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Abstract
There has been an explosion of data collected about sports. Because such data is extremely 
rich and complex, machine learning is increasingly being used to extract actionable insights 
from it. Typically, machine learning is used to build models and indicators that capture the 
skills, capabilities, and tendencies of athletes and teams. Such indicators and models are 
in turn used to inform decision-making at professional clubs. Designing these indicators 
requires paying careful attention to a number of subtle issues from a methodological and 
evaluation perspective. In this paper, we highlight these challenges in sports and discuss a 
variety of approaches for handling them. Methodologically, we highlight that dependencies 
affect how to perform data partitioning for evaluation as well as the need to consider con-
textual factors. From an evaluation perspective, we draw a distinction between evaluating 
the developed indicators themselves versus the underlying models that power them. We 
argue that both aspects must be considered, but that they require different approaches. We 
hope that this article helps bridge the gap between traditional sports expertise and modern 
data analytics by providing a structured framework with practical examples.

Keywords Sports analytics · Challenges with evaluation · Indicator evaluation · Model 
evaluation · Model verification · Reliability

1 Introduction

Over the past decades, data analytics has played a more influential role in a wide variety 
of sports, ranging from single-player sports such as chess  (Silver et  al., 2017) to team-
based sports such as baseball, basketball, hockey, and soccer (Albert et al., 2017; Baumer 
et al., 2023) Nowadays, large amounts of data are being collected about both the physical 
states of athletes as well as technical performances. This is facilitated by a range of tech-
nologies including GNSS (Global Navigation Satellite System) trackers integrated with 
inertial measurement units (e.g., Catapult Sports), biometric sensors (e.g., heart rate moni-
tors), optical tracking systems (e.g., TRACAB, Second Spectrum, HawkEye) and computer 
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vision-assisted annotation of events from broadcast video (e.g., Stats Perform, StatsBomb). 
The volume, complexity, and richness of these data sources have made machine learning 
(ML) an increasingly important analysis tool. Consequently, ML is being used to inform 
decision-making in professional sports. On the one hand, it is used to extract actionable 
insights from the large volumes of data related to player performance, tactical approaches, 
and the physical status of players. On the other hand, it is used to partially automate tasks 
such as video analysis (Carling et al., 2005) that are typically done manually.

At a high level, ML plays a role in team sports in three areas: 

1. Player recruitment. Ultimately, recruitment involves (1) assessing a player’s skills 
and capabilities on a technical, tactical, physical and mental level and how they will 
evolve, (2) projecting how the player will fit within the team, and (3) forecasting how 
their financial valuation will develop. (c.f., Bransen et al. (2019), Decroos et al. (2019), 
Liu and Schulte (2018), Franks et al. (2015))

2. Match preparation. Preparing for a match requires performing an extensive analysis 
of the opposing team to understand their tendencies and tactics. This can be viewed as a 
SWOT analysis, which particularly focuses on the opportunities and threats. How can we 
punish the opponent? How can the opponent punish us? These findings are used by the 
coaching staff to prepare a game plan. Typically, such reports are prepared by analysts 
who spend many hours watching videos of upcoming opponents. The analysts must 
annotate footage and recognize reoccurring patterns, which is a very time-consuming 
task. Learned models can automatically identify patterns that are missed or not apparent 
to humans (e.g., subtle patterns in big data) (Shaw & Gopaladesikan, 2021), automate 
tasks (e.g., tagging of situations) (Bauer & Anzer, 2021; Miller & Bornn, 2017) that are 
done by human analysts, and give insights into players’ skills.

3. Management of a player’s health and fitness. Building up and maintaining a player’s 
fitness level is crucial for achieving good performances (Halson, 2014; Bourdon et al., 
2017). However, training and matches place athletes’ bodies under tremendous stress. It 
is crucial to monitor fitness, have a sense of how much an athlete can do or, most impor-
tantly, when they need to rest and recover. Moreover, managing and preventing injuries 
is crucial for a team’s stability and continuity which is linked to success (Raysmith & 
Drew, 2016; Podlog et al., 2015; Eirale et al., 2013; Williams et al., 2016).

One of the most common uses of ML for addressing the aforementioned tasks is devel-
oping novel indicators for quantifying performances. Typically, machine-learned mod-
els are trained on large historical databases of past matches. Afterwards, the indicator is 
derived from the model, as the indicator cannot be used directly as a target for training 
because it is not in the data,1 One prominent example of such an indicator is expected goals 
(xG) (Green, 2012), which is used in soccer and ice hockey to quantify the quality of the 
scoring opportunities that a team or player created. The underlying model is a binary clas-
sifier that predicts the outcome of a shot based on features such as the distance and angle to 
the goal, the assist type and the passage of play (Fig. 1). xG is typically a more consistent 
measure of performance than actual goals, which are extremely important in these sports 
but also very rare. Even shots are relatively infrequent, and their conversion is subject to 

1 This is related to self-supervision (Balestriero et al., 2023) where models are initially trained on an auxil-
iary or pretext classification task using pseudo-labels which help to initialize the model parameters.
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variance. The idea of xG is to separate the ability to get into good scoring positions from 
the inherent randomness (e.g., deflections) of converting them into goals.

Typically, an indicator should satisfy several properties. First, it should provide insights 
that are not currently available (Franks et al., 2016). For example, xG tells us something 
beyond looking at goals scored, namely how often a player gets into good shooting posi-
tions. Second, the indicator should be based on domain knowledge and concepts from 
sports such that it is intuitive and easy for non-ML experts to understand. Finally, the 
domain experts need to trust the indicator. This often boils down to being able to contextu-
alize when the indicator is useful and ensuring some level of robustness in its value (i.e., it 
should not wildly fluctuate).

These desiderata illustrate that a key challenge in developing indicators is how to evalu-
ate them: none of the desiderata naturally align with the standard performance metrics used 
to evaluate learned models. This does not imply that standard evaluation metrics are not 
important. In particular, ensuring that probability estimates are well-calibrated is crucial in 
many sports analytics tasks. It is simply that one must both evaluate the indicator itself and 
the models used to compute the indicator’s value.

The importance of AI and ML within sports has led to much closer collaborations 
between data scientists and practitioners with backgrounds in sports science, video analy-
sis, and scouting, many of whom are also seeking to enhance their own data science skills. 
This paper aims to provide a structured framework with practical examples to facilitate 
better understanding and collaboration among individuals from diverse backgrounds who 
are working on sports data. By bridging the gap between traditional sports expertise and 
modern data analytics, we hope to ‘assist’ more effective interdisciplinary partnerships and 
advancements in the field. We will focus on methodological and evaluation issues because 
they are neither thoroughly discussed in the literature nor extensively supported in com-
mon tools despite the fact that they consume substantially more time than, e.g., setting up 
training models, in the data science pipeline (Munson, 2011).

Concretely, our goal is four-fold. First, we will highlight some challenges that arise 
when analyzing sports data. Second, we discuss some methodological considerations that 

Fig. 1  The expected goals (xG) metric is based on a classification model that predicts the probability of 
scoring a goal from a particular shot. The colors show how moving closer to the goal would increase the 
probability
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arise due to the nature of sports data and the tasks considered that affect how an evalua-
tion should be executed. Third, we will discuss the various ways that indicator evaluation 
has been approached. Fourth, we will overview how the learned models that the indicators 
rely upon have been evaluated. While we will discuss standard evaluation metrics, we will 
argue that a broader perspective on evaluation is warranted that also considers aspects such 
as explainability and quantifying the uncertainty in a model’s predictions. Moreover, we 
believe it is essential to employ reasoning techniques to understand how the model may 
perform when confronted with instances that are not in the training, validation or testing 
data. This paper focuses on the context of professional soccer, where we have substan-
tial experience. However, we believe the lessons and insights are applicable to other team 
sports, or other domains than sports.

2  Common sports data and analytics tasks

This section serves as a short, high-level primer on the data collected from sports matches 
as well as typical styles of performance indicators and tactical analyses.

2.1  Data

While there are a variety of sources of data collected about sports, we will discuss four 
broad categories: physical data, match sheet data, play-by-play data and (optical) tracking 
data. Such data is available for a variety of sports (e.g., American football, basketball, and 
ice hockey), but for consistency the visual examples will come from soccer.

