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Abstract
Machine learning models have become increasingly popular for predicting the results of 
soccer matches, however, the lack of publicly-available benchmark datasets has made 
model evaluation challenging. The 2023 Soccer Prediction Challenge required the predic-
tion of match results first in terms of the exact goals scored by each team, and second, in 
terms of the probabilities for a win, draw, and loss. The original training set of matches and 
features, which was provided for the competition, was augmented with additional matches 
that were played between 4 April and 13 April 2023, representing the period after which 
the training set ended, but prior to the first matches that were to be predicted (upon which 
the performance was evaluated). A CatBoost model was employed using pi-ratings as the 
features, which were initially identified as the optimal choice for calculating the win/draw/
loss probabilities. Notably, deep learning models have frequently been disregarded in this 
particular task. Therefore, in this study, we aimed to assess the performance of a deep 
learning model and determine the optimal feature set for a gradient-boosted tree model. 
The model was trained using the most recent 5 years of data, and three training and valida-
tion sets were used in a hyperparameter grid search. The results from the validation sets 
show that our model had strong performance and stability compared to previously pub-
lished models from the 2017 Soccer Prediction Challenge for win/draw/loss prediction. 
Our model ranked 16th in the 2023 Soccer Prediction Challenge with RPS 0.2195.
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1 Introduction

Soccer, also known as “Association Football” or ”Football”, is widely recognized as the 
most popular sport worldwide in terms of both spectatorship and player numbers. As a 
generally low-scoring sport, especially at the professional level, small goal margins, com-
petitive leagues, and draws being a common outcome make predicting soccer match results 
a challenging task (Bunker & Susnjak, 2022; Yeung et  al., 2023), especially when only 
goals are available in the dataset (Berraret al., 2019). The inherent unpredictability of out-
comes is, of course, one of the primary reasons soccer attracts such a large number of fans. 
Despite its challenging nature, given the popularity of the sport, there is a wide range of 
stakeholders who are interested in the prediction of soccer match results including fans, 
bookmaking companies, bettors, media, as well as coaches and performance analysts.

Models for predicting match results have traditionally emerged from mathematical 
sub-disciplines, including statistics (Maher, 1982; Dixon & Coles, 1997) and operations 
research (Hvattum & Arntzen, 2010; Wright, 2009). With the rise of machine learning 
(ML) in the last two decades, ML models have gained traction as a prevalent method for 
predicting soccer match outcomes. The lack of publicly-available benchmark datasets has, 
however, meant that it has been challenging for researchers to evaluate their results against 
other studies. Match features used in models, which are derived from events that occur 
within matches, are often contained in vendor-specific event data streams that are gener-
ally only available to professional teams (Decroos et  al., 2019). The Open International 
Soccer Database (Dubitzky et al., 2019), despite not containing such match features, has 
enabled researchers to compare their models in a like-for-like manner on a large number 
of soccer matches (over 216,000 matches across 52 leagues). The 2017 Soccer Prediction 
Challenge (Berrar et  al., 2019) was held, with participants using the Open International 
Soccer database to predict 206 unplayed matches. Some of the top-ranked participants in 
the 2017 Soccer Prediction Challenge used gradient-boosted tree models and/or rating fea-
tures (Berraret al., 2019; Constantinou, 2019; Hubáček et al., 2019), which suggested that 
condensing a wide range of historical match information into ratings was of benefit, as 
was using the accuracy-enhancing benefits of boosting. Subsequently, other studies (Razali 
et al., 2022, 2022; Robberechts & Davis, 2019) have used the Open International Soccer 
Database, in some cases improving upon the 2017 challenge results (Razali et al., 2022).

Deep learning has, over the past few years, gained in popularity for the prediction of 
match results in soccer, given its success in many domains including computer vision, tra-
jectory analysis, and natural language processing. In soccer, deep learning has been helpful 
in predicting the locations and types of subsequent events (Simpson et  al., 2022; Yeung 
et al., 2023), the outcomes of shots (Yeung & Fujii, 2023), and in using match video to 
detect and track players and/or the ball, to detect events, and to analyze matches Akan & 
Varlı (2023). Two types of models have thus emerged as potential state-of-the-art models 
for predicting sports match results. This study investigates both of the two approaches: deep 
learning, discussed in Sect. 3.1, and boosted decision tree models, discussed in Sect. 3.2.

A subsequent soccer prediction challenge competition was held in 2023,1 using a simi-
lar dataset. However, unlike the 2017 Soccer Prediction Challenge, the 2023 competition 
required two tasks, the first of which, “exact score prediction,” involved predicting match 

1 https:// sites. google. com/ view/ 2023s occer predi ction chall enge.

https://sites.google.com/view/2023soccerpredictionchallenge
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results in terms of exact goals scored (for each team), and the second, “probability predic-
tion,” involved prediction in terms of the probabilities for a win, draw, and loss.

