operators (nodes) that help the artist to trace the signals (show.plot) to gener-
ate animation (timeline), to process the signals (math operators), or to connect directly input
devices (leap motion) (Fig. 8).

Pull-The-Strings was built from multiple Openframeworks add-ons. The main applica-
tion data-flow environment was based on the ofxDuct. Other components were produced
with the help of add-ons such as ofxRemoteUI.

A complex programming environment should provide a transparent and direct way of
manipulation. The graphical user interface hides all the complexity giving the sensation to
the user, that he is handling directly the task (problem). The design of the graphical user
interface of this environment provides good signifiers for the application affordances. It
allows the user to create, save and load projects, as well as to create, delete and change
operators, or to navigate through the canvas. The major operator nodes of PTS can be found
in Table 3.

4.2 Stringless for unity - Flexible mapping framework

A Puppet Tool that plays an important role as a bridge between input devices, Pull-The-
Strings, and game engines is Stringless for Unity 3D. Stringless for Unity 3D (Fig. 9 - Left)
is a remote-control interface that works over the network - an open source flexible mapping
framework. This plugin was built for controlling and exposing generic properties of objects
using remote devices and applications that support OSC. It provides the GUI to facilitate
the mapping procedure, and hopefully facilitate the mapping procedure for non-expert pro-
grammers that can easily establish control semantics and link a specific device feature to
an object property. For instance, to map a virtual camera orientation to a gyroscope in a



Multimedia Tools and Applications

Table 3 Pull-The-Strings node operators

Operator node Description

input.number Creates a Float or Int value

input.string Creates a string value

input.mouse Captures and sends the mouse X,Y coordinates

Input.XY Sends a XY coordinates that can be manipulated through a UI panel

input.wii Captures and sends the WIImote features (accelerometer, IR, buttons)

math.scale A scalar function with a learning input range option

osc.combine Combines several OSC messages into one, allowing message syncing

osc.expand Expands an OSC message into separated nodes

osc.port.in Opens port for incoming OSC data

osc.port.out Opens port for sending OSC data

math.dot.vec Produces the dot product from two vectors

osc.rename Renames the address of the message

osc.split Splits messages

osc.rec Records the OSC messages into a file

osc.play Loads and reproduces the OSC messages from a file

filter.data Applies signal transformations, noise reduction

timeline.number A timeline for animation that returns a float value

print For debugging, prints in the interface the incoming messages

show.plot Visualize a plot from the incoming values

leapmotion Captures and sends the hand and finger motion from LeapMotion

smartphone device. Stringless provides OSC learn functionality that simplifies the mapping
process avoiding the need to write the addresses manually. It is similar to the MIDI lis-
tening feature employed in music applications. Furthermore, an interactive scale function
was introduced that registers the range limits of objects while the user manipulates them
in the scene view of the Unity editor. Stringless was already implemented in a Hand-based
digital puppetry project to connect the Leap Motion device controller and digital glove
puppets [11].

Fig. 9 (Left) Stringless for Unity - a flexible mapping framework. (Right) Stringless plugin and RemoteUI
application working together



Multimedia Tools and Applications

This plugin uses unityOSC developed by Thomas Fredericks to communicate with other
applications and devices that support the OSC protocol. A triggering method was imple-
mented to allow remote activation and deactivation of the component instances. In this way,
it is possible to orchestrate the play and switch mapping with few instructions. Stringless
supports zero-configuration networking that enables automatic discovery of devices, com-
puters and applications through Bonjour, facilitating the connection by avoiding manual
specification of IP addresses. Furthermore, a remote control protocol was implemented to
facilitate the connection as well as feature discovery. This protocol uses the “ofxRemoteUI”
add-on for Openframworks, developed by Oriol Ferrer Mesià, for controlling variables from
a remote User Interface (UI). Stringless broadcasts its presence through multicast, sending a
list of available parameters for remote manipulation identifying their type, value and range.
All the parameters are automatically setup in the client UI application (i.e. (Fig. 9 - Right)).
In this way, it is possible to control all the available parameters even without knowing its
addresses.

