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Abstract
This paper introduces the Large Events Model (LEM) for soccer, a novel deep learning 
framework for generating and analyzing soccer matches. The framework can simulate 
games from a given game state, with its primary output being the ensuing probabilities 
and events from multiple simulations. These can provide insights into match dynamics and 
underlying mechanisms. We discuss the framework’s design, features, and methodologies, 
including model optimization, data processing, and evaluation techniques. The models 
within this framework are developed to predict specific aspects of soccer events, such as 
event type, success likelihood, and further details. In an applied context, we showcase the 
estimation of xP+, a metric estimating a player’s contribution to the team’s points earned. 
This work ultimately enhances the field of sports event prediction and practical applications 
and emphasizes the potential for this kind of method.

Keywords Large events model · Event data · Event prediction · Soccer analytics · Deep 
learning

1 Introduction

A foundation model is a machine learning model that is pre-trained on massive amounts 
of data and can be fine-tuned to perform various downstream tasks effectively. Large 
Language Models (LLMs), such as GPT-3 (Radford et  al., 2018; Brown et  al., 2020), 
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are prime examples of foundation models, showcasing their versatility through diverse 
applications in natural language processing, code generation, translation, and more.

However, LLMs may not excel in specific specialized tasks (Huang and Chang, 2023; 
Valmeekam et al., 2022), particularly in soccer. For instance, predicting the outcome of 
a soccer match remains challenging for these models due to the complex interplay of 
factors that influence game results.

The limitation arises from LLMs being designed to learn human communication 
rather than the specific “language” of soccer: soccer data typically consists of event 
or tracking data, which are not natural language constructs. Event data encompasses 
discrete in-game actions such as passes, shots, and fouls, while tracking data captures 
continuous player and ball positions throughout a match. By developing a model that 
understands the language of soccer events, we can create a generative events model for 
soccer, unlocking a wide array of powerful downstream applications in analysis and 
prediction.

Drawing inspiration from LLMs, we can adapt their approach to the soccer language. 
LLMs leverage the context of previous words to predict the next word in a sequence. 
Similarly, Large Events Models (LEMs) predict the subsequent event given the current 
game state.

To formalize this idea, let’s represent a game as a sequence of events, E1,E2, ...,En . Our 
objective is to design a model that, given a partial sequence E1,E2, ...,Ek (where k < n ), 
predicts the next event Ek+1 . This approach differs from Markov models (Rudd, 2011) since 
our approach does not assume independence from states previous to Ek.

Event forecasting in soccer matches holds great importance but is riddled with 
challenges. Soccer matches are influenced by numerous variables, both on and off the field, 
including player and team attributes, weather conditions, and psychological factors. Data 
availability and quality can significantly impact the accuracy of event predictions, making 
it crucial to obtain reliable and comprehensive datasets.

This paper proposes a LEM, composed of a set of models for generating subsequent 
events in soccer matches. In addition, we have developed a framework that utilizes this 
set of models capable of forecasting events in soccer matches. This framework is designed 
to simulate games starting from a user-defined game state, simulating the game multiple 
times, with all simulations beginning at the specified game state. The framework outputs 
the resulting probabilities from the simulations and the events generated for every game. 
This allows for inspecting and interpreting the patterns that lead to the different outcomes, 
providing valuable insights into the game dynamics and underlying processes.

We consider the proposed LEM framework a foundation model due to its applicability 
to a wide range of practical scenarios and its ability to support various downstream tasks. 
Furthermore, the models support fine-tuning, allowing the framework to provide insights 
into specific contexts (Radford et al., 2018). Applications, such as action value estimation 
(i.e., how much value an event brings to a team), game forecasting, and anticipating 
in-game patterns, can provide a deeper understanding of the game, improve decision-
making, and offer strategic advantages for players, teams, and analysts. LEMs contrast with 
approaches in sports analytics in the sense that currently, for each new prediction task, a 
new specialized model is required. With LEMs, the same model provides multiple insights. 
For example, when building a game forecasting model, LEMs provide the probabilities for 
each outcome but also event data that can be used to build analytics, such as which team 
is likely to dominate possession, how many shots we expect for each team, where can we 
expect the opposition to create a threat to our defense, among others.

The research questions we aim to address in this study are:
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• Can we accurately generate events from a given game state?
• How do we use the generated events to compute metrics that summarize player 

performance?

The main contributions of our work are as follows:

• Deep learning models We developed a set of PyTorch-based deep learning models 
tailored for event prediction. The models are designed to capture the complex relationships 
between various in-match variables and the likelihood of specific events occurring, 
enhancing both their predictive capabilities and inference speed compared to alternatives, 
with the latter being crucial for practical applications. The combination of these sequential 
models is referred to as LEM.

• Novel framework We propose a unique and innovative framework for predicting the next 
events in soccer matches, integrating game state data and deep-learning models. This 
framework offers a comprehensive, adaptable, and efficient solution for applying event 
forecasting for many applications in soccer.

• Practical applications Our novel framework focuses on its applicability across various 
domains, such as action value estimation, match prediction, and many other applications 
related to the use of data and statistical methods to measure performance and make 
informed decisions in soccer. In this context, we introduce the Expected Points Added 
(xP+) metric, which utilizes the framework potential to estimate a player’s contribution 
to the team’s performance. This emphasis on real-world impact bridges the gap between 
academic research and industry needs, promoting the adoption of advanced predictive 
techniques in sports-related domains.