In the current study, initially, consistent with Razali et  al. (2022), a CatBoost model 
(Prokhorenkova et al., 2018) with pi-ratings (Constantinou & Fenton, 2013) as the model 
features were found to be the best-performing model for win/draw/loss probability predic-
tion. The Pi-Ratings is a rating system dedicated to dynamically evaluating soccer team 
performance. It factors in recent matches, home advantage, and the significance of winning 
over score margins. However, to explore the potential of deep learning models for match 
result prediction in soccer, we then developed a deep learning-based model for win/draw/
loss probability prediction that utilizes a combination of cutting-edge techniques. Specifi-
cally, the proposed method incorporates modules from the TimesNet time series model 
(Wu et al., 2022), Transformer, a neural language processing model (Vaswani et al., 2017), 
and a neural network. The specifics regarding the dataset utilized and model training for 
the 2023 SoccerNet Prediction Challenge were outlined in Sects. 4.1 and 3, respectively. 
The results from the validation sets show that our model outperformed all previously pub-
lished models from the 2017 Soccer Prediction Challenge for win/draw/loss probability 
prediction. All methods and experiments were conducted prior to the submission deadline 
of the 2023 Soccer Prediction Challenge, with the exception of Sect. 4.4. The ranking and 
performance metrics for the prediction challenge were provided by the organizers subse-
quent to the submission deadline.

The main contributions of this study are as follows. First, we reviewed features that 
had been utilized in previous studies and proposed a method to select the feature set 
with the highest information gain and lowest inter-correlation. Second, we proposed 
the Inception+TE+MLP model, a deep-learning model that was preferable in soccer 
match result prediction to the existing models. Third, the proposed deep learning model 
Inception+TE+MLP was compared with existing models, and real-world data were used 
to evaluate the approach’s effectiveness. Finally, this paper served as the technical report of 
the 2023 Soccer Prediction Challenge.

The remainder of this paper is organized as follows. In Sect. 1.1, we describe the two 
tasks of the 2023 Soccer Prediction Challenge. Then, in Sect. 2, we discuss research related 
to the current study. Including the existing literature related to the 2017 Soccer Prediction 
Challenge, as well as studies subsequent to the competition that also used the Open Inter-
national Soccer Database. Afterward, we detail the two approaches used in this study for 
soccer match result prediction in Sect. 3. Following this, the experimental results are pre-
sented and discussed in Sect. 4. Finally, the paper is concluded in Sect. 5.

1.1  2023 Soccer prediction challenge

As mentioned in the introduction, the 2023 Soccer Prediction Challenge made available 
to participants a dataset similar to that of the 2017 competition to train their models. This 
training dataset comprised match results from 51 soccer leagues from 2001 to April 4, 
2023, encompassing a total of over 300,000 matches. The dataset of matches to be pre-
dicted included 736 matches from 44 leagues, spanning the period from April 14 to April 
26, 2023. Within these datasets, nine distinct features were provided: the season, league, 
date of the match, names of the home and away teams, the goals scored by the home and 
away teams, the difference in goals scored between the home and away teams, and the 
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outcome of the match(win/draw/loss). Participating contestants were granted the option to 
leverage supplementary publicly available data. As mentioned in the introduction, the 2023 
Soccer Prediction Challenge necessitated the completion of two distinct tasks: exact score 
prediction and probability prediction.

Task 1: Exact scores prediction Predicting match results based on the exact goals 
scored by the home and away teams was a task introduced in the 2023 competition, which 
was not required in the 2017 competition. The evaluation metric used for Task 1 was the 
Root Mean Squared Error (RMSE), which is defined as follows:

where N denotes the total number of data points, yi denotes the actual observed values, and 
ŷi represents the values predicted by the model. Models with a lower RMSE are preferred.

Task 2: Probabilities prediction The prediction of match results based on win, draw, 
and loss probabilities, which was the sole task in the 2017 Soccer Prediction Challenge, 
was the second task in the 2023 competition. The evaluation metric used for Task 2 models 
was the Ranked Probability Score (RPS) (Epstein, 1969; Constantinou & Fenton, 2013), 
which is given by:

where r denotes the number of potential match outcomes (e.g., r = 3 if there are three pos-
sible outcomes: home win, draw, and away win). The RPS values always lie within the 
interval [0, 1], with a lower RPS indicating a better prediction. In particular, an RPS value 
of 0 indicates a perfect prediction by a model, whereas a value of 1 represents a prediction 
that was completely incorrect.

2  Related work

In this section, we review related research on deep learning for match results prediction in 
soccer and also studies that have used the Open International Soccer Database (Dubitzky 
et al., 2019) to build their models.

Despite its successful application in a number of application domains, there are still 
relatively few studies that have applied deep learning models for soccer match result pre-
diction. Danisik et  al. (2018) used an LSTM model to predict soccer match outcomes, 
comparing classification, numeric prediction, and dense approaches, and also with base-
lines based on the average random guess, bookmaker odds-derived predictions, and home 
win (the majority class). Data from the English Premier League was used, and player-level 
data was obtained from the FIFA video game for the classification and numeric prediction 
approaches. The average accuracy obtained with the LSTM regression model was 52.5%. 
Jain et al. (2021) used Recurrent Neural Networks and LSTM networks for soccer match 
result prediction. Using English Premier League data, the authors manually engineered 
several relevant features, e.g., winning and losing streaks, points, and goal differences. 
Their reported accuracy was 80.75%, however, it should be noted that this was for 2-class, 
not a 3-class prediction. Rahman (2020) used deep neural networks and artificial neural 
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networks for soccer match result prediction using primarily rankings and results, achiev-
ing 63.3% accuracy when predicting 2018 FIFA World Cup matches. Recently, Malamati-
nos et al. (2022) used k-Nearest-Neighbors, LogitBoost, Support Vector Machine, Random 
Forest, and CatBoost, along with Convolutional Neural Networks and Transfer Learning 
with tabular data that was encoded and converted to image models, to predict the results of 
Greek Super League matches. The best-performing model, CatBoost, which was found to 
outperform the Convolutional Neural Network, was also applied to predict English Premier 
and Dutch Eredivisie league matches. Also recently, Joseph (2022) used statistical time 
series approaches to predict English Premier League outcomes and compared their perfor-
mance with LSTM and Bayesian methods.