Stringless works above the standard OSC messaging and requires simple setup:

1. Initialize Stringless by dragging OSC to any GameObject in Unity and by setting up
the ports with valid numbers (i.e. 7010)

2. Establish the mapping between the action/object and the message, by dragging the
RCReceiver or the RCSender components to the GameObject. The RCReceiver allows
the control of available features of a GameObject with a OSC message such as from a
TouchOSC fader from an Ipad.

3. Setup mapping between the driver (input signal) and the driven object enabling the
mapping. You can manually setup, or use the learn button for interactively setup. When
learning the values, changes are automatically recorded through interactive modifica-
tion on the inspector or viewport. For instance, moving the object in the viewport to the
extreme positions.

Stringless is limited to the OSC features that are included in Thomas Fredericks Uni-
tyOSC. However, it is easy to improve UnityOSC. It is also possible to integrate a different
OSC communicator such as the Rug.OSC. The Rug.OSC supports IPv4, IPv6, multicast
and broadcast communication, as well as many message argument types including RGBA,
OSC Time-tag, OSC-Midi, Blobs.

4.3 Leap IT and face IT strings

Leap IT String (LS) and Face IT String (FS) were developed as Input Puppet Tools. While
LS focus on hand motion capture, FS refers to face capture. Leap IT is a multi-platform
application that routes the hand motion through OSC. The user is able to choose which joint
or gesture to send through the network.

Leap It is an application for recording and routing hand motion (Fig. 10 - Left) using the
Leap Motion device. It provides the functionality to load motion data files, which can be
useful for users without this device, or to test the motion in the interaction design phase. By
capturing the performer’s gestures during the rehearsals or building phase, the designer can
simulate the performer’s hand motion behavior and explore the interaction, without having
to repeat the gesture. This is particularly useful when working without the performer. The
application presents other functionalities such as the “convert” option, that translates motion
data into a OSC-based text file, which is useful for data analysis. The user can also activate a
scale function to map the hand motion values within a normalized interval between 0 and 1.
In terms of motion data, the application broadcasts the position and orientation of the hand,



Multimedia Tools and Applications

Fig. 10 (Left) Leap IT - Hand strings: A hand motion capture system for Leap Motion. (Right) Face IT -
Face strings: Face tracker adapted from the FaceOSC developed by Kyle McDonald

the position of each finger joint, as well as the pinch gesture, which is based on the thumb
and index finger distance. The messaging structure is defined in a simple and readable URL
style message: /< Which hand >/< joint ID >< values > (i.e. hand orientation: /HandLeft/
PalmOrientation 0.63 0.20 0.56)

An ID number is assigned to each finger as a unique identifier: 0 = Thumb; 1 = Index; 2
= Middle; 3 = Ring; 4 = Pinky. To identify each joint in a finger it was added the name of
the respective phalanges Table 4: TIP = tip of the finger; DIP = Distal interphalangeal joint;
PIP = Proximal interphalangeal joint; CMC = Metacarpocarpal joint.

For example, to identify the thumb proximal phalange of the right hand the OSC message
structure would be: /HandRight/Finger0 pip X,Y,Z.

On the other hand, Face IT (Fig. 10 - Right) is a face tracking application that routes
the main facial features through OSC. It uses the OpenFrameworks ofxFaceTracker addon
developed by Kyle McDonald, which is based on Jason Saragih’s FaceTracker library. Face
IT was adapted from the faceOSC example that comes with ofxFaceTracker extending its
features providing a graphical user interface. The ofxFaceTracker uses ofxCV which is a
OpenCV wrapper for OpenFrameworks [17]

It includes a normalized function to scale all values to a range between 0 and 1. The fea-
tures are sent via OSC and are grouped into three categories (Table 5): 1) pose; 2) gestures;
3) raw.