The structure of the paper is organized as follows:

• Section  2 examines existing research on both methodologies related to soccer analytics 
and relevant deep learning techniques. It also discusses how the proposed approach 
impacts the state of the art.

• Section  3 formalizes the proposed event forecasting models.
• Section   4 provides a high-level introduction to our proposed framework, detailing its 

features, approach, and implementation details.
• Section  5 explains the methodology behind our framework’s deep learning models, data 

processing, model optimization, and evaluation techniques.
• Section   6 presents the results of our models and framework, including a practical 

application of estimating the xP+ for each player.
• Section  7 provides a critical evaluation of our framework and its practical applications, 

addressing its limitations, potential improvements, and use cases.
• Section  8 summarizes the main contributions and findings, highlighting the significance 

of our work in advancing sports event prediction and its practical applications while 
highlighting venues for future research.
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2  Literature review

Soccer analytics has evolved rapidly over the past few years, fueled by the increasing 
availability of data on player and team performances and advances in machine learning 
and artificial intelligence techniques (Tuyls et  al., 2021). This literature review aims to 
provide an overview of the existing research and methodologies in soccer analytics and 
event prediction while highlighting the impact and improvements offered by our proposed 
framework.

Researchers have explored various machine learning techniques for soccer analytics, 
including decision trees (Decroos et  al., 2019; Garnica-Caparrós and Memmert, 2021) 
and neural networks (Garnica-Caparrós and Memmert, 2021; Fernández and Bornn, 2021; 
Wang et al., 2024). These approaches have shown promise in predicting match outcomes 
and player performance. Still, they cannot predict individual events within a match, i.e., 
the techniques can forecast how many goals a player will score during a season but do not 
provide any information on which games the player is likely to score and how many.

The emergence of event and player tracking data has spurred interest in modeling 
the interactions between players and the ball during soccer matches. Event data records 
discrete in-game actions such as passes, shots, and fouls, while player tracking data 
provides continuous information on player and ball positions throughout the match. 
A variety of techniques has been applied to analyze these data types, including Markov 
models (Cervone et al., 2014), network analysis (Clemente et al., 2015), and deep learning 
(Merhej et  al., 2021; Hubáček et  al., 2019; Vaswani et  al., 2020; Mendes-Neves and 
Mendes-Moreira, 2020).

Deep learning, in particular, has gained traction due to its ability to learn complex 
patterns in large datasets. Convolutional neural networks (CNNs) have been employed to 
analyze player tracking data and predict player movements (Fernández et al., 2021), while 
recurrent neural networks (RNNs) and their variants, such as long short-term memory 
(LSTM) networks (Hochreiter and Schmidhuber, 1997), gated recurrent units (GRUs) (Cho 
et al., 2014), and transformers (Vaswani et al., 2017) have been utilized to model sequences 
of events (Yeung et al., 2023; Simpson et al., 2022).

Our proposed framework addresses these limitations by borrowing the same concept 
as LLMs: leveraging previous words’ context to forecast the next word’s probabilities. 
The non-deterministic approach of LLMs is responsible for the creativity attributed to 
these models. For example, it enables ChatGPT to generate different answers to the same 
prompt. By applying similar concepts to soccer event prediction, we aim to develop a 
generative model capable of accurately predicting the next event and including variability 
in its outputs to simulate diverse scenarios.

The works most similar to our proposal are Yeung et  al. (2023) and Simpson et  al. 
(2022). Focusing on Simpson et al. (2022), our proposal differs in some key aspects: (1) 
we forecast all 33 event types available in our dataset, while Simpson et al. (2022) forecasts 
only 4, (2) their game state is defined by the last 40 events, while our game state is defined 
using only the last event. Yeung et al. (2023) extends the work of Simpson et al. (2022), 
keeping the restriction of 4 offensive event types and, in addition, the author groups 
action coordinates to zones on the pitch, reducing the complexity of the event forecasting 
problem. Our approach uses raw coordinates instead of grouping since they contain key 
information for accurate event forecasts. These differences have several consequences: due 
to different methodologies, we cannot compare model accuracy, but we expect our model 
to be less accurate, primarily attributed to forecasting more complex variables and due to a 
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much simpler network architecture. However, our approach gains a lot regarding inference 
speed and the number of applications. For our goals, the benefits outweigh the accuracy 
loss.

The potential of our approach is tremendous. Through simulation, we can forecast the 
value of each game state in terms of points or likeliness to score in the same possession, 
providing an alternative to frameworks such as VAEP (Decroos et al., 2019) and xT (Singh 
and Karun, 2019). Furthermore, LEMs can estimate the value of specific game situations, 
like set pieces (Shaw and Gopaladesikan, 2020). Other metrics, such as expected goals 
and expected assists, can be estimated through simulation, as well as tactics and strategic 
insights that can be obtained through the analysis of fine-tuned models (Mendes-Neves 
et al., 2021).

The literature on soccer analytics has made significant strides in recent years. Still, there 
remains a gap in developing generative models that can forecast a wide range of events and 
scenarios within a match. Our proposed framework aims to bridge this gap by adopting 
basic principles from LLMs and applying them to soccer event prediction. By offering a 
more flexible approach compared to specialized models, our framework opens the door 
to numerous practical applications and deeper insights into soccer dynamics. As the field 
of soccer analytics continues to evolve, our work stands as a promising step towards more 
comprehensive, nuanced, and actionable event prediction that can benefit players, teams, 
analysts, and various stakeholders in the soccer ecosystem.

