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Abstract
Despite an abundance of scientific evidence supporting the effectiveness of COVID-19 
vaccines, there has been a recent global surge in vaccine hesitancy, primarily driven by the 
spread of misinformation on social media platforms. It is crucial to address this issue and 
raise awareness about the importance of vaccination in combating the deadly COVID-19 
virus. Predicting community sentiment through social media platforms can provide valua-
ble insights into vaccine hesitancy, aiding health workers and medical professionals in tak-
ing necessary precautionary measures. However, the lack of high-quality labeled data pre-
sents a challenge for building an effective COVID-19 sentiment classifier. Additionally, the 
available labeled datasets suffer from severe class imbalance. To address these challenges, 
this article presents an effective COVID-19 sentiment prediction framework. Firstly, a 
deep adversarial active learning framework leverages abundant unlabeled data by train-
ing autoencoder and discriminator components adversarially to select the most informative 
unlabeled samples. Secondly, to mitigate the effects of imbalanced labeled datasets, a resa-
mpling phase is incorporated into the adversarial training loop. The proposed framework, 
named Resampling Supported Deep Adversarial Active Learning (RS-DAAL), is rigor-
ously evaluated using two different datasets comprising social media posts from Twitter 
and Reddit. Various resampling techniques, including undersampling, oversampling, and 
hybrid methods, are assessed, with oversampling techniques further tested at different lev-
els of resampling. Comparative studies are conducted against a baseline model without any 
resampling layer and with current state-of-the-art methods as well. Experimental results 
and statistical analysis demonstrate the superiority of the proposed RS-DAAL method in 
identifying COVID-19 sentiments on social media platforms.
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1  Introduction

In response to the rapid global transmission of the COVID-19 virus, country-wide lock-
downs have had a significant influence on people’s daily lives (Alamoodi et  al., 2021b). 
Social media analysis has offered a deep insight into the trends and public opinion in 
light of the Coronavirus pandemic (Noor et al., 2020; Amjad et al., 2021). Reflecting the 
urgency to develop preventive measures to curb the spread of SARS-CoV-2, mass vaccina-
tion drives have proven to be remarkably effective (Sattar  & Arifuzzaman, 2021). In the 
past twelve months, several researchers have studied and analyzed the general viewpoint 
of people regarding COVID-19 vaccines (Nwafor et al., 2021; Chakraborty et al., 2020). 
However, one of the challenges being faced by the research community, today, has been 
obtaining a large, superior-quality labeled dataset. Furthermore, to obtain such large data-
sets, manual annotation requires a certain level of expertise and is time-consuming. Hence, 
it has been critical to figure out a strategy to maximize the model’s performance gain when 
annotating a limited number of instances. In the past few years, Deep Active Learning 
(DAL) has been demonstrated to improve labeling efficiency exponentially in the field of 
sentiment classification (Naseem et  al., 2021; Longpre et  al., 2022). Some studies have 
worked on Active Learning (AL) techniques for BERT-based classification (Dor et  al., 
2020). Also, prior studies have established that when dealing with an extreme imbalance 
in the labeled dataset, sentiment classification remains biased towards the majority class, 
ultimately leading to a deceptive analysis (Miller et al., 2020). To address this issue, we 
have explored class imbalance in feature space using a Bi-LSTM variational autoencoder 
(VAE) in an adversarial manner and therefore developed a Deep Adversarial Active Learn-
ing framework efficient enough to enhance the classification performance for an imbal-
anced COVID-19 vaccine sentiment analysis.