During training and matches, athletes often wear a GNSS tracker with inertial meas-
urement unit (IMU) technology (e.g., from Catapult Sports). These systems measure 
various physical parameters such as distance covered, number of high-speed sprints, and 
high-intensity accelerations. These parameters are often augmented with questionnaire 
data (Buchheit et al., 2016) to obtain subjective measurements such as the rating of per-
ceived exertion (RPE)  (Borg, 1982) for a training session. Such approaches are used to 
monitor and eventually optimize an athlete’s fitness level to ensure their availability and 
ability to compete.

Match sheet data or box scores are the most common and widely available source of 
data. These include aggregate statistics for the team and/or the players on a per-match 
basis. For example, in soccer this could include information such as line-ups, substitutions, 
cards, goals and assists. More advanced details such as the number of passes attempted and 
completed per player or team may also be included. Moreover, for a number of sports, this 
data has been collected for decades.

Play-by-play or event stream data tracks actions that occur with the ball. Each such 
action is annotated with information such as the type of the action, the start and end loca-
tions of the action, the result of the action (i.e., successful or not), the time at which the 
action was performed, the player who performed the action, and the team of which the act-
ing player is a part of. Figure 2 illustrates six actions that are part of the game between Bra-
zil and Belgium at the 2018 World Cup as they were recorded in the event stream data for-
mat. This data is collected for a variety of sports by vendors such as StatsBomb2 and Stats 

2 https:// www. stats bomb. com

https://www.statsbomb.com
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Perform3 who typically employ human annotators to collect the data by watching broadcast 
video (Bialik, 2014a).

Optical tracking data reports the locations of all the players and the ball multiple times 
per second (typically between 10 and 25 Hz). This data is collected using a fixed instal-
lation in a team’s stadium using high-resolution cameras. Such a setup is expensive and 
typically only used in top leagues. There is now also extensive work on tracking solutions 
based on broadcast video (Johnson, 2020; Arbués Sangüesa, 2021). Figure 3 shows a short 
sequence of broadcast tracking data.

2.2  Physical indicators

Ultimately, the goal of monitoring physical indicators is to provide insight into the physical 
status of an athlete. These are on the one hand used for optimizing physical fitness and on 
the other hand reducing/predicting injury risk.

Optimizing fitness is also sometimes referred to as load management. Typically, 
research distinguishes between the external load, which is the amount and type of activities 
an athlete performs, and the internal load, which is the body’s physiological response to 
the activity (Impellizzeri et al., 2005). The external load is typically measured using sensor 
systems such as GNSS, accelerometers and local positioning systems. As such there has 

Fig. 2  The sequence of actions leading up to Belgium’s second goal during the 2018 World Cup quarter-
final. Each on-the-ball action is annotated with a couple of attributes, as illustrated for Lukaku’s dribble. 
(Data source: StatsBomb) 

3 https:// www. stats perfo rm. com

https://www.statsperform.com
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been substantial computational work (i.e., signal processing) to design indicators from raw 
data. From a sports science perspective, there is also substantial interest in understanding 
the link between internal and external load because this can help to evaluate whether some-
one is getting fitter or experiencing problems, and possibly has an elevated injury risk. 
A number of studies have relied on machine learning for exploring this question (Bartlett 
et al., 2017; Jaspers et al., 2018). More generally, load management is important because if 
you can predict the impact of load on physical fitness it can help to periodize the training 
load (i.e., prescribe more or less load on certain days) (Jeffries et al., 2022; Vanrenterghem 
et al., 2017).

One prominent task is to learn models to assess injury risk (Rossi et al., 2018; de Leeuw 
et al., 2022; Bornn et al., 2019). These methods focus on predicting the probability of a 
near-term injury based on an athlete’s recent training regime and possibly, individual char-
acteristics (Windt & Gabbett, 2017). They typically focus on overuse injuries because an 
acute trauma (e.g., bone fracture or concussion) often arises from unforeseeable factors 
(e.g., how and when an athlete gets hit or tackled).

More generally, learned models are often used as proxies for physical parameters that 
are difficult to collect. For example, athletes in sports such as basketball and running 
often undergo biomechanical analyses, which require extensive lab setups (e.g., motion 
capture systems and force plates). Therefore, there is interest in performing such analy-
ses in the wild using cheaper and more portable sensors such as inertial measurement 
units (Dorschky et al., 2023). Similarly,  VO2Max serves as a gold standard for aerobic fit-
ness, which is essential for endurance sports. However, the tests for measuring it are ardu-
ous and performing them can disrupt an athlete’s training such that it cannot be measured 
often. Thus, there is work on trying to predict this value based on less strenuous activi-
ties (de Leeuw et al., 2023; De Brabandere et al., 2018). Finally, teams may want to esti-
mate parameters (e.g., total distance, sprint distance, number of accelerations) from players 

Fig. 3  Illustration of broadcast tracking data for the first goal of Liverpool against Bournemouth on Dec 7, 
2019. The black lines represent each player’s and the ball’s trajectories during a period of 1.5 s. Each trajec-
tory contains the position, a team identifier and a player identifier at every time step. (Data source: Last 
Row) 
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on other teams, and there is now interest in trying to derive these from broadcast tracking 
data (Mortensen & Bornn, 2020).

2.3  Individual performance indicators

Quantifying a player’s proficiency across a variety of skills is a central problem in player 
recruitment. Data-driven performance indicators can be helpful in this process to construct 
more comprehensive player profiles. These performance indicators can be directly derived 
from the data or estimated through machine-learned models (Kovalchik, 2023).

Derived indicators are typically based on counting how often a player performs a cer-
tain type of action (e.g., passes) or aggregating over action attributes (e.g., average pass 
length) (Quang Nguyen & Matthews, 2024; Llana et al., 2022). For example, a count of the 
number of passes that bring the ball closer to the opposition goal (i.e., progressive passes) 
allows the separation of players whose passes are mostly safe and cautious from players 
whose passes disproportionately drive the ball forward towards the opposition goal. A limi-
tation of these derived indicators is that they generally cannot take the context in which 
actions are executed into account. This means that two progressive passes are considered 
equivalent regardless of the number of defenders they overtake. Model-based indicators, on 
the other hand, can learn from historical data how different contexts can impact the effec-
tiveness and value of specific actions.

Model-based indicators can be further divided into two sub-categories. The first type 
focuses on a single action such as a pass or shot. The second type takes a holistic approach 
by developing a unifying framework that can value a wide range of action types.

Single action. Single action indicators typically take the form of expected value-based 
statistics: they measure the expected chance that a typical player would successfully exe-
cute the considered action in a specific game context. For example, the aforementioned 
xG model in soccer assigns a probability to each shot that represents its chance of directly 
resulting in a goal. These models are learned using standard probabilistic classifiers such 
as logistic regression or tree ensembles from large historical datasets of shots. Each shot is 
described by the game context from when it was taken, and how this is represented is the 
key difference among existing models  (Green, 2012; Lucey et  al., 2015; Robberechts & 
Davis, 2020).

Such indicators exist for a variety of sports including American football (e.g., expected 
completion percentage for quarterbacks and expected yards after the catch for receivers),4 
basketball (e.g., expected field goal percentage (Sarlis & Tjortjis, 2020)), and ice hockey 
(e.g., expected goals (Macdonald, 2012)).

All actions. Instead of building bespoke models for each action, these indicators use the 
same framework to aggregate a player’s contributions over a set of action types. Regardless 
of sport, almost all approaches exploit the fact that each action ai changes the game state 
from si to si+1 (as illustrated in Fig. 4). These approaches value the contribution of an action 
ai as:

where V(.) is the value of a game state and si+1 is the game state that results from executing 
action ai in game state si.

(1)C(si, ai) = V(si+1) − V(si),

4 See https:// nextg ensta ts. nfl. com/ gloss ary for the definitions of these indicators.

https://nextgenstats.nfl.com/glossary
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Approaches differ on how they value game states, with two dominant paradigms emerg-
ing: scoring-based and win-based. Scoring-based approaches take a narrower possession-
based view. These approaches value a game state by estimating the probability that the 
team possessing the ball will score. In soccer, this may entail looking at the near-term 
probability of a goal in the next 10 actions or 10 s (Decroos et al., 2019) or the long-term 
probability of scoring the next goal (Fernández et al., 2021). Win-based approaches look 
at valuing actions by assessing a team’s chance of winning the match in each game state. 
That is, these approaches look at the difference in in-game win-probability between two 
consecutive game states (Pettigrew, 2015; Burke, 2010; Robberechts et al., 2021; Bouey, 
2013). Such models have been developed for many sports, including basketball (Cervone 
et al., 2014), American football (Romer, 2006), ice hockey (Routley & Schulte, 2015; Liu 
& Schulte, 2018) and rugby (Kempton et al., 2016).