3  Problem formulation

In this section, we delve into the specifics of our approach to predicting the outcomes of a 
soccer match. We define the Game State, detailing the input data and explaining how we 
employ event data to anticipate the subsequent soccer event.

3.1  Defining game state

We start by describing the input data used for our problem formulation. We utilize event 
data to forecast the next soccer event based on the description of the most recent event. 
This setup allows our model to learn from the temporal patterns in the events, which is 
crucial for making accurate predictions in the dynamic context of a soccer match. The 
game state, our input data, is formally defined in Eq. 1, where, Gi is the game state before 
the event i and F is a subset of features describing the game state. Note that each subset F 
can contain more than one variable.

The description of each subset F is as follows: 

1. Event type A categorical feature representing the type of event that occurred. There are 
33 possible types of events, including passes, shots, fouls, and many others. We did 
not group similar event types (e.g., passes and smart passes) because their underlying 
characteristics have different distributions, e.g., the relationship to location and current 
score. For learning purposes, this variable is one-hot encoded to 33 binary variables.

2. Period Represents the period of the match, either the first half (0) or the second half (1). 
It does not account for extra time or penalty shootouts.

(1)Gi = (F1,F2, ...,F8)
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3. Minute A numerical feature recording the minute of the game during which the event 
occurred. It ranges from 0 to the maximum duration of a match (i.e., the length of a 
match plus any additional time). Note that this variable also contains the second in the 
decimal part. For learning purposes, this variable is normalized by dividing by 60 to 
ensure that nearly all instances fall in the 0–1 interval.

4. X and Y Continuous features representing the spatial coordinates where the event took 
place on the pitch. They are values ranging from 0 to 100, with the origin (0,0) at the 
bottom left corner of the pitch and (100,100) at the opposite corner. The location of 
an event is always made according to the perspective of the team performing it. This 
means that teams attack from x=0 to x=100. For learning purposes, these variables are 
normalized by dividing by 100, ensuring they are in the interval 0–1.

5. IsHomeTeam A binary feature indicating whether the event was performed by a player 
from the home team (1) or the away team (0).

6. IsAccurate A binary feature denoting whether the event was executed accurately (1) or 
not (0). For example, in the case of a pass, it would be marked as accurate if the pass 
reached its intended target.

7. IsGoal A binary feature is set to 1 if the event resulted in a goal and 0 otherwise.
8. HomeScore and AwayScore Numerical features representing the current score of the 

home team and the away team, respectively, at the time of the event. These variables 
are normalized for learning purposes by dividing them by 10, ensuring that they fall 
(mostly) in the interval [0,1].

Note that we do not include information about the end coordinates or the identity of 
players. The reason for not including end coordinates comes from the fact that, in most 
situations, the end coordinates of an event are the starting coordinates of the following 
event. Therefore, we would add a substantially higher computational cost to our model 
with little practical use. Regarding the inclusion of player identity in the LEMs, it remains 
an open problem. However, for most applications, the player identity is not required. For 
example, the VAEP model (Decroos et  al., 2019) does not include player identity in the 
model, but is able to rank soccer players according to their skill level.

3.2  Desired output

The objective of our problem is to predict the next event in the soccer match, given 
a sequence of game state instances. For this, we forecast the state-change array ê . The ê 
is an array containing the forecasted probabilities for each variable, formally defined in 
Eq. 2, where n is the number of previous game states used to forecast. In this proposal, we 
use n = 1 , enabling smaller networks that increase inference speed and reduce the risk of 
overfitting the models. Disadvantages to using a single game state for forecasting include 
the models being less accurate and some event forecasts not being coherent with the 
previous chain of events. Increasing n is a path for future improvement but requires larger 
datasets and more computational power.

The ê contains all the information required to estimate the next event. The probabilities 
related to variables EventType, IsAccuracte, IsGoal, X, Y and IsHomeTeam are directly 
forecasted by the models. Instead of forecasting Period and Minute, we forecast the 
TimeElapsed variable, which is the temporal distance between two events. We do not 

(2)êi = f (Gi,Gi−1, ...,Gi−n)
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forecast HomeScore and AwayScore since they are a consequence of other predicted 
variables.

The non-binary variables are one-hot encoded. This allows us to obtain the individual 
probabilities for each category. For example, for each forecasted event, we know the 
probability for each event type. The same happens with TimeElapsed (we know the probability 
of the next action being 0, 1,..., 60 s after) and with X and Y (we know the probability of the 
next location being 0, 1,..., 100).

We need to make three sequential inferences to build ê . First, we infer the next action 
EventType using the game states (Eq. 3). Then, we infer the accuracy of the events, IsAccurate 
and IsGoal, by using the game states and the forecasted event type (Eq. 4). At last, we forecast 
the remaining variables, TimeElapsed, X, Y and IsHomeTeam, using all information available 
about the event (Eq. 5). From a practical standpoint, we present the data flow in Fig. 1.

(3)êi(type) = f (Gi,Gi−1, ...,Gi−n)

(4)êi(accuracy) = f (Gi,Gi−1, ...,Gi−n, êi(type))

Fig. 1  A schematic representation of the data flow of our LEM. In blue, we present the composition of the 
input vector that contains the context for our models. The data is fed sequentially through the three mod-
els, with each model requiring the outputs of previous models to make an inference. After the data flows 
through all the models, we extract the outputs highlighted in red to generate the vector ê
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The reason to forecast the variables separately is to take advantage of their dependence. 
For example, we know that, on average, a shot is much less likely to be successful than 
a pass. Therefore, forecasting EventType first and then forecasting IsAccurate with this 
information is a much easier problem to learn than forecasting all components with the 
same model. This approach allows us to condition the probabilities, making it easier for 
events to follow the expected behaviors. This means that event coordinates are forecasted 
with knowledge of the current event. If the forecasted type is a corner kick, the forecasted 
distribution of XY coordinates will be significantly different compared to forecasting a pass.