In more recent times, driven by the popularity of the Transformer model (Vaswani et al., 
2017), attention mechanisms have gained prominence in modeling soccer-related data. 
Notably, attention mechanisms have been harnessed in various ways for soccer data analy-
sis. For instance, Zhang et al. (2022) introduced an attention-based LSTM network to pre-
dict soccer match result probabilities. Another notable contribution comes from Simpson 
et al. (2022), who proposed the Seq2event model, based on the transformer architecture, 
for modeling sequential soccer data. This work was subsequently extended and refined by 
Yeung et al. (2023). Given this backdrop, this study aimed to investigate the effectiveness 
of attention mechanisms in the context of soccer match results prediction. Furthermore, 
we intended to delve into investigating the potential of state-of-the-art time series models, 
leveraging the inherent sequential nature of soccer match results data.

The standard evaluation metric used in the 2017 Soccer Prediction Challenge, and 
subsequent studies that have used the Open International Soccer Database, has been the 
Ranked Probability Score (RPS) (Epstein, 1969; Constantinou & Fenton, 2012). However, 
other evaluation metrics such as cross-entropy (Hubáček et al., 2022) and accuracy have 
also been used. Since the RPS is sensitive to distance Constantinou and Fenton (2012), 
where the ordered nature of win/draw/loss has been considered, the RPS is a preferable 
metric in evaluating match outcome prediction model performance. However, subse-
quently, Wheatcroft (2021) suggested that the ignorance score may be a more appropriate 
metric for match outcome prediction model evaluation.

Among the studies from 2017 Soccer Prediction Challenge participants, Tsokos 
et  al. (2019) used a Bradley-Terry model, Poisson log-linear hierarchical model, and 
an integrated nested Laplace approximation, achieving an RPS of 0.2087 and accuracy 
of 0.5388. Hubáček et  al. (2019) used relational- and feature-based methods, with pi-
ratings (Constantinou & Fenton, 2013) and PageRank ratings (Page et al., 1998) com-
puted for each of the teams in each match. XGBoost (Chen & Guestrin, 2016) was 
employed as the feature-based method and was used for both classification and regres-
sion, and boosted relational dependency networks (RDN-Boost) (Natarajan et al., 2012) 
were used as the relational method. Classification with XGBoost, achieving RPS and 
accuracy of 0.2063 and 0.5243, respectively, performed best on the validation set and 
the challenge test set. Constantinou (2019) proposed a Hybrid Bayesian Network, using 
dynamic ratings based on the pi-rating system developed in previous work (Constanti-
nou & Fenton, 2013) but that also incorporated a team form factor to identify continued 
over- or under-performance. In the modified pi-rating calculation, the (win, draw, loss) 
match outcome was emphasized to a greater extent than the goal margin in order to 
dampen the effect of large goal margins. The Hybrid Bayesian Network was applied 
to four rating features—two each for the home and away teams. The model was able to 
make accurate predictions for a match between two teams even when the prediction was 
based on historical match data that involved neither of the two teams, with the model 
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achieving accuracy of 0.5146 and an RPS of 0.2083 on the challenge test data set. Ber-
raret al. (2019) created two types of feature sets: recency and rating features. Recency 
features consisted of the averages of features over the previous nine matches, based on 
four feature groups: attacking strength, defensive strength, home advantage, and opposi-
tion strength. XGBoost and k-Nearest-Neighbors were applied to each of the two fea-
ture sets, with both models performing better on the rating features than the recency 
features. XGBoost, when applied to the rating features, provided the best performance, 
although this result of 0.5194 accuracy and 0.2054 RPS was obtained after the com-
petition had concluded. The k-Nearest-Neighbors model applied to the rating features, 
which achieved accuracy of 0.5049 and an RPS of 0.2149 on the competition test set, 
was the best result achieved during the competition.

The top-performing participants in the 2017 Soccer Prediction Challenge commonly 
applied machine learning to rating features. At least in the absence of match-related fea-
tures on in-game events, ratings, therefore, seem to be an effective means of condensing 
a large amount of historical match information into a concise set of model features. It was 
also evident that gradient-boosted tree models such as XGBoost exhibited strong perfor-
mance in the competition.