1. There are three pose features: the position, the scale, and the orientation. While the
position sends a XY screen coordinate, identifying the center point of the face, the scale
sends one float with the size of the face, which can be assigned to the Z coordinate of the
position. The orientation sends the three direction axes (XYZ) where the user is facing;

Table 4 Finger identification table for Leap IT string

Finger name Number Distal Proximal Metacarpocarpal Tip

Thumb 0 Finger0 dip Finger0 pip Finger0 cmc Finger0 tip

Index 1 Finger1 dip Finger1 pip Finger1 cmc Finger1 tip

Middle 2 Finger2 dip Finger2 pip Finger2 cmc Finger2 tip

Ring 3 Finger3 dip Finger3 pip Finger3 cmc Finger3 tip

Pinky 4 Finger4 dip Finger4 pip Finger4 cmc Finger4 tip



Multimedia Tools and Applications

Table 5 Features and correspondent OSC messages sent by Face IT string

Category Description OSC message

Pose center position /pose/position

Pose scale /pose/scale

Pose orientation /pose/orientation

Gestures mouth width /gesture/mouth/width

Gestures mouth height /gesture/mouth/height

Gestures left eyebrow height /gesture/eyebrow/left

Gestures right eyebrow height /gesture/eyebrow/right

Gestures left eye openness /gesture/eye/left

Gestures right eye openness /gesture/eye/right

Gestures jaw openness /gesture/jaw

Gestures nostril flate /gesture/nostrils

Raw points (66 xy-pairs) /raw

2. Gestures present fundamental data about the facial features with a variety of values that
can indicate the facial expressions. For instance, we can identify if the mouth is opened
or closed by analyzing the jaw openness or through the mouth height. All gesture values
are one dimension float value;

3. The extracted raw values provide 66 XY-pairs of useful information about the facial
features, and can be sent directly through OSC.

Messages from both applications can be routed to Pull-The-Strings, to Stringless or used
directly with an application that supports OSC.

5 Pull-The-Strings and stringless evaluation

Configuring a set of tools to work together through the network, even when using just one
computer, may not be trivial, in particular for non-expert users. This research is driven
by the hypothesis that a middleware visual iterative environment, can provide an intuitive
way for non-programming users to establish and test new mappings between puppet and
puppeteer. This hypothesis presents two questions: 1) the complexity degree in connecting
device controllers to applications through an interoperable approach, 2) the intuitiveness of
the mapping process through a Graphical User Interface. Thus, it is important to evaluate
the proposed model comparing a set of tools and methods with experienced and non-
experienced users. Two mapping methods were selected to be evaluated, as well as two
mapping environments to be compared in a digital puppetry workflow:

1. Mapping method: a) through Graphical User Interface (GUI); b) through code.
2. Interoperable environment to support digital puppetry workflow: a) Pure Data environ-

ment; b) Pull-The-Strings environment. Comparing the degree of complexity in setting
up an interoperable environment for digital puppetry, using two distinct middleware
mapping tools that act as an interface: the Pure Data, and the Pull-The-Strings.

The mapping procedure can be resembled to programming, making a scripting approach
a natural choice. However, mapping in digital puppetry requires experimentation, typically



Multimedia Tools and Applications

a trial and error approach. A graphical user interface tends to be more appropriate to an
explorative-based mapping. Furthermore, a graphical user interface is more intuitive than
the traditional scripting approach, which might be more suitable for non-expert users. On
the other hand, when handling with multiple applications and devices simultaneously, it
is desirable to use a middleware interface that is capable of orchestrating and routing the
data in real-time. Multiple mapping environments were discussed early, but there are few
that respond to global requirements such as open-source, cross-platform, compatible with
OSC, stand-alone application, and with a visual-programming paradigm. Pure Data is a
visual programming environment developed mainly to create interactive computer music
that responds to the global requirements. In this way, Pure Data was selected to be the mid-
dleware mapping environment to be compared with the proposed Pull-The-Strings, which
is more oriented to performance animation.

The evaluation measures quantitative aspects in terms of time taken for each mapping
task, as well as parameters, such as level of satisfaction, comprehension, learnability, and
the intuitive level.