Another important aspect is that the variables are probabilistically sampled, with the 
probability forecasted by the model. Therefore, our approach is not deterministic. This is 
crucial to increase the spectrum of applications that our model covers.

Given these steps, we can now forecast the next event Ê by changing the previous game 
state using the state-change array (Eq. 6).

4  Framework overview

This section provides an overview of how the framework operates. Figure 2 provides the 
framework’s architecture.

Upon receiving the user’s input data, which can be either a single event or an array of 
events, the first step in our framework is to ensure that this data is in a format compatible 
with our models. The data preprocessing component handles this task.

(5)êi(data) = f (Gi,Gi−1, ...,Gi−n, êi(type), êi(accuracy))

(6)Êi = f (Gi, êi)

Fig. 2  Fluxogram illustrating the workflow of the proposed framework. The process starts with user input 
data that undergoes data preprocessing, ensuring it is in the correct format for the models. This data is then 
fed to the LEM, generating predictions ê for the state-change array. These predictions are passed through an 
interpretation function which converts the state-change array into a human-readable event standard. From 
there, either the process is repeated by converting the new event to the input format or the simulation ends. 
The simulation is stopped only when the user-defined criteria are met or when the match ends
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If the input data is not already in the required format, the data preprocessing component 
performs the necessary transformations. This involves encoding categorical variables, 
normalizing numerical features, and structuring the data so that each instance represents 
a game state as defined in Sect. 3. The preprocessing stage is crucial to the functioning of 
the models, as it ensures they receive data in a consistent format that they can correctly 
interpret.

After data preprocessing, the cleaned data is fed sequentially through the three models 
contained in the LEM, as visible in Fig. 1. The output from the models is a probability 
distribution over all possible next events. Given the current game state, this distribution 
represents the model’s predictions about the next event. We pass each distribution’s 
probabilities through a sampler that chooses an action according to the probabilities. For 
binary variables, we sample from a Bernoulli distribution. For multicategory variables, we 
sample from a Multinomial distribution.

Once the model predictions are obtained, they are passed through an interpretation 
function. This function transforms the model’s output back into the format that can be used 
as input for the next iteration. The steps required are to update the time-related variables 
and update the score. Time-related variables are updated by increasing the Minute variable 
by the number of seconds from TimeElapsed. If the number of minutes is over 45, we 
assume the game will either change status to the second half or end in case we were 
already in the second half. This is an oversimplification of the game. Ideally, including 
more previous game states would allow us to forecast injury time. However, this would 
result in a substantial increase in computational and data requirements that are out of the 
scope of this proposal. To update the HomeScore and AwayScore, we check if the game is 
still running, if there is an event that can be a goal, and if the IsGoal variable is true. If all 
these checks are passed, a goal is added to the team performing this action.

When we get a new event, we can use this event to update the game state. This process 
can be repeated to simulate the sequence of events for the rest of the game. After the 
process is finished, there is an option to transform the output into the human-readable 
event standard. This format can benefit users who wish to interpret the results without 
understanding the underlying model representation.

To increase the efficiency of our framework, we perform these operations in parallel. 
For example, if we wish to simulate a specific game state 1000 times, we can create a 
matrix that contains 1000 copies of the game state. This procedure considerably speeds 
up the inference process due to its efficiency in handling the data in tensor-based data 
structures. The tensor-based implementation allows the model to scale for GPU usage, 
which becomes relevant when simulating on a large scale. For example, calculating the 
Expected Points Added (xP+) metric requires valuing every event during a season. In 
early-stage experiments, we made inferences faster in magnitude 1:1.000.000 compared to 
Scikit-learn’s (Pedregosa et al., 2011) Random Forest (Breiman, 2001). By simulating the 
model’s output in this way, the framework can generate a variety of potential game states, 
which can be interpreted using different methods to generate valuable insights.

5  Methodology

This section details the methodology employed to train the models in our framework, 
highlighting the data, hyperparameter optimization, and training steps.
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5.1  Datasets and data splits

The data used for training and testing the models come from the Wyscout open dataset 
(Pappalardo et  al., 2019). This dataset contains detailed event data for several major 
European soccer leagues for the 2017/18 season. For our training set, we used data from 
the French Ligue 1, German Bundesliga, and the Italian Serie A, containing a total of 
1.718.640 events. The test set consists of data from the English Premier League and Spanish 
La Liga (1.214.838 events). We opted for a competition-level split to facilitate potential 
future work on LEMs by leaving full-season data out of the training set. Furthermore, it 
provides a full season for testing, which is crucial for many applications and use cases, 
including benchmarking metrics. However, we acknowledge that this approach is not the 
best regarding model accuracy since we force our LEM to forecast data for a league that is 
out of the train data.