1.1 � Related work

Social media has a significant impact on how people perceive and decide about COVID-
19 vaccines. Some people use social media to spread false or misleading claims about 
COVID-19 vaccines, which can lower public trust and confidence in vaccine safety and 
efficacy (Wilson  & Wiysonge, 2020; Al-Hajri et al., 2021). People who get a lot of their 
news from social media tend to be more doubtful and reluctant about getting vaccinated 
(Mitchell et al., 2021). On the other hand, social media can also be used to share accurate 
and positive information about covid vaccines, and to communicate with people who have 
questions or worries about vaccination (Wilson  & Wiysonge, 2020; Zhang et al., 2021). A 
considerable amount of statistical analysis has been conducted in the last two years since 
the first official case of COVID-19 was reported in Wuhan, China, in December 2019. Var-
ious researchers have studied the general sentiment around the globe to monitor people’s 
presence of mind (Lwin et al., 2020; Müller et al., 2020; Xue et al., 2020). There have been 
various schools of thought that have originated since the approval of vaccination drives 
worldwide (Amjad et al., 2021; Rahman et al., 2022). Imran et al. studied the reactions of 
citizens of diverse cultures to COVID-19 with the help of deep LSTM models and ana-
lyzed the emotional response from extracted tweets, achieving state-of-the-art accuracy on 
the sentiment140 dataset (Imran et  al., 2020). A novel fusion model for sentiment anal-
ysis of tweets was proposed by combining state-of-the-art transformer-based deep mod-
els (Basiri et al., 2021). In Naseem et al. (2021), the authors presented a comprehensive 
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study on an optimized framework for automated COVID-19 detection. Wu et al. proposed 
a weakly supervised deep AL framework (COVID-AL) to diagnose COVID-19 with CT 
scans and patient-level (Xing et al., 2021). Alamoodi et al. Alamoodi et al. (2021a) docu-
mented an extensive review of vaccine hesitancy via sentiment analysis and illustrated a 
detailed study into the community sentiment of the public. The authors in Muqtadiroh et al. 
(2021) well-documented the effects of class imbalance in handling public opinion of the 
school-from-home policy during the pandemic. A thorough study on sentiment towards 
COVID-19 vaccines in the Philippines (Villavicencio et al., 2021) was undertaken using 
Naıve Bayes, attaining an accuracy of 81.77%. In Bhoj et al. (2021), the authors dealt with 
identifying tweets on social media that conveyed an anti-vaccine sentiment. With the high-
est F1-Score of 87.179, the research indicated that SVM was best fitted to identify negative 
tweets on a balanced dataset, while KNN showed the highest improvement after mitigat-
ing class imbalance using Edited Nearest Neighbour (ENN). Prior research (Amjad et al., 
2021; Bhoj et  al., 2021) has exhibited that since deep learning models are known to be 
data-driven, it has become crucial to alleviate the class imbalance problem in the dataset to 
obtain an honest analysis.

Deep Active Learning approaches have received a notable amount of traction in various 
fields, including image classification (Beck et  al., 2021; Mittal et  al., 2019), multimedia 
image processing (Dhiman et al., 2023), machine translation (Peris  & Casacuberta, 2018; 
Stafanovičs et al., 2020), medical imaging (Liu et al., 2020a; Yang et al., 2017; Nam et al., 
2019), speech recognition (Luo et  al., 2021; Abdelwahab  & Busso, 2019), visual track-
ing (Yuan et  al., 2023), and object detection (Han et  al., 2020; Li et  al., 2021). Recent 
advancements in DAL in the field of text classification (Siddhant  & Lipton, 2018; Liu 
et al., 2020b; Zhou et al., 2013) have proved to be an effective solution thereby reducing 
the labeling cost significantly. An exceptional thorough survey was conducted on DAL by 
the authors in Ren et al. (2021). In medium and large query batch sizes, Gissin et al. intro-
duced the Discriminative AL (Gissin  & Shalev-Shwartz, 2019) algorithm, which showed 
to be on par with state-of-the-art models. The authors of Huang et  al. (2019) addressed 
vehicle type detection in surveillance images using deep AL and developed a solution that 
effectively decreased the annotation cost by up to 40%. Ash et al. proposed “Batch Active 
Learning by Diverse Gradient Embeddings” (BADGE) (Ash et  al., 2019), enabling the 
predictive uncertainty and the variety of the instances, for each batch, to be considered 
at the same time. Zhu and Bento reported an extraordinary AL method via query synthe-
sis approach, Generative Adversarial AL, Zhu and Bento (2017) that outperformed typical 
pool-based techniques. Further research by Tran et  al. (2019) in another study proposed 
Bayesian generative active deep learning approach(BGADL) (Tran et al., 2019) incorporat-
ing Bayesian data augmentation, GAAL (Zhu  & Bento, 2017), VAE (Kingma  & Well-
ing, 2013) and auxiliary-classifier generative adversarial networks (ACGAN) (Dash et al., 
2017) algorithms. The authors Yoo and Kweon (2019), in 2019, demonstrated a novel task-
agnostic AL approach that integrated a loss prediction module to a target network to assist 
it learn to anticipate target losses of unlabeled inputs. The authors Goudjil et  al. (2018) 
selected a batch of informative samples based on the posterior probabilities given by a col-
lection of multi-class SVM classifiers, resulting in a notable gain in classification accuracy 
while lowering labelling effort. A remarkable Deep Active Self-paced Learning (DASL) 
(Wang et  al., 2018) approach was developed, and when tested on the publicly available 
LIDC-IDRI dataset, the Nodule R-CNN produced state-of-the-art performance in pulmo-
nary nodule segmentation. In Yan et al. (2020), the authors demonstrated an AL strategy 
for text classification by automatically generating the most insightful instances based on 
the classification model. A novel pool-based AL strategy was proposed by the authors 
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(Geifman  & El-Yaniv, 2017), where data points were queried from the pool using travers-
als from the farthest point in the region of neural activity across a representation layer. In 
Sahan et al. (2021), a thorough comparative analysis on multiple AL approaches for several 
embeddings of the text was conducted. The study emphasized on the Bayesian AL methods 
and evaluated the approach on various datasets. Similarly, a BERT-based active learning 
strategy (Prabhu et al., 2021) was employed to explore the multi-class text classification 
problem. In Kwolek et  al. (2019), the authors explored class imbalance in breast cancer 
histopathological images and proposed an effective deep convolutional neural network-
based active learning framework, enabling weighted information entropy.