5.1 Experiment description

Two experiments were conducted to evaluate the a) interactive model and b) the Puppet
Tools that support the model. A non-probability sampling technique was chosen for both
experiments using a convenience sampling. For comparison purposes, two groups of users
were defined, the experienced and non-experienced users. While the non-experienced users
were students from the first year of multimedia and audiovisual bachelors using the school
computers, the experienced users were students from the third year of the same courses
with their own equipment. The first experiment was conducted with the non-experienced
users, while the second experimented with the experienced group. On both experiments the
users had to follow a digital puppetry methodology by performing four exercises. These
exercises were presented in four tutorials, which were available in a video format on each
computer, and on a printed document. In these tutorials the participants had to produce the
interactive design mapping for a digital hand puppetry performance, in particular mapping
the pinch gesture to the mouth of a 2D puppet, as well as to a 3D puppet using the same
methodology, but with different frameworks. The exercises were time recorded, to compare
how much time each user spent to finish the exercise with a specific framework. Before
each experiment there was a brief explication about the workflow and the exercises. Before
beginning each exercise the participants had to 1) load a recorded hand performance from
the Leap IT string, 2) setup the network connections and 3) start a timer. The first and second
exercises were based on the communication between two applications, Leap IT string and
Stringless for Unity 3D. The third and fourth exercises required the interaction between
three applications, Leap IT string with Animata, combined with Pure Data or Pull-The-
Strings.

1. In the first exercise participants had to map the pinch gesture from Leap IT string to the
blend shapes of the mouth of a puppet inside Unity 3D using the Stringless GUI. This
task required the user to setup the network port and to setup the blend shape parameter
in the GUI.

2. In the second exercise it was asked to the participants to make the same mapping as in
the previous exercise, using the Stringless plugin but through C# code instead of using
the GUI.



Multimedia Tools and Applications

3. In the third exercise the participant had to map the pinch gesture to the mouth bone of
a 2D figure in Animata using the Pull-The-Strings (PTS). First connecting the Leap IT
to PTS, then creating the node patch to send the appropriate messages to Animata.

4. The fourth exercise was similar to the third but using the Pure Data as the mapping
interface middleware.

In this way, it was possible to evaluate the interaction model as well as the distinct frame-
works and tools. The first two exercises compared the same task using the Stringless GUI
or Stringless C# scripting. The last couple of exercises compared directly the Pull-The-
Strings with Pure Data environments. At the beginning of the experiment, the participants
responded to a survey to evaluate their experience with animation and programming. Then,
at the end of each two exercises, the participants had to respond to a questionnaire: reporting
the time taken to finish each task; reporting if the exercises worked at the first attempt, and if
they would use this method in the future; evaluating from 1 (worst) to 5 (best) the following
aspects: intuitive, learning curve, understandable, experience. At the end of the experiment
the participants had to respond to another inquiry about the interaction model itself, with a 1
to 5 classification in terms of the design complexity, if they recognized advantages in using
the proposed model in the future. The expected duration of this experiment was 2 hours
(complete all the exercises, and answer the questionaries).

The first experiment was conducted in a class room with controlled lighting conditions
using four Apple iMac computers with 2 Gbytes of memory and all the software already
installed. The experiment was conducted with non-experienced users, with 7 participants
in pairs and individually with a duration between 1:30 to 2 hours. The age of partici-
pants ranged form 18 to 32 years (M = 21.0, SD = 4.97), 4 females and 3 males. All of
the participants were starting a multimedia bachelor with few experience in animation and
programming.

The second experiment was conducted with the experienced users group in four ses-
sions in different classrooms, with distinct light settings, using the student computers, with
variable setups and a variable number of participants in each session. While some of the
computers were based on the Windows operating system, others were Mac-based comput-
ers. The students had to download, install and configure each tool. There were a total of 25
participants in this experiment with an average age of 23. The students were from the 3rd
year of a bachelor in Multimedia and a bachelor in Audiovisual. The diversity of the stu-
dent’s settings allowed to understand how the tools behave in different setups and evaluate
the system robustness.