Subsequent to the 2017 Soccer Prediction Challenge, other researchers have made use 
of the Open International Soccer Database. Robberechts and Davis (2019) compared the 
performance of result-based Elo ratings and goal-based offensive-defensive models in pre-
dicting match results in FIFA World Cup and Open International Soccer database matches. 
The ELO ordered logit achieved an RPS of 0.2035 and an accuracy of 0.5146, while the 
ELO plus offensive-defensive model ordered logit obtained RPS and accuracy of 0.2045, 
and 0.5146, respectively. However, bookmaker odds-obtained predictions achieved slightly 
better performance, with a lower RPS of 0.2020 and slightly higher accuracy of 0.5194. 
Razali et al. (2022) also used the Open International Soccer Database, comparing the per-
formance of gradient-boosted tree models such as XGBoost, LightGBM, and CatBoost on 
goal- and result-based Elo ratings and pi-ratings. The authors found that CatBoost applied 
to the pi-ratings features yielded the best performance (RPS = 0.1925), which was better 
than the results achieved by the 2017 Soccer Prediction Challenge participants. Razali et al. 
(2022) used a deep learning-based approach by applying TabNet, an interpretable canoni-
cal deep tabular data learning architecture, to pi-ratings and achieved a slightly higher 
RPS of 0.1956, which was still better than the 2017 Soccer Prediction Challenge partic-
ipants. Hubáček et  al. (2022) compared several statistical Bivariate and Double Poisson 
and Weibull distributions-based statistical models and ranking systems, specifically, Elo 
ratings, Steph ratings, Gaussian-OD ratings, as well as the soccer-specific rating systems 
of Berrar ratings (rating feature learning in Berrar et al. (2019)) and pi-ratings. Through 
their experiments using the Open International Soccer database—with matches before July 
2010 forming a validation set that was used for hyperparameter tuning, and matches after 
this date forming a test set of 91,155 matches—the authors found that Berrar ratings pro-
vided the lowest RPS (0.2101) among the different statistical models and rating systems. 
However, the other models also provided performance very close to that of Berrar ratings, 
suggesting the existence of some limits to match prediction performance. Since Hubáček 
et al. (2022) did not use any boosting or deep learning methods, we can tentatively con-
clude that—at least on datasets such as the Open International Soccer Dataset that do not 
contain features derived from match events other than the goals scored—gradient-boosted 
tree models and/or deep learning models can outperform the rating systems themselves and 
statistical model.
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In this study, we devised two distinct approaches. Firstly, in the context of the gradient-
boosted tree model, it is noteworthy that several methods have demonstrated superior per-
formance by leveraging unique features. Consequently, our primary emphasis within this 
approach lies in pinpointing the optimal feature set through the utilization of feature selec-
tion algorithms. Secondly, taking into account the remarkable achievements of deep learn-
ing models in recent years, our objective was to probe the potential of these models in the 
realm of predicting soccer match outcomes. This endeavor involved an exploration of the 
predictive prowess of deep learning methodologies.

3  Methods

In this section, we first introduce the deep learning and boosted decision tree methods in 
Sects. 3.1 and 3.2, respectively.

3.1  Approach 1: Deep learning (DL)

The deep learning approach leverages time series-based features elaborated in Sect. 3.1.1 
and employs a transformer-based model to predict probabilities as described in Sect. 3.1.2.

3.1.1  Features engineering

In this section, we elucidate the process of engineering features for each match. The 
recency features extraction method proposed by Berraret al. (2019) was utilized. In which, 
given a particular match of interest at time t, the n previous matches at time t − i of both the 
home and away teams are considered, where i ∈ {1, 2, ..., n} and n = 5 . For each of the t − i 
matches, the following features were derived:

• Team ID: a randomly assigned ID for the team
• Attacking strength: goals scored in match t − i.
• Defensive strength: goals conceded in match t − i.
• Strength of opposition: average goal difference of the opponent as of match t − i , calcu-

lated across its prior n matches.
• Home advantage: a binary variable that takes a value of 1 if match t − i was a home 

game and −1 if it was an away game.

The derived features can be represented as a matrix (Table 1 shows the transpose of this 
matrix).

3.1.2  Inception+TE+MLP model

In this section, we elucidate the components of the Inception+TE+MLP model and their 
respective objectives. The Inception+TE+MLP model was designed to proficiently extract 
pertinent information from input features, encode them into a vector representation, and 
subsequently decode this vector to produce the desired output. The specifics of each com-
ponent are elaborated upon below and Fig.  1 illustrates the refined concept of the deep 
learning approach.
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Information extraction within the model Inspired by Timesblock in the TimesNet 
model (Wu et al., 2022), we employ the inception block (Szegedy et al., 2015) to extract 
additional features from the recency features matrix from Sect.  3.1.1, while retaining 

Table 1  Example of results from 
the recency feature extraction 
method

The feature values for the 2020–2021 English Premier League match 
between Manchester City (1st) and Sheffield United (20th) are pre-
sented herein

Recency

Feature group t − 1 t − 2 t − 3 t − 4 t − n

Home team Attacking strength 5 2 4 1 3
Defensive strength 0 0 0 0 1
Strength of opposition −1.8 1 −1.6 −0.2 −0.2
Home advantage −1 1 1 1 −1
Team ID 436 436 436 436 436

Away team Attacking strength 2 1 1 0 0
Defensive strength 1 3 0 2 1
Strength of opposition 0.8 0 −1.2 −2 0.2
Home advantage −1 1 1 −1 −1
Team ID 609 609 609 609 609

Fig. 1  Overview of the Inception+TE+MLP model. The Conv2D represents 2D convolutional layers with a 
kernel size of n × n, while GELU serves as an activation function, and FF layers denote multiple linear layers
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its shape. The inception block has traditionally been employed to allow subsequent lay-
ers to better capture information, and TimesNet has shown the effectiveness of applying 
the inception block to multi-dimensional time series. The recency features matrix from 
Sect. 3.1.1 can be viewed as an 8-dimensional time series.