2.4  Tactical analyses

Tactics are short-term behaviors that are used to achieve a strategic objective such as win-
ning or scoring a goal. Identifying and understanding the strengths and weaknesses of an 
opponent’s tactics is a key problem in match preparation. Moreover, in player recruitment 
it is important for a team to understand if a player’s skill set fits within the team’s tactical 
blueprint. At a high level, AI/ML is used for tactical analyses in two ways: to discover pat-
terns and to evaluate the efficacy of a tactic.

Discovering patterns is a broad task that may range from simply trying to understand 
where on the field certain players tend to operate and who tends to pass to whom, to more 
complicated analyses that involve identifying sequences of reoccurring actions. Typically, 
techniques such as clustering, non-negative matrix factorization, and pattern mining are 
used to find such reoccurring behaviors (Wang et al., 2015; Decroos & Davis, 2019; Bek-
kers & Dabadghao, 2019; Anzer et  al., 2022; Andrienko et  al., 2019; Miller & Bornn, 
2017).

Evaluating the efficacy of tactics is an equally broad task that can generally be split 
up into two parts: evaluating the efficacy of (1) a current and (2) a counterfactual tactic. 

Fig. 4  Lukaku’s dribble ( a
i
 ) changes the game state from the pre-action state s

i
 to the post-action state s

i+1
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Assessing the efficacy of currently employed tactics is typically done by focusing on a spe-
cific tactic (e.g., counterattack, pressing) and relating it to other success indicators (e.g., 
goals, wins) (Fernandez-Navarro et al., 2019; Merckx et al., 2021). In contrast, assessing 
the efficacy of counterfactual tactics is more challenging as it entails understanding what 
would happen if a team (or player) employed different tactics than those that were observed. 
This is extremely interesting and challenging from an AI/ML and evaluation perspective as 
it involves both (1) accurately modeling the current behavior of teams, and (2) reasoning 
in a counterfactual way about alternative behaviors. Such approaches have been developed 
in basketball and soccer to assess counterfactual shot (Sandholtz & Bornn, 2020; Van Roy 
et al., 2021, 2023) and movement  (Le et al., 2017; Lowe, 2013) tactics. Moreover, work 
in soccer has also considered causal analyses of throw-ins (Epasinghege Dona & Swartz, 
2024) and crossing (Wu et al., 2021) tactics.

3  Challenges with evaluation

The nature of sports data and the tasks typically considered within sports analytics and sci-
ence pose many challenges from an evaluation and analysis perspective.

3.1  Lack of ground truth

For many variables of interest, there are simply very few or even no labels, which arises 
when analyzing both match and physical data. When analyzing matches, a team’s specific 
tactical plan is unknown to outside observers. One can make educated guesses on a high 
level, but often not for fine-grained decisions. Similarly, when trying to assign ratings to 
players’ actions in a soccer match, there is no variable that directly records this. In fact, in 
this case, no such objective rating even exists.

Physical parameters can also be difficult to collect. For example, if one is interested in 
measuring fatigue5 during a match or training session, some measures are invasive (e.g., 
blood lactate or creatine kinase). Similarly, in endurance sports such as distance running 
and cycling, monitoring athletes’ aerobic fitness levels is important, which is often meas-
ured in terms of the maximal oxygen uptake  (VO2Max) (Joyner, 1991). However, the test 
to measure this variable is extremely strenuous and disrupts training regimes, so it can only 
be measured sporadically.

3.2  Credit assignment

It is often unclear why an action succeeded or failed. For example, did a pass not reach a 
teammate because the passer mishit the ball or did their teammate simply make the wrong 
run? Similarly, for those actions that are observed, we are unsure why they arose. For 
example, does a player make a lot of tackles in a soccer match because they are covering 
for a teammate who is constantly out of position? Or is the player a weak defender that is 
being targeted by the opposing team?

5 Note that there are different types of fatigue that could be monitored such as musculoskeletal or cardio-
vascular fatigue.



6986 Machine Learning (2024) 113:6977–7010

1 3

3.3  Noisy features and/or labels

When monitoring the health status of players, teams often partially rely on question-
naires  (Buchheit et  al., 2016) and subjective measures like the rating of perceived exer-
tion  (Borg, 1982). Players respond to such questionnaires in different ways, with some 
being more honest than others. There is a risk for deception (e.g., players want to play, and 
may downplay injuries). There are also well-known challenges when working with subjec-
tive data. Similarly, play-by-play data is often collected by human annotators, who make 
mistakes and they might not always be fully aligned on the definitions for certain types 
of events or qualifiers (Bialik, 2014b). For example, crosses that (accidentally) result in a 
goal are often labeled as shots, and vice versa, errant shots can be labeled as crosses. Also, 
some annotations are inherently subjective. For instance, Opta’s “big chance” and Wys-
cout’s “smart pass” qualifiers. Moreover, in some cases they suffer from biases because 
scorekeepers often are employed by a team (van Bommel & Bornn, 2017). The definitions 
of events and actions can also change over time. Finally, data quality issues are also present 
in (optical) tracking data. For example, occlusions of players and low-resolution camera 
set-ups make it difficult to accurately estimate the locations of the players and the ball. This 
results in errors in the tracking data, which are not only problematic in itself, but are also 
propagated to other metrics (e.g., speed and acceleration (Wu & Swartz, 2023) and further 
derived indicators) that are calculated based on this data.

3.4  Small sample sizes

There may only be limited data about teams and players. For example, a top flight soccer 
team plays between 34 and 38 league games in a season and will perform between 1500 
and 3000 on-the-ball actions in a game.6 Even top players do not appear every game and sit 
out matches strategically for rest.

3.5  Non‑stationary data

The sample size issues are compounded by the fact that sports is a very non-stationary 
setting, meaning data that is more than one or two seasons old may not be relevant. On a 
team level, playing styles tend to vary over time due to changes in playing and management 
personnel. On a player level, skills evolve over time, often improving until a player reaches 
their peak, prior to an age-related decline. More generally, tactics evolve and change.

3.6  Counterfactuals

Many evaluation questions in sports involve reasoning about outcomes that did not occur. 
This is most notable in the case of defense, where defensive tactics are often aimed at pre-
venting dangerous actions from arising such as wide-open three-point shots in the NBA or 
one vs. the goalie in soccer. Unfortunately, it is hard to know why certain actions were or 
were not taken. For example, it is difficult to estimate whether the goalie would have saved 
the shot if they had been positioned slightly differently Similarly, evaluating tactics also 

6 The number depends on what is annotated in the data (e.g., pressure events) and modeling choices such as 
whether a pass receival is treated as a separate action.
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involves counterfactual reasoning as a coach is often interested in knowing what would 
have happened if another policy had been followed, such as shooting more or less often 
from outside the penalty box in soccer.

3.7  Interventions

The data is observational and teams constantly make decisions that affect what is observed. 
This is particularly true for injury risk assessment and load management, where the staff 
will alter players’ training regimes or keep them out of a match if they are worried about 
the risk of injury. This would affect any collected indicators about a player’s health status. 
This also has a knock-on effect of creating ambiguous labels. If a player is too injured, then 
there is a clear label. However, if a player does not play, we do not know whether the player 
was healthy (e.g., planned rotation) or held out because the staff believes they are close to 
injury and whether this assessment was justified or not. Managers also change tactics dur-
ing the course of the game, depending on the score and the team’s performance. For exam-
ple, in soccer, a manager may substitute a forward for a defender when a team is defending 
a lead but would switch a defender for a forward when the team is trailing.

4  Methodological considerations

From a methodological perspective, sports data present a number of challenges that if not 
properly accounted for will affect the obtained results. These include how the data is par-
titioned in the evaluation, how biases in the data are accounted for, and how contextual 
factors are considered.

4.1  Data partitioning considerations

The bedrock of empirical evaluation in machine learning lies in the use of an independ-
ent test set to assess a model’s ability to generalize to unseen data. Typically, this is done 
by a cross-validation scheme where the data are randomly partitioned into a number of 
folds. However, this standard approach is not necessarily well-suited to the data or tasks 
that characterize sports analytics tasks.