Figure  3 illustrates the distribution of events across the soccer pitch. Due to 
the dynamic nature of the game, the events are not evenly distributed. Most events 
are located in a team’s defensive half. Furthermore, we can observe errors in the 
annotations. As human annotators collect data, we observe less frequent actions near the 
pitch lines. These non-systematic errors are often a result of the annotation methodology 
(Biermann et al., 2023). Figure 4 shows data for event types, which is also not uniformly 
distributed. There are still known biases in type annotations, such as the example of 

Fig. 3  A heatmap of the distribu-
tion of events in our training set 
on a soccer pitch
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crosses that go toward the goal: in the rare occurrence where the ball leads directly to 
a goal it is considered a shot, while if it does not lead to a goal it is considered a cross 
(Mendes-Neves et al., 2021).

Figure  5 shows the remaining variables we forecast in LEMs. These two variables 
display a more uniform distribution of values. However, the number of events drops 
slightly across the game, with a decay between the two halves, highlighting the impor-
tance of including the current period of the game in the game state. Furthermore, the 
number of events sharply drops after 45 min as soccer matches have additional time that 
is not consistent across games. The only variable we do not provide a visualization of is 
the isGoal variable. This variable is highly imbalanced (0.3% of the events). The isGoal 
variable is only true for events directly related to goals, like shots or save attempts.

Fig. 4  The decomposition of the events in our dataset across the different types and their respective average 
accuracy
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5.2  Model training

We used PyTorch (Paszke et  al., 2019), a deep-learning library that provides efficient 
tensor operations to implement our models. To train our models, we defined a custom 
class in PyTorch, the MultiLayerBinaryClassifier. This class allows us to specify the size 
of hidden layers and to construct the corresponding model architecture automatically. We 
used the Xavier uniform initialization for the network weights to ensure that all neurons 
initially have approximately the same output distribution and improve the convergence rate.

The loss function used for training is Binary Cross Entropy Loss (BCELoss), which is 
suitable for binary classification problems and provides a measure of the error between the 
model’s predictions and the actual data. As for the optimizer, we used Adam (Kingma and 
Ba, 2017) due to its efficiency, which is well-suited for big data problems.

Our training regime includes a maximum of 100 epochs with an early stopping patience 
of 3, meaning that the training will cease if there is no improvement in validation loss for 
three consecutive epochs.

Even though PyTorch can leverage GPUs for accelerated computation, we chose to train 
our models on a CPU. At the scale of our problem, using GPU results in performance 
degradation due to the overhead of transferring data between the CPU and GPU. However, 
GPUs substantially accelerate inference through parallelization, which is helpful for large-
scale operations.

5.3  Hyperparameter optimization

For hyperparameter optimization, we employed Optuna (Akiba et al., 2019), a framework 
for automated hyperparameter tuning. We selected the Tree-structured Parzen Estimator 
(TPE) as the optimization algorithm (Bergstra et al., 2011). TPE is a Bayesian optimization 
algorithm that supports both categorical and numeric parameters. We searched over 40 
trials, examining architectures with 1 to 3 layers. Each layer could have a size of 16, 32, 
64, 128, or 256 neurons. The learning rate was sampled from the interval 1e-5 to 1e-1, and 
batch sizes were 32, 64, 128, 256, 512, and 1024. The activation function for each layer 
could be either ReLU, sigmoid, or tanh, with the final layer always being sigmoid.

The size of layers and batch were limited to powers of 2 to narrow the search space, 
thereby promoting faster convergence. The hyperparameter search was conducted on the 
Italian Serie A data, with a 70-30 data split for training and validation. To avoid overfitting, 
we introduced a penalty for model complexity by adding 0.05% to the error per layer.

Fig. 5  On the left, we present the number of events in our dataset across the time frame of a match. On the 
right, we show that the dataset is balanced regarding the number of events for home and away teams



Machine Learning 

5.4  Final model specifications

After hyperparameter optimization, the best-performing models were selected for each 
task. The specifications of these models are summarized in Table 1.

In the following sections, we will discuss the results obtained from these models.

6  Results

In this section, we present our machine learning model’s results, which include a variety 
of metrics, transition maps, and simulation results that help understand the model’s 
performance and the relationships it has learned. We also developed an xP+ model to show 
our approach’s flexibility and potential impact.

6.1  Model test performance

Tables 2 and 3 present the variable-specific metrics used to evaluate the performance of 
our model on the test set. We computed different metrics for each variable, such as accu-
racy and F1-score for classification and R2-score and Mean Absolute Error for regression. 
These metrics provide a comprehensive understanding of how well our model predicts each 
variable. For each variable, we provide several baselines: (1) forecasting the majority class 
(for classification problems) or the average value of the variable (for regression problems), 
(2) decision tree, (3) Random Forest (Breiman, 2001), and (4) a multi-layer perception. We 

Table 1  Specifications of the final models after hyperparameter optimization

Model In Out Layers L. Rate Batch Activ. Loss Loss/Out

Type 42 33 [256] 0.0010 32 sigmoid 1.5009 0.0455
Accuracy 75 2 [128] 0.0410 1024 sigmoid 0.0038 0.0019
Data 77 264 [64, 256, 256] 0.0063 1024 relu 12.755 0.0483

Table 2  This table presents the performance metrics accuracy and F1 score (average weighted) for each 
forecasted categorical variable and the respective baselines

The results shown in bold represent the best performing model for the respective metrics
Missing values on Random Forest due to memory overflow errors

 Model Accuracy (%) F1-score (%)

Type Accurate Goal Home Type Accurate Goal Home

Majority Class 40.8 67.8 99.7 50.9 23.6 80.8 0 67.5
Decision Tree 36.2 74 99.7 92.6 36.8 80.65 59 92.6
Random Forest 49.9 80 99.8 – 46.6 85.7 68.4 –
Default MLP 55.5 81.7 99.8 93.6 49.8 87.2 68.8 93.7
Our Model 55.7 81.7 99.8 93.8 49.9 87.3 68.5 93.8
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selected these machine learning algorithms as baselines due to their support of multi-label 
classification. All baseline models were configured with the default parameters provided 
by Scikit-learn (Pedregosa et al., 2011). The Random Forest model has memory overflow 
issues while training the model Data, caused by the high amount of data and dimensional-
ity of the problem. The requirements to run a 100 estimator model would surpass 300GB. 
Therefore, the respective metrics are missing from Tables 2 and 3.