Encoding and decoding In recent times, the Transformer Encoder (TE) (Vaswani et al., 
2017) has become a popular method to embed soccer time series and sequential data into 
an informative vector (Yeung et al., 2023; Simpson et al., 2022; Yeung & Bunker, 2023). 
This vector can then be decoded by a Multi-Layer Perception (MLP), to infer the target 
variable(s). In our case, we want to infer the probabilities of each of the possible match 
outcomes. Moreover, conventional Recurrent Neural Network models such as Long-Term 
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent 
Unit (GRU) (Chung et al., 2014) could be used as the encoder. The performance of these 
encoders was compared with the TE in Sect. 4.3.

3.2  Approach 2: Feature selection and CatBoost

The feature selection and CatBoost approach leverage features engineered in prior studies 
(Baboota & Kaur, 2019; Berraret al., 2019; Tsokos et al., 2019) and more, as discussed in 
Sect. 3.2.1 and detailed in Table 2. This methodology utilizes feature selection techniques 
to ascertain the most suitable feature set, subsequently integrating it into the boosted deci-
sion tree model, CatBoost (Prokhorenkova et al., 2018), as elaborated in Sect. 3.2.2.

3.2.1  Features engineering and selection

In this section, we describe and explain the features that could be utilized and how they 
were selected.

Potential feature set In the 2017 Soccer Prediction Challenge, the first- and second-
placed participants: Berraret al. (2019) and (Hubáček,Šourek, &Železnỳ2019), respec-
tively, both employed gradient tree boosting models. Nevertheless, they utilized distinct 
sets of engineered features. Given this disparity, this study aims to investigate and identify 
the optimal feature set. We constructed a potential feature set by concatenating features 
from noteworthy methodologies employed in the 2017 challenge, as outlined by Berraret 
al. (2019) (1st and 5th place), (Hubáček,Šourek, &Železnỳ2019) (2nd place), and Tsokos 
et  al. (2019) (4th place), as well as considering findings from other research focused on 
match result prediction (Baboota & Kaur, 2019). The comprehensive compilation of poten-
tial features is tabulated in Table 2, totalling 205 distinct features.

Feature selection The process of feature selection is grounded in assessing, e.g., the 
correlation or information gain between input features and the target variable, the instance 
distances, and sometimes, the correlation among the different input features. Initially, four 
prevalent feature filtering techniques from WEKA were adopted, which take into account 
both the information content and correlation with the target variable. These include the 
Chi-square, Symmetrical Uncertainty, Correlation, and Information Gain attribute evalua-
tion methods. Following consideration of the median ranking of the features across these 
filter methods, the 20 features most relevant were chosen. Subsequently, the ReliefF fea-
ture selection method (Kira & Rendell, 1992; Kononenko, 1994) in the scikit-rebate library 
in Python (Urbanowicz et  al., 2017) was employed to factor in the distances between 
instances within the feature space. This resulted in an additional set of top 20 features. In 
the next phase, the elimination of duplicated features derived from the two aforementioned 
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feature selection methods (filter and ReliefF) led to a compilation of up to 40 features. Ulti-
mately, the Correlation Subset Feature Selection (CFS) method (Hall, 1999) was utilized, 
which seeks to identify a feature set with the highest average correlation to the target fea-
ture, while simultaneously minimizing the average inter-feature correlation.

3.2.2  CatBoost

In this section, we provide an overview of the conventional boosted decision tree model 
and highlight the significant enhancements introduced by CatBoost (Prokhorenkova et al., 
2018) compared to conventional models.

The boosted decision tree model is a form of decision tree (Loh, 2011; Friedman et al., 
2000; Rokach & Maimon, 2005) integrated with gradient boosting (Friedman, 2001). In 
this model, a decision tree h divides the feature space Xn ∈ ℝ

n into multiple (J) disjointed 
regions (tree nodes) N based on feature values. Mathematically, a decision tree h can be 
represented as follows, where ŷ approximates the target variable y ∈ ℝ:

Gradient boosting (Friedman, 2001) operates iteratively on a sequence of approximations 
Ft ∶ ℝ

n
→ ℝ , t = 0, 1, ... . Each approximation Ft is obtained by updating the previous 

approximation Ft−1 with a scaled version of a new decision tree ht trained on the residual. 
This process is optimized through gradient descent (Friedman et al., 2000):

Recent studies (Berraret al., 2019);(Hubáček,Šourek, &Železnỳ2019) have demonstrated 
strong performance using XGBoost (Chen & Guestrin, 2016), a type of boosted decision 
tree, for predicting soccer match results. However, CatBoost (Prokhorenkova et al., 2018) 
is a more recent boosted decision tree model that addresses the limitations of traditional 
models, particularly information leakage (Zhang et al., 2013). CatBoost introduces two key 
innovations. Firstly, it proposes ordered target encoding to handle categorical features more 
effectively. For the ith feature in the kth training sample, the encoded categorical feature x̂i

k
 

is calculated as:

where Dk = {xj ∶ 𝜎(j) < 𝜎(k)} for training samples and Dk = D for testing samples, and � , 
D, a, and p represent a random permutation function, dataset, parameter, and average target 
value, respectively.