On the data level, the problem is that sports data are often not independent and identi-
cally distributed. Consequently, the standard approach of randomly partitioning examples is 
not applicable as is. Two notable cases are temporal dependencies and subject consistency. 

Temporal dependencies.  Sports are inherently temporal. On the physical side, training 
sessions are ordered: each individual session is planned based 
both on activities that happened in the (recent) past (e.g., recov-
ery after a match) and those that are planned in the near future 
(e.g., light workout before a match). Similarly, seasons, matches 
within a season, and events within a match are all ordered. In 
temporal data, the data does not change enough from one meas-
urement to the next, introducing strong correlations.

Subject consistency.  The same subject will act similarly within and across measure-
ments. For example, when looking at segments of running data, 
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the parameters extracted from segments will be correlated over 
one run. Moreover, a runner’s parameters will also be correlated 
across multiple different runs.

 In both cases, an incorrect partitioning of data would mean that we cannot be sure 
whether we are predicting the intended target, or simply the strong proxy that exists (i.e., 
predict the same value as in the previous time segment or the previous value observed 
for the same person). For both, we will have to alter the cross-validation scheme to take 
groups of dependent instances into account.

Coping with temporal dependencies requires considering temporal groupings when 
partitioning the data. Consequently, the cross-validation scheme must involve a parti-
tion into non-overlapping periods  (Bergmeir et  al., 2018). One approach is to employ 
a single split, which could be in the middle of the season (e.g., Rossi et al. (2018)) or 
between seasons (e.g., Jaspers et al. (2018)). One complication is that seasons may start 
and end at different times for different leagues (e.g., many European soccer leagues run 
from August to May whereas the US league runs from February to November. Another 
alternative is to employ a walk-forward cross-validation scheme. In this setup, there is 
an initial temporal split and predictions are made for a small test set consisting of the 
examples after the split point. Then, the temporal split point is moved forward. Thus, 
the previous test data is added to the training set, the model is retrained, and predictions 
are made for a new test set.

Coping with subject consistency means that we might want to force all data from one 
subject to be either in the training set or the testing set but not both. Therefore, the parti-
tioning of data into folds needs to happen on the subject level and not the example level. 
This is sometimes called subject-level cross-validation (Dehghani et al., 2019).

On the task level, a practical issue that arises with sports models is understanding 
how applicable they are to new settings where we have no available data such as a dif-
ferent competition, or a different gender. Concretely, it may be important to answer 
questions such as:

• Will a running fatigue prediction model be applicable to a new athlete (Op De Beéck 
et al., 2018)?

• Will a model for predicting the expected length of a ski jump make accurate predic-
tions for jumps made on a different hill (Link et al., 2022)?

• Will an expected goals model for soccer trained on data from men’s leagues be appli-
cable to a women’s league (Bransen & Davis, 2021)?

Addressing such questions requires carefully partitioning the data. If the goal is to gen-
eralize to new athletes, then the aforementioned subject-level cross-validation should be 
employed. Similarly, if the goal is to generalize to new venues, then all data collected 
from a venue should appear in the same fold (i.e., a venue-level partitioning). When 
looking at generalizing across different competitions, then a leave-one-competition-out 
scheme would be appropriate.

Finally, while there is agreement that sports data is not stationary, there has been lit-
tle work on investigating if data goes out of date (e.g., Robberechts and Davis (2020)). 
That is, when should models be retrained and what data, if any, should be excluded from 
training. As more data becomes available, it will be more important to perform (public) 
studies to answer these questions.
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4.2  Data biases

When looking at technical performance metrics derived from data collected about matches, 
there are a number of (subtle) biases in the data that can affect the model’s performance. 
Namely, good teams and good players tend to perform more actions. For example, excep-
tional shooters in basketball (e.g., Stephen Curry, Damian Lillard) take more deep three-
point shots  (Goldsberry, 2019) and three-point shots in general than weaker shooters. 
Similarly, in soccer, good finishers are likely to take more shots. Hence, models trained to 
predict the expected three-point percentage in basketball or expected goals in soccer will 
be trained from data that contain correlated observations (i.e., multiple shots from the same 
player) and the sample sizes per player can vary widely. This is not necessarily problematic 
if the objective is to obtain a well-calibrated probability estimate. However, another use of 
these metrics is to measure skill. Typically, this is done by comparing the true outcomes to 
the expected outcomes predicted by the model. In the case of soccer, there is evidence that 
in this use case there is a small but persistent bias that makes the actual and expected goals 
closer for excellent finishers than it really is (Davis and Robberechts, 2023). That is, these 
metrics may underestimate the skill of excellent finishers. A classic way to cope with the 
issue of repeated measurements and interdependencies is to consider hierarchical or multi-
level models (Tureen & Olthof, 2022; Yurko et al., 2019). These types of models allow for 
accounting for group structure (e.g., position groups, teams) as well as repeated measure-
ments about individuals. Another idea is to use a post-processing technique such as multi-
calibration (Hebert-Johnson et al., 2018), which attempts to calibrate a model’s predictions 
for subpopulations that may be defined by complex intersections of many attributes. This 
introduces a grouping effect that enables explicitly representing various player types based 
on their characteristics within a single model (Davis & Robberechts, 2024).

Similarly, good teams may behave differently. For example, in soccer this manifests 
itself in terms of a stronger team’s ability to retain possession of the ball for longer (Stats-
Bomb, 2021). This could raise issues when training action-value models because they rely 
on constructing features that capture the game state. Many of these models hand-craft fea-
tures that make use of information about prior actions (e.g., Decroos et al. (2019)), which 
could introduce correlations with team strength. These correlations may result in over- or 
undervaluing certain actions.

4.3  Accounting for contextual factors

Contextual factors are important on two different levels. First, they affect the features that 
are used as input for the learned models that form the basis of indicators like expected 
goals. Second, they are important to consider when proposing the final indicator that is 
built on top of the learned model’s predictions such as an action-value metric.

4.3.1  Contextualizing feature values

While it is well known that standard preprocessing techniques such as standardization or 
min-max normalization are often important to apply prior to learning, there are several sub-
tler transformations that can be useful to apply in the context of sports. Questionnaire data 
collected as part of physical monitoring often involves subjective measurements, which 
people use differently. In these situations, it is often beneficial to model deviations from a 
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baseline value such as a user’s average rating or in the case of repeated measures during an 
activity to the first reported value (Op De Beéck et al., 2018). This is analogous to issues 
that arose in the Netflix challenge, where an important contribution was the importance of 
isolating the user-movie interaction component of a rating by deriving a new variable that 
controlled for factors related to the user, the movie, and time (Koren, 2008, 2010).

Finally, it can be important to have enough contextual variables to discern what is 
important. This requires adapting a feature to the value of another feature. There are a sur-
prising array of examples as to where this may be necessary.

• In continuous monitoring of a physical parameter, it is often useful to consider devi-
ations from a feature’s value, e.g., the beginning of a training session or test (e.g., 
Op De Beéck et al. (2018)).

• The cumulative training load in a month is influenced by the number of days in the 
month (Hyndman & Athanasopoulos, 2023).

• Sizes of fields can vary in sports such as soccer and baseball, and considering these 
effects can be important in certain use cases. For example, in soccer, any metric that 
involves a spatial component such as pitch control (a bigger pitch means that the total 
possible pitch control is also higher) will be affected (Fernandez & Bornn, 2018). Simi-
larly, the number of attempted crosses tends to be higher on wider pitches than on nar-
rower pitches. The changes in dimensions also affect definitions of common zones such 
as the offensive or final third.

• A team’s tactical approach such as whether a soccer team plays with a back three or 
back four can also affect physical indicators (Fifield, 2022; Modric et al., 2022; Bap-
tista et al., 2019).

• Physical parameters are also affected by environmental variables. For example, outside 
temperature is relevant when considering body measurements like temperature and alti-
tude difference is important to assess heart rate when running. Typically, such informa-
tion needs to come from domain knowledge.

• Players’ physical and technical indicators can also be affected by whether they are 
playing home or away as well as by the condition of the field that they are playing 
on (Chmura et al., 2021; Gollan et al., 2020).

4.3.2  Contextualizing an indicator

There is a general agreement in sports analytics that counting statistics ignore a number 
of important contextual factors such as the amount of playing time a player receives or the 
pace of the game. This is typically addressed by normalizing an indicator. Because metrics 
typically rely on aggregating predictions in some way, it is important to think about the 
most appropriate way to do this as it will affect the evaluation of the metric. This can be 
done in several ways.