As expected, our model outperforms the baselines in nearly every metric. The 
performance difference is more visible in the continuous variables, where the necessary 
complexity of the model increases substantially. Note that performance is only a part of the 
decision about which model to use, with inference speed being a key factor. The amount of 
inferences required for the work described in Sect. 6.4 required a day using our model and 
would need upwards of one month for any other option.

6.2  Transition maps

To validate the model, we visualize the transition maps that the model has produced. Fig-
ures 6, 7, 8, and 9 showcase different transition aspects of our model, from understanding 
what event types are likely to be generated knowing the current event type, changes in 
location coordinates, how much time elapses between actions and how our model inter-
prets the expected goals metric.

6.3  Simulation results

Figure  10 shows how well the results of simulated games match the distribution of the 
actual outcomes. The closer these two distributions are, the more accurate our model is.

6.4  Building an xP+ metric with simulation

To showcase the possibilities of our framework, we will present a use case where we 
estimate how many points each player individually added to his team in the season.

Table 3  This table presents the performance metrics R2 score and mean absolute error (MAE) for each 
forecasted continuous variable and the respective baselines

The results shown in bold represent the best performing model for the respective metrics
Missing values on Random Forest due to memory overflow errors

 Model R2-score (%) Mean Absolute Error

X Y TimeElapsed X Y TimeElapsed

Average Value 0 0 0 0.212 0.265 0.051
Decision Tree 47.1 17.7 51.3 0.112 0.179 0.033
Random Forest – – – – - - -
Default MLP 59 27.5 52.4 0.097 0.165 0.027
Our Model 63.6 29.2 55.2 0.085 0.156 0.026
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The first step to calculate this metric was to estimate how many points a team was 
expected to obtain for every given state. We computed the game state for every event 
in the test set and simulated the game until the end. We ran the simulations for 24  h 
on an NVIDIA RTX3060, resulting in 253 total simulations per game state, a total 

Fig. 6  On the left is the confusion matrix between the forecasted event type and the actual event type of 
the next action. On the right are the transition mappings between the current event type and the forecasted 
probabilities

Fig. 7  The probability of transitioning from current location x,y to the next location x,y. The pattern con-
tains two behaviors: (1) the positive correlation between the current coordinates and the next coordinate, 
as the next event performed by the same team is expected to be close to the current event, and (2) a nega-
tive correlation caused by when the next event is performed by the opposite team, as the coordinate axis 
changes to the opposition’s perspective. Note: the probability color scale is on a logarithmic scale and 
ranges from 0 to 0.24
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of 307.354.014 game simulations. Then, we estimate the probability for each match 
outcome using Eq. 7.

(7)

⎧⎪⎨⎪⎩

P(HomeWin) =
#HomeWins

#Simulations

P(Draw) =
#Draws

#Simulations

P(AwayWin) =
#AwayWins

#Simulations

Fig. 8  The distribution of the forecast for TimeElapsed for the events in the test set. The relative probability 
corresponds to the forecasted probability divided by the maximum probability of the forecasted action type

Fig. 9  A representation of the average probability of scoring for each location in the pitch, estimated by 
forecasting the test dataset. Note that the points with unrealistic high probability are due to a known bias 
in our dataset: when a cross goes in the direction of the goal, it is labeled as a shot if it ends in a goal but is 
still labeled as a cross if it gets claimed by the keeper (Mendes-Neves et al., 2021)
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For the given probabilities, we can estimate how many points each team is expected to earn 
in the game, given the current game state, as formalized in Eq. 8. Note that in soccer, the 
match-winning team earns 3 points, while in a draw both teams earn 1 point.

Finally, we compute each action’s xP+ metric. We compute this metric by estimating the 
difference between the expected points for the player’s team before he intervenes in the 

(8)
{

E(HomePoints) = 3 ∗ P(HomeWin) + 1 ∗ P(Draw)

E(AwayPoints) = 3 ∗ P(AwayWin) + 1 ∗ P(Draw)

Fig. 10  Comparing the distribution of actual results from our dataset against the simulated games (10,000 
simulations). The visible differences are for the following scores: (0–0) and (1–0) are less frequent, while 
(1–2) and (1–3) are more frequent than in reality. Other differences occur in relatively rare results (e.g., 
7–0). Note: the probability color scale is on a logarithmic scale

Fig. 11  A sequence of events in the game. To evaluate event A, we simulate the game from state X and 
state Y, and then assume that the increase in expected points is due to event A
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match and after his intervention ends, as formalized in Eq. 9. This means we calculate the 
expected points for the action occurring before (X) and the expected points for the action 
occurring after the player action, as visualized in Fig. 11. 

In Tables 4, 5, and 6, we present the aggregated sum of all player actions for the 2017/18 
season. Note that the xP+ metric is not supposed to give a “best player in the world” 
ranking: an excellent player in an excellent team will find it challenging to obtain a big 
xP+ score because there is a limited amount of points being distributed by many high-
quality players. This metric is best used with knowledge of team context, as we present in 
Table 6. Our approach is similar to Kharrat et al. (2020), but we use the LEMs to estimate 
the current probability of winning for each team.  