Secondly, CatBoost introduces ordered boosting to obtain an unbiased estimation of y. 
This involves training n different models M1, ...Mn , where each model Mi is trained with 
the first i data points ordered by permutation function � . At each gradient step t, the resid-
ual of jth sample is computed using model Mj−1 . Given these advancements, we opted for 
CatBoost as our model of choice. The CatBoost model was trained using the feature set 
described in Sect. 3.2.1.

(3)h(x) =

J
∑

j=1

ŷj�{x∈Nj}

(4)ht = argmin
h∈H

�L(y,Ft−1 + h)

(5)x̂i
k
=

∑

xj∈Dk
�{xi

j
=xi

k
}yj + ap

∑

xj∈Dk
�{xi

j
=xi

k
} + a
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4  Experiments and results

In this section, we commence by elucidating the methodology for model training and vali-
dation, which is detailed in subsection 4.1. Subsequently, we delve into the analysis and 
selection of models for Task 1 (exact score prediction) and Task 2 (probability prediction) 
in subsections 4.2 and 4.3, respectively. Finally, in subsection 4.4, we deliberate upon the 
chosen model, and evaluate and discuss its performance relative to the top-placed perform-
ers in the 2023 Soccer Prediction Challenge.

4.1  Model training and validation

Since the challenge set results were not available at the time of conducting the experiment 
(during the 2023 Soccer Prediction Challenge submission period), we utilized training and 
validation sets retrieved from the provided data. The objective of splitting the training sets 
was to simulate the data used for training models to predict the challenge prediction set’s 
outcome, while the validation sets aimed to replicate the challenge prediction set itself. We 
employed multiple training and validation sets because certain models could exhibit high 
variability in performance when different years of data are used.

The dataset provided by the 2023 Soccer Prediction Challenge was partitioned into three 
distinct training sets and three corresponding validation sets. For the three respective train-
ing datasets, five years’ worth of data was utilized, encompassing seasons up to round x − 1 
of the 2018–19, 2019–20, and 2020–21 seasons. Conversely, the three respective validation 
sets were constructed using rounds x and x + 1 of the 2018–19, 2019–20, and 2020–21 sea-
sons. The x and x + 1 correspond to the league rounds within the prediction set that spans 
the period from April 14 to April 26, 2023.

To ascertain the effectiveness of the proposed methodologies, i.e., (1) Deep Learning 
and (2) Feature Selection combined with CatBoost, the performance of each methodol-
ogy was contrasted against baseline models, as well as ablated models, which investi-
gate the effect of the exclusion or replacement of specific model components. For Task 1 
(exact score prediction), our baseline models consisted of two straightforward statistical 
approaches, leveraging historical data to make predictions. Specifically, we calculated the 
mean scores for both the home and away team within each team and league in the training 
set. In the validation set, these mean scores were then utilized as predictions for both home 
team scores (HS) and away team scores (AS). We denoted the approach where the mean 
score of each team was used as the “team average” method, while the approach utilizing 
the league-wide mean score was termed the “league average” method. Furthermore, mod-
els from previous research efforts were included, such as the Berrar ratings (rating feature 
learning) (Berraret al., 2019), XGBoost applied to Berrar ratings, and CatBoost applied to 
pi-ratings (Razali et al., 2022).

In Task 2 (probabilities prediction), we employed two basic baselines: team win/draw/
loss (W/D/L) percentages and a rule-based benchmark that consistently predicted a home 
team victory. The W/D/L percentages provided a straightforward method for prediction by 
analyzing past outcomes. By examining the frequency of wins, draws, and losses for each 
team, we could estimate the likelihood of different outcomes in future matches. Addition-
ally, the rule-based benchmark that always predicted a home team victory reflected the 
well-known phenomenon of home advantage in sports, where the probability of the home 
team winning was generally higher compared to the away team.
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Additionally, models from earlier literature were integrated, including the best-per-
forming model from the 2017 Soccer Prediction Challenge—Berrar ratings coupled 
with XGBoost (Berraret al., 2019)—alongside the best-performing model published in 
a study after the conclusion of the 2017 challenge, which applied a CatBoost model to 
pi-ratings features (Razali et al., 2022).

Furthermore, within the domain of Inception+TE+MLP model (Approach 1), 
ablated models were explored, which, as mentioned, are models in which the effect 
of the exclusion or replacement of specific components is investigated. For instance, a 
model that excludes Information Extraction (TE+MLP), as well as models that substi-
tute the encoder with LSTM or GRU.

