
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-024-06563-6

1 3

Local neighborhood encodings for imbalanced data 
classification

Michał Koziarski1 · Michał Woźniak1

Received: 5 July 2022 / Revised: 14 March 2024 / Accepted: 26 April 2024 
© The Author(s) 2024

Abstract
This paper aims to propose Local Neighborhood Encodings (LNE)-a hybrid data preproc-
essing method dedicated to skewed class distribution balancing. The proposed LNE algo-
rithm uses both over- and undersampling methods. The intensity of the methods is chosen 
separately for each fraction of minority and majority class objects. It is selected depending 
on the type of neighborhoods of objects of a given class, understood as the number of 
neighbors from the same class closest to a given object. The process of selecting the over- 
and undersampling intensities is treated as an optimization problem for which an evolution-
ary algorithm is used. The quality of the proposed method was evaluated through computer 
experiments. Compared with SOTA resampling strategies, LNE shows very good results. 
In addition, an experimental analysis of the algorithms behavior was performed, i.e., the 
determination of data preprocessing parameters depending on the selected characteristics 
of the decision problem, as well as the type of classifier used. An ablation study was also 
performed to evaluate the influence of components on the quality of the obtained classi-
fiers. The evaluation of how the quality of classification is influenced by the evaluation of 
the objective function in an evolutionary algorithm is presented. In the considered task, 
the objective function is not de facto deterministic and its value is subject to estimation. 
Hence, it was important from the point of view of computational efficiency to investigate 
the possibility of using for quality assessment the so-called proxy classifier, i.e., a classi-
fier of low computational complexity, although the final model was learned using a differ-
ent model. The proposed data preprocessing method has high quality compared to SOTA, 
however, it should be noted that it requires significantly more computational effort. Never-
theless, it can be successfully applied to the case as no very restrictive model building time 
constraints are imposed.

Keywords  Machine learning · Imbalanced data · Oversampling · Undersampling · 
Evolutionary algorithm

Editors: Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Shuo Wang.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06563-6&domain=pdf


	 Machine Learning

1 3

1  Introduction

The problem of imbalanced data classification is one of the important subareas of machine 
learning research. This is dictated by the fact that most real-world decision problems are 
of this nature, i.e., a significant disparity between the object counts of the different classes. 
In the case of a two-class classification task to which this work is devoted, the relationship 
is quite obvious, i.e., one class with a large number of objects is called the majority class, 
and a class with a small number of instances is called the minority class. The critical point 
here is that, as a rule, the cost of incorrectly classified objects of the minority class is much 
higher than the error made on majority class instances. We should be aware that in the case 
of multiclass problems, such relation is no longer obvious, and minority-majority relations 
may occur only between some pairs of classes. Moreover, a given class may be a majority 
class concerning selected classes, simultaneously a minority class for others. This problem 
will not be considered in this paper and we will focus on the binary classification task. 
For imbalanced data, it is observed that canonical classifier learning methods that do not 
explicitly optimize the quality criterion prefer models biased towards the majority class. 
However, in the cases in which we can provide a learning criterion that can account for 
the different cost of errors for each class, the problem is obtaining such information, e.g., 
in the form of a loss matrix, from the user (Branco et al., 2016). The question is whether 
indeed the disparity between classes is the most significant difficulty or whether other fac-
tors affecting the difficulty of the data may be crucial since it is not difficult to imagine 
a decision problem that, even despite the significant disparity between classes, is easy to 
classify using traditional methods (see Fig. 1).

It seems that difficulties related to the classification of imbalanced data should be 
sought in characteristics of conditional probability distributions of classes. Napierala and 
Stefanowski (2016) noticed that, especially in the case of minority classes, they tend to 
form small, disconnected clusters, which combined with the small number of objects in the 
minority class, causes additional difficulty in correctly learning the models. One may find 
several taxonomies related to evaluating the difficulty of classifying minority class objects. 
As a rule, one distinguishes between the fraction of objects that do not present problems 
with correct classification (usually known as safe examples) and the remaining instances 
as unsafe. A popular taxonomy is to determine the difficulty of objects of a minority class 

Fig. 1   Easy classification task for 
imbalance ratio 1:1000



Machine Learning	

1 3

using the number of objects of the minority class found among the five nearest neighbors 
of a given object from this class. This leads to a division into:

•	 Examples lying near each other can be considered as safe ones.
•	 Instances close to the border between classes, where examples of different classes may 

overlap, are identified as borderline examples.
•	 Groups of a few examples of a class in areas of other classes are known as rare exam-

ples.
•	 Outliers are completely isolated examples of a concrete class.

Figure. 2 shows a sample illustration of different types of minority class objects.
This paper will present the Local Neighborhood Encodings (LNE) algorithm, a hybrid 

algorithm for preprocessing imbalanced data. LNE uses both oversampling and undersam-
pling methods. The intensity of these methods is separate for each fraction of minority 
and majority class objects and is chosen according to the neighborhood type of the class 
instance, defined as the number of neighbors of the same class closest to the given object. 
An evolutionary algorithm is used to solve this optimization task.

In brief, the most important contributions of this work are:

•	 Proposition of LNE - a hybrid preprocessing method for imbalanced data.
•	 Formulation of an optimization task and representation for a selected evolutionary 

algorithm.
•	 Analysis of the effect of classification task characteristics such as imbalance ratio or 

size of each object type fractions on the quality of the proposed method.
•	 Discussion on the data set characteristics returned by LNE.
•	 Experimental evaluation of the quality of the LNE for different types of classifiers and 

the impact of using a simple proxy classification model required for feature value esti-
mation in the optimization algorithm.

•	 Experimental evaluation of the proposed approach based on diverse benchmark data-
sets and a detailed comparison with the state-of-art approaches

•	 Discussion on an ablation study to demonstrate how the various components of the 
LNE affect its quality.

Fig. 2   Examples of different 
minority class instances: “S” 
stands for safe, “B” for border-
line, “R” for rare, and “O” for 
outliers



	 Machine Learning

1 3

2 � Related work

The problem of imbalanced data is encountered in a significant fraction of real-world prob-
lems and in recent years, the main focus has been on the analysis of tabular data. However, 
a growing number of works indicate that this problem is also very important for image 
classification since many of the datasets are characterized by this type of property, making 
generalizations of deep models difficult (Johnson & Khoshgoftaar, 2019; Kim et al., 2021).

The preference for the majority class by classification models can be mitigated by modi-
fying the training data to bring the minority class size in line with the majority class size 
or by modifying the classifier’s learning or decision-making process to account for class 
disparity and thus increase the sensitivity of decisions towards the minority class.

We may divide the techniques used to deal with data imbalance into two categories. In 
the first approach (also called algorithm-level solutions), the problem of data imbalance is 
considered at the stage of the learning classifier, e.g., considering the different cost of error 
between different classes in the learning criterion. In contrast, the second approach (data-
level solutions) does not interfere with the learning of the classifier itself but modifies the 
learning set before the learning process starts to compensate for the differences in the num-
ber of examples from each class.

In this paper, we will mainly focus on the second approach. Hence let us characterize the 
most important techniques associated with them. In general, these methods try to remove 
objects from the majority class (undersampling) or increase the size of the minority class 
(oversampling). In this regard, it should be noted that these actions may be purely random, 
or the process of removing objects of the majority class or adding instances of the minority 
class may result from an analysis of the distributions of the different fractions of objects.

Randomized preprocessing methods are easy to implement and have low computational 
complexity. However, it is essential to realize that in some cases, they may have an adverse 
effect on the dataset. Random Undersampling (RUS) can lead to the rejection of important 
instances for creating the correct class boundary or lie in specific subregions of the target class. 
On the other hand, random oversampling can lead to the reallocation of noisy instances and 
thus inappropriately affect the actual class distribution. The most straightforward sampling-
based approach to data imbalance is Random Oversampling (ROS). Using ROS, new objects 
are generated by replicating randomly selected existing objects. The disadvantage of this 
approach is that it leads to the clustering of minority objects in small areas where the original 
instances were located. This can be a problem for some classifiers, especially those that tend 
to overfit. An interesting approach is Lee proposed oversampling method (Lee, 2000), which 
produces noisy replicas of minority class objects while keeping the majority class unchanged.

Although randomized methods often have good results, it should be noted that many 
authors try to develop strategies that add synthetic minority examples or remove majority 
instances in a guided manner.