Per action: An indicator can be averaged per action or action type. This can help over-
come issues such as certain players performing more or less actions where summing can 
skew results (e.g., midfielders perform more actions than other players in soccer). How-
ever, this can lead to sample size issues, meaning that including some notion of variance is 
informative.

Per minutes played: Often metrics are prorated to a set amount of time. For example, in 
soccer this is often per 90 min of play (e.g., Decroos et al. (2019)). However, in soccer the 
length of the game varies due to the referee’s discretionary added time at the end of each 
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half. Moreover, the amount of time the ball is in play varies from match to match. There-
fore some approaches normalize metrics based on ball-in-play time (Llana et al., 2022).7

Per possession: This approach reports an average per possession (Oliver, 2002). How-
ever, in many sports (e.g., basketball, soccer) possessions may not be recorded directly in 
the data. Hence, they must be derived using some heuristics (Phatak et al., 2022).

At a higher level, there are also game state, opponent, and seasonal effects that may 
need to be accounted for. First, there can be time-varying effects within a match. For exam-
ple, the goal scoring rates increase throughout the course of a match in soccer (Bransen & 
Davis, 2021). Similarly, substitutes in soccer tend to generate more value (i.e., as deter-
mined by an action-value model) than starters.

Second, there can also be score difference effects. When the score is lopsided, teams 
or players may not play as hard; or younger, less experienced players may play. Similarly, 
actions carry more impact if they can influence the result of a game. These effects can be 
captured by using win probability-based metrics (e.g., Robberechts et al. (2021), Pettigrew 
(2015)) or by contextualizing performances (e.g., by pressure level (Bransen et al., 2019)).

Third, the strength of an opponent clearly will affect player and team performance. 
Therefore, it can be useful to include opponent-based adjustments. For example, Pel-
echrinis et al. (2018) set up an optimization problem to account for an opponent’s defensive 
strength when evaluating expected points added for American football.

Finally, there can also be effects due to where a match falls in a season. Towards the 
end of the season, if a team is out of contention, players may be strategically rested (e.g., 
to improve draft odds, to let younger players gain experience). Moreover, simply having 
nothing to play for may affect players  (Bransen et  al., 2019). Additionally, injuries and 
fatigue tend to accumulate over the season, hence a team’s and possibly even the overall 
strength of a competition may vary. For example, in soccer, the goal scoring rates also tend 
to slightly increase over the course of a season (Bransen & Davis, 2021).

5  Evaluating an indicator

A novel indicator should capture something about a player’s (or team’s) technical perfor-
mance or capabilities during a match. This objective does not align with typical metrics 
considered in machine learning. Moreover, while an indicator is based on a learned model, 
how the model’s output is used in the indicator is not necessarily the same as the target 
variable that the model was trained to predict. Consequently, evaluating a novel indicator’s 
usefulness is difficult as it is unclear what it should be compared against. This problem is 
addressed in multiple different ways in the literature.

5.1  Correlation with existing success indicators

In all sports, a variety of indicators exist that denote whether a player (or team) is consid-
ered or perceived to be good.

When evaluating individual players, there are a wealth of existing indicators that are 
commonly reported and used. First, there are indirect indicators such as a player’s mar-
ket value, salary, playing time, or draft position. Second, there are indicators derived from 
competitions such as goals and assists in soccer (or ice hockey). It is therefore possible to 

7 The company SkillCorner normalizes some physical metrics per 60 min of ball-in-play time.
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design an evaluation by looking at the correlation between each indicator’s value for every 
player (Pettigrew, 2015; Routley & Schulte, 2015; Liu & Schulte, 2018). Alternatively, it is 
possible to produce two rank-ordered lists of players (or teams): one based on an existing 
success indicator and another based on a newly designed indicator. Then the correlation 
between rankings can be computed.

Arguably, an evaluation that strives for high correlations with existing indicators misses 
the point: the goal is to design indicators that provide insights that current ones do not. If a 
new indicator simply yields the same ranking as looking at goals, then it does not provide 
any new information. Moreover, some existing success indicators capture information that 
is not related to performance. For example, salary can be tied to draft position and years 
of service. Similarly, a soccer player’s market value or transfer fee also encompasses their 
commercial appeal, and more importantly, the duration of their current contract (McHale 
& Holmes, 2023). Even playing time is not necessarily merit-based.

Other work tries to associate performance and/or presence in the game with winning. 
This is appealing as the ultimate goal is to win a game.8 For example, indicators can be 
based on correlating how often certain actions are performed with match outcomes, points 
scored, or score differentials  (McHale & Scarf, 2007; McHale et  al., 2012; Pappalardo 
et al., 2019). An alternative approach is to build a predictive model based on the indicators 
and see if it can be used to predict the outcomes of future matches (Hvattum, 2020).

5.2  The face validity test

When evaluating indicators about player performance, one advantage is that there is typi-
cally consensus on who are among the very top players. While experts, pundits, and fans 
may debate the relative merits of Lionel Messi and Cristiano Ronaldo, there is little debate 
that they fall in the very top set of offensive players. An offensive metric where neither of 
those players scores well, is not likely to convince practitioners. In other words, if a metric 
blatantly contradicts most conventional wisdom, there is likely a problem with it. This is 
also called face validity (Jacobs & Wallach, 2021). Of course, some unexpected or more 
surprising names could appear towards the top of such a ranking, but one would be wary if 
all such names were surprising.

Unfortunately, this style of evaluation is most suited to analyzing offensive contribu-
tions. In general, there is more consensus on the offensive performances of individual play-
ers than their defensive performances, as good defense is a collective endeavor and more 
heavily reliant on tactics.

5.3  Make a prediction

While backtesting indicators (and models) is clearly a key component of development, 
sports does offer the possibility for real-world predictions on unseen data. One can predict, 
and most importantly publish, the outcomes of matches or tournaments prior to their start. 
In fact, there have been several competitions designed around this principle  (Dubitzky 
et al., 2019) or people who have collected predictions online.9

8 This is not always the case: sometimes teams play for draws, rest players for strategic reasons, prioritize 
getting young players experience or try to lose to improve draft position.
9 https:// twitt er. com/ TonyE lHabr/ status/ 14146 19621 65997 1588

https://twitter.com/TonyElHabr/status/1414619621659971588
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This is even possible for player indicators, and is often done in the work on quantify-
ing player performance (Decroos et al., 2019; Liu & Schulte, 2018). Decroos et al. (2019) 
included lists of the top under-21 players in several of the major European soccer leagues 
for the 2017/2018 season. It is interesting to look back on the list, and see that there were 
both hits and misses. For example, the list had some players who were less heralded then 
such as Mason Mount and Mikel Oyarzabal, who are now key players. Similarly, it had 
several recognized prospects such as Kylian Mbappé, Trent Alexander-Arnold, and Frenkie 
de Jong who have ascended. Finally, there were misses like Jonjoe Kenny and David Neres. 
While one has to wait, it does give an immutable forecast that can be evaluated.

Because they do not allow for immediate results, such evaluations tend to be done infre-
quently. However, we believe this is something that should be done more often. It avoids 
the possibility of cherry-picking results and overfitting by forcing one to commit to a result 
with an unknown outcome. This may also encourage more critical thinking about the util-
ity of the developed indicator. The caveat is that the predictions must be revisited and dis-
cussed in the future, which also implies that publication venues would be open to such 
submissions. Beyond the time delay, another drawback is that they involve sample sizes 
such as one match day, one tournament, or a short list of players.

5.4  Ask an expert

Developed indicators and approaches can be validated by comparing them to an external 
source provided by domain experts. This goes beyond the face validity test as it requires 
both deeper domain expertise and a more extensive evaluation such as comparing tactical 
patterns discovered by an automated system to those found by a video analyst. Pappalardo 
et  al. (2019) compared a player ranking system they developed to rankings produced by 
scouts. Similarly, Dick et  al. (2022) asked soccer coaches to rate how available players 
were to receive a pass in game situations and compared this assessment to a novel indicator 
they developed.

Ideally, such an expert-based evaluation considers aspects beyond model accuracy. Ulti-
mately, an indicator should provide “value” to the workflow of practitioners. Hence, it is 
relevant to measure how much time it saves an analyst in his workflow, whether an indica-
tor can provide relevant new insights and whether the expert can correctly interpret the 
model’s output. This type of evaluation checks whether indicators fulfill the needs of users 
(i.e., usefulness and usability) and also arises in human-computer interaction (Xu, 2019).