(9)
{

xP+A = E(HomePoints)Y − E(HomePoints)X if action from home team

xP+A = E(AwayPoints)Y − E(AwayPoints)X if action from away team

Table 4  The top soccer players based on their xP+ values. The left part of the table corresponds to play-
ers in the 2017/18 Spanish La Liga. The table’s middle part presents the 2017/18 English Premier League 
results. The last part of the table presents the VAEP ratings of the 2017/18 English Premier League 
reported by Decroos et al. (Decroos et al., 2019)

Player Team xP+ Player Team xP+ Player Team VAEP

M Gómez Celta 18.27 Salah Liverpool 30.86 Coutinho Two Clubs 0.899
Messi Barcelona 17.43 Mahrez Leicester 30.33 Salah Liverpool 0.817
Griezmann Atlético 16.35 De Bruyne Man City 16.70 De Bruyne Man City 0.641
Suárez Barcelona 14.36 Kane Tottenham 15.78 Hazard Chelsea 0.636
Bacca Villarreal 14.04 Arnautović West Ham 14.37 Mahrez Leicester 0.635
Isco R Madrid 12.76 Richarlison Watford 14.11 Martial Man United 0.607
Fornals Villarreal 12.74 Sterling Man City 13.89 Sterling Man City 0.579
Rodrigo Valencia 12.13 Hazard Chelsea 13.41 Pogba Man United 0.549
Asensio R Madrid 11.97 Lanzini West Ham 11.58 Kane Tottenham 0.545
S León Real Betis 11.22 Zaha C Palace 11.44 Son Tottenham 0.539

Table 5  The top soccer players 
ranked by the xP+ value in three 
different categories: shot, pass, 
and duel

Player Shot Player Pass Player Duel

Salah 15.60 De Bruyne 14.09 Salah 12.66
Kane 14.65 Albrighton 12.55 Stuani 7.43
Messi 14.09 Mahrez 10.69 Richarlison 6.43
Moreno 13.85 Parejo 10.34 Mahrez 6.19
Suárez 13.58 Fornals 9.99 Lennon 5.94
C Ronaldo 13.35 Alba 9.67 Portillo 5.89
M Gómez 12.67 Barragán 9.13 Nolito 5.88
Mahrez 11.21 Pogba 8.55 Benteke 5.33
Sterling 10.67 S Francis 8.37 Casemiro 5.31
ángel 10.41 Lanzini 7.66 U Núñez 5.13
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7  Discussion

The results presented in this paper demonstrate the efficacy of our generative LEM 
in various aspects of soccer analytics. The model’s variable-specific performance 
accurately predicts both categorical and continuous variables, considering that we opted 
for a single-game state approach. The metrics are substantially above the baseline, 
which positively impacts our confidence in the results obtained by the framework.

A key limitation is the available data. Specifically, we needed to use cross-league 
train/test split. Otherwise, we would not have results for an entire season. The fact that 
the trained models did not have any data regarding the leagues we are trying to use the 
model in makes it impossible for the models to learn specific play patterns that occur in 
the league. Furthermore, the architecture of the models is quite simplistic. This results 
from the lack of data to train a more complex model: we penalized more complex 
architectures in the training process to avoid the model learning league-specific patterns 
that would not generate well for the test leagues. We do not see evidence that these 
limitations affect the quality of the insights. However, we still recommend building 
models with larger datasets and deeper game states to increase confidence in the insights 
obtained.

Transition maps provide an interesting perspective into the model’s understanding of 
the game. In the action transition map, we can observe the dominance of the passing action 
in the game over other actions. Furthermore, the transitions seem to follow the flow of 
a soccer game. The coordinate transition matrix displays the patterns of the underlying 
data. The diagonal lines that cut the plots show the effect of changing from one team’s 
perspective to another. The coordinates are always given from the team’s attacking 
perspective, which means that when possession changes, the coordinates change to the 
symmetric point in the middle of the pitch. The other diagonal shows the transitions when 
possession changes within the team, where we can observe that the coordinates follow a 
distribution that resembles a normal distribution, centered slightly in front of the current 
coordinate.

Table 6  The xP+ values for the top players in the top 4 teams of each test league. ∗ P. Coutinho played the 
first half of the season in Liverpool and the second half in Barcelona. The xP+ value corresponds to the 
half-season in the club

La Liga Barcelona Real Madrid Atlético Madrid Valencia
Messi 17.43 Isco 12.76 Griezmann 16.35 Rodrigo 12.13
Suárez 14.36 Asensio 11.97 F Luis 7.81 Neto 8.94
Alba 11.15 C Ronaldo 10.69 Correa 7.35 Parejo 7.47
Vermaelen 5.13 S Ramos 9.11 Carrasco 6.26 C Soler 4.84
Coutinho* 4.93 Bale 8.82 D Costa 4.03 S Mina 4.69
Squad Total 63.29 Squad Total 73.50 Squad Total 30.45 Squad Total 30.31