For nearly two decades, the most popular method for creating new instances of a 
minority class has been the smote algorithm (Fernández et al., Jan 2018). It involves ran-
domly generating objects between minority class instances. Although smote works well 
in many practical applications, it has been noted that it can lead to a change in the dis-
tribution of the minority class, resulting in overfitting of the classifier. Therefore, several 
modifications have been proposed, specifically turning around the fact that minority class 
objects are not generated in areas potentially belonging to the majority class. For instance, 
Borderline smote (Han et  al., 2005) generates synthetic minority class objects near the 



Machine Learning	

1 3

decision boundary. In contrast, SafeLevelsmote (Bunkhumpornpat et  al., 2009) and ln-
smote (Maciejewski & Stefanowski, 2011) avoid generating minority class instances in 
areas where objects belonging to the majority class dominate. Other popular methods 
include adasyn (He et al., 2008), which generates synthetic objects by taking into account 
which areas are difficult to classify and therefore increases the number of minority class 
instances generated in those areas. Also, Sáez et al. (2016) proposed that the fraction of 
objects subject to oversampling for each particular problem should be chosen according to 
their difficulty type. At the same time, the rest should be left unmodified.

It is also worth noting RBO (Radial-Based Oversampling) (Koziarski et al., 2017), which 
estimates the mutual distribution of minority and majority class objects using potential func-
tions to select the area of minority class object generation. Koziarski also proposed Poten-
tial Anchoring algorithm (Koziarski, 2021a), which also uses potential functions to ensure 
invariant probability distributions across classes during the resampling process. On the other 
hand, CCR (Combined Cleaning and Resampling) (Koziarski & Woźniak, 2017), combines 
two techniques - cleaning the area around minority class objects by removing majority class 
objects from their neighborhood and generating synthetic minority class objects in that area.

As mentioned, RUS carries the risk of removing important objects from the majority 
class, which may lead to constructing a classifier that ignores less dense clusters of the 
majority class. Several methods have been proposed to avoid this tendency. They try to ana-
lyze the local mutual distributions of the minority and majority classes during undersam-
pling. For example, enn (Edited Nearest Neighbor) removes majority examples if it finds the 
homogeneity of a given sample neighborhood. RBU (Radial Based Undersampling) (Kozi-
arski, 2020) employs a previously introduced concept of mutual class potential. smute (Syn-
thetic Minority Undersampling Technique) utilizes the data interpolation used in SMOTE to 
reduce the number of observations from the majority class (Koziarski, 2021b).

Many methods try to combine both techniques, i.e., over and undersampling. For exam-
ple, CSMOUTE (Combined Synthetic Oversampling and Undersampling Technique) (Koz-
iarski, 2021b) combines the mentioned SMUTE method with SMOTE. On the other hand, 
Galar et  al. proposed a technique for combining under- and oversampling with the clas-
sifier ensemble (Galar et  al., 2012). Other authors are keen on using data preprocessing 
techniques by combining them with algorithm-level solutions, mainly based on techniques 
having their roots in classifier ensembles built on perturbed learning sets. These methods 
can be overviewed in Fernández et al. (2018).

Some of the works try to treat the guided data preprocessing as an optimization task. Kim 
et al. (2016) proposed a hybrid method using a clustering technique and genetic algorithms 
(GA) based on the artificial neural networks model to balance imbalanced data distribution. 
Barandela et  al. (2005) employed a genetic algorithm to balance data distribution and per-
form feature selection simultaneously. On the other hand, Khoshgoftaar et  al. (Jan 2010) 
proposed using an evolutionary algorithm for the undersampling task. Garcia and Herrera 
also used the evolutionary algorithm to propose a family of undersampling techniques eus( 
Evolutionary Undersampling) (García & Herrera, 2009). Later this concept was extended by 
Wojciechowski, who applied the multicriteria optimization algorithm NSGA-2 (Deb et  al., 
2002) to the undersampling task (Wojciechowski, 2021). Multicriteria optimization approach 
was additionally considered by Węgier et al. in the tasks of building ensembles (Węgier et al., 
2022) and providing interpretable decision trees (Węgier et al., 2023). Hualong et al. (2013) 
used ant colony optimization to improve imbalanced DNA microarray data classification per-
formance. Metaheuristic algorithms are also used successfully for oversampling algorithms. 
The examples include GenSample (Karia et al., 2019), based on and, ACO Resampling (Li 
et al., 2020), which uses Ant Colony Optimization.



	 Machine Learning

1 3

When using data balancing methods, one must also ask what degree of balancing one 
wants to achieve. Most works try to reach an equal number of minority and majority class 
instances. However, for some classifiers, such as decision trees, it has been shown that this 
approach does not give the best results (Weiss & Provost, 2003). Moreover, Khoshgoftaar 
et al. have shown experimentally that when the imbalance ratio is large, the balancing process 
should be stopped for IR values between 2:1 and 3:1 (Khoshgoftaar et al., 2007). Although 
this characteristic is well known, most authors seem to ignore it in their studies.

A more comprehensive review of work related to data balancing methods or not discussed 
so-called algorithm-level solutions might be found in the review papers (Branco et al., 2016; 
Krawczyk, 2016).

3 � Local neighborhood encodings

Our approach is inspired by the categorization of observation types proposed by Napierała 
and Stefanowski (Napierala & Stefanowski, 2016), and a further study by Sáez et al. (2016), 
in which selective oversampling of different observation types was analyzed. In a nutshell, 
the proposed categorization was based on five nearest neighbour taxonomy presented in the 
previous section. The aforementioned study by Sáez et al. later used this categorization in an 
approach in which only the observations from specific types are used for oversampling. They 
used the same division into safe, borderline, rare and outlier observations, and exhaustively 

Fig. 3   Schematic drawing of 
the proposed approach. Firstly, 
the original dataset is divided 
into bags based on the number 
of same class nearest neighbors, 
and afterwards into several cross-
validation folds. Then, evolution-
ary algorithm is used to optimize 
Local Neighborhood Encodings 
coding the number of observa-
tions with specific number of 
same class nearest neighbors that 
will be over- and undersampled. 
Finaly LNE resamples the origi-
nal dataset



Machine Learning	

1 3

evaluated all 16 ( 24 ) combinations of different minority observation types that can be used. 
They were able to experimentally demonstrate that limiting oversampling to specific observa-
tion types can improve the performance of the imbalanced data classification algorithms.

We extend the idea of selective resampling. First, we take advantage of the fact that some 
previous studies have shown that a combination of oversampling and undersampling can 
improve performance compared to an approach using only one (Koziarski, 2021a, 2021b). For 
this reason, we will combine these techniques and consider the intensity of each process as the 
parameter being optimized. Second, the optimization process will also determine the oversam-
pling intensity of each type of minority class observation. Moreover, based on the observa-
tions pointed out, among others, by Khoshgoftaar et al. (2007), the imbalance ratio of the final 
set will also be treated as a parameter to be determined in our algorithm.

To implement the above ideas we designed an approach based on the evolutionary opti-
mization of a Local Neighborhood Encoding, a real-valued vector of numbers encoding the 
number of observations from specific types that will be either created via oversampling or 
removed via undersampling. We present the high-level overview of the approach in Fig. 3, and 
a detailed pseudo code in Algorithm 1.

Algorithm 1   Local neighborhood encodings



	 Machine Learning

1 3

Let us first describe how we will encode the strength of resampling for each observation 
type. It is worth noting that there is a major practical distinction between the over- and under-
sampling, as the former is unbounded. In principle, we can generate synthetic observations ad 
infinitum. On the other hand, in the case of undersampling, there is a clear bound equal to the 
number of the original observations. Because of that, the two of them will have to be encoded 
differently. Specifically, the approach we propose is based on coding all of the information 
required to produce the resampling counts (that is the numbers of observations from specific 
types that will be either over- or undersampled) as a 2k + 1 element vector, with k being the 
parameter describing the size of neighborhood used for type calculation.

The first element r of this vector encodes the strength of oversampling, i.e., the total num-
ber of observations generated via oversampling will be equal to 
nover = r ⋅ rmax ⋅

(
|Xmaj| − |Xmin|

)
 , with rmax being a hyperparameter bounding the number 

of oversampled observations (which in practice we will set to be fairly high, i.e., equal to 5, 
to allow for an oversampling strength search within this bound), and Xmaj and Xmin being 
the collections of majority and minority observations, respectively. Next k elements 
o1, o2, ..., ok encode the relative strength of oversampling from particular observation types, 
with the resulting number of observations generated based on a specific observation type m 
defined as co

m
= nover ⋅

om∑k

l=1
ol

 . Finally, the last k elements u1, u2, ..., uk encode the proportion 
of majority class observations with a type m that will be removed during undersampling. 
Note that with such an approach, all elements of the encoding vector can be bound within 
the range [0; 1].