However, this type of evaluation can be difficult as not all researchers have access to 
domain experts, particularly when it comes to high-level sports. Moreover, teams want to 
maintain a competitive advantage, so one may not be able to publish such an evaluation.

5.5  Reliability

Indicators are typically developed to measure a skill or capability such as shooting 
ability in basketball or offensive contributions. While these skills can and do change 
over a longer timeframe (multiple seasons), they typically are consistent within a sea-
son or even across two consecutive seasons. Therefore, an indicator should take on 
similar values in such a time frame.

One approach  (Baron et al., 2024; Hvattum, 2020; Van Roy et al., 2020) to meas-
ure an indicator’s reliability is to split the data set into two, and then compute the 
correlation between the indicators computed on each dataset. An example of such an 
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evaluation is shown in Fig. 5. Methodologically, one consideration is how to partition 
the available data. Typically, one is concerned with respecting chronological order-
ings in temporal data. However, in this setting, such a division is likely suboptimal. 
First, games missed by injury will be clustered and players likely perform differently 
right when they come back. Second, the difficulty of a team’s schedule is not uniformly 
spread over a season. Third, if the time horizon is long enough, there will be aging 
effects.

Franks et  al. (2016) propose a metric to capture an indicator’s stability. It tries to 
assess how much an indicator’s value depends on context (e.g., a team’s tactical sys-
tem, quality of teammates) and changes in skill (e.g., improvement through practice). 
It does so by looking at the variance of indicators using a within-season bootstrap 
procedure.

Another approach  (Decroos & Davis, 2019) is to look at consecutive seasons and 
pose the evaluation as a nearest neighbors problem. That is, based on the indicators 
computed from one season of data for a specific player, find a rank-ordered list of the 
most similar players in the subsequent (or preceding) season. The robustness of the 
indicator is then related to the position of the chosen player in the ranking.

Fig. 5  Pearson correlation between player performance indicators for ten pairs of successive seasons in the 
English Premier League (2009/10–2019/20). The diamond shape indicates the mean correlation. The sim-
ple “minutes played” indicator is the least reliable, while the Atomic-VAEP  (Decroos, 2020) indicator is 
more reliable than its VAEP (Decroos et al., 2019) predecessor and xT (Singh, 2019). As shots are infre-
quent and have a variable outcome, omitting them increases an indicator’s reliability. The xT indicator does 
not value shots. Only players that played at least 900 min (the equivalent of ten games) in each of the suc-
cessive seasons are included
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6  Evaluating a model

Indicators are typically constructed based on the predictions provided by machine-learned 
models. Thus, the quality of the underlying models directly affects the meaningfulness and 
reliability of an indicator. Evaluating the models used to produce the indicator is a multi-
faceted endeavor. On the one hand, it is necessary to employ standard evaluation metrics to 
ensure that the model is sufficiently performant. Indeed, many tasks in sports rely on having 
sufficiently well-calibrated probability estimates (Silva Filho et al., 2023). On the other hand, 
standard metrics are insufficient to fully characterize all relevant aspects of a model’s per-
formance. For example, being able to explain or interpret how a model behaves and identify 
cases when its predictions may not be trustworthy are also important aspects of evaluation. 
However, this is difficult to capture with metrics that just assess the aggregate correctness of 
a model’s predictions. Moreover, techniques such as verification allow detecting issues in the 
model that standard evaluation metrics fail to identify. This is because verification can reason 
about how the model will perform in all situations and not just those that arise in training, vali-
dation or testing data. For example, a labeling bias in the data (also present in the testing data) 
may surface when reasoning about the behavior of the model in scenarios for which experts 
have strong intuitions based on domain knowledge.

6.1  Standard evaluation metrics

Different metrics are used to assess models depending on whether the task is classification 
(e.g., predicting whether a shot will be scored in soccer) or regression (e.g., predicting rush-
ing yards in NFL). Classification metrics evaluate how well a model distinguishes between 
different classes, focusing on the accuracy of the classification but also on the calibration of 
the model’s confidence in these predictions. Regression metrics, on the other hand, assess the 
accuracy of continuous predictions, emphasizing error magnitudes and variance explained.

6.1.1  Classification

Many novel indicators involve using a classification model that makes probabilistic predic-
tions. A range of metrics is commonly used for optimizing and evaluating these classifiers:

Accuracy simply counts how often the classifier correctly predicts the true label. We can 
define accuracy as the ratio of the number of correct predictions and the total number of 
predictions.

where TP stands for true positives, TN for true negatives, FP for false positives and FN for 
false negatives.

Precision measures how many of the cases that are predicted to belong to the positive 
class actually turned out to be positive. Precision is useful in cases where false positives are 
a higher concern than false negatives.

Recall measures how many of the actual positive cases the model was able to predict cor-
rectly. Recall is a useful metric in cases where false negatives are of a higher concern than 

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP
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false positives. For example, it is important in injury prediction where it is less harmful to 
raise a false alarm than that players with an actual injury risk go undetected.

F1 score computes the harmonic mean of the precision and recall metrics. The F1 score 
could be an effective evaluation metric when false positives and false negatives are equally 
costly.

AUROC is calculated as the area under (AU) the receiver operator curve (ROC), which 
shows the trade-off between recall and the false positive rate ( FPR = FP∕(TN + FP) ) 
across different decision thresholds. It is essentially a ranking metric and assesses whether 
the model ranks the positive examples ahead of the negative examples.

Logarithmic loss measures the uncertainty of the prediction based on how much it var-
ies from the actual outcome. The logarithmic loss is computed as

with |c| the number of classes, p̂i the probability forecast of class i and yi a binary indicator 
of whether or not class i is the true outcome. A perfect classifier would have a logarithmic 
loss of precisely zero. Less ideal classifiers have progressively larger values.

Brier Score measures the accuracy of probabilistic predictions as the mean squared dif-
ference between the predicted probabilities and the actual outcomes:

with |c| the number of classes, p̂i the probability forecast of class i and yi a binary indicator 
of whether or not class i is the true outcome.

Ranked Probability Score (RPS) was introduced by Epstein (1969) to evaluate probabil-
ity forecasts of ranked categories. It is related to the Brier score, but it explicitly accounts 
for the ordinal structure of the predictions. For example, when predicting win-draw-loss 
match outcomes in soccer, it can be taken into account that predicting a tie when the actual 
outcome is a loss is considered a better prediction than a win. It can be defined as

As the RPS is an error measure, a lower value corresponds to a better fit.
The selection of an evaluation metric should be tailored to the particular situation in 

which the predictive model is intended to be employed. When the dataset is not signifi-
cantly imbalanced, the AUROC metric is most suitable for classification tasks or ranking 
examples based on their probability of being either positive or negative. For example, when 
searching for the top-k tactical patterns that are most likely to result in a goal. However, if 
the dataset displays a significant imbalance and/or the primary concern revolves around the 

(4)Recall =
TP

TP + FN

(5)F1 = 2 ×
Precision × Recall

Precision + Recall

(6)LL =
1

|c|

|c|∑

i=1

yi log p̂i

(7)BS =
1

|c|

|c|∑

i=1

(p̂i − yi)
2

(8)RPS =
1

|c| − 1

|c|−1∑

k=1

(
k∑

l=1

(p̂l − yl)

)2
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positive class, the F1 score or Precision-Recall curve should be considered. Additionally, 
F1 (or precision and recall) has the advantage of being more straightforward to interpret 
and convey to sports practitioners.

When we care about using the actual values of the probabilities, the choice is between 
the Brier score or RPS (depending on whether the target variable is ordered) and logarith-
mic loss. Brier score and logarithmic loss are similar in the sense that they are both proper 
scoring rules and can both only be minimized by reducing the individual prediction errors. 
However, they differ in how they aggregate the individual prediction errors. To illustrate 
this difference and to more easily compare the two metrics, let ei = |p̂i − yi| be the predic-
tion error for example i. Using this definition and the multiplication rule for logarithms, we 
can simplify the formulas for the Brier score and logarithmic loss to:

Hence, the Brier score combines individual prediction errors by summing them while the 
logarithmic loss combines individual prediction errors by multiplying them. This insight is 
the reason we recommend using the Brier score to build a predictive model if the resulting 
probabilities will be summed (e.g., for computing player ratings) or subtracted (e.g., mod-
eling decision-making) (Decroos & Davis, 2020).