5.2 Results

The overall results obtained from these experiences show that users were able to complete
their tasks taking less time with the proposed tools. However, these results are more clear
with non-experienced users, which are the main target. The graph (Fig. 11) shows that the
participants took less time to complete the mappings with the Stringless GUI than with
Stringless C# scripting. While non-experienced users took an average of 4:39 using the GUI,
they needed almost 20 minutes to complete the same mapping with code. This difference
is not so significant with experienced users, taking 5:07 minutes with the GUI and 8:15
with code. There is a significant difference between non-experienced and experienced users
when using the code to establish the mapping, which confirms the hypothesis that GUI is
more intuitive than code. This difference can be seen in the questionnaire, with experienced



Multimedia Tools and Applications

Fig. 11 Results from the two experiments, the blue bars report the values from the non-experienced users,
and the red bars show the results from the experienced users

users classifying the GUI as an intuitive interface with 3.92 against 3.00 when using the C#.
The overall results of learnability, comprehension, and satisfaction from the questionnaire
points that both participants prefer the GUI to develop the mappings, as it is possible to see
in (Fig. 12).

It is also clear that the participants were faster to complete their tasks with Pull-The-
Strings (PTS) than with Pure Data (PD). Again, there are significant differences in the
elapsed time with non-experienced users, spending 6:48 minutes to map Leap IT string to
Animata using the Pull-The-Strings, against 12:14 minutes using Pure Data. This difference
decreases to less than 3 minutes with experienced users. Nevertheless, it is still significant,
and by observing the questionnaire results it is possible to confirm that Pull-The-Strings is
more intuitive, provides a better learning curve, comprehension, and satisfaction than Pure
Data for this type of task (Fig. 13). It is important to clarify that we are comparing different
applications and methods for mapping controllers to animation parameters.

Finally, the non-experienced users recognized clearly the advantages of the model with
an average of 4,86 in 5. The experienced users had also demonstrated that this model
presents advantages for their future work with an average score of 4,08 in 5. On the other
hand, the evaluation of the complexity of the interaction model is always based on the
previous experiences and knowledge, and must be understood as a reference value. Never-
theless, it is interesting to notice that experienced users considered the model more complex
(average of 3,38 in 5) than non-experienced users (average of 2,57). At the end of each
experiment, it was possible to discuss with the participants which improvements they would

Fig. 12 Comparing two mapping methods with experienced and non-experienced users using Unity
Engine: 1) through GUI; 2) through scripting



Multimedia Tools and Applications

Fig. 13 Non-experience and experienced user results comparing the opinion score between: a) Pull-The-
Strings environment; b) Pure Data visual programming

like to be implemented, as well new features for future versions. Some of these aspects were
included in the last Puppet Tools releases that facilitate the mapping process.

6 Conclusion

The proposed interaction model for digital puppetry allows artists to think in terms of signal
flow and help them to create meaningful mappings. A framework was developed to support
the interaction model based on the fowling requirements: usability, flexibility, extensibility,
and scalability. In terms of usability, the framework was designed as a visual iterative envi-
ronment allowing non-programming users to establish and test new mappings in a fast and
intuitive way. The node-based approach offers flexibility for prototyping. The architecture
is extensible, providing a method for adding new functionalities without the need to recom-
pile the code. An interoperable middleware agent was designed to extend the functionalities
of applications and devices by combining them in a digital ecosystem. Finally, the system
is able to grow when needed, taking advantage of the network environment and the Internet
of Things, offering scalability. As a result, it is possible to connect multiple computers and
mobile devices, expanding the workflow and creating a collaborative play, where each com-
puter acts as an instrument of a digital orchestra - one marionette controller that expands the
manipulation capabilities.

The proposed workflow focus on logic and semantic programming rather than on hard-
ware issues. It provides interchangeable devices and allows the recycling of mappings in an
ecological thinking. This workflow is supported by a set of Puppet Tools, based on Open
Sound Control (OSC) that were developed as a proof of concept. Designed as middleware,
the Puppet Tools act as gears of a controlling mechanism extending the functionalities of
applications. These tools were evaluated and compared with other frameworks. The results
show that users were able to complete their tasks in less time with the proposed methodology
using the Puppet Tools. The results also point to the relevance of this interoperable mapping
approach in the production of animation. These open-source tools have been already used by
artists to explore digital puppetry and create digital storytelling. Pull-The-Strings facilitates
the collaborative process of creating novel and alternative experiments using multi-sensorial
digital puppetry techniques and recycle device controllers that are obsolete. It provides a
customised and personal environment for performance animation, where the artists are free
to combine and choose their favorite tools and devices. Hopefully, this approach will stimu-
late storytellers to design, create and perform exciting digital puppet plays in real-time, and
explore their imagination by producing fictional content turning their dreams into a reality
- an alternate reality.