Given such an encoding scheme, we can formulate the resampling process as an opti-
mization procedure of the encoding for the given dataset. Proposed solutions will be 
evaluated on the cross-validation folds, with the encoding used to obtain observation 
type-dependent resampling counts for a specific training fold. Based on the resulting 
counts, resampling will be performed on the training fold, an estimator fitted on it, and 
the performance evaluated on the test fold. The final performance score will be the aver-
age of scores across folds. Specifically, we will evaluate the quality of a given encoding 
using 3 × 2 cross-validation (Raschka, 2018), and any desired target metric as an opti-
mization criterion. While, in principle, various oversampling, undersampling, and opti-
mization algorithms can be used, in this paper we will employ SMOTE (Chawla et al., 
2002) for oversampling (with random observations from a currently considered obser-
vation type used as the starting points), random undersampling as the undersampling 
algorithm, and Differential Evolution (Price et al., 2006) as the optimization algorithm. 
Once the optimization procedure is finished, we will use the resulting encoding to resa-
mple the whole training dataset.

Finally, it is worth noting that one advantage of the algorithm being formulated in 
such a way is that the encodings are, to some extent, interpretable: they describe not 
only the overall degree of balancing (with the dataset being either balanced completely, 
only partially, or overbalanced, with the old minority class becoming the new major-
ity), the proclivity towards either over- or undersampling, and towards focusing the res-
ampling on specific types of observations. In particular, the last one can be viewed as 
desirable since the idea of focusing the resampling on specific observation types is pre-
sent in a number of existing approaches, such as Borderline-SMOTE (Han et al., 2005) 
and Safe-Level-SMOTE (Bunkhumpornpat et al., 2009). However, while the approaches 
are out of necessity contradictory, there is little justification to prefer any of them a 

[
r, o1, ..., ok, u1, ..., uk

]



Machine Learning	

1 3

priori, not in the context of a specific dataset. An analysis of the encodings produced 
during the optimization for a larger dataset body could shed some light on the trends 
associated with focusing the resampling on specific observation types: this idea will be 
later revisited in Sect. 4.5.

4 � Experimental study

To evaluate the proposed approach’s usefulness and properties, we conducted an experi-
mental study. It aims to answer the following research questions: 

RQ1:	 How does LNE compare with state-of-the-art resampling strategies?
RQ2:	 What design choices are responsible for the performance of LNE?
RQ3:	 Can LNE be sped up using less computationally expensive proxy estimators?
RQ4:	 Can the solutions found by LNE provide any generalizable insights into imbalanced 

data resampling?

4.1 � Set‑up

Data. Conducted experimental study was based on the binary imbalanced datasets provided in 
the KEEL repository (Alcalá-Fdez et al., 2011), with a total of 60 datasets used. Their details 
were presented in Table 1. In addition to the imbalance ratio (IR), the number of samples 
and the number of features, for each dataset we computed the data difficulty index (DI) (Koz-
iarski, 2021a) using m = 5 nearest neighbors, which is a [0; 1] bounded functions measur-
ing the difficulty of a given dataset. Prior to resampling and classification, each dataset was 
preprocessed: categorical features were encoded as integers, and afterwards all features were 
standarized by removing the mean and scaling to unit variance.

Classification. Four different classification algorithms were used throughout the experi-
mental study: CART decision tree, k-nearest neighbors classifier (KNN), support vector 
machine (SVM) and multi-layer perceptron (MLP). The implementations of the classification 
algorithms provided in the scikit-learn machine learning library (Pedregosa et al., 2011) were 
utilized. Used hyperparameters of the classification algorithms were presented in Table 2.

Reference resampling methods. We considered several other state-of-the-art resampling 
strategies. We based our choice on a recent ranking constructed by (Kovács, 2019), out of 
which we selected the following best-performing methods: SMOTE (Chawla et  al., 2002), 
Polynomial Fitting SMOTE (pf-SMOTE) (Gazzah et  al., 2008), Oversampling with Rejec-
tion (Lee) (Lee et  al., 2015), Synthetic Minority Oversampling Based on Sample Density 
(SMOBD) (Cao et al., 2011), Partially Guided Oversampling (G-SMOTE) (Sandhan & Choi, 
2014), Learning Vector Quantization-based SMOTE (LVQ-SMOTE) (Nakamura et al., 2013), 
Assembled SMOTE (A-SMOTE) (Zhou et  al., 2013) and SMOTE combined with Tomek 
Links (SMOTE-TL) (Batista et al., 2004). The implementations of the reference methods pro-
vided in the smote-variants library (Kovács, 2019) were utilized. Used hyperparameters of the 
resampling algorithms were presented in Table 2. For all of the reference methods we adjusted 
the proportion of oversampling using 3 × 2 cross-validation, selecting values of oversampling 
proportion from {0.1, 0.2, 0.5, 1.0, 2.0, 5.0} , with 1.0 indicating resampling up to the point of 
achieving balanced class distributions.



	 Machine Learning

1 3

Evaluation. For every dataset, we reported the results averaged over the 5 × 2 cross-valida-
tion folds (Alpaydin, 1999).

Let us define the used metrics. Firstly, let’s define the confusion matrix, which summarizes 
the number of instances from each class classified correctly or incorrectly as the remaining 
classes (see Table 3).

On the basis of the confusion matrix, we may define

that is also known as sensitivity.

Throughout the experimental study we reported the values of AUC, balanced accuracy 
(BAC), G-mean, and F� score (F-beta)

The parameter � can be tuned for different trade-offs between both components. Neverthe-
less, using such metrics could be dangerous because � should be appropriately set. Brzez-
inski et al. (2018) showed that inappropriate parameter setting for F�score may favor the 
majority class for the imbalanced data classification task. During the experiments, � has 
been chosen individually for each dataset and equal to its imbalance ratio (Stapor et  al., 
2021). In our experiments we also used AUC under the precision-recall curve that is com-
puted on predicted probabilities.

Implementation and reproducibility. The experiments described in this paper were 
implemented in the Python programming language. Complete code, sufficient to repeat 
the experiments, as well as complete results in a CSV format, and tables showing average 
performance on each dataset, separately for every classifier and performance metric, were 
made publicly available at.1 We used the scikit-learn (Pedregosa et  al., 2011) library to 
implement the experimental protocol, performance metrics, and classifiers.

(1)recall =
TP

TP + FN

(2)precision =
TP

TP + FP

(3)specificity =
TN

TN + FP

(4)G − mean =
√
precision + recall

(5)BAC =
sensitivity + specificity

2

(6)F� =
(�2 + 1) × Precision × Recall

�2 × Precision + Recall

1  https://​github.​com/​micha​lkozi​arski/​Local​Neigh​borho​odEnc​odings

https://github.com/michalkoziarski/LocalNeighborhoodEncodings


Machine Learning	

1 3

Ta
bl

e 
1  

S
um

m
ar

y 
of

 th
e 

ch
ar

ac
te

ris
tic

s o
f d

at
as

et
s u

se
d 

th
ro

ug
ho

ut
 th

e 
ex

pe
rim

en
ta

l s
tu

dy

N
am

e
D

I
IR

Sa
m

pl
es

Fe
at

ur
es

N
am

e
D

I
IR

Sa
m

pl
es

Fe
at

ur
es

kd
dc

up
-b

uff
er

_o
ve

rfl
ow

_v
s_

ba
ck

0.
10

73
.4

3
22

33
41

cl
ev

el
an

d-
0_

vs
_4

0.
60

12
.3

1
17

3
13

kd
dc

up
-ro

ot
ki

t-i
m

ap
_v

s_
ba

ck
0.

17
10

0.
14

22
25

41
po

ke
r-8

–9
_v

s_
6

0.
64

58
.4

0
14

85
10

ec
ol

i2
0.

20
5.

46
33

6
7

ha
be

rm
an

0.
67

2.
78

30
6

3
pa

ge
-b

lo
ck

s0
0.

22
8.

79
54

72
10

ye
as

t-0
–5

-6
–7

-9
_v

s_
4

0.
68

9.
35

52
8

8
pa

ge
-b

lo
ck

s-
1–

3_
vs

_4
0.

23
15

.8
6

47
2

10
zo

o-
3

0.
68

19
.2

0
10

1
16

gl
as

s0
0.

27
2.

06
21

4
9

ye
as

t-0
–3

-5
–9

_v
s_

7–
8

0.
68

9.
12

50
6

8
ec

ol
i-0

–1
_v

s_
2–

3-
5

0.
28

9.
17

24
4

7
fla

re
-F

0.
69

23
.7

9
10

66
11

kr
-v

s-
k-

ze
ro

_v
s_

ei
gh

t
0.

29
53

.0
7

14
60

6
ab

al
on

e-
21

_v
s_

8
0.

70
40

.5
0

58
1

8
ec

ol
i-0

–1
-4

–7
_v

s_
2–

3-
5–

6
0.

29
10

.5
9

33
6

7
ye

as
t-1

_v
s_

7
0.

71
14

.3
0

45
9

7
ec

ol
i1

0.
33

3.
36

33
6

7
po

ke
r-8

_v
s_

6
0.