Proper scoring rules might not be sufficient to evaluate if a model is calibrated since a 
high discriminative power can obscure a poor calibration. Therefore, they should always be 
combined with reliability diagrams (Niculescu-Mizil & Caruana, 2005) or the multi-class 
expected calibration error (ECE) (Guo et al., 2017).

Also, it is important to remember that the aforementioned metrics (with the exception of 
AUROC) depend on the class distribution, and hence their values need to be interpreted in 
this context. This is important as scoring rates can vary by competition (e.g., men’s leagues 
vs. women’s leagues) (Pappalardo et al., 2021).

6.1.2  Regression

Regression evaluation metrics can be broadly categorized into two types: error-based met-
rics and variance-explained metrics.

Error-based metrics assess the quality of a model as a function of the errors between the 
actual values yi and predicted values ŷi:

They differ in how they measure the differences between yi and ŷi . The Mean Absolute 
Error (MAE) takes the absolute value of the errors, providing a straightforward inter-
pretation of the typical prediction error in the same units as the data. The Mean Squared 
Error (MSE) calculates the average of the squared errors, penalizing larger errors more 
heavily than smaller ones. Finally, the Mean Absolute Percentage Error (MAPE) meas-
ures the average absolute percentage error between predicted and actual values. It is useful 

(9)BS =
1

|c|

|c|∑

i=1

e2
i

(10)LL =
1

|c|

|c|∑

i=1

log (1 − ei) =
1

|c|
log

( |c|∏

i=1

1 − ei

)

(11)1

N

N∑

i=1

f (yi − ŷi)
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for understanding prediction accuracy in relative terms, especially when dealing with data 
where values vary widely.

Variance-explained metrics such as the coefficient of determination ( R2 score ) measure 
the proportion of the variance in the dependent variable that is predictable from the inde-
pendent variables. It provides an indication of how well the model fits the data.

where N is the number of predictions, yi is the actual value, ŷi is the predicted value and ȳ 
is the mean of the actual values. An R2 value of 1 indicates a perfect fit, while an R2 value 
of 0 indicates that the model does not explain any of the variance.

When evaluating the fit of a regression model, it is useful to compute both error-based 
metrics and the R2 value since they provide distinct insights. On one hand, error-based met-
rics inform us about the average error between the regression model’s predicted values and 
the actual values. On the other hand, R2 indicates the extent to which the predictor vari-
ables can account for the variability observed in the response variable.

6.1.3  Other tasks

Finally, certain applications might require specialized metrics. For example, when forecast-
ing match results for betting purposes, neither the actual probabilities nor the most likely 
outcome are as critical. More importantly, it is essential to identify betting opportunities 
that are undervalued. Economic measures are more appropriate in that case (Wunderlich & 
Memmert, 2020).

6.2  Sensitivity analyses and feature importances

To promote interactions with domain experts and to gain insights into the domain, there 
has been interest in using the techniques developed in explainable AI to understand the 
importance and uncertainty of various features. Such analysis can rely on techniques such 
as SHAP (Lundberg & Lee, 2017) or LIME (Ribeiro et al., 2016) to derive post-hoc feature 
importances for individual predictions. For example, Anzer and Bauer (2021) use SHAP 
to analyze the influence of different features on expected goals models. However, these 
methods have limitations, as they only offer insights into how individual features influ-
ence the predictions of a machine learning model. Sun et al. (2020) addressed this issue 
by investigating mimic learning, a technique to translate black-box models into interpret-
able ones through model distillation. Another approach is to consider interpretability from 
the start. This can be done by considering models such as variants of generalized additive 
models (Caruana et al., 2015; Nori et al., 2019). This enables showing partial dependency 
plots, which can give intuitions about which features are important. These have been used 
to explore both expected goals models  (Bransen & Davis, 2021) and action-value mod-
els (Decroos & Davis, 2020).

While Bayesian approaches have also been used extensively for sports models, these 
typically measure uncertainty surrounding the learned model’s parameters and not its 
predictions. There are some exceptions, such as the work by Kwiatkowski (2017) which 
employed Bayesian logistic regression to train an expected goals model for soccer. In order 
to assess finishing skill, this work included an indicator variable for each player in the 
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�2

∑N

i=1

�
yi − ȳ
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feature set of an expected goals model. The sign and magnitude of the weight associated 
with a player’s variable represented a player’s finishing skill with the range of possible val-
ues representing the confidence in the assessment.

Finally, one idea is to take a more domain-knowledge-driven approach and formulate 
features in a way that directly relates to concepts that are understandable by practitioners. 
For example, Van Haaren (2021) trained an expected goals model that encoded the location 
of the shot based on zones or areas that are typically used by coaches. Similarly, Fernan-
dez-Navarro et al. (2016) considered typical tactical indicators that were supplied by a data 
provider in a principle component analysis to understand playing style.

6.3  Quantifying uncertainty at prediction time

When a learned model is operating in the wild, it is important that the user trusts its predic-
tions. Thus, one very relevant question is whether the model makes systematic mistakes. 
That is, are there certain regions of the instance space where the model consistently per-
forms worse. This may be because there was little training data available for certain, rare 
situations, or some data encountered in practice is very dissimilar to the training data (e.g., 
noise, annotation errors, data drift, a rare match situation).

To increase trust, one recent trend in machine learning is for learned models to quantify 
the uncertainty associated with their predictions (Hüllermeier & Waegeman, 2021). This 
can take several different forms, such as providing a range of plausible values instead of a 
point prediction (Li et al., 2021; Friedman, 2001; Khosravi et al., 2011), assigning a con-
fidence score to the prediction (Hyndman & Athanasopoulos, 2023; Papadopoulos et al., 
2007), or flagging test instances where the model is at a heightened risk of making a mis-
prediction (Cortes et al., 2016; Hendrickx et al., 2024).

While these can help promote trust in a model, there has been less work in applying 
these techniques in the context of sports analytics. One exception is the work of Van Roy 
and Davis (2023) which reasoned about predictions for an action-value model in soc-
cer based on tree ensembles. Specifically, they applied an approach that can flag when 
a tree ensemble makes a prediction that is dissimilar to those observed during training 
time (Devos et al., 2023). It is known that learned models struggle to extrapolate beyond 
the training data (Seo et al., 2000) and even when confronted with subtly different inputs, 
a learned model may behave in unexpected ways (Szegedy et al., 2014). In the context of 
soccer, different data may arise for two reasons. One, the data is often annotated by humans 
who make mistakes. Two, there could be a rare or fluke play that occurred in a match (e.g., 
a shot from midfield). Van Roy and Davis (2023) were able to automatically detect both 
types of issues.

6.4  Verification: reasoning about learned models

Reasoning techniques such as verification are a powerful alternative to traditional aggre-
gated metrics to evaluate a learned model (Straccia & Pratesi, 2022). Verification goes 
beyond standard metrics by investigating how a model will behave in practice. That is, it 
allows the user to (interactively) query the model to answer hypothetical questions about 
examples that are not in the train, validation or test sets. Moreover, in certain instances, it 
can provide formal guarantees about how the model will behave. Consequently, it helps a 
user gain insight into what the model has learned from the data. The following are exam-
ples of types of questions that a user may have that reasoning can address:



7000 Machine Learning (2024) 113:6977–7010

1 3

• Is a model robust to small changes to the inputs? For example, does a small change in 
the time of the game and the position of the ball significantly change the probability 
that a shot will result in a goal? This relates to adversarial examples (c.f. image recog-
nition).

• Given a specific example of interest, can one or more attributes be (slightly) changed so 
that the indicator is maximized? This is often called a counterfactual explanation, e.g., 
if the goalie would have been positioned closer to the near post, how would that have 
affected the estimated probability of the shot resulting in a goal? We want to emphasize 
that, this is not a causal counterfactual (because the considered models are not causal 
models).

• Does the model behave as expected in scenarios where we have strong intuitions based 
on domain knowledge? For example, one can analyze what values the model can pre-
dict for shots that are taken from a very tight angle or very far away from the goal. One 
can then check whether the predictions for the generated game situations are realistic.

Typical aggregated test metrics do not reveal the answers to these questions. Nevertheless, 
the answers can be very valuable because they provide insights into the model and can 
reveal problems with the model or the data.