Premier 
League

Manchester City Manchester United Tottenham Liverpool
De Bruyne 16.70 Matić 10.74 Kane 15.78 Salah 30.86
Sterling 13.89 Lukaku 10.34 Alli 9.96 Mané 9.70
D Silva 10.78 Smalling 8.94 Trippier 9.71 Coutinho* 8.06
G Jesus 7.02 Lingard 8.26 Eriksen 8.57 Firmino 6.92
Agüero 6.93 Pogba 6.98 Son 6.95 Gomez 4.83
Squad Total 80.56 Squad Total 64.86 Squad Total 56.74 Squad Total 49.29
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Regarding event types, our model learned correctly to model the frequency of events, 
even for events with small sample sizes. For example, penalty kicks (n=193) have an 
expected number of occurrences of 174.8 in the test set. Furthermore, the model estimates 
a 71.2% chance of scoring each penalty in the test set, showing that the model is also able 
to correctly model the outcomes of rare events. The penalty conversion is 73.5% in the 
train set. While there is a 10% difference between actual and expected occurrences, it is 
mostly related to the limitations of our training process regarding cross-league training and 
the inherent variation within soccer.

The time elapsed estimation map provides a good overview of actions resulting in 
different time distances. We hard-capped the forecast of time elapsed at 1 min, which is a 
reasonable assumption since only two actions consistently take more than that time to be 
executed: the penalty and direct free kicks. Note that the introduction of Video Assistant 
Referees (VAR), which did not exist in the games that composed our dataset, might change 
the pacing and frequency of certain in-game events. Therefore, special attention should be 
paid to the time elapsed variable when training models with more recent datasets, which 
include VAR-related disruptions.

The simulation results corroborate the model’s prediction power. The similarity between 
the distributions of simulated and actual outcomes indicates that the model has a firm grasp 
on the overall dynamics of the soccer matches. Note that the model simulates the average 
home team versus the average away team, which generally results in more balanced 
outcomes.

We provide one of the significant outcomes of our research: the xP+ metric. This 
metric, calculated through simulations, provides an estimate of the individual contribution 
of each player to their team’s expected points, offering an insightful perspective into the 
player’s contribution relative to their team.

When we analyze the top players based on xP+, it is noteworthy to see some well-known 
names in soccer, like the top performer Mohamed Salah. However, it’s also interesting 
to observe that some players do not have a high xP+, not because they are bad players 
but because their impact is lower within the context of their specific team. For example, 
Mohamed Salah’s teammate Sadio Mané could have contributed substantially more if 
Salah did not collect as many points. Teams can only collect a limited amount of points, 
which may negatively impact the xP+ of players playing in better teams.

Another interesting aspect is that xP+ identifies several players from lower-rated teams 
in the top 10. This highlights the value of the xP+ metric in identifying impactful players 
in more challenging contexts, which traditional metrics might overlook. Players such as 
Mahrez from Leicester, Arnautović from West Ham, and Richarlison from Watford were 
all transferred by significant sums in the following seasons. Zaha from Crystal Palace is 
now considered a legend at the club, having peaked in his market value at 55 M€ as per 
Transfermarkt. Of the surprises in the top 10, only Lanzini from West Ham did not surpass 
the 2017/18 level, but for an external reason: the player tore his cruciate ligament at the 
end of the 2017/18 season, right after joining the Argentinian team for the 2018 World 
Cup. This is one of the most devastating injuries for a football player, which left him out 
of competition for eight months, significantly impacting his career. Of these players, only 
Mahrez is highlighted by Decroos et al. (Decroos et al., 2019) as one of the top players in 
the Premier League. With LEMs, we have the power to better understand the player context 
with different metrics.

The xP+ metric we propose can be calculated using multiple approaches. Within our 
framework, fine-tuning our base models to focus on the player’s team data will change 
the metric to understand better the context where the player is executing the actions: for 
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example, if a wide player has a fast and smaller striker in his team, he should perform 
different actions than if he has a slower and taller player. Furthermore, one could combine 
the player and target team data to study the impact of the player coming into a new team: 
(1) fine-tune the model with the team data, (2) further fine-tune the model with the player’s 
data, (3) compare the simulated results between the model fine-tuned with the player’s 
data and the model without player fine-tuning. Also, how metrics are computed can differ 
depending on the use case. For example, we account for the current score of the match. 
But, for other use cases, the user might want to set a constant result for all actions and 
evaluate actions independently of the current result.

In conclusion, our framework can serve multiple purposes, understanding and predicting 
different dynamics in a soccer match. By combining machine learning with extensive 
simulation, we provided examples of how to quantify individual players’ contributions in 
a novel way. Furthermore, despite the lack of experience from the authors in other sports’ 
data, we believe these methods could be extended to more sports.

8  Conclusion

This research presented a novel framework for predicting various aspects of soccer match 
events using generative models. The framework contains three deep learning models 
tailored to predict a specific aspect of a soccer match event, from the event type to its 
success and detailed information. Our results indicate that the framework can efficiently 
and accurately simulate soccer games, enabling many applications to be built upon these 
models.

However, this work is not without limitations. The models’ effectiveness is inherently 
tied to the quantity of available data. Specifically, the available open datasets are insufficient 
to evaluate tasks such as fine-tuning models to replicate a team’s behavior. Despite these 
challenges, our models provide a solid foundation for further research and development.

Future work will focus on further exploring the applications of LEMs, specifically, how 
to fine-tune the model to learn specific team patterns without overfitting. We showed that 
the framework can measure the xP+ metric, but we believe that the framework’s impact is 
much broader. Given the fine-tuned model, we can understand how players would perform 
in different contexts, analyze how a game between two teams will develop tactically, and 
forecast soccer matches. We believe these tools and insights could revolutionize how we 
understand and interact with soccer data.
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