72
85

.8
8

14
77

10
ye

as
t3

0.
35

8.
10

14
84

8
po

ke
r-9

_v
s_

7
0.

75
29

.5
0

24
4

10
ec

ol
i-0

–6
-7

_v
s_

5
0.

35
10

.0
0

22
0

6
ye

as
t4

0.
76

28
.1

0
14

84
8

ye
as

t-2
_v

s_
4

0.
39

9.
08

51
4

8
gl

as
s-

0–
1-

4–
6_

vs
_2

0.
78

11
.0

6
20

5
9

gl
as

s1
0.

40
1.

82
21

4
9

gl
as

s-
0–

1-
6_

vs
_2

0.
80

10
.2

9
19

2
9

ec
ol

i-0
–6

-7
_v

s_
3–

5
0.

40
9.

09
22

2
7

gl
as

s2
0.

81
11

.5
9

21
4

9
ye

as
t5

0.
40

32
.7

3
14

84
8

ab
al

on
e9

–1
8

0.
82

16
.4

0
73

1
8

ec
ol

i-0
–2

-6
–7

_v
s_

3–
5

0.
42

9.
18

22
4

7
ye

as
t-1

–2
-8

–9
_v

s_
7

0.
82

30
.5

7
94

7
8

gl
as

s-
0–

1-
6_

vs
_5

0.
42

19
.4

4
18

4
9

gl
as

s-
0–

1-
5_

vs
_2

0.
83

9.
12

17
2

9
ec

ol
i-0

–1
-3

–7
_v

s_
2–

6
0.

43
39

.1
4

28
1

7
ab

al
on

e-
17

_v
s_

7–
8-

9–
10

0.
84

39
.3

1
23

38
8

ye
as

t-2
_v

s_
8

0.
46

23
.1

0
48

2
8

ye
as

t-1
–4

-5
–8

_v
s_

7
0.

89
22

.1
0

69
3

8
ve

hi
cl

e1
0.

48
2.

90
84

6
18

ab
al

on
e-

20
_v

s_
8–

9-
10

0.
89

72
.6

9
19

16
8

pi
m

a
0.

48
1.

87
76

8
8

w
in

eq
ua

lit
y-

re
d-

3_
vs

_5
0.

90
68

.1
0

69
1

11
gl

as
s4

0.
49

15
.4

6
21

4
9

w
in

eq
ua

lit
y-

re
d-

4
0.

92
29

.1
7

15
99

11
ec

ol
i3

0.
50

8.
60

33
6

7
w

in
eq

ua
lit

y-
re

d-
8_

vs
_6

0.
92

35
.4

4
65

6
11

ye
as

t-0
–2

-5
–6

_v
s_

3–
7-

8–
9

0.
51

9.
14

10
04

8
w

in
eq

ua
lit

y-
w

hi
te

-3
_v

s_
7

0.
93

44
.0

0
90

0
11

gl
as

s5
0.

51
22

.7
8

21
4

9
w

in
eq

ua
lit

y-
w

hi
te

-3
–9

_v
s_

5
0.

94
58

.2
8

14
82

11
ye

as
t6

0.
54

41
.4

0
14

84
8

w
in

eq
ua

lit
y-

re
d-

8_
vs

_6
–7

0.
94

46
.5

0
85

5
11



	 Machine Learning

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

N
am

e
D

I
IR

Sa
m

pl
es

Fe
at

ur
es

N
am

e
D

I
IR

Sa
m

pl
es

Fe
at

ur
es

ye
as

t1
0.

54
2.

46
14

84
8

ab
al

on
e-

19
_v

s_
10

-1
1-

12
-1

3
0.

96
49

.6
9

16
22

8
ve

hi
cl

e3
0.

55
2.

99
84

6
18

po
ke

r-8
–9

_v
s_

5
0.

97
82

.0
0

20
75

10
w

in
eq

ua
lit

y-
w

hi
te

-9
_v

s_
4

0.
60

32
.6

0
16

8
11

ab
al

on
e1

9
0.

97
12

9.
44

41
74

8



Machine Learning	

1 3

4.2 � Comparison with reference methods

We began the experimental analysis by comparing the proposed approach to several state-
of-the-art reference resampling methods. Average ranks together with the results of sta-
tistical comparison using Friedman test combined with Shaffer’s post-hoc, reported at a 
significance level � = 0.05 , were presented in Table 4. As can be seen, when compared 
with respect to BAC, G-mean, and F-beta metrics, the proposed LNE approach outper-
formed the reference methods in every case, usually achieving statistically significantly 
better results, demonstrating the general usefulness of the proposed approach. However, 
it is worth mentioning that we observed no statistically significant differences when the 
comparison was made using AUC (under the precision-recall curve). It is not entirely clear 
what caused this behavior. One possible explanation is that the results computed with a 
metric using probability scores instead of binarized predictions are generally more stable 

Table 2   Parameters of the 
classification and the sampling 
algorithms used throughout the 
experimental study

Algorithm Parameters

CART​ Criterion: Gini impurity
KNN k-nearest neighbors = 3
SVM Kernel: RBF

C = 1.0
MLP Hidden neurons = 100

Activation: ReLU
Optimizer: Adam
Learning rate = 0.001

LNE k = 4
r
max

 = 5.0
CV = 3 × 2

Population size = 100
SMOTE k-nearest neighbors = 5
pf-SMOTE Topology: star
Lee k-nearest neighbors = 5

Rejection level = 0.5
SMOBD �1 = 0.5

Noise threshold t = 1.8
G-SMOTE k-nearest neighbors = 5
LVQ-SMOTE k-nearest neighbors = 5

n clusters = 10
A-SMOTE k-nearest neighbors = 5

Population parameter = 2
SMOTE-TL k-nearest neighbors = 5

Table 3   Confusion matrix for 
two-class classification task

Predicted positive Predicted negative

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)



	 Machine Learning

1 3

and less susceptible to data imbalance. The other reason is that using probability-based 
metrics is more difficult to optimize and/or more susceptible to overfitting, reducing the 
final performance of the model.

To better illustrate the performance of the proposed approach we also conducted pair-
wise comparisons on individual datasets, comparing the results on all 10 cross-validation 
folds using Wilcoxon rank-sum test at a significance level � = 0.10 . The number of data-
sets for which LNE achieved statistically significantly better or worse results was presented 
in Fig. 4. As can be seen, there is a clear discrepancy depending on the performance metric 
chosen, with using F-beta (which should penalize the predictions biased towards the major-
ity class most heavily) leading to most wins, BAC and G-mean to a medium amount, and 
AUC to the least; with the number of losses low in every case.

4.3 � Ablation study

Having established that the proposed LNE approach can outperform the reference methods, 
we next tried to examine what specific design choices led to this outperformance. We per-
formed an ablation study to compare LNE with its two different, simplified variants:

•	 LNENRS that is LNE with no ratio selection, for which the balancing was always per-
formed up achieving a perfectly balanced distribution (or, in other words, for which the 
optimization of balancing ratio was disabled).

•	 LNENTS that is LNE with no type selection: a variant in which the resampling was based 
on all available observation types, and only the balancing ratio was optimized.

Notably, while LNENRS differed only in assigning the resampling counts but still used 
2k + 1 values as the encoding. LNENTS variant was encoded using only two values: over-
sampling and undersampling ratio.

Note that due to a high computational complexity in this comparison we excluded the 
MLP classifier because of its long training time.

Let’s present the average ranks and p values obtained when comparing the ablation vari-
ants with the baseline LNE: LNE - 1.83, LNENRS - 2.20, and LNENTS - 1.96. To determine 
whether the rank differences are statistically significant, the Friedman paired posthoc Shaf-
fer test was performed, and the following results were obtained: LNE vs. LNENRS (p-value 
< 0.001), LNE vs. LNENTS (p-value = 0.015). As can be seen, the baseline LNE using both 
mechanisms (type and ratio selection) achieved statistically significantly better results than 
the ablation variants. The discrepancy was most significant in comparison to the ablation 
variant with no ratio selection, indicating that it was the major contributor to the outper-
formance of LNE over the reference algorithms. In contrast, type selection was a minor 
contribution: we suspect this is because the variant with no type selection had only two 
optimizable parameters, thus being much less prone to overfitting. Still, type selection can 
still be potentially used as a vehicle for meta-analysis of the algorithm’s behavior, which 
will be discussed in Sect. 4.5. Finally, it is worth noting that we aggregated the results over 
all classifiers and performance metrics to illustrate the general trends better. Still, they were 
not consistent for particular classifier and performance metric combinations in every case.