To better understand how verification goes beyond standard metrics, consider the ques-
tion: all other features being held constant, does a small change in the time of the game 
significantly change the probability that a shot will result in a goal? By making predic-
tions (i.e., applying forward reasoning or deduction to derive a target value from observed 
feature values), it is possible to check that this never happens for all pairs of examples in 
the train, validation and test set. However, it does not allow ruling out the possibility that 
two such shots could arise in future games where the model offers wildly different predic-
tions despite the fact they agree on all features except for time. Verification approaches on 
the other hand can answer such questions by combining backwards and forwards reason-
ing (Devos et al., 2021; Kwiatkowska et al., 2011; Russell et al., 2015; Kantchelian et al., 
2016; Katz et al., 2017). Given a desired target value (i.e., prediction), and possibly some 
constraints on the values that the features can take on, a verification algorithm either con-
structs one or more instances that satisfy the constraints, or it proves that no such instance 
exists. Importantly, the constructed instances are not restricted to being in the currently 
available data. Consequently, it provides formal guarantees, like theorem provers (e.g., as 
used in satisfiability testing).

We have used verification to evaluate soccer models in two novel ways. First, we show 
how it is possible to debug the training data and pinpoint labeling errors (or inconsist-
encies). Second, we identify scenarios where the model produces unexpected and unde-
sired predictions. These are shortcomings in the model itself. We use Veritas (Devos et al., 
2021) to analyze two previously mentioned soccer analytics models: xG and the VAEP 
holistic action-value model.

First, we analyzed an xG model in order to identify “what are the optimal locations to 
shoot from outside the penalty box?” We used Veritas to generate 200 examples of shots 
from outside the penalty box that would have the highest probability of resulting in a goal, 
which are shown as a heatmap in Fig. 6. The cluster in front of the goal is expected as it 
corresponds to the areas most advantageous to shoot from. The locations near the corners 
of the pitch are unexpected. We looked at the shots from the 5 m square area touching the 
corner and counted 11 shots and 8 goals, yielding an extremely high 72% conversion rate. 
This reveals an unexpected labeling behavior by the human annotators. Given the distance 
to the goal and the tight angle, one would expect a much lower conversion rate. This is 



7001Machine Learning (2024) 113:6977–7010 

1 3

likely because the human annotators are only labeling actions as a shot in the rare situa-
tions where the action results in a goal or a save. Otherwise, the actions are labeled as a 
pass or a cross.

Second, we analyzed VAEP  (Decroos et  al., 2019), a holistic action-value model for 
soccer. The models underlying this indicator look at a short sequence of consecutive game 
actions and predict the probability of a goal in the next 10 actions. Unlike xG models, all 
possible actions (passes, dribbles, tackles, ...) are considered, not just shots. For the data in 
an unseen test set, the model produces well-calibrated probability estimates in aggregate. 
However, we used verification to look for specific scenarios where the model performs 
badly. Veritas was able to construct several instances that did not appear in the training, 
validation or testing data that, while unlikely, exhibited uncredible behavior by the model. 
Concretely, Veritas generated instances where all the values of all features were fixed 
except for the time in the match, and found that the probability of scoring varied dramati-
cally according to match time. Figure 7 shows this variability for one such instance. The 
probability gradually increases over time, which is not necessarily unexpected as scoring 
rates tend to slightly increase as a match progresses. However, about 27 min into the first 
half the probability of scoring dramatically spikes. Clearly, this behavior is undesirable: we 
would not expect such large variations. Moreover, this behavior did not arise when investi-
gating the data we had access to. This suggests that time should probably be handled differ-
ently in the model, e.g., by discretizing it to make it less fine-grained.

Such an evaluation is still challenging. One has to know what to look for, which typi-
cally requires significant domain expertise or access to a domain expert. However, such an 
evaluation neither requires expertise in machine learning nor deep knowledge of the under-
lying model. Arguably, this is a big advance because it enables domain experts themselves 
to validate models and assess liability. Moreover, the process is exploratory: there is a huge 
space of scenarios to consider and the questions have to be iteratively refined.

7  Discussion

Applying an appropriate methodology and evaluation framework when using learning sys-
tems in the context of sports largely relies on expertise gained through experience. Our 
goal in writing this article was to (1) elucidate and summarize some of the key issues and 
(2) provide advice and examples about how to tackle these problems. Ideally, this will ben-
efit both data scientists starting to work in this area and practitioners who hope to make 
more use of automated analysis.

Fig. 6  A heatmap showing where 
Veritas generates instances of 
shots from outside the penalty 
box with the highest xG values
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Methodologically, it is important to critically think about the data at hand. First, it is 
necessary to identify what dependencies exist in the data and in what situations the models 
will be used. This will inform how the data is partitioned to learn and evaluate the models 
that form the basis of the developed indicators. Second, there can be biases in the data and 
this can inform both which features and model classes should (not) be considered. Third, 
one must consider contextual factors, both when designing features and aggregating model 
outputs to produce an indicator’s final value.

Because constructing novel indicators of performance involves combining the outputs 
of learned models, it is important to differentiate between evaluating the validity of the 
indicator itself and the quality of the models underlying it. Both aspects must be consid-
ered, but there are important differences in how to conduct the evaluations.

When evaluating the validity of novel indicators of performance, we would like to cau-
tion against looking at correlations to other success metrics as we believe that a high cor-
relation to an existing indicator fails the central goal: gaining new insights. In this, involv-
ing a domain expert in the evaluation can be extremely insightful. We also believe that the 
reliability and stability of indicators is important, and should be more widely studied. The 
best approach for evaluation is often a specific problem. We encourage researchers to criti-
cally think about the end objective of their indicators and explicitly state and discuss their 
added benefit over existing ones. It is particularly useful to ground such a discussion in 
how the indicators may be used in practice. Moreover, we hope that the field will continue 
to discuss best practices.

When evaluating the models used to construct the underlying systems and indicators, 
we believe that a variety of different factors must be considered. While standard met-
rics measuring some notion of predictive accuracy are important, only considering them 
is insufficient. It is crucial to have broader insights into a model’s behavior, particularly 
since this helps facilitate interactions with domain experts. Consequently, it is necessary to 
consider aspects such as interpretability, explanations and trust. We believe that evaluating 
models by reasoning about their behavior is crucial: this changes the focus from a purely 
data-based evaluation perspective which is the current norm to one that considers the effect 
of potential future data on the model. Critically reflecting on what situations a model will 
work well in and which situations it may struggle in, helps build trust and set appropriate 
expectations.

Still, using reasoning is not a magic solution. When a reasoner identifies unexpected 
behaviors, there are at least two possible causes. One cause is errors in the training data 

Fig. 7  For specific action 
sequences, the time remaining 
in the game has a large variable 
effect on the probability of scor-
ing in the VAEP action model. 
This variability is unexpected 
and reveals a robustness issue 
with the model
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which are picked up by the model and warp the decision boundary in unexpected ways 
(e.g., Fig. 6). Some errors can be found by inspecting the data, but given the nature of the 
data, it can be challenging to know where to look. The other cause is peculiarities with the 
model itself, the learning algorithm that constructed the model, or the biases resulting from 
the model representation (e.g., Fig. 7). Traditional evaluation metrics are completely obliv-
ious to these issues. They can only be discovered by reasoning about the model. Unfortu-
nately, it remains difficult to correct a model that has picked up on an unwanted pattern. For 
example, the time’s effect on the probability of scoring can only be resolved via represent-
ing the feature in a different way, relearning the model, and reassessing its performance. 
Alas, this is an iterative guess-and-check approach. We believe that reasoning approaches 
to evaluation are only in their infancy and need to be further explored.

While this paper grounded its discussion of methodology and evaluation in the context 
of sports, we do feel that some of the insights and advice are relevant for other applica-
tion domains where machine learning is applied. For example, evaluation challenges also 
arise in prognostics, especially when it is impossible to directly collect data about a target 
such as time until failure. In both domains, we do not want to let the athlete nor machine 
be damaged beyond repair. Also, we perform multiple actions to avoid failure, making it 
difficult to attribute value to individual actions or identify root causes. Another example is 
how to deal with subjective ratings provided by users, which often occurs when monitoring 
players’ fitness and was also a key issue in the Netflix challenge. Finally, in other applica-
tion domains such as finance and health where models are currently deployed, it is also 
important to evaluate the robustness of learned models.
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