All Models for Task 1 (exact scores prediction) and Task 2 (probabilities predic-
tion) were trained to minimize Eqs.  1 and 2, respectively. The hyperparameters for 
Inception+TE+MLP model (Approach 1) for Task 2 are listed in Table 7.

4.2  Exact scores prediction results

In this subsection, the performance of exact score prediction using approaches 1 and 2 
is compared with that of the baselines mentioned in Sect. 4.1. The optimal feature set, 
chosen through approach 2, is presented in Table 8.

Through analyzing Table  3, it was evident that the Berrar ratings (rating feature 
learning) exhibited superior performance compared to the competing models. Notably, 
the team average statistical baseline followed, while the remaining models comprised 
primarily gradient tree boosting and deep learning models. This suggests that, despite 
the capability of gradient tree boosting and deep learning models in capturing complex 
relationships in data, these models proved unsuitable for accurately modeling exact 
match scores in soccer. In contrast, the Berrar ratings-based model, which incorporates 
team performance and domain knowledge related to matches, emerged as the more 
suitable choice for this task.

Given that Berrar ratings consistently outperformed the proposed approaches and 
other baselines, it was designated as the final model for Task 1 (exact score predic-
tion). For further details on how the Berrar ratings are calculated, please refer to Ber-
raret al. (2019).

Table 3  Exact scores prediction 
(Task 1) model results on 
the validation sets detailed in 
Sect. 4.1

The model that was preferred and used in the challenge is shown in 
bold

Model Avg RMSE Sigma

Berrar ratings 1.0047 0.0434
Team average 1.0206 0.0540
XGBoost+Berrar ratings 1.0212 0.0381
League average 1.0346 0.0347
CatBoost+selected feature set 

(Approach 2)
1.2162 0.0053

CatBoost+pi-ratings 1.2356 0.0355
TE+MLP (Approach 1) 1.5063 0.0317
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4.3  Probabilities prediction results

The performance of approaches 1 and 2 in probabilities prediction was then compared to 
the baseline models and ablated models previously described in subsection 4.1. The opti-
mal feature set selected in Approach 2 is listed in Table 8.

Even though Table 4 clearly indicated that among the various models, the CatBoost+pi-
ratings model exhibited the highest performance, with the lowest average RPS loss, further 
examination revealed nuances. Upon scrutinizing the results of the three distinct valida-
tions detailed in Sect. 4.1 independently, we arrived at the conclusion that the second-best 
performing model in Table 4, Inception+TE+MLP (Approach 1), should be employed for 
the challenge set.

Specifically, the RPS values for the CatBoost+pi-ratings model in the 2018–19, 
2019–20, and 2020–21 validation sets were 0.1991, 0.2120, and 0.2145, respectively. 
Meanwhile, Inception+TE+MLP achieved RPS values of 0.2072, 0.2102, and 0.2141 in 
the respective validation sets. A comparison of the CatBoost+pi-ratings model’s perfor-
mance across the validation sets reveals that its performance in 2018–19 was approxi-
mately 7% lower than in the other two validation sets (this discrepancy is noteworthy con-
sidering the comparison in Table 6 where the difference between the 1st and 16th is also 
around 7%). This suggested a potential risk of over-fitting, where the model might not have 
generalized well or might have excessively captured the variability present in the matches 
of the 2018–19 validation set.

However, drawing definitive conclusions required additional context. Therefore, we 
opted to disregard the results of the CatBoost+pi-ratings model on the 2018–19 validation 
set when considering the final submission model. Consequently, Inception+TE+MLP out-
performed the CatBoost+pi-ratings model and other baseline models in both the 2019–20 
and 2020–21 validation sets, making the Inception+TE+MLP model (Approach 1) the pre-
ferred final model for the challenge.

Upon further scrutiny of the ablated version of Inception+TE+MLP model (Approach 
1), the model devoid of the inception block (TE+MLP) displayed weaker performance. 
Moreover, in comparing the encoder LSTM, TE, and GRU, the LSTM exhibited the most 
favorable performance. However, due to the considerable training time required for hyper-
parameter grid searching in LSTM, TE was selected as a more practical alternative given 
the limited time available to meet the competition deadline.

Table 4  Probabilities prediction 
(Task 2) model results on 
the validation sets detailed in 
Sect. 4.1

The model that was preferred and used in the challenge is shown in 
bold

Model Avg RPS Sigma

CatBoost+pi-ratings 0.2085 0.0083
Inception+TE+MLP (Approach 1) 0.2098 0.0051
LSTM+MLP 0.2105 0.0050
TE+MLP 0.2111 0.0062
GRU+MLP 0.2116 0.0052
XGBoost+Berrar ratings 0.2141 0.0046
W/D/L percentage 0.2303 0.0015
CatBoost+selected feature set (Approach 2) 0.2416 0.0028
Home win 0.4450 0.0031
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Lastly, the performance of the CatBoost+Selected feature set model fell short of the 
performance of the CatBoost+pi-ratings model. Consequently, the prospect of augmenting 
the model with additional engineered features seemed less promising. Instead, focusing on 
enhancing pi-ratings appeared a more viable strategy for further work. Nevertheless, the 
incorporation of additional engineered features in Inception+TE+MLP model (Approach 
1) is also an avenue for potential further research.