1.2 � Motivation and objective

It is evident from Sect. 1.1 that class imbalance remains a severe obstacle that has a sig-
nificant impact on classifier performance. Moreover, an imbalanced distribution of classes 
is expected when dealing with real-world datasets. Recent studies on COVID-19 sentiment 
classification (Alamoodi et  al., 2021b; Amjad et  al., 2021; Joloudari et  al., 2023) have 
established the effects of this class bias problem. Over the past few years, research con-
ducted on DAL frameworks has exhibited superior model performance and therefore gar-
nered significant attention from the research community. In Ren et al. (2021), it has been 
observed how effectively DAL frameworks have improved the model performance while 
annotating as few instances as possible. In Bashar and Nayak (2021), the authors proposed 
a Mixed Aspect Sampling (MAS) framework, which remarkably performed better than 
random sampling and other state-of-the-art AL methods. Additionally, the MAS frame-
work was efficient enough to deal with an imbalanced dataset. Despite the exponential 
model optimization, recent studies have revealed that DAL frameworks, too, suffer from 
class imbalance heavily. In an adversarial DAL setting, as studied in Sinha et al. (2019) and 
Kim et al. (2021), it has been detected that when dealing with a highly imbalanced labeled 
set, the training is biased towards the majority class. Yet, little effort has been made to alle-
viate the effect of imbalanced classes. Hence, in this article, a synthetic resampling-based 
deep adversarial AL framework has been proposed to tackle the imbalanced class distribu-
tion of the labeled set. Besides, the adversarial training of the components ensures that the 
most informative data samples from the unlabeled pool are selected for the query. In our 
approach, the synthetic resampling is embedded in the adversarial training loop to eventu-
ally force the model to select the most prominent unlabeled data for querying.

1.3 � Contribution

The current study deals with efficient COVID-19 vaccine sentiment prediction to under-
stand public opinion toward vaccine hesitancy. In the absence of a good quality-labeled 
dataset, the authors have engaged a deep active learning framework to take the leverage 
of abundantly available unlabeled data. However, the traditional DAL-based methods lack 
in proper querying of the unlabeled data pools. This leads to the minimum or almost no 
improvement of the labeled dataset. Hence, the performance of classifiers could not be 
improved adequately. Thus, in the current study, an adversarial approach has been adopted 
to address this issue. Firstly, a BiLSTM-based variational autoencoder has been trained 
with data instances that contain both labeled and unlabeled data. The unsupervised train-
ing of the VAE enables it to learn the most efficient latent vector representation of input 
text data instances. However, in the presence of imbalanced labeled data, the subsequent 
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querying step becomes biased toward the majority class. Therefore, the latent vectors are 
resampled to obtain balanced labeled latent vectors. Next, a discriminator similar to the 
one used in generative adversarial models has been engaged to distinguish between true 
labeled and unlabeled data. The unlabeled set as obtained from the discriminator is queried 
and subsequently labeled by an Oracle. In the current study, a separately trained multi-
layer perceptron model is used as the Oracle. The newly labeled data instances are added 
to the existing labeled pool to train the task learner for COVID-19 sentiment prediction. 
The autoencoder and discriminator are trained in an adversarial loop to force the querying 
stage to select the most informative samples from the unlabeled pool. To improve the dis-
criminator performance, various resampling techniques have been explored with detailed 
analysis. The task learner is simulated by using eight different well-known classifiers in 
terms of F1-score, Geometric mean, and Balanced Accuracy. To establish the ingenuity of 
the results obtained by various configurations used in the current study, the receiver oper-
ating characteristics curve has been used to compare the performance of the models. Two 
different datasets consisting of social media posts from Twitter and Reddit are used to test 
the proposed RS-DAAL model which achieved significant improvement over the baseline 
model. To understand the effect of different levels of imbalance ratio, separate experiments 
are conducted in case of oversampling methods with various degrees of resampling. Fur-
thermore, a separate comparative analysis is conducted with current state-of-the-art meth-
ods in terms of F1-score. Overall the following are the major contributions of the current 
study: 

1.	 Adversarial training of deep active learning framework has been explored for effective 
prediction of COVID-19 sentiment.

2.	 The effects of the imbalanced labeled dataset in the DAL model have been addressed 
by involving the resampling of latent vectors inside the adversