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Abstract
There has been an increasing interest in multi-view approaches based on their ability to 
manage data from several sources. However, regarding unsupervised learning, most multi-
view approaches are clustering algorithms suitable for analyzing vector data. Currently, 
only a relatively few SOM algorithms can manage multi-view dissimilarity data, despite 
their usefulness. This paper proposes two new families of batch SOM algorithms for multi-
view dissimilarity data: multi-medoids SOM and relational SOM, both designed to give a 
crisp partition and learn the relevance weight for each dissimilarity matrix by optimizing 
an objective function, aiming to preserve the topological properties of the map data. In 
both families, the weight represents the relevance of each dissimilarity matrix for the learn-
ing task being computed, either locally, for each cluster, or globally, for the whole parti-
tion. The proposed algorithms were compared with already in the literature single-view 
SOM and set-medoids SOM for multi-view dissimilarity data. According to the experi-
ments using 14 datasets for F-measure, NMI, Topographic Error, and Silhouette, the rel-
evance weights of the dissimilarity matrices must be considered. In addition, the multi-
medoids and relational SOM performed better than the set-medoids SOM. An application 
study was also carried out on a dermatology dataset, where the proposed methods have the 
best performance.
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1  Introduction

Multi-view data research has become increasingly important since large amounts of 
information are constantly being generated from different sources. These data are het-
erogeneous, and the variables are organically partitioned into groups; however, there 
are still some potential links between them. Each group of variables is referred to as a 
specific perspective (view), and the multiple views on a given issue can take different 
arrangements (Xu et  al., 2015). Often, in multi-view data, the objects are represented 
by several matrices or views (e.g., sensor signal data can be decomposed into time and 
frequency data, image data can be described by texture and color data, and multimedia 
segments can be represented by video and audio signal data (Yang & Wang, 2018)). In 
such data, each view has its specific features for a certain knowledge discovery task. 
However, different views frequently contain complementary information that must be 
exploited (Wang et al., 2017).

According to Sun et  al. (2019), multi-view learning can improve learning perfor-
mance effectively on natural single-view data (Sun et al., 2019), thus representing the 
main reason for single-view-based data representation to be usually incomplete. In this 
sense, different views might provide complementary information for the learning prob-
lem (Wang et al., 2017). Concerning multi-view clustering, there are three combination 
strategies to perform the learning task (Cleuziou et  al., 2009): concatenation strategy, 
distributed strategy, and centralized strategy. The first strategy consists of concatenat-
ing the views into a single one, either directly, by juxtaposing the sets of features, or 
indirectly, by combining the proximity matrices derived from each view. The second 
strategy starts by clustering the objects from each view independently and then looking 
for a solution that represents a consensus among all the groups. Finally, the last strategy 
uses multiple views simultaneously to mine hidden patterns from the data (Cleuziou 
et al., 2009).

Throughout learning, the multi-view approaches explicitly use distinct data represen-
tations that can either be the original data features or those obtained through computa-
tions (Sun et al., 2019). Moreover, each view can be represented by either vectorial or non-
vectorial data. The former has received considerably more attention from unsupervised 
learning approaches, where most machine learning and data analysis methods available are 
based on a vector model, with each example being represented by a vector of quantitative 
values (Frigui et al., 2007). Unfortunately, many current datasets do not support this type 
of representation. There are categorical data, abstract data, and relational data, among oth-
ers. In the latter, the objects are described through a relationship between data pairs that 
contain only information on the degrees to which pairs of objects in the dataset are related 
(Kaufman & Rousseeuw, 1987; Frigui et al., 2007). A way of dealing with these types of 
data is to consider the objects represented by a matrix of dissimilarities.

In dissimilarity data, each pair of objects is represented by a dissimilarity relation-
ship (Rousseeuw & Kaufman, 2005). Single-view dissimilarity data is represented by 
a dissimilarity matrix defined as D = [d(ek, el)] (1 ≤ k, l ≤ N) , where d(ek, el) is the dis-
similarity between objects ek and el on dissimilarity matrix D . Unsupervised dissimilar-
ity data methods introduce approaches to handle such data using the most appropriate 
dissimilarity function for the problem at hand. These approaches can handle heterogene-
ous data through different transformations.

Therefore, dissimilarity data are more generic since they can be applied to scenarios 
where objects cannot be represented by numerical features. They are also more useful 
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when the distance measure is computed according to a suitable algorithm instead of 
an algebraic expression as usual, or when sets of similar objects cannot be represented 
adequately by a prototype vector (Frigui et al., 2007).

Several traditional machine learning algorithms have been extended to cope effec-
tively with a variety of multi-view and dissimilarity data problems (Gusmão & Carvalho, 
2019; Dantas & Carvalho, 2011; Olteanu & Villa-Vialaneix, 2015). The Kohonen Self-
Organizing Map (SOM) (Kohonen, 2001; Badran et al., 2005; Kohonen, 2013; Astudillo 
& Oommen, 2014; Cottrell et  al., 2018) is a powerful tool for dealing with these kinds 
of challenges. SOM performs clustering and non-linear data projection at the same time, 
thus providing a strong visualization tool. The SOM has proven effective, especially when 
considering the faithfulness (precision) of the mapping from a high-dimensional space 
(Vatanen et al., 2015). In addition, the SOM has proven a reliable approach for a variety 
of fields, including finance, statistics, bio-medicine, industry, and many others (see Refs. 
Kaski et  al. (1998); Oja et  al. (2003); Domínguez-González et  al. (2012); Astudillo and 
Oommen (2014); Kamimura (2019); Douzas et al. (2021) for details).

A SOM consists of neurons (vertices) usually arranged on a regular two or three-dimen-
sional grid (the map). Each neuron is associated with a cluster representative (prototype) 
of a data subset (a cluster). Both the data and the a priori topology impose the cluster 
structure. The SOM network can be trained either incrementally or batch-wise. Accord-
ing to Kohonen (2013), the batch variant of the SOM network is most suited for practi-
cal applications. However, incremental training is the preferable approach when data are 
given sequentially. Throughout the map training, each object must select its Best Matching 
Unity (BMU), i.e., the neuron with the most similar prototype to its description. Therefore, 
the BMU-associated prototype and the neuron-associated prototypes in the BMU spatial 
neighborhood are updated to better represent the object similarity to these neurons.

A SOM preserves the data topological properties, which implies that if two objects in 
the original description space are similar, the related BMU prototypes are also similar and 
will be associated with adjacent or close vertices on the map. Thus, the data are grouped by 
clusters such that the most similar prototypes are associated with adjacent vertices, while 
less similar prototypes are associated with distant vertices on the map (Kohonen, 2013).

There are different prototype-based approaches to determine the representative of 
a cluster concerning dissimilarity data, but only a few SOM algorithms have been pro-
posed. Median Batch SOM (Kohonen, 2001) was the first extension of the original SOM 
for single-view dissimilarity data. In this regard, the cluster prototypes were represented 
by a single medoid in Ref. Kohonen (2001) and later by a set-medoids in Ref. Golli et al. 
(2005). Furthermore, another method for extending SOM to single-view dissimilarity 
data was proposed, in which the cluster representative is a “normalized linear combina-
tion” of the objects from the whole dataset. Based on this latter approach, batch (Hasen-
fuss & Hammer, 2007) and on-line (Olteanu et  al., 2012) versions of SOM for dissimi-
larity data are currently available. Finally, Ref. Mariño and Carvalho (2020) introduced a 
batch SOM for single-view dissimilarity data, with the cluster prototypes represented by 
vectors of weights. Each component of these vectors quantifies the significance of each 
object in a given cluster. Despite the growing interest in machine learning, to the best of 
our knowledge, only Refs. Dantas and Carvalho (2011) and Olteanu and Villa-Vialaneix 
(2015) have proposed SOM algorithms that can manage multi-view dissimilarity data. Ref. 
Olteanu and Villa-Vialaneix (2015) introduced an online extension of relational SOM algo-
rithm (Hasenfuss & Hammer, 2007), whereas Refs. Dantas and Carvalho (2011) proposed 
a batch extension of the median SOM (Golli et al., 2005; Kohonen, 2001) to the case where 
several dissimilarities matrices are available for describing the dataset.
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Paper proposal
Herein, we propose two families of batch SOM algorithms for multi-view dissimilarity 

data in the framework of the centralized strategy: Batch SOM algorithms for multi-view 
dissimilarity data with weighted medoids as cluster representatives (MBSOM-MMdd ) and 
Batch SOM algorithms for multi-view dissimilarity data with a normalized linear combi-
nation of the objects as cluster representatives (MRBSOM).

The new MBSOM-MMdd family extends Ref. Mariño and Carvalho (2020) aiming to 
manage datasets described by multiple dissimilarity matrices. For a fixed neighborhood, 
the new method gives the optimal solution for computing the representative (weighted 
medoids) associated with each neuron, computing optimal adaptive relevance weights on 
the dissimilarity matrices, and providing the optimal cluster partition.

Furthermore, MRBSOM, as the already in the literature batch SOM methods for rela-
tional data (Hasenfuss & Hammer, 2007), keeps the idea that each cluster representative 
is a normalized linear combination of the objects represented in the description space, but 
additionally uses different adaptive weights on the dissimilarity matrices aiming to take 
into account the importance of each dissimilarity matrix on the unsupervised learning task.

In the families of both models, the weights change at each algorithm iteration such that 
each matrix has a different influence on the training of the map. Each one of the proposed 
families can compute relevance weights for each dissimilarity matrix, either locally, for 
each cluster, or globally, for the whole partition (Dantas & Carvalho, 2011).

The main contributions of our paper are the two families of Batch SOM algorithms that 
can manage multi-view datasets described by several dissimilarity matrices. More pre-
cisely, the paper provides:

•	 The respective objective functions that, for a fixed neighborhood, should be optimized 
to learn the MBSOM-MMdd and MRBSOM model families;

•	 For a fixed neighborhood radius, i) the optimal solution for computing the cluster rep-
resentatives associated with each neuron in the proposed models; ii) the optimal solu-
tion for computing the relevance weights of the dissimilarity matrices on the training of 
the SOM; and iii) the optimal solution for the partition associated to the neurons of the 
proposed algorithms;

•	 The time complexity of the proposed models;
•	 A significant evaluation of the proposed methods compared with relevant batch SOM 

algorithms for multi-view dissimilarity data.

Thus, the proposed algorithms aim to improve MBSOM-CMdd (Dantas & Carvalho, 
2011) because the number of objects (medoids) that represent a cluster may be insuffi-
cient to describe it. Moreover, MBSOM-CMdd ignores the relevance of the medoids, for 
instance, when several objects are selected as medoids, these medoids are not necessarily 
equally important for the cluster. They do not describe it in the same way. Additionally, in 
MBSOM-CMdd , the cardinality of the set of medoids (the representative) is a parameter 
that must be provided a priori. Finally, the relevance of the specific data source can impact 
the result of model performance. Nevertheless, the impact of data sources considering the 
relevance for the cluster locally and for each view globally has not been studied with these 
approaches of cluster representation regarding SOM algorithms.

The paper is organized as follows: Sect. 2 describes the families of the proposed models 
MBSOM-CMdd and MRBSOM. In addition, we also provide an in-depth description and 
formalization of the algorithm MBSOM-CMdd introduced in the work of Ref. Dantas and 
Carvalho (2011). Moreover, we analyze the time complexity of the proposed algorithms. 
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Section 3 presents the setup of our experiments. Section 4 provides the performance evalu-
ation of the proposed algorithms against already in the literature approaches, showing 
the results and discussing the main findings obtained. This section also provides further 
insights into the families of the models through an application concerning the dermatology 
dataset (Dua & Graff, 2017). Finally, Sect. 5 introduces our final remarks.

2 � Batch SOM algorithms for multi‑view dissimilarity data

This section presents the batch SOM families for multi-view dissimilarity data MBSOM-
CMdd , MBSOM-MMdd , and MRBSOM. Section 2.1 discusses the cluster representatives 
and the relevance weights of the dissimilarity matrices and provides the error functions of 
these batch SOM algorithms. Section 2.2 describes their three main steps (the computa-
tion of the cluster representatives, the relevance weights of the dissimilarity matrices, and 
the update of the clusters) and provides the main algorithm for each batch SOM family. 
Section 2.3 introduces some notations aiming to simplify the presentation of the methods 
according to the algorithms used and the relevance weights assigned to each dissimilarity 
matrix. Finally, Sect. 2.4 introduces the time complexity analysis of the proposed variants 
of the batch SOM families.

2.1 � MBSOM‑CMdd , MBSOM‑MMdd and MRBSOM self‑organizing maps

This section provides a detailed presentation of the MBSOM-CMdd , MBSOM-MMdd , 
and MRBSOM SOM algorithms.

Let E = {e1,… , eN} be a set of objects and let P dissimilarity matrices 
Dp = [dp(ek, el)] (1 ≤ k, l ≤ N) where dp(ek, el) is the dissimilarity between objects ek and el 
on dissimilarity matrix Dp (1 ≤ p ≤ P).

A SOM consists of a low-dimensional (usually two-dimensional) regular grid (map), 
which contains C nodes (neurons). Each SOM map is associated with a partition in which a 
neuron indexed by r has associated a cluster Pr and a representative (prototype).

Let {1,… ,C} be the cluster index set and let f be the assignment function that 
maps each object to an index r = f (ek) ∈ {1,… ,C} of the cluster index set. The par-
tition P = {P1,… ,PC} associated with a SOM is defined by the assignment func-
tion which gives the index of the cluster of P to which the object ek belongs to, i.e., 
Pr = {ek ∈ E ∶ f (ek) = r}.

Following (Golli et  al., 2005), in MBSOM-CMdd (Dantas & Carvalho, 2011) it is 
assumed that the representative of each cluster is a set of objects (set-medoids), i.e., the 
prototype Gr of cluster Pr is a subset of fixed cardinal 1 ≤ q ≪ N of the set of objects E: 
Gr ∈ E(q) = {A ⊂ E ∶ |A| = q} . Besides, G = (G1,… ,Gr,… ,GC) is the vector of cluster 
prototypes.

Moreover, following (Mariño & Carvalho, 2020), in MBSOM-MMdd it is assumed 
that the representative vr = (vr1,… , vrN) of cluster Pr is a N-dimensional vector of weights 
whose components measure how the objects are weighted as a medoid regarding the cluster 
Pr . Let V = (v1,… , vC) = (vrj) (1 ≤ r ≤ C;1 ≤ j ≤ N) be the matrix of prototype weights 
of the objects regarding the clusters.

Regarding MRBSOM, Refs. Cottrell et  al. (2018); Hammer and Hasenfuss (2007) 
pointed out that if the data are described by a dissimilarity matrix where each cell is the 
squared Euclidean distance, they can be embedded in a pseudo-Euclidean space in such 
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a way that optimum prototypes can be expressed as linear combinations of data points. 
Therefore, the unknown distances ‖xk − vr‖2 , where xk = (xk(1),… , xk(P)) is the descrip-
tion of the object ek and vr = (vr(1),… , vr(P)) is the representative of cluster Pr both in the 
pseudo-Euclidean space, can be expressed in terms of known values of the squared Euclid-
ean distances of the dissimilarity matrix.

Assuming that ‖xk − vr‖2 =
∑P

p=1
‖xk(p) − vr(p)‖2 and that the p-th component of the 

cluster representative is such that vr(p) =
∑N

k=1
�rkxk(p) where 

∑N

k=1
�rk = 1 , according to 

Cottrell et al. (2018); Hasenfuss and Hammer (2007):

where [Dp�r]k is the k-th component of [Dp�r] and �r = (�r1,… , �rN) (1 ≤ r ≤ C) . Since 
vr(p) is in the implicitly pseudo-Euclidean space, it is the vector �r that is updated, where 
the distances between the prototypes and the objects are computed only indirectly through 
the coefficients �rk . According to Ref. Hammer and Hasenfuss (2007), the equation (1) still 
holds to any given dissimilarity matrix Dp.

Therefore, in MRBSOM it is assumed that the representative �r = (�r1,… , �rN) of clus-
ter Pr is a N-dimensional vector of coefficients �rk . Let A = (�1,… ,�C) = (�rk) 1 ≤ r ≤ C

1 ≤ k ≤ N

 

be the matrix of coefficients �rk.
Dissimilarity matrices can have different relevance to the training of the SOM. In most 

applications, some dissimilarity matrices may be irrelevant, while among those that are 
relevant, some may be more or less relevant than others.

Therefore, aiming to obtain a significant SOM from all dissimilarity matrices, the 
MBSOM-CMdd , MBSOM-MMdd , and MRBSOM SOM algorithms were designed to 
provide the clusters and their respective prototypes by simultaneously preserving the spa-
tial order of the prototypes on the map, as well as to learn the relevance weight for each 
dissimilarity matrix by optimizing a suitable error function.

The relevance weights can be assigned to each dissimilarity matrix globally, to all the 
clusters, according to the (P × 1) matrix W = (wp) (1 ≤ p ≤ P) , with wp ∈ R+ . They can 
also be assigned to each dissimilarity locally, to each cluster, according to the (P × C) 
matrix W = (wrp) (1 ≤ p ≤ P;1 ≤ r ≤ C) , with wrp ∈ R+.

The training of the MBSOM-CMdd algorithm provides the vector of prototypes G , the 
matrix of relevance weights W , and the partition P by iteratively minimizing the error 
function JMBSOM−MMdd . Furthermore, the training of the MBSOM-MMdd algorithm pro-
vides the matrix V of prototype weights, the matrix of relevance weights W , and the parti-
tion P by iteratively minimizing the error function JMBSOM−MMdd . Furthermore, the training 
of the MRBSOM algorithm provides the matrix A of coefficients, the matrix of relevance 

(1)‖xk(p) − vr(p)‖2 = [Dp�r]k −
1

2
�
⊤

r
Dp�r (1 ≤ p ≤ P),

Table 1   Error functions of the SOM algorithms

Algorithms Error functions

MBSOM-CMdd (Dantas & Carvalho, 2011) JMBSOM−MMdd(G,W,P) =
∑N

k=1
Δ

W
(ek,Gf (ek )

).       (2)
MBSOM-MMdd JMBSOM−MMdd(V,W,P) =

∑N

k=1
Δ

W
(ek, vf (ek )).      (3)

MRBSOM JMRBSOM(A,W,P) =
∑N

k=1
Δ

W
(ek,�f (ek )

).                (4)
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weights W , and the partition P by iteratively minimizing the error function JMRBSOM . 
Table 1 provides the error functions of the algorithms.

For each object ek , the winning neuron, known as the best matching unit (BMU), is the 
neuron with the cluster representative closest to ek . The BMU is indexed by f (ek) and is 
identified with the corresponding cluster representative.

The error measure of a BMU regarding the object ek is computed by the generalized 
dissimilarity (Badran et al., 2005) function Δ

W
 , which allows comparing each object ek to 

each cluster representative. Table 2 provides Δ
W

 according to the SOM algorithms.
In the equations (5), (6) and (7), hf (ek),r is the neighborhood kernel function that meas-

ures the influence neighborhood of BMU on neuron r. Several choices are possible, in Ref 
Dantas and Carvalho (2011), it is defined as

where af (ek) and ar are the BMU and neuron r positions in the grid, respectively. Moreover, 
� is the neighborhood radius. The size of the neighborhood decreases with � : the smaller 
� the fewer the neurons belonging to the effective neighborhood of a given BMU (Badran 
et al., 2005; Kohonen, 2001).

Therefore, the generalized dissimilarity function Δ
W

 is a weighted sum of the global 
match functions D

W
 computed between an object ek and a cluster representative. Note that 

it considers all the neurons in the neighborhood of the BMU.
The function D

W
 computes the global matching between an object ek and a cluster rep-

resentative. Table 3 provides D
W

 according to the SOM algorithms when the weights are 
assigned globally.

Table 4 provides D
W

 according to the SOM algorithms when the weights are assigned 
locally.

The function Dp computes the local matching between an object ek and a cluster rep-
resentative on dissimilarity Dp (1 ≤ p ≤ P) . Table  5 provides Dp according to the SOM 
algorithms.

(8)hf (ek),r = exp

�
−
‖af (ek) − ar‖2

2�2

�
.

Table 2   Generalized dissimilarity functions of the SOM algorithms

Algorithms Generalized dissimilarity functions

MBSOM-CMdd (Dantas & Carvalho, 2011) Δ
W
(ek,Gf (ek )

) =
∑C

r=1
hf (ek ),r DW

(ek,Gr).      (5)
MBSOM-MMdd Δ

W
(ek, vf (ek )) =

∑C

r=1
hf (ek ),r DW

(ek, vr).        (6)
MRBSOM Δ

W
(ek,�f (ek )

) =
∑C

r=1
hf (ek ),r DW

(ek,�r).       (7)

Table 3   Global match functions: 
the weights are assigned globally

Algorithms Global match functions

MBSOM-CMdd (Dantas & 
Carvalho, 2011)

D
W
(ek,Gr) =

∑P

p=1
wpDp(ek,Gr).   (9)

MBSOM-MMdd D
W
(ek, vr) =

∑P

p=1
wpDp(ek, vr).     (10)

MRBSOM D
W
(ek,�r) =

∑P

p=1
wpDp(ek,�r).    (11)
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Note that because the global match functions are weighted sums of the local match func-
tions, the different dissimilarity matrices need to have been scaled previously by a suitable 
normalization to make their relative value ranges comparable, thus preventing some particular 
views from prevailing above the others in the computation of the global match functions only 
due to different feature measurement units.

2.2 � MBSOM‑CMdd , MBSOM‑MMdd and MRBSOM algorithms

For a fixed radius � , from an initial solution, the training map of the SOM algorithms are 
obtained by minimizing the error functions of Table  1, which are performed iteratively in 
three steps: representation, weighting, and assignment.

The representation step gives the optimal solution for computing the cluster representatives 
associated with the map neurons. The weighting step computes the relevance weights of the 
dissimilarity matrices to the training of the SOM. Finally, the assignment step provides the 
optimal solution for the clusters associated with the map neurons.

2.2.1 � Representation step

The representation step gives the optimal solution for computing the cluster representatives 
associated with the map neurons. During the representation step, the matrix of relevance 
weights W and the partition P are kept fixed.

MBSOM-CM dd algorithm The error function JMBSOM−MMdd is minimized regarding the 
vector of prototypes G = (G1,… ,GC).

The prototype Gr of cluster Pr , which minimizes the error function JMMBSOM−MMdd , either 
minimizes 

∑N

k=1
hf (ek),r

∑P

p=1
wpDp(ek,Gr) (if the weights are assigned globally) or minimizes 

∑N

k=1
hf (ek),r

∑P

p=1
wrpDp(ek,Gr) (if the weights are assigned locally). The prototype Gr is 

computed according to the following brute force algorithm 1 (Dantas & Carvalho, 2011):

Table 4   Global match functions: 
the weights are assigned locally

Algorithms Global match functions

MBSOM-CMdd (Dantas 
& Carvalho, 2011)

D
W
(ek,Gr) =

∑P

p=1
wrpDp(ek,Gr).    (12)

MBSOM-MMdd D
W
(ek, vr) =

∑P

p=1
wrpDp(ek, vr).      (13)

MRBSOM D
W
(ek,�r) =

∑P

p=1
wrpDp(ek,�r).      (14)

Table 5   Local match functions

Algorithms Match functions

MBSOM-CMdd (Dantas & 
Carvalho, 2011)

Dp(ek,Gr) =
∑

e∈Gr
dp(ek, e) (1 ≤ p ≤ P).                                                 (15)

MBSOM-MMdd Dp(ek, vr) =
∑N

j=1
(vrj)

ndp(ek, ej) (1 ≤ p ≤ P).                                       (16)
MRBSOM Dp(ek,�r) = ‖xk(p) − vr(p)‖2 = [Dp�r]k −

1

2
�
⊤
r
Dp�r (1 ≤ p ≤ P).    (17)
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Algorithm 1 

1: for r = 1 to C do
2: for l = 1 to N do
3: Global weights: compute g(el) =

N
k=1 hf(ek),r

P
p=1 wp dp(ek, el)

4: Local weights: compute g(el) =
N
k=1 hf(ek),r

P
p=1 wrp dp(ek, el)

5: end for
6: Let e(1), . . . , e(N) : g(e(1)) ≤ . . . ≤ g(e(N))
7: Set Gr ← {e(l), . . . , e(q)}
8: end for

MBSOM-MM dd algorithm
The error function JMBSOM−MMdd is minimized regarding the matrix 

V = (vrj) (1 ≤ r ≤ C;1 ≤ j ≤ N) of prototype weights of the objects. To exclude the triv-
ial solution V equal to null, we consider the sum constraint. Therefore, the error func-
tion JMBSOM−MMdd is minimized regarding the matrix V = (vrj) (1 ≤ r ≤ C;1 ≤ j ≤ N) of 
prototype weights of the objects, subject to 

∑N

j=1
vrj = 1 and vrj ≥ 0 , either if the weights 

are assigned globally or locally.
Table 6 provides the Lagrangian functions either if the weights are assigned globally 

or locally, where �r are the Lagrange multipliers.
Then, taking the partial derivatives of L w.r.t vrj and �r , and by setting the partial 

derivatives to zero, we obtain the optimal solutions to vrj , which are shown in Table 7.

Remark  Equation (20) allows us to conclude that at the end of the training of MBSOM-
CMdd algorithm when hf (ek),r ∼ 0 for f (ek) ≠ r , the lower the 

∑
ek∈Pr

∑P

p=1
wrpdp(ek, ej)  is, 

the higher the prototype weight vrj is. In addition, Eq. (21) demonstrates that the lower the ∑
ek∈Pr

∑
P
p=1

wpdp(ek, ej) is, the higher the prototype weight vrj is.

MRBSOM algorithm

Table 6   Lagrangian functions

Weights Lagrangian functions

Global
L =

∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wp

∑N

j=1
(vrj)

ndp(ek, ej) −
∑C

r=1
�r

�∑N

j=1
vrj − 1

�
.      (18)

Local
L =

∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wrp

∑N

j=1
(vrj)

ndp(ek, ej) −
∑C

r=1
�r

�∑N

j=1
vrj − 1

�
.    (19)

Table 7   Prototype weights of the 
objects

Weights Prototype weights

Global
vrj =

�
∑N

s=1

�∑N

k=1
hf (ek ),r

∑P

p=1
wpdp(ek ,ej)

∑N

k=1
hf (ek ),r

∑P

p=1
wpdp(ek ,es)

� 1

n−1

�−1

.

    (20)
Local

vrj =

�
∑N

s=1

�∑N

k=1
hf (ek ),r

∑P

p=1
wrpdp(ek ,ej)

∑N

k=1
hf (ek ),r

∑P

p=1
wrpdp(ek ,es)

� 1

n−1

�−1

.

    (21)
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The error function JMRBSOM is minimized regarding the matrix 
A = (�rk) (1 ≤ r ≤ C;1 ≤ k ≤ N) of coefficients. The error function JMRBSOM can be writ-
ten as

Taking the partial derivative of JMRBSOM w.r.t vr(p) and by setting the partial derivative to 
zero, we obtain:

where �rk =
hf (ek ),r∑N

k=1
hf (ek ),r

 , considering that 
∑N

k=1
�rk = 1 , and �rk ≥ 0 (1 ≤ r ≤ C;1 ≤ k ≤ N) . 

Since vr(p) is in the pseudo-Euclidean space, it is the matrix A = (�rk) (1 ≤ r ≤ C;1 ≤ k ≤ N) 
of coefficients that is updated as follows:

2.2.2 � Weighting step

During the weighting step, the cluster representatives and the partition P are kept fixed. 
The error functions of Table 1 are minimized regarding the matrix of weights W.

A trivial solution for this minimization problem is reached when W is null. To 
exclude the trivial solution, constraints on the elements of W are required. Two main 
types of constraints have been proposed: a constraint on the product of the weights 
(Diday & Govaert, 1977) and a constraint on the sum of the weights (Huang et  al., 
2005). Herein, we consider only the product constraint since the sum constraint requires 
fixing further hyper-parameters in advance.

Therefore, the error functions of Table 1 are minimized either regarding the matrix 
of weights W = (wp) (1 ≤ p ≤ P) , subject to 

∏P

p=1
wp = 1, wp > 0 , if the weights are 

assigned globally, or regarding the matrix of weights W = (wrp) (1 ≤ r ≤ C;1 ≤ p ≤ P) , 
subject to 

∏P

p=1
wrp = 1, wrp > 0 , if the weights are assigned locally.

Table  8 provides the Lagrangian functions according to the SOM algorithms for 
weights assigned globally, where � is the Lagrange multiplier.

Then, taking the partial derivatives of L w.r.t wp and � , and by setting the partial 
derivatives to zero, we obtain the optimal solutions to wp according to the SOM algo-
rithms, which are shown in Table 9.

Remark  Equation (28) allows us to conclude that at the end of the training of MBSOM-
MMdd algorithm, when hf (ek),r ∼ 0 for f (ek) ≠ r , the lower the 

∑C

r=1

∑
ek∈Pr

∑
e∈Gr

dp(ek, e) 
the higher the relevance weight wp of the dissimilarity matrix Dp . Similar remarks can be 
achieved for MBSOM-MMdd and MRBSOM algorithms.

(22)JMRBSOM =

N∑

k=1

C∑

r=1

hf (ek),r

P∑

p=1

(xk(p) − vr(p))
⊤(xk(p) − vr(p)).

(23)vr(p) =

N�

k=1

hf (ek),r
∑N

k=1
hf (ek),r

xk(p) =

N�

k=1

�rkxk(p).

(24)�rk =
hf (ek),r

∑N

k=1
hf (ek),r

(1 ≤ r ≤ C;1 ≤ k ≤ N).
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Table  10 provides the Lagrangian functions according to the SOM algorithms for 
weights assigned locally, where �r are the Lagrange multipliers.

Then, taking the partial derivatives of L w.r.t wrp and �r , and by setting the partial deriv-
atives to zero, we obtain the optimal solutions to wrp , which are shown in Table 11.

Remark  Equation (34) allows us to conclude that at the end of the training of MBSOM-
CMdd algorithm, when hf (ek),r ∼ 0 for f (ek) ≠ r , the lower the 

∑
ek∈Pr

∑
e∈Gr

dp(ek, e) the 
higher the relevance weight wrp of the dissimilarity matrix Dp on the cluster Pr . Similar 
remarks can be achieved for the MBSOM-MMdd and MRBSOM algorithms.

2.2.3 � Assignment step

During the assignment step, the cluster representatives and the matrix of relevance 
weights W are kept fixed. The aim is to minimize the error functions of Table 1 regard-
ing the partition P . Regarding the MBSOM-CMdd algorithm, according to Eq. (2), 
the error function JMBSOM−MMdd is minimized if Δ

W
(ek,Gf (ek)

) is minimized for each 

Table 8   Computation of the global weights: Lagrangian functions

SOM algorithms Lagrangian functions

MBSOM-CMdd 
(Dantas & Carvalho, 
2011)

L =
∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wp

∑
e∈Gr

dp(ek, e) − �

�∏P

p=1
wp − 1

�
.                (25)

MBSOM-MMdd
L =

∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wp

∑N

j=1
(vrj)

ndp(ek, ej) − �

�∏P

p=1
wp − 1

�
.          (26)

MRBSOM
L =

∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wp

�
[Dp�r]k −

1

2
�
⊤
r
Dp�r

�
− 𝛽

�∏P

p=1
wp − 1

�
.    (27)

Table 9   Optimal global weights

SOM algorithms Global weights

MBSOM-CMdd (Dantas & Carvalho, 2011)
wp =

�∏P

s=1

�∑N

k=1

∑C

r=1
hf (ek ),r

∑
e∈Gr

ds(ek ,e)
�� 1

P

∑N

k=1

∑C

r=1
hf (ek ),r

∑
e∈Gr

dp(ek ,e)
.
             (28)

MBSOM-MMdd

wp =

�∏P

s=1

�∑N

k=1

∑C

r=1
hf (ek ),r

∑N

j=1
(vrj)

nds(ek ,ej)
�� 1

P

∑N

k=1

∑C

r=1
hf (ek ),r

∑N

j=1
(vrj)

ndp(ek ,ej)
.
      (29)

MRBSOM
wp =

�∏P

s=1

�∑N

k=1

∑C

r=1
hf (ek ),r

�
[Ds�r ]k−

1

2
�
⊤
r
Ds�r

��� 1
P

∑N

k=1

∑C

r=1
hf (ek ),r

�
[Dp�r ]k−

1

2
�
⊤
r
Dp�r

� .

    (30)

Table 10   Computation of the local weights: Lagrangian functions

SOM algorithms Lagrangian functions

MBSOM-CMdd 
(Dantas & Car-
valho, 2011)

L =
∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wrp

∑
e∈Gr

dp(ek, e) −
∑C

r=1
�r

�∏P

p=1
wrp − 1

�
.               (31)

MBSOM-MMdd
L =

∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wrp

∑N

j=1
(vrj)

ndp(ek, ej) −
∑C

r=1
�r

�∏P

p=1
wrp − 1

�
.       (32)

MRBSOM L =
∑N

k=1

∑C

r=1
hf (ek ),r

∑P

p=1
wrp

�
[�p�r]k −

1

2
�
⊤
r
�p�r

�
−
∑C

r=1
𝛽r

�∏P

p=1
wrp − 1

�
.   (33)
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ek ∈ E . For a fixed vector of prototypes P and a fixed matrix of relevance weights W , 
Δ

W
(ek,Gf (ek)

) is minimized if f (ek) = argmin1≤s≤C ΔW
(ek,Gs).

Following a similar reasoning to MBSOM-MMdd and MRBSOM algorithms, 
Table 12 provides the update rule for the clusters Pr (1 ≤ r ≤ C) according to the SOM 
algorithms and relevance weights of the dissimilarity matrices.

Remark  Note that according to Eqs. 37 and 42, the objects are assigned to clusters by com-
puting the dissimilarity between them and the cluster representatives. Dissimilarity matrices 
that have a big (small) weight strongly (weakly) contribute to computing the dissimilarity 
between objects and cluster representatives. This is why a dissimilarity matrix with a big 
weight is more relevant to the clustering task than a dissimilarity matrix with a small weight.

These three steps are repeated until the fixed number of iterations Niter (epochs) is 
achieved. Algorithm 1 summarizes these steps.

Remark 

1.	 The performance of these SOM algorithms at the end of the training, and the associated 
partition, depend on the choice of their parameters Niter , �0 , �f  , q (MBSOM-CMdd fam-
ily), and n (MBSOM-CMdd family);

Table 11   Optimal local weights

SOM algorithms Local Weights

MBSOM-CMdd (Dantas & Carvalho, 2011)
wrp =

�∏P

s=1

�∑N

k=1
hf (ek ),r

∑
e∈Gr

ds(ek ,e)
�� 1

P

∑N

k=1
hf (ek ),r

∑
e∈Gr

dp(ek ,e)
.
              (34)

MBSOM-MMdd

wrp =

�∏P

s=1

�∑N

k=1
hf (ek ),r

∑N

j=1
(vrj)

nds(ek ,ej)
�� 1

P

∑N

k=1
hf (ek ),r

∑N

j=1
(vrj)

ndp(ek ,ej)
.
       (35)

MRBSOM
wrp =

�∏P

s=1

�∑N

k=1
hf (ek ),r

�
[Ds�r ]k−

1

2
�
⊤
r
Ds�r

��� 1
P

∑N

k=1
hf (ek ),r

�
[Dp�r ]k−

1

2
�
⊤
r
Dp�r

� .

       (36)

Table 12   Update rules for the clusters

SOM algorithms Global weights

MBSOM-CMdd 
(Dantas & Carvalho, 
2011)

Pr = {ek ∈ E ∶ r = f (ek) = argmin1≤s≤C
∑C

m=1
hs,m

∑P

p=1
wpDp(ek,Gm)}.    (37)

MBSOM-MMdd Pr = {ek ∈ E ∶ r = f (ek) = argmin1≤s≤C
∑C

m=1
hs,m

∑P

p=1
wpDp(ek, vm)}.     (38)

MRBSOM Pr = {ek ∈ E ∶ r = f (ek) = argmin1≤s≤C
∑C

m=1
hs,m

∑P

p=1
wpDp(ek,�m)}.    (39)

SOM algorithms Local weights

MBSOM-CMdd 
(Dantas & Carvalho, 
2011)

Pr = {ek ∈ E ∶ r = f (ek) = argmin1≤s≤C
∑C

m=1
hs,m

∑P

p=1
wmpDp(ek,Gm)}.     (40)

MBSOM-MMdd Pr = {ek ∈ E ∶ r = f (ek) = argmin1≤s≤C
∑C

m=1
hs,m

∑P

p=1
wmpDp(ek, vm)}.      (41)

MRBSOM Pr = {ek ∈ E ∶ r = f (ek) = argmin1≤s≤C
∑C

m=1
hs,m

∑P

p=1
wmpDp(ek,�m)}.      (42)
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2.	 For a fixed radius, at each step of the algorithms (representation, weighting, and assign-
ment), the objective functions are locally minimized and decreased. Since the radius is 
not a variable of the objective functions, its update cannot guarantee that the objective 
functions decrease regarding the last step before the radius updating; therefore the con-
vergences of algorithms cannot be ensured.

3.	 Furthermore, the final solution depends on the choice of the C initial cluster representa-
tives (e.g., the C set-medoids, regarding the MBSOM-CMdd algorithm).

Algorithm 2   MBSOM-CMdd , MBSOM-MMdd , and MRBSOM algorithms

Require: :
1: The dissimilarity matrices Dp (1 ≤ p ≤ P ), the size map/ , and the number C of neurons

(clusters).
2: The distance matrix between the nodes of the grid δ = ( as − ar

2) (1 ≤ s ≤ C; 1 ≤ r ≤ C);
3: The number of iterations Niter; the initial radius σ0; the final radius σf ; the parameter q

(MBSOM-CMdd); the parameter n (MBSOM-MMdd)
Ensure: : The SOM map; the vector of set-medoids G (MBSOM-CMdd); the matrix V of prototype

weights (MBSOM-MMdd); the matrix A of prototype coefficients (MRBSOM); the matrix of
relevance weights W; the partition P of E into C clusters

4: Initialization

5: Set: t = 0; σ(t) = σ0
σf

σ0

t

Niter ; hs,r = exp{− as−ar 2
2σ2

(t)
} (1 ≤ s ≤ C; 1 ≤ R ≤ C)

6: Initial cluster representatives
7: MBSOM-CMdd: randomly select C distinct set-medoids G(t)

r ∈ E(q) (1 ≤ r ≤ C) to obtain the
initial vector of set-medoids G(t) = (G(t)

1 , . . . , G
(t)
C ).

8: MBSOM-MMdd: randomly initialize the matrix V(t) = (v(t)
rj )1≤r≤C

1≤j≤N

such that N
j=1 v

(t)
rj = 1

and v
(t)
rj ≥ 0 (1 ≤ r ≤ C).

9: MRBSOM: randomly initialize the matrix A(t) = (α(t)
rk )1≤r≤C

1≤k≤N

such that N
k=1 α

(t)
rk = 1 and

α
(t)
rk ≥ 0 (1 ≤ r ≤ C).

10: Initial relevance weights
11: Global weights: set wp ← 1 (1 ≤ p ≤ P ). local weights: set wrp ← 1 (1 ≤ r ≤ C; 1 ≤ p ≤ P )
12: Initial assignment:
13: Obtain the initial partition P(t) = (P (t)

1 , . . . , P
(t)
C ), where P (t)

r (1 ≤ r ≤ C) is computed as
14: MBSOM-CMdd: global weights, according to Eq. (37); local weights, according to Eq. (40).
15: MBSOM-MMdd: global weights, according to Eq. (38); local weights, according to Eq. (41).
16: MRBSOM: global weights, according to Eq. (39); local weights, according to Eq. (42).
17: repeat

18: Set: t = t + 1; σ(t) = σ0
σf

σ0

t

Niter ; hs,r = exp{− as−ar 2
2σ2

(t)
} (1 ≤ s ≤ C; 1 ≤ R ≤ C)

19: Step 1: representation:
20: MBSOM-CMdd: obtain the vector of set-medoids G(t) = (G(t)

1 , . . . , G
(t)
C ), where the set-

medoids G(t)
r ∈ E(q), representing cluster Pr, are computed according to the algorithm (1).

21: MBSOM-MMdd: compute the components v
(t)
rj (1 ≤ r ≤ N ; 1 ≤ j ≤ N) of the matrix V(t)

as follows: global weights, according to Eq. (20) and local weights, according to Eq. (21).
22: MRBSOM: compute the elements of the matrix A(t) = (α(t)

rk ) (1 ≤ r ≤ N ; 1 ≤ k ≤ N)
according to Eq. (24).

23: Step 2: weighting: compute the relevance weights of the dissimilarity matrices as follows:
24: MBSOM-CMdd: global weights, according to Eq. (28); local weights, according to Eq. (34).
25: MBSOM-MMdd: global weights, according to Eq. (29) and local weights, according to Eq.

(35).
26: MRBSOM: global weights, according to Eq. (30) and local weights, according to Eq. (36).
27: Step 3: assignment:
28: MBSOM-CMdd: global weights, according to Eq. (37) and local weights, according to Eq.

(40).
29: MBSOM-MMdd: global weights, according to Eq. (38) and local weights, according to Eq.

(41).
30: MRBSOM: global weights, according to Eq. (39) and local weights, according to Eq. (42);
31: until t = Niter
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2.3 � The methods

For a simpler presentation of the methods according to the algorithms used and the rele-
vance weights assigned to each dissimilarity matrix, we adopted the following notations.

•	 MBSOM-CMdd -G (Dantas & Carvalho, 2011), if each cluster representative is a set 
of objects (set-medoids) presenting a matching function described by Eq. (5) and the 
weights are assigned globally by Eq. (9).

•	 MBSOM-CMdd -L (Dantas & Carvalho, 2011), if each cluster representative is a set 
of objects (set-medoids) presenting a matching function described by Eq. (5) and the 
weights are assigned locally by Eq. (12).

•	 SBSOM-CMdd , if the SOM of Ref. Golli et al. (2005) in which each cluster repre-
sentative is a set of objects (set-medoids).

•	 MBSOM-MMdd-G, if each cluster representative is the entire set of objects 
weighted on this cluster (weighted medoids) based on Eq. (6) and the weights, are 
assigned globally by Eq. (10).

•	 MBSOM-MMdd-L, if each cluster representative is the entire set of objects 
weighted on this cluster (weighted medoids) based on Eq. (6) and the weights are 
assigned globally by Eq. (13).

•	 SBSOM-MMdd , if the SOM of Ref. Mariño and Carvalho (2020) in which each 
cluster representative is the entire set of objects weighted on this cluster (weighted 
medoids).

•	 MRBSOM-G, if each cluster representative is a normalized linear combination of 
the objects represented in the description space based on Eq. (7) and the weights are 
assigned globally by Eq. (11).

•	 MRBSOM-L, if each cluster representative is a normalized linear combination of the 
objects represented in the description space based on Equation 7 and the weights are 
assigned locally by Eq. (14).

•	 SRBSOM, if the batch SOM of Ref. Hasenfuss and Hammer (2007) in which each clus-
ter representative is a normalized linear combination of the objects represented in the 
description space.

Note that we also consider related single-view batch SOM algorithms (SBSOM-CMdd , 
SBSOM-MMdd , and SRBSOM) in order to compare them with the proposed multiple-
view approaches.

2.4 � Complexity analysis

The complexity of the algorithms mainly depends on the matching function Δ
W

 of Table 2, 
which allows comparing each object with the representatives of the clusters. Moreover, the 
final computational complexity considers the following three main steps: representation, 
weighting, and assignment.

•	 Regarding the methods MBSOM-CMdd -G and MBSOM-CMdd-L, the time complex-
ity of Δ is O(P × N × C) . The representation, weighting (Local or Global), and assign-
ment steps are O(P × N2 × C) , O(P × N × C)) , and O(P × N × C2) , respectively. The 
final time complexity is O(Niter × P × N2 × C).
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•	 In methods MBSOM-MMdd -G and MBSOM-MMdd-L, the time complexity of Δ is 
O(P × N2 × C) , which is the same in the representation and weighting (local or global) 
steps, whereas it is O(P × N2 × C2) for the assignment step. The final time complexity 
is O(Niter × P × N2 × C2).

•	 Finally, in methods MRBSOM-G and MRBSOM-L, the time complexity of Δ is 
O(P × N3 × C) . In the representation, weighting (local or global), and assignment steps, 
it is O(N × C)) , O(P × N2 × C) , and O(P × N3 × C)) , respectively. The final time com-
plexity is O(Niter × P × N3 × C).

3 � Experimental setting

The successful training of the batch SOM algorithms depends on the choice of their param-
eters (Badran et al., 2005; Kohonen, 2001, 2013). This section describes the experimental 
setting used to evaluate the proposed methods compared with other state-of-the-art batch 
SOM algorithms for multi-view and single-view relational data. The algorithms were 
implemented in the language “C” and executed on the same machine (OS: Windows 7 
64-bits, Memory: 16 GB, Processor: Intel Core i7-X990 CPU @ 3.47 GHz).

A total of 168 distinct experiments were executed by the methods SBSOM-CMdd , 
MBSOM-CMdd-L, MBSOM-CMdd-G, SBSOM-MMdd , MBSOM-MMdd-L, and 
MBSOM-MMdd-G. The methods SRBSOM, MRBSOM-L, and MRBSOM-G performed 
56 experiments. Experiments proceed with different parameter sets, array maps, shapes, 
and initials ( h0 ) kernel values. The search for the best configuration of the proposed meth-
ods is based on the trade-off between the internal validity indices Topographic Error (TE), 
which measure the quality of the SOM map (Kiviluoto, 1996), and the Silhouette Coeffi-
cient (SIL) (Rousseeuw & Kaufman, 2005), which measures the quality of the cluster parti-
tion. The configuration that provides a solution with a not-so-high TE and a not-so-low SIL 
is preferred to a configuration that provides a solution with a high TE but a low SIL. The 
goal is to obtain a trained map and cluster partition of high quality simultaneously as meas-
ured by these indices.

For instance, let us consider the silhouette and topographic error scores of two experi-
ments of one of the assessed methods: experiment 1 ( SIL = 0.70 and TE = 0.45 ) and 
experiment 2 ( SIL = 0.68 and TE = 0.20 ). The setup of experiment 2 is the most suitable 
according to our methodology. The overall results are presented in the same setting regard-
ing the best behavior in most scenarios, according to the internal indices. This means that 
if the best results regarding all methods and scenarios are achieved with a squared shape, 
the methods are compared between them using this configuration with their best setup.

A remarkable feature of multi-view learning is that its performance on an original sin-
gle-view dataset could still be improved by using manually generated multi-views (Zhao 
et al., 2017; Sun et al., 2019). Accordingly, datasets that were originally single-view were 
split into multiple datasets described by disjoint subsets of the original set of features. 
Fourteen datasets were considered in this study (see Sect. 1 of the Supplementary Mate-
rial). Table  13 summarizes these datasets, in which P is the number of views, N is the 
number of objects, M is the number of a priori classes, and ARRAY​ is the dimension of 
the grid array. The maps are arrays of square (Sq.) or rectangle (Rect.) shapes. Table 13 
also provides C, the number of neurons (clusters) in the maps for each dataset, which can 
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be deduced from ARRAY. The number of neurons is roughly ⌊
√
N⌋ according to prior 

research (Vesanto et al., 1999).
For each dataset, the Euclidean distance is used to compute a dissimilarity matrix simul-

taneously considering all the variables in each view. Regarding IRIS and WINE data-
sets, for each variable describing the objects a dissimilarity matrix is computed using the 
Euclidean distance.

Then, the matrices were normalized according to their overall dispersion to have the 
following dynamic range: each dissimilarity d(ek, el) (1 ≤ k, l ≤ N) in a given dissimilar-
ity matrix D is normalized as d(ek ,el)

T
 , where T =

∑N

k=1
d(ek, g) is the overall dispersion and 

g = el ∈ E = {e1,… , eN} is the overall representative, which is computed according to 
l = argmin1≤h≤N

∑N

k=1
d(ek, eh) . The considered batch SOM algorithms operate on these 

normalized dissimilarity matrices.
Regarding the single-view batch SOM algorithms of Refs. Golli et al. (2005); Hasenfuss 

and Hammer (2007); Mariño and Carvalho (2020), the single dissimilarity matrix of each 
dataset is obtained using a concatenation strategy, i.e., as the average of the dissimilarity 
matrices describing this dataset.

In addition, we consider the Gaussian neighborhood kernel function (Eq. 43) that ranges 
in [0, 1]:

where ‖as − ar‖2 is the squared Euclidean distance in the topological space between neu-
rons as and ar and �(t) is the kernel width (radius) at the iteration t.

The fixed initial value of the kernel width �0 = �(0) and the final value �f = �(Niter)
 are 

updated at each iteration t according to Equation (44). Each method is executed using 
Niter = 50 iterations (cf. Ref. Kohonen et al. (2014)).

About the initial and final values of the kernel width, some heuristic methods proposed in 
the literature are mainly related to the classical SOM assignment based only on the dis-
tance between objects and BMU (Vesanto et al., 1999). In our case, since the assignment 
is based on the generalized dissimilarity functions (c.f. Table 2), which leads to maps with 
a high topographic error, we propose to fix the values of �0 and �f  by using the heuristic 
method of Ref. Carvalho et al. (2022). The initial and final values of the radius � are com-
puted according to the expressions (45) and (46), respectively. Thus, we initialized the map 
radius ( �0 ) representing the distance of two neurons from a kernel value ( h0 ) equal to 0.1. 
In addition, we computed �f  such that two neighboring neurons have a kernel value ( hf  ) 
equal to 0.01. The map diameter in the topological space is the largest topological distance 
between two neurons of the map and is computed as (xmax)2 + (ymax)

2 , where xmax and ymax 
correspond to the grid size in the horizontal X-axis and vertical Y-axis, respectively.

(43)hs,r = exp

�
−
‖as − ar‖2

2�2
(t)

�
.

(44)�(t) = �0

(
�f

�0

) t

Niter

.

(45)�0 =

√
−[(xmax)

2 + (ymax)
2]

2 ln(h0)
.
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Specifically for the models SBSOM-CMdd , MBSOM-CMdd-L, and MBSOM-CMdd

-G, after some trials based on the trade-off between TE and SIL, the cardinal q of the set-
medoids was fixed to 5. In turn, after some trials, the parameter n, which controls the level 
of smoothness of the distribution of prototype weights among all the objects in each of 
the clusters, was fixed to 1.1 for the models SBSOM-MMdd , MBSOM-MMdd-L, and 
MBSOM-MMdd -G based also on the trade-off between TE and SIL. The experiments were 
repeated and randomly initialized 10 times. For each loop, 50 iterations were performed.

Finally, to assess the degree of agreement between an a priori partition and a parti-
tion provided by the SOM algorithms, we used two external validity indices computed on 
datasets with labeled instances: the F-measure (Manning et al., 2008) and the Normalized 
Mutual Information (NMI) (Cover & Thomas, 2006). See Sect.  1 of the supplementary 
material for further information.

4 � Experimental analysis and discussion

This section assesses the performance of the proposed multi-view SOM algorithms, 
namely MBSOM-MMdd-L, MBSOM-MMdd-G, MRBSOM-L, and MRBSOM-G com-
pared with already in the literature multi-view SOM algorithms (Dantas & Carvalho, 
2011): MBSOM-CMdd -L and MBSOM-CMdd-G. In addition, we compared them with 
the most related single-view methods SBSOM-CMdd (Golli et al., 2005), SBSOM-MMdd 
(Mariño & Carvalho, 2020), and SRBSOM (Hasenfuss & Hammer, 2007).

The algorithms are compared according to F-measure, NMI, TE, and SIL. Table  14 
presents the average ranks concerning the compared method in each metric. The aver-
age rank provides the criterion for evaluating the models. It means that algorithms that 

(46)�f =

√
−1

2 ln(hf )
.

Table 13   Summary of the multi-
view datasets

Dataset P N M Array C

Core 1 7 400 4 3 × 6 18
Core 2 7 400 4 3 × 6 18
Reuters 5 1200 6 6 × 6 36
Dermatology 2 366 6 3 × 3 9
Aloi cars 4 1413 13 6 × 6 36
Spectf 2 267 2 3 × 5 15
Forest type 2 325 4 3 × 6 18
Water 2 527 13 3 × 7 21
Image 2 2310 7 7 × 7 49
Flower 17 4 1360 17 6 × 6 36
Mfeat 6 2000 10 4 × 9 36
Phoneme 3 2000 5 6 × 6 36
Iris 4 150 3 2 × 4 8
Wine 13 178 3 2 × 4 8
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achieve higher mean scores for F-measure, NMI, or Silhouette perform the best, whereas 
algorithms with lower mean scores for Topographic error outperform the others. Regard-
ing average ranks, lower values imply better results. In this table, the best average rank 
provided by each index is in bold and italic.

According to Table  14, MRBSOM-G had the best performance regarding the aver-
age rank of F-measure, NMI, and TE. MBSOM-MMdd -L surpassed the other algorithms 
regarding the average rank of SIL. The multi-view variants improved the single-view vari-
ants and the proposed algorithms outperformed the multi-view benchmarks (set-medoids 
SOM) in most cases. The global-weighted algorithms outperformed the local-weighted 
algorithms regarding NMI and TE. Local-weight algorithms performed the best concerning 
SIL.

Based on the average ranks, we used the Friedman’s test  (Friedman, 1940; Demšar, 
2006) to test the null hypothesis that all models perform the same regarding F-measure, 
NMI, TE, and SIL indices. The test reached a p-value = 9.899e−17 and p-value = 3.422e−17 
concerning TE and Silhouette respectively. The obtained p-value allows us to reject the 
null hypothesis that all the algorithms perform the same concerning these indices. To 
detect significant pairwise differences among all models, the Nemenyi’s test  (Nemenyi, 
1963; Demšar, 2006) was applied regarding the average rank of NMI and TE, available in 
Table 14. For a significance level � , the test determines the critical difference (CD). If the 
difference between the average ranking of the two algorithms is greater than CD, the null 
hypothesis that the algorithms have the same performance is rejected.

Figures 1 and 2 show the CD plot to visualize the differences concerning the TE and SIL 
indices. Models that are not significantly different (with � = 0.05 ) are connected (Demšar, 
2006). The first positions in the figures indicate lower values in the average rank, hence 
the best algorithm. The critical difference (CD) determined by the Nemenyi post-test was 
3.211.

Concerning TE, algorithms MRBSOM-G, MRBSOM-L, and SRBSOM significantly 
improved algorithms SBSOM-CMdd and MBSOM-CMdd-L. Local-weight algorithms 
performed better concerning SIL, algorithms MBSOM-MMdd -L and MBSOM-CMdd -L 
presented significant improvements concerning SBSOM-MMdd , which had the worst per-
formance in this case. Finally, the proposed multi-view SOM algorithms presented a better 
performance than the already in the literature multi-view SOM algorithms; however, these 
improvements are not always statistically significant.

Dermatology dataset
Next, we provide more detailed results for the Dermatology dataset (Dua & Graff, 2017) 

to demonstrate the usefulness of the proposed algorithms. Figure 3 displays the distribution 
of the objects over 9 nodes on the 3 × 3 grid provided by the proposed MBSOM-MMdd -G 
algorithm on the Dermatology dataset. Each node represents a cluster (a neuron). In addi-
tion, the size of the circle is proportional to the number of objects in the cluster. Also, the 
total area of the circle is shared between the areas corresponding to the a priori classes.

In this figure, the map tends to mix the data of patients diagnosed with seboreic der-
matitis and pityriasis rosea. This might be linked to both diseases presenting very simi-
lar manifestations. Similar behavior was observed in all other maps. Furthermore, this 
map, and overall those produced by the proposed methods, tend to better cluster data from 
patients previously diagnosed with pityriasis rubra pilaris, which are less well represented 
in the dataset. Finally, compared to the set-medoids SOM algorithms on this dataset, the 
clusters generated by the proposed MBSOM-MMdd -G algorithm (as well as by the other 
proposed methods) are more homogeneous.
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If the a priori number of classes corresponds to the true and unknown number of clus-
ters, the proposed SOM algorithms, even when they run with a number of neurons (clus-
ters) larger than the number of clusters (classes), tend to be able to find the true number of 
clusters. Accordingly, the proposed algorithms tend to leave some clusters empty, and thus 
produce a better mapping, from a clustering point of view. The empty nodes help sepa-
rate the main groups of diseases. For more details, Sect. 4 of the Supplementary Material 
describes this dataset and presents the learned maps provided by the SOM algorithms.

Table 15 shows the results for the internal and external indices computed for the solu-
tion with the best objective function value over the 10 executions for the Dermatology 
dataset. In this table, regarding each metric, the best score is highlighted in bold; the result 
is followed by the rank, which is shown in italic; and the best rank among all methods is 
shown in bold and italic.

Concerning F-measure and NMI, the multi-medoids SOM algorithms had the best per-
formance and the relational SOM algorithms had the second best performance. Moreover, 
the set-medoids SOM algorithms had the worst performance.

Overall, the multi-view algorithms outperformed the single-view algorithms within the 
same family, except for MBSOM-MMdd-G, which is outperformed by SBSOM-MMdd 
in terms of F-measure, and MRBSOM-L, which is outperformed by SRBSOM in terms 
of NMI. Regarding TE and SIL, the MRBSOM-L and MRBSOM-G models achieved bet-
ter results than the SRBSOM model. MBSOM-MMdd -L and MBSOM-MMdd -G outper-
formed SBSOM-MMdd concerning SIL index. MBSOM-CMdd -L and MBSOM-CMdd -G 
overcame SBSOM-CMdd regarding SIL index. Finally, the algorithms with the worst over-
all performance were SBSOM-CMdd , MBSOM-CMdd-L, and MBSOM-CMdd-G. The 
proposed methods with the best performance were MBSOM-MMdd -L and MRBSOM-G.

Table 14   Average Rank by index 
and algorithm

Methods F-measure NMI TE SIL

SBSOM-CMdd 5.857 6.214 6.714 5.857
MBSOM-CMdd-L 5.571 5.643 6.857 3.571
MBSOM-CMdd-G 5.571 4.964 5.107 4.714
SBSOM-MMdd 5.357 4.929 6.143 7.357
MBSOM-MMdd-L 4.429 5.000 5.214 3.429
MBSOM-MMdd-G 4.643 4.643 4.821 4.714
SRBSOM 4.893 5.000 3.464 5.000
MRBSOM-L 4.714 4.571 3.429 4.357
MRBSOM-G 3.964 4.036 3.250 6.000

Fig. 1   Comparison of all models against each other through the Nemenyi test according to TE with � = 0.05
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In conclusion, regarding the overall mean ranking, the multi-view algorithms outper-
formed the single-view algorithms. The multi-medoids and relational SOM surpassed the 
set-medoids SOM.

For illustrative purposes, Table  16 shows the vectors of relevance weights locally 
and globally estimated for the solution with the best objective function value over the 
10 executions for the Dermatology dataset. The view with the highest relevance to each 
of the globally weighted approaches and the most relevant view for the clusters con-
cerning each one of the locally weighted approaches are highlighted in boldface in this 
table. Among all methods, View 2 had the greatest influence on the outputs. However, 
concerning the local-weighted algorithms, View 1 had the greatest influence on defin-
ing clusters 4 and 6 produced by the MBSOM-CMdd-L, as well as on defining cluster 2 
produced by the MBSOM-MMdd -L and clusters 1 and 2 produced by the MRBSOM-L 
algorithm.

Fig. 2   Comparison of all models against each other through the Nemenyi test according to SIL with 
� = 0.05

Fig. 3   SOM maps provided by 
the proposed method MBSOM-
MMdd -G for the Dermatology 
dataset
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5 � Final remarks

The paper proposes two new families of batch SOM algorithms for multi-view dissimi-
larity data: multi-medoids SOM and relational SOM. Both families of algorithms are 
designed to provide a crisp partition to learn the relevance weight for each dissimilarity 
matrix and provide a representative for each cluster based on a suitable objective func-
tion. The goal of the proposed algorithms is to preserve the topological properties of 
the data on the map. The relevance of each dissimilarity matrix can be computed locally 
for each cluster in MBSOM-MMdd -L and MRBSOM-L methods, or globally for the 
whole partition in MBSOM-MMdd -G and MRBSOM-G methods. MBSOM-MMdd-L, 
and MBSOM-MMdd -G consider the cluster representatives as vectors of weights whose 
components measure how the objects are weighted as a medoid in a given cluster. In 
MRBSOM-L and MRBSOM-G, each cluster representative is a normalized linear com-
bination of the objects represented in the description space.

Experiments with 14 datasets were performed by means of similar parametrizations 
for an efficient evaluation. The comparison was established using the multi-view SOM 
algorithms MBSOM-CMdd -G and MBSOM-CMdd -L (Dantas & Carvalho, 2011), as 
well as the single-view SOM algorithms SBSOM-CMdd (Golli et al., 2005), SRBSOM 
(Hasenfuss & Hammer, 2007), and SBSOM-MMdd (Mariño & Carvalho, 2020).

We tested the null hypothesis that all models perform the same and the non-parametric 
Friedman’s test together with the Nemenyi post-test indicated merely random differences in 
terms of the performance measures.

Our findings indicate that the proposed models presented better performance than the 
benchmarks, although not necessarily statistically significant improvements were obtained. 
In most cases, MRBSOM-G, MRBSOM-L, SRBSOM (Hasenfuss & Hammer, 2007), 
MBSOM-MMdd-G, and MBSOM-MMdd -L outperformed the other methods. Spe-
cifically, methods MRBSOM-G, MRBSOM-L, and SRBSOM (Hasenfuss & Hammer, 
2007) significantly improved methods SBSOM-CMdd (Golli et al., 2005), and MBSOM-
CMdd -L concerning TE. In addition, we provide more detailed results for the Dermatology 
dataset in which the proposed methods were the best-ranked.

In conclusion, the multi-view models outperformed the single-view models. Moreover, 
the multi-medoids and relational SOM algorithms performed better than the set-medoids 
SOM algorithm. In further research, we aim to extend this study considering prior and new 
on-line versions of the proposed SOM algorithms.

Table 15   Results for the Dermatology dataset

Methods F-measure NMI TE SIL

SBSOM-CMdd 0.716 9 0.680 9 0.246 7 0.234 8
MBSOM-CMdd-L 0.755 8 0.704 8 0.331 8 0.244 6
MBSOM-CMdd-G 0.813 7 0.798 7 0.454 9 0.235 7
SBSOM-MMdd 0.876 2 0.832 5 0.137 3 0.233 9
MBSOM-MMdd-L 0.891 1 0.857 1 0.161 4 0.316 1
MBSOM-MMdd-G 0.861 3 0.846 3 0.230 6 0.283 4
SRBSOM 0.845 6 0.840 4 0.199 5 0.252 5
MRBSOM-L 0.851 5 0.825 6 0.126 2 0.308 3
MRBSOM-G 0.856 4 0.847 2 0.060 1 0.312 2
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Table 16   Dermatology dataset: vectors of relevance weights

Cluster MBSOM-CMdd-L MBSOM-MMdd-L MRBSOM-L

View 1 View 2 View 1 View 2 View 1 View 2

1 0.805 1.242 0.893 1.119 1.001 0.999
2 0.961 1.041 1.057 0.946 1.029 0.972
3 0.907 1.102 0.833 1.200 0.887 1.127
4 1.300 0.769 0.993 1.007 0.953 1.049
5 0.886 1.129 0.937 1.067 0.984 1.016
6 1.022 0.978 0.983 1.017 0.973 1.028
7 0.907 1.102 0.888 1.126 0.985 1.016
8 0.968 1.033 0.925 1.081 0.971 1.030
9 0.990 1.010 0.880 1.137 0.992 1.008

MBSOM-MMdd-G MBSOM-MMdd-G MRBSOM-G

0.920 1.087 0.896 1.116 0.977 1.024
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