4.4  2023 Soccer prediction challenge comparative evaluation

The final model was trained using 5 years of data until April 14, whereas the provided 
training set only provided data until April 4, 2023. To address this gap, as previously men-
tioned, data from April 4, 2023, to April 14, 2023, was manually appended to the training 
set.

Our performance in the 2023 Soccer Prediction Challenge in the two required challenge 
tasks, compared to the top-performing team, is summarized in Tables 5 and 6. In Task 1, 
the Berrar ratings (rating feature learning) (Berraret al., 2019) were surpassed by the first-
place team by a margin of 11.91% ranked 13th. As for Task 2, our Inception+TE+MLP 
model (Approach 1) involving deep learning was outperformed by a bookmaker consen-
sus type model by 6.42% ranked 16th. Given that the 2023 Soccer Prediction Challenge 
permitted the utilization of alternative features and training instances beyond the provided 
dataset, the integration of additional features stands as a potential avenue for enhancing 
model performance. This is particularly relevant to Inception+TE+MLP model (Approach 
1) for Task 2, where alternative features could be seamlessly incorporated.

Upon scrutinizing the validation and results from the 2023 soccer prediction challenge, 
it is apparent that, in terms of exact score prediction, machine learning models presently 
lag behind rule-based counterparts such as team ratings. Furthermore, the consideration 
of alternative features, encompassing elements like expert opinions, team formations, and 
player details—elements potentially encapsulated in betting odds—has the potential to bol-
ster the efficacy of deep learning models in match outcome probability prediction. Never-
theless, there is a practical challenge associated with the use of additional information as 
input. The inclusion of additional information would necessitate conducting a grid search 
on both feature sets and hyperparameters. This process could be computationally intensive 
and time-consuming, potentially leading to a significant increase in resource requirements. 
Moreover, the increased complexity introduced by additional features may also lead to 
issues such as overfitting, making the models less generalizable to unseen data.

Table 5  Task 1 result compared 
to the top-performing approach

Team RMSE

TeamNateWeller (1st) 1.6235
Berrar ratings (13th) 1.8169

Table 6  Task 2 result compared 
to the top-performing approach

Team RPS

Bookmakers (1st) 0.2063
Inception+TE+MLP model (Approach 1) (16th) 0.2195
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5  Conclusion

In this study, our objective was to assess the performance of a deep learning model and 
determine the optimal feature set for a gradient-boosted tree model in predicting soccer 
match results in terms of win/draw/loss (W/D/L) probabilities as well as exact scores. To 
achieve this aim, we introduced a deep learning-based model and leveraged features from 
prior studies, coupled with feature selection algorithms, to identify the most effective fea-
ture set. Our models were trained, validated, and tested using data from the 2023 Soccer 
Prediction Challenge. The results revealed that, in terms of W/D/L probabilities, the deep 
learning model was outperformed by betting odds consensus model predictions by a mar-
gin of 6% and ranked 16th in the 2023 Soccer Prediction Challenge. Moreover, it was note-
worthy that pi-ratings still retained their status as the most suitable features for using with 
gradient-boosted tree models. When it comes to predicting exact scores, the Berrar ratings 
(rating feature learning) and simple statistical baseline models exhibited superior perfor-
mance compared to both the deep learning and gradient-boosted tree models.

Future endeavors could focus on enhancing model interpretability. Given that both deep 
learning and boosted decision tree models fall under the category of black-box models, 
efforts to enhance interpretability would greatly benefit coaches and analysts in identify-
ing the pivotal features for achieving victory. Furthermore, consideration could be given to 
alternative features, such as betting odds that encapsulate expert opinions, team composi-
tions, player characteristics, and more. Despite this, we anticipate that our study will under-
score the efficacy of employing deep learning methodologies in predicting soccer match 
outcomes, thereby inspiring forthcoming research in this domain. The advancements made 
in predicting soccer match outcomes can potentially be extrapolated to other team sports. 
For comprehensive data on publicly accessible team sports match results, please refer to 
Table 9.

Model Hyperparameters

See Table 7.

Approach 2 selected feature set

See Table 8.

Table 7  Optimal hyperparmeters 
for Task 2 Inception+TE+MLP 
model (Approach 1)

Hyperparameter Grid-searched value Optimal value

team_id_embedding_dim 1,2,4,8,16 1
TE_dim_feedforward 1,8,64,512,2048,4096 1
TE_dropout 0,0.1,0.2,0.3 0
MLP_num_layer 1,2,3,4,5,6,7,8,9,10,11,12 10
MLP_dropout 0,0.1,0.2,0.3 0.2
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Datasets of team sports match results

See Table 9.

Table 8  Optimal feature set from 
Approach 2

An explanation of the features is available in Table  2. HT or AT 
denotes the features that are calculated based on Home Team or Away 
Team, respectively

Target feature Optimal feature set

Home team goals EG_HT, GS_avg_HT
Away team goals Home_venue_GS_avg_AT, 

GC_avg_HT, pi_rating_AT, 
GC_AVG_HT, previ-
ous_GD_AT

W/D/L probability EG_HT, EG_AT, point_per_
match_HT, win_pct_AT, 
pi_rating_HT, pi_rating_AT
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