Machine Learning	

1 3

Ta
bl

e 
4  

A
ve

ra
ge

 ra
nk

s o
f t

he
 e

va
lu

at
ed

 m
et

ho
ds

 c
al

cu
la

te
d 

fo
r a

ll 
of

 th
e 

co
ns

id
er

ed
 d

at
as

et
s

B
es

t p
er

fo
rm

an
ce

 w
as

 d
en

ot
ed

 w
ith

 b
ol

d 
fo

nt
. M

et
ho

ds
 c

om
pa

re
d 

to
 w

hi
ch

 L
N

E 
ac

hi
ev

ed
 a

 s
ta

tis
tic

al
ly

 s
ig

ni
fic

an
tly

 b
et

te
r r

es
ul

ts
 (a

cc
or

di
ng

 to
 S

ha
ffe

r’s
 p

os
t-h

oc
 te

st)
 w

er
e 

de
no

te
d 

w
ith

 a
 +

 si
gn

M
et

ric
SM

O
TE

pf
-S

M
O

TE
Le

e
SM

O
B

D
G

-S
M

O
TE

LV
Q

-S
M

O
TE

A
-S

M
O

TE
SM

O
TE

-T
L

LN
E

CA
RT

​
A

U
C

​
5.

38
4.

76
4.

82
4.

94
5.

04
5.

58
5.

48
4.

82
4.

18
BA

C
5.

18
 +

6.
05

 +
5.

08
 +

5.
04

 +
5.

79
 +

4.
68

 +
5.

05
 +

5.
29

 +
2.

82
G

-m
ea

n
5.

11
 +

6.
44

 +
5.

25
 +

5.
36

 +
6.

04
 +

3.
95

 +
5.

18
 +

5.
52

 +
2.

16
F-

be
ta

5.
46

 +
6.

72
 +

5.
25

 +
5.

48
 +

6.
51

 +
3.

55
 +

5.
12

 +
5.

55
 +

1.
38

K
N

N
A

U
C

​
5.

12
3.

53
5.

48
5.

14
5.

38
6.

56
 +

4.
85

4.
28

4.
67

BA
C

4.
72

 +
5.

58
 +

5.
12

 +
5.

04
 +

7.
16

 +
5.

87
 +

4.
72

 +
4.

46
 +

2.
33

G
-m

ea
n

4.
65

 +
6.

02
 +

5.
08

 +
4.

82
 +

7.
55

 +
5.

63
 +

4.
93

 +
4.

53
 +

1.
80

F-
be

ta
4.

86
 +

6.
54

 +
5.

11
 +

4.
98

 +
7.

83
 +

5.
23

 +
4.

96
 +

4.
40

 +
1.

08
SV

M
A

U
C

​
4.

71
5.

52
4.

54
4.

78
5.

34
4.

78
4.

72
4.

66
5.

95
BA

C
4.

68
6.

94
 +

4.
98

 +
5.

25
 +

6.
20

 +
3.

46
5.

27
 +

4.
81

3.
42

G
-m

ea
n

4.
73

6.
82

 +
5.

03
 +

5.
16

 +
6.

28
 +

3.
34

5.
32

 +
5.

02
 +

3.
32

F-
be

ta
5.

15
 +

8.
02

 +
5.

15
 +

5.
35

 +
6.

34
 +

3.
18

 +
5.

38
 +

5.
03

 +
1.

39
M

LP
A

U
C

​
4.

61
5.

96
4.

25
4.

67
5.

57
5.

55
4.

38
4.

40
5.

62
BA

C
4.

88
 +

6.
94

 +
4.

75
 +

5.
01

 +
6.

00
 +

4.
48

 +
5.

36
 +

4.
83

 +
2.

75
G

-m
ea

n
4.

97
 +

7.
15

 +
4.

37
 +

5.
12

 +
6.

28
 +

4.
15

5.
52

 +
4.

72
 +

2.
73

F-
be

ta
4.

95
 +

7.
69

 +
4.

99
 +

5.
34

 +
6.

56
 +

3.
70

 +
5.

42
 +

4.
86

 +
1.

48



	 Machine Learning

1 3

4.4 � Using proxy estimator during optimization

So far, we could establish that LNE tends to outperform the reference methods. However, 
this comes at a high computational cost, especially for classifiers based on a computation-
ally expensive training procedure, such as MLPs. Note that this cost is high when evaluat-
ing each offspring of each iteration of the optimization algorithm. The question is whether 
it is possible to reduce this cost, e.g., by using a proxy classifier that will not require too 
much computational resources to train. Such an approach would use the proxy classifier 
only in the optimization stage. However, the final model would be trained using the opti-
mized parameters and the target classification model. In summary, the question, in this 
case, is whether the results would remain competitive compared to the reference methods.

To test this hypothesis, we conducted an experiment using the CART decision tree as 
the proxy classifier (i.e., CART was used during the optimization procedure). We used the 
obtained encoding to fit the final MLP model. We chose CART based on its training time, 

Fig. 4   Win-loss-tie comparison between individual reference methods and LNE, with the number of data-
sets on which LNE achieved statistically significantly better performance denoted with green, statistically 
significantly worse with red, no no statistically significant differences with yellow  (Color figure online)



Machine Learning	

1 3

but in principle, any other classification algorithm could be used. We presented the results 
in Table 5. As can be seen, when compared to the original results in Table 4, the perfor-
mance degraded for all of the performance metrics except F-beta: for BAC and G-mean 
LNE still achieved statistically better results than some of the reference approaches, but 
their number was significantly lower. On the other hand, for the AUC using proxy esti-
mator actually produced statistically significantly worse results than some of the reference 
methods. No noticeable changes were observed for F-beta. Overall, this leads to a conclu-
sion that while the behavior was dependent on the choice of the performance metric, in 
most cases, using proxy estimators tends to decrease the performance of LNE, even though 
it reduces the training time.

4.5 � Analysis of the obtained encodings

Finally, having established the general usability of the proposed approach, we can proceed 
with the question of whether the solutions found by LNE provide any generalizable insights 
into imbalanced data resampling. We performed a meta-analysis of 9600 solution vectors 
obtained during the conducted experiments (for 60 different datasets, 10 cross-validation 
folds per dataset, four classification algorithms, and four optimization criteria).

We began with the analysis of global resampling properties, that is, trends regarding the 
level of balancing obtained during the resampling process and the preference towards resa-
mpling due to either over- or undersampling. We present the distributions of IR values on 
datasets after resampling in Fig.  5, with IR = 1 corresponding to the case in which the 
resulting resampled dataset was perfectly balanced and IR < 1 corresponding to the case in 
which the old minority case became the new majority case. Analogically, we show the dis-
tributions of the adjusted oversampling-to-undersampling (O/U) ratios, defined as O/U 
ratio = #oversampled+1

#undersampled+1
 (with denominator incremented by 1 to avoid division by zero errors, 

and nominator to preserve the property of O/U ratio being equal to 1 when the amount of 
oversampled and undersampled observations was the same) in Fig. 6.

Several observations can be made based on the presented results. Firstly, the choice 
of the optimization criterion had a visible influence on the overall trends, more so than 
the choice of the classification algorithm. In the case of IR after resampling, for BAC 
and G-mean, the output datasets after resampling were, on average, roughly balanced; 
for F-beta overbalancing occurred, meaning that the old minority class became the new 
majority; and the opposite was the case for AUC, for which the resampling was least 
intense. A similar observation can be made for the adjusted O/U ratio. While for all 
of the classification algorithm and performance metric combinations, the average O/U 
ratio was greater than one, indicating that the preferred mode of operation was comple-
menting strong oversampling with weak undersampling, the oversampling-to-undersam-
pling ratio was the highest for AUC and the lowest for F-beta. However, it should be 
noted that we observed a high variance for both IR after resampling and O/U ratio, indi-
cating the optimal choice is highly dataset specific. Still, on average, the results suggest 
that supplementing oversampling with weaker undersampling can be beneficial. How-
ever, exact resampling strength and the ratio of oversampling-to-undersampling should 
be selected individually for a given dataset.

It is also worth considering whether the LNE’s preference for setting a target IR is 
due to the characteristics of the measures used. In Brzeziński et al. (2020), the distribu-
tions of selected metrics are presented concerning IR. Based on the analysis presented, it 
appears that g-mean and BAC retain their shape (i.e., the distribution of possible values) 



	 Machine Learning

1 3

Ta
bl

e 
5  

A
ve

ra
ge

 ra
nk

s 
of

 th
e 

ev
al

ua
te

d 
m

et
ho

ds
 c

al
cu

la
te

d 
fo

r a
ll 

of
 th

e 
co

ns
id

er
ed

 d
at

as
et

s 
in

 th
e 

ca
se

 o
f t

he
 p

ro
xy

 e
sti

m
at

or
, w

ith
 C

A
RT

 u
se

d 
in

 th
e 

op
tim

iz
at

io
n 

pr
oc

es
s 

an
d 

M
LP

 u
se

d 
as

 a
 fi

na
l c

la
ss

ifi
er

Th
e 

be
st 

pe
rfo

rm
an

ce
 w

as
 d

en
ot

ed
 w

ith
 b

ol
d 

fo
nt

. M
et

ho
ds

 c
om

pa
re

d 
to

 w
hi

ch
 L

N
E 

ac
hi

ev
ed

 st
at

ist
ic

al
ly

 si
gn

ifi
ca

nt
ly

 b
et

te
r r

es
ul

ts
 (a

cc
or

di
ng

 to
 S

ha
ffe

r’s
 p

os
th

oc
 te

st)
 w

er
e 

de
no

te
d 

w
ith

 a
 +

 si
gn

, a
nd

 w
or

se
 re

su
lts

 w
ith

 −
 si

gn

M
et

ric
SM

O
TE

pf
-S

M
O

TE
Le

e
SM

O
B

D
G

-S
M

O
TE

LV
Q

-S
M

O
TE

A
-S

M
O

TE
SM

O
TE

-T
L

LN
E

M
LP

A
U

C
​

4.
56

5.
99

4.
20

 –
4.

67
5.

57
5.

52
4.

30
 –

4.
30

 –
5.

90
BA

C
4.

71
6.

81
 +

4.
53

4.
96

5.
80

 +
4.

37
5.

18
4.

67
3.

98
G

-m
ea

n
4.

75
6.

98
 +

4.
20

4.
92

6.
06

 +
4.

02
5.

33
4.

50
4.

23
F-

be
ta

4.
98

 +
7.

69
 +

4.
96

 +
5.

31
 +

6.
54

 +
3.

72
 +

5.
39

 +
4.

89
 +

1.
52



Machine Learning	

1 3

regardless of IR, which may be the reason that their use as an optimization criterion 
will lead to reasonably balanced class distributions. In the case of the metric If F-beta, 
where the value of recall was chosen proportionally to IR, one might suspect that since 
this metric indicates that recall is � times more important than precision, it seems natu-
ral that the model will force the overrepresentation of minority class instances in the 
training set.

However, it should also be recalled that the results obtained are characterized by a large 
value of standard deviation, so it seems only fair to conclude that the target IR value should 
be chosen individually for each task, taking into account the preferred metric, as well as the 
classification model used.

The second question that we tried to address was whether some simple dataset char-
acteristics could be used to predict the preferred resampling properties a priori without 
needing explicit evaluation on the target dataset. To this end we examined the relationship 
between the IR before and after the resampling (with Pearson correlation coefficients and 
p-values presented in Table 6, and scatterplots of the two variables in Fig. 7), as well as 

Fig. 5   Distributions of IR values after resampling. Note log scale



	 Machine Learning

1 3

the number of observations and the IR after resampling (with correlation coefficients in 
Table 7, and scatterplots in Fig. 8).

As can be seen, for either BAC, G-mean or F-beta used as the optimization criteria, 
we observed weak-to-medium level correlations, statistically significant in every case; less 
clear trends were observed in the case of AUC. We can conclude that while some data-
set characteristics can be used as a predictor of the resampling parameters, they are not 
correlated strongly enough to be used instead of a traditional parameter selection. Still, 
some trends are visible: for instance, both the dataset size and the original IR tend to be 
negatively correlated with the resulting IR, meaning that larger and/or more imbalanced 
datasets tend to be resampled with lower strength. Note that we considered additional input 
(such as the number of features) and output (such as the resulting O/U ratio) variables, but 
observed either relations weaker than in the case of IR before and after resampling, or none 
at all. We did not include them all in the paper for brevity, but they were provided together 
with the algorithm’s implementation.

Finally, in the last stage of the conducted analysis, we proceeded with the question of 
what observation types tend to be favored during the resampling. We began by evaluating 

Fig. 6   Distributions of adjusted O/U ratios. Note log scale



Machine Learning	

1 3

the average proportion of observations belonging to different observation types across all 
datasets and cross-validation folds (with the proportion calculated on the training parti-
tion). The results were presented in Table  8. As can be seen, in the case of the minor-
ity class all observation types were represented, on average, in a roughly similar propor-
tion (with the highest proportion assigned to observations with no same class neighbors, 
i.e., the more difficult examples). This was not the case for the majority class, for which 

Fig. 7   Scatterplots of log IR values before and after resampling, with regression lines fitted

Table 6   Pearson correlation coefficients and p-values between log IR before and after resampling

AUC​ BAC G-mean F-beta

CART​ 0.17 (p = 0.0000) −0.12 (p = 0.0026) −0.32 (p = 0.0000) −0.35 (p = 0.0000)
KNN 0.07 (p = 0.0729) −0.27 (p = 0.0000) −0.38 (p = 0.0000) −0.37 (p = 0.0000)
SVM 0.05 (p = 0.2372) −0.37 (p = 0.0000) −0.47 (p = 0.0000) −0.43 (p = 0.0000)
MLP −0.15 (p = 0.0003) −0.37 (p = 0.0000) −0.43 (p = 0.0000) −0.35 (p = 0.0000)



	 Machine Learning

1 3

instances with all neighbors belonging to the same class heavily dominated. We expanded 
on this by calculating the percentage of datasets for which at least a single observation 
from a given type was present, with the results presented in Table 9. As can be seen, some 
observation types were sparsely represented in the considered datasets: the main takeaway 
of this observation is that this might affect the results of the further analysis and need to be 
taken into account.

Fig. 8   Scatterplots of log # of samples and log IR after resampling, with regression lines fitted

Table 7   Pearson correlation coefficients and p-values between log # of samples and log IR after resampling

AUC​ BAC G-mean F-beta

CART​ 0.13 (p = 0.0017) −0.17 (p = 0.0000) −0.28 (p = 0.0000) −0.44 (p = 0.0000)
KNN −0.05 (p = 0.2310) −0.35 (p = 0.0000) −0.40 (p = 0.0000) −0.48 (p = 0.0000)
SVM 0.13 (p = 0.0010) −0.18 (p = 0.0000) −0.24 (p = 0.0000) −0.36 (p = 0.0000)
MLP −0.20 (p = 0.0000) −0.44 (p = 0.0000) −0.43 (p = 0.0000) −0.46 (p = 0.0000)



Machine Learning	

1 3

Next, we calculated the average proportion of observations of different types created or 
discarded due to either oversampling or undersampling via encodings generated by LNE. 
To calculate this average proportion, we only considered the datasets for which at least a 
single observation from said type was present (so that the datasets without specific obser-
vation types do not bias the results). Additionally, as previously mentioned, some observa-
tion types were underrepresented, so we normalized the datasets for each dataset in one of 
two ways. First of all, by the number of observations from a given (minority or majority) 
class: in the case of oversampling this value was equal to #oversampled

#minority
 , whereas for the under-

sampling, it was #undersampled
#majority

 . This normalization was introduced to standardize the results 
across the datasets with different numbers of minority and majority class observations. 
Secondly, by the number of observations from the specific type present in the dataset. This 
type of normalization took into account the fact that some observation types were 
underrepresented.

The results were presented in Table 10. First of all it should be noted that the variance 
of the results was fairly high in every considered case, making the observed results reli-
able only to an extent. However, some trends can be observed: in the case of oversampling, 
when normalized by the number of minority observations, there was a monotonic trend, 
with the proportion of oversampling around the observations with no same class neighbors 
being the highest. However, this is partially due to the fact that they were most represented 
in the original data: when normalized by the number of observations of individual types, 
the most preferred type was that with a single same class neighbor in the 4-NN neighbor-
hood, closely followed by two same class neighbors, which roughly corresponds with the 
standard taxonomy used by various SMOTE variants of rare and borderline instances. Ana-
logically, when normalized by the number of majority instances, undersampling seems to 
be heavily focused on the observations with all same class neighbors. However, when nor-
malized by the number of observations from specific types, this trend reverses, and obser-
vations with all the same class neighbors become least preferred for undersampling. The 
overall trend is that while the variance is very high, indicating high per-dataset variability, 
an equivalent of rare and borderline minority observations tends to be favored for oversam-
pling and safe majority observations for undersampling.

We also tried to answer the question of whether the composition of the original data-
set, that is the number of observations of a given type present in the data before resam-
pling, affects the preference towards particular types during oversampling. We focused 

Table 8   Mean and standard deviations of the proportion of observations with k nearest neighbors belonging 
to the same class

k = 0 k = 1 k = 2 k = 3 k = 4

Minority 0.370 ± 0.289 0.234 ± 0.190 0.156 ± 0.163 0.122 ± 0.144 0.118 ± 0.185

Majority 0.003 ± 0.008 0.011 ± 0.025 0.028 ± 0.047 0.090 ± 0.085 0.868 ± 0.148

Table 9   Percentage of datasets 
with at least a single observation 
for which k nearest neighbors 
belong to the same class

k = 0 k = 1 k = 2 k = 3 k = 4

Minority 94.7% 86.3% 69.8% 53.5% 43.3%
Majority 25.2% 41.5% 74.8% 95.7% 100.0%



	 Machine Learning

1 3

specifically on the oversampling because of a greater diversity of observation types in 
the data. We computed the average proportions, like before, normalized by the number of 
observations from individual types but computed separately only on datasets, for which a 
given observation type was present in a large proportion ( ≥ 0.3 ) in the original data. The 
results were presented in Table 11. Lower values of K indicate the datasets with a large 
proportion of less certain minority class observations, i.e., difficult datasets. While, once 
again the variance of the results was high, we can observe a general trend of the more 
difficult datasets ( K ∈ {0, 1} ) producing encodings focusing resampling on observations 
other than outliers ( k ≠ 0 ), and less difficult datasets ( K ∈ {2, 3, 4} ) focusing on outliers 
( k = 0 ). This seems to indicate that with high baseline certainty resampling tends to focus 
on unsafe observations (with the hypothesis being that certain regions are represented well 
enough, and the borderline regions can be the focus of boosting), and with low baseline 
certainty on safe observations (since the high confidence regions of predictions have yet to 
be established).

Finally, having introduced the categorization into datasets consisting of a large pro-
portion of original observations from a given type, we also examined if there are any 
visible differences between the different types of datasets concerning the global prop-
erties (O/U ratio and IR after resampling). The table containing this comparison was pre-
sented in Table 12. Similar to the results of the previous analysis, the split between more 
( K ∈ {0, 1} ) and less ( K ∈ {2, 3, 4} ) difficult datasets was visible here as well: specifically, 
more difficult datasets tended to favor using more undersampling than oversampling, and 
resample to a lesser degree than the less difficult datasets.

5 � Conclusions

This paper proposed Local Neighborhood Encoding, a novel technique for resampling 
imbalanced data, combining oversampling and undersampling in an evolutionary algo-
rithm-based procedure that optimizes the proportion of resampling performed around dif-
ferent types of observations. The conducted experimental study showed that LNE signif-
icantly outperforms standard resampling algorithms. In addition, the conducted ablation 
study showed that dynamic selection of resampling strength is the main factor in good LNE 
performance. Conducted experiments using proxy estimators, a strategy that involves using 
a less computationally intensive classifier in the coding optimization process, demonstrated 

Table 10   Mean and standard deviations of the proportion of observations of different types (with k denot-
ing the number of nearest neighbors from the same class) created or discarded due to either oversampling 
(O) or undersampling (U)

Normalization k = 0 k = 1 k = 2 k = 3 k = 4

O # of minority 25.35 ± 56.48 18.76 ± 43.72 11.69 ± 25.79 8.91 ± 19.82 8.99 ± 23.32

O # of individual 
types

66.56 ± 163.78 109.39 ± 376.31 88.20 ± 258.46 54.09 ± 129.93 44.75 ± 124.06

U # of majority 0.01 ± 0.01 0.02 ± 0.03 0.03 ± 0.04 0.06 ± 0.06 0.48 ± 0.35

U # of individual 
types

0.71 ± 0.38 0.67 ± 0.39 0.68 ± 0.36 0.69 ± 0.34 0.53 ± 0.37



Machine Learning	

1 3

that in some cases, especially when using performance metrics such as F-beta, it is possible 
to preserve the original performance of the LNE while reducing training time.

Finally, utilizing the interpretability of the encodings, we conducted a meta-analysis of 
the solutions produced by LNE on a large set of benchmark datasets. While there was a 
significant variance in the obtained results, suggesting that dataset-specific tuning is still 
required, some common trends have been observed:

•	 A combination of oversampling and undersampling was the preferred strategy, with 
strong oversampling combined with reasonable weak undersampling.

•	 The optimal strength of resampling was strongly dependent on the performance chosen 
metric, BAC and G-mean prefer approximately balanced distributions, while metrics 
such as F-beta favored overbalancing.

•	 The general characteristics of the datasets before resampling can be, to some extent, 
used to predict the properties of the resampling (such as the oversampling-to-under-
sampling ratio or resampling strength); however, specific tuning of these parameters is 
still required to achieve the optimal performance.

•	 Produced solutions, on average, tended to prioritize rare and borderline observations, 
during oversampling, and unsafe examples during undersampling. Similar observations 
were made in the work mentioned earlier on selective oversampling, where the most 
common object fractions for oversampling were borderline and rare (Sáez et al., 2016).

•	 However, when taking into the account the original distribution of the observation 
types, for more difficult datasets there was a tendency to produce encodings focusing 
oversampling on observations other than outliers, and less difficult datasets focusing on 
outliers.

LNE is an efficient oversampling strategy that can be used when the dataset size is rela-
tively small and/or computational resources are not limited. Its interpretability can also be 

Table 11   Mean and standard deviations of the proportion of observations of different types (with k denot-
ing the number of nearest neighbors from the same class) created due to oversampling, normalized by the 
number of observations from individual types, computed only on the datasets for which the proportion of 
minority observations from type K ≥ 0.3

k = 0 k = 1 k = 2 k = 3 k = 4

K = 0 57.40 ± 99.07 179.13 ± 519.19 183.53 ± 398.34 98.50 ± 173.08 112.96 ± 235.01

K = 1 55.84 ± 123.12 41.42 ± 83.70 123.15 ± 291.31 68.79 ± 154.39 75.62 ± 149.20

K = 2 98.20 ± 170.28 60.88 ± 145.44 32.87 ± 68.73 62.23 ± 124.01 68.36 ± 127.79

K = 3 94.51 ± 262.36 45.41 ± 74.86 37.51 ± 77.41 27.82 ± 65.25 34.36 ± 70.35

K = 4 97.41 ± 272.07 78.15 ± 192.49 75.20 ± 199.22 63.31 ± 160.22 29.69 ± 62.61

Table 12   Mean and standard deviations of the adjusted O/U ratio and IR after resampling, computed only 
on the datasets for which the proportion of minority observations from type K ≥ 0.3

K = 0 K = 1 K = 2 K = 3 K = 4

Adjusted O/U ratio 5.59 ± 21.19 5.97 ± 22.64 7.88 ± 23.11 8.21 ± 18.92 7.55 ± 15.74

IR (after resampling) 1.97 ± 5.31 2.33 ± 5.70 1.26 ± 3.90 1.45 ± 2.93 1.36 ± 3.04



	 Machine Learning

1 3

used to gain insight into existing resampling strategies, as it allows the removal of errors 
introduced by methods such as Borderline-SMOTE and Safe-Level-SMOTE, the search for 
which becomes part of the optimization process. Possible future research directions include 
scaling the approach to larger dataset sizes and exploring the idea of using proxy estima-
tors in more depth. The use of proxy classifiers in place of dataset difficulty scores should 
also be considered. However, this would require confirmation of the hypothesis that simpli-
fying data distributions in preprocessing positively affects the quality of final classification 
models.

Acknowledgements  This work was supported by the Polish National Science Centre under the grant No. 
2019/35/B/ST6/04442 as well as the PLGrid Infrastructure.

Author contribution  M.K. conceived of the presented idea, implemented the algorithm, planned and carried 
out the experiments, and analysed the results. M.W. contributed to the analysis of the results. Both authors 
discussed the results, drew the conclusions, and contributed to the final manuscript, helping with writing, 
reviewing and editing.

Funding  This work was supported by the Polish National Science Centre under the grant No. 2019/35/B/
ST6/04442.

Data availability  All data used in this work is publicly available as reported in Sect. 4.1.

Code availability  All code used in this work is publicly available as reported in Sect. 4.1.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Ethics approval  Not applicable

Consent to participate  Not applicable

Consent for publication  Not applicable

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2011). 
KEEL data-mining software tool: Data set repository, integration of algorithms and experimental 
analysis framework. Journal of Multiple-Valued Logic & Soft Computing, 17, 255–287.

Alpaydin, E. (1999). Combined 5 × 2 cv F test for comparing supervised classification learning algo-
rithms. Neural Computation, 11(8), 1885–1892.

Barandela, R., Hernández, J. K., Sánchez, J. S., & Ferri, F. J. (2005). Imbalanced training set reduction 
and feature selection through genetic optimization. In CCIA (pp. 215–222).

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods 
for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29.

http://creativecommons.org/licenses/by/4.0/


Machine Learning	

1 3

Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A survey of predictive modeling on imbalanced domains. 
ACM Computing Surveys, 49(2), 1–50.

Brzezinski, D., Stefanowski, J., Susmaga, R., & Szczęch, I. (2018). Visual-based analysis of classifi-
cation measures and their properties for class imbalanced problems. Information Sciences, 462, 
242–261.

Brzeziński, D., Stefanowski, J., Susmaga, R., & Szczęch, I. (2020). On the dynamics of classification 
measures for imbalanced and streaming data. IEEE Transactions on Neural Networks and Learning 
Systems, 31(8), 2868–2878.

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-level-SMOTE: Safe-level-syn-
thetic minority over-sampling technique for handling the class imbalanced problem. In Pacific-Asia 
conference on knowledge discovery and data mining (pp. 475–482). Springer.

Cao, Q., Wang, S. Z. (2011). Applying over-sampling technique based on data density and cost-sensitive 
SVM to imbalanced learning. In 2011 International conference on information management, inno-
vation management and industrial engineering (vol. 2, pp. 543–548). IEEE.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Philip Kegelmeyer, W. (2002). SMOTE: Synthetic minor-
ity over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from 
imbalanced data sets. Springer.

Fernández, A., García, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from imbalanced 
data: Progress and challenges, marking the 15-year anniversary. Journal of Artificial Intelligence 
Research, 61(1), 863–905.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles 
for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463–484.

García, S., & Herrera, F. (2009). Evolutionary undersampling for classification with imbalanced data-
sets: Proposals and taxonomy. Evolutionary Computation, 17(3), 275–306.

Gazzah, S., Amara, N.E.B. (2008). New oversampling approaches based on polynomial fitting for imbal-
anced data sets. In 2008 The 8th IAPR international workshop on document analysis systems (pp. 
677–684). IEEE.

Han, H., Wang, W. -Y., & Mao, B. -H. (2005). Borderline-SMOTE: A new over-sampling method in imbal-
anced data sets learning. In International conference on intelligent computing (pp. 878–887). Springer

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbal-
anced learning. In Proceedings of the international joint conference on neural networks, 2008, part of 
the IEEE world congress on computational intelligence, 2008, Hong Kong, China, June 1-6, 2008 (pp. 
1322–1328).

Hualong, Yu., Ni, J., & Zhao, J. (2013). ACOSampling: An ant colony optimization-based undersampling 
method for classifying imbalanced DNA microarray data. Neurocomputing, 101, 309–318.

Johnson, J., & Khoshgoftaar, T. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 
6, 27.

Karia, V., Zhang, W., Naeim, A., & Ramezani, R. (2019). GenSample: A genetic algorithm for oversam-
pling in imbalanced datasets.

Khoshgoftaar, T. M., Seiffert, C., Hulse, J. V., Napolitano, A., & Folleco, A. (2007). Learning with limited 
minority class data. In 6th International conference on machine learning and applications (ICMLA 
2007) (pp. 348–353).

Khoshgoftaar, T. M., Seliya, N., & Drown, D. J. (2010). Evolutionary data analysis for the class imbalance 
problem. Intelligent Data Analysis, 14(1), 69–88.

Kim, H.-J., Jo, N.-O., & Shin, K.-S. (2016). Optimization of cluster-based evolutionary undersampling 
for the artificial neural networks in corporate bankruptcy prediction. Expert Systems with Applica-
tions, 59, 226–234.

Kim, Y., Lee, Y., & Jeon, M. (2021). Imbalanced image classification with complement cross entropy. 
Pattern Recognition Letters, 151, 33–40.

Kovács, G. (2019). An empirical comparison and evaluation of minority oversampling techniques on a 
large number of imbalanced datasets. Applied Soft Computing, 83, 105662.

Kovács, G. (2019). smote-variants: A Python implementation of 85 minority oversampling techniques. 
Neurocomputing, 366, 352–354.

Koziarski, M. (2021). CSMOUTE: Combined synthetic oversampling and undersampling technique for 
imbalanced data classification. In 2021 International joint conference on neural networks (IJCNN) 
(pp. 1–8). IEEE.



	 Machine Learning

1 3

Koziarski, M., Krawczyk, B., & Woźniak, M. (2017). Radial-based approach to imbalanced data over-
sampling. In International conference on hybrid artificial intelligence systems (pp. 318–327). 
Springer.

Koziarski, M. (2020). Radial-based undersampling for imbalanced data classification. Pattern Recogni-
tion, 102, 107262.

Koziarski, M. (2021). Potential Anchoring for imbalanced data classification. Pattern Recognition, 120, 
108114.

Koziarski, M., & Woźniak, M. (2017). CCR: Combined cleaning and resampling algorithm for imbal-
anced data classification. International Journal of Applied Mathematics and Computer Science, 
27(4), 727–736.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress 
in Artificial Intelligence, 5, 04.

Lee, J., Kim, N., Lee, J. -H. (2015). An over-sampling technique with rejection for imbalanced class 
learning. In Proceedings of the 9th international conference on ubiquitous information manage-
ment and communication (pp. 1–6).

Lee, S. S. (2000). Noisy replication in skewed binary classification. Computational Statistics & Data 
Analysis, 34(2), 165–191.

Li, M., Xiong, A., Wang, L., Deng, S., & Ye, J. (2020). ACO resampling: Enhancing the performance of 
oversampling methods for class imbalance classification. Knowledge-Based Systems, 196, 105818.

Maciejewski, T., & Stefanowski, J. (2011). Local neighbourhood extension of SMOTE for mining imbal-
anced data. In Proceedings of the IEEE symposium on computational intelligence and data mining 
2011, part of the IEEE symposium series on computational intelligence 2011, April 11-15, 2011, 
Paris, France (pp. 104–111).

Nakamura, M., Kajiwara, Y., Otsuka, A., & Kimura, H. (2013). LVQ-SMOTE-learning vector quantization 
based synthetic minority over-sampling technique for biomedical data. Biodata Mining, 6(1), 16.

Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their influence on learn-
ing classifiers from imbalanced data. Journal of Intelligent Information Systems, 46(3), 563–597.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in Python. Journal of 
Machine Learning Research, 12(Oct), 2825–2830.

Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: A practical approach to global 
optimization. Springer Science & Business Media.

Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. 
arXiv preprintarXiv:1811.12808

Sáez, J. A., Krawczyk, B., & Woźniak, M. (2016). Analyzing the oversampling of different classes and 
types of examples in multi-class imbalanced datasets. Pattern Recognition, 57, 164–178.

Sandhan, T., Choi, J. Y. (2014). Handling imbalanced datasets by partially guided hybrid sampling for 
pattern recognition. In 2014 22nd international conference on pattern recognition (pp. 1449–1453). 
IEEE.

Stapor, K., Ksieniewicz, P., García, S., & Woźniak, M. (2021). How to design the fair experimental clas-
sifier evaluation. Applied Soft Computing, 104, 107219.

Węgier, W., Koziarski, M., & Woźniak, M. (2023). Optimized hybrid imbalanced data sampling for 
decision tree training. In Proceedings of the companion conference on genetic and evolutionary 
computation (pp. 339–342).

Węgier, W., Koziarski, M., & Woźniak, M. (2022). Multicriteria classifier ensemble learning for imbal-
anced data. IEEE Access, 10, 16807–16818.

Weiss, G. M., & Provost, F. (2003). Learning when training data are costly: The effect of class distribu-
tion on tree induction. Journal of Artificial Intelligence Research, 19(1), 315–354.

Wojciechowski, S. (2021). Multi-objective evolutionary undersampling algorithm for imbalanced data clas-
sification. In Computational science–ICCS 2021: 21st international conference, Krakow, Poland, June 
16-18, proceedings, part III (pp. 118–127). Berlin, Heidelberg: Springer-Verlag.

Zhou, B., Yang, C., Guo, H., Hu, J. (2013). A quasi-linear SVM combined with assembled SMOTE for 
imbalanced data classification. In The 2013 international joint conference on neural networks (IJCNN) 
(pp. 1–7). IEEE.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.



Machine Learning	

1 3

Authors and Affiliations

Michał Koziarski1 · Michał Woźniak1

 *	 Michał Koziarski 
	 michal.koziarski@pwr.edu.pl

	 Michał Woźniak 
	 michal.wozniak@pwr.edu.pl

1	 Department of Systems and Computer Networks, Wrocław University of Science and Technology, 
Wybrzeże Wyspiańskiego 27, 50–370 Wrocław, Poland


	Local neighborhood encodings for imbalanced data classification
	Abstract
	1 Introduction
	2 Related work
	3 Local neighborhood encodings
	4 Experimental study
	4.1 Set-up
	4.2 Comparison with reference methods
	4.3 Ablation study
	4.4 Using proxy estimator during optimization
	4.5 Analysis of the obtained encodings

	5 Conclusions
	Acknowledgements 
	References