Multimedia Tools and Applications

References

1. Anson E (1982) The device model of interaction. In: Proceedings of the 9th annual conference on
computer graphics and interactive techniques. ACM, New York, pp 107–114

2. Bleser FD, Smedt TD, Nijs L (2002) NodeBox
3. Bodenheimer B, Rose C, Rosenthal S, Pella J (1997) The process of motion capture: Dealing with the

data. In: Thalmann D, van de Panne M (eds) Computer animation and simulation ’97: Proceedings of the
eurographics workshop in budapest, Hungary, September 2-3, 1997. Springer Vienna, Vienna, pp 3–18

4. Card SK, Mackinlay JD, Robertson GG (1990) The design space of input devices. In: Proceedings of the
SIGCHI conference on human factors in computing systems. ACM, New York, pp 117–124

5. Coduys T, Ferry G Iannix: Aesthetical/Symbolic visualisations for hypermedia composition. In:
International conference sound and music computing, The Hague, Netherlands, pp 194–196

6. Francis P (2011) Puppetry: a reader in theatre practice. Readers in theatre practices palgrave macmillan
7. Hinckley K, Wigdor D (2012) Input technologies and techniques Jacko J (ed)
8. Jacob RJK, Girouard A, Hirshfield LM, Horn MS, Shaer O, Solovey ET, Zigelbaum J (2008) Reality-

based interaction: A framework for post-WIMP interfaces. In: Proceedings of the SIGCHI conference
on human factors in computing systems. ACM, New York, pp 201–210

9. Leite L (2018) Virtual Marionette: Interaction Model for Digital Puppetry. Ph.D. thesis. University of
Porto, Porto

10. Leite L, Amândio A (2020) Solitária - Gestural Interface for Puppetry Performance. In: International
conference on live interfaces. trondheim, Norway

11. Leite L, Orvalho V (2017) Mani-pull-action: Hand-based digital puppetry. Proc ACM Hum-Comput
Interact 1(EICS):2:1–2:16

12. Leite L, Torres R, Aly L (2018) Common spaces: Multi-modal-media ecosystem for live performances.
MATLIT Materialities of Literature 6(1):187–198

13. Leite LM, Lafontana M (2016) Digital theatrograph: Cinematographic puppetry. In: Proceedings of the
1st international workshop on multimedia alternate realities. ACM, New York, pp 3–8

14. Morrison JP (2013) Flow-Based Programming application developers’ news (1)
15. Rudraraju V (2011) A Tool for Configuring Mappings for Musical Systems using Wireless Sensor

Networks. Chulich School of Music McGill University pp 1–90
16. Walther-Franks B, Malaka R (2014) An interaction approach to computer animation. Entertainment

computing, Elsevier, pp 1–37
17. Wang Y, Lucey S, Cohn JF, Saragih J (2010) Non-rigid face tracking with local appearance consistency

constraint. Image and Vision Computing 28(5):781–789
18. Wright M, Freed A, Lee A, Madden T, Momeni A (2001) Managing complexity with explicit mapping

of gestures to sound control with OSC. In: ICMC

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Pull-the-strings
	Abstract
	Introduction
	Design space for digital puppetry
	Reality interaction space
	Digital puppetry mechanics
	Digital puppetry interaction design

	Generic interaction model
	Digital ecosystem
	Signal flow
	Generic device
	Requirements
	Node-base programming (String-based)
	Node-based environments

	Puppet tools - An interoperable environment
	Pull-The-Strings (PTS) - The marionette programming engine
	Stringless for unity - Flexible mapping framework
	Leap IT and face IT strings

	Pull-The-Strings and stringless evaluation
	Experiment description
	Results

	Conclusion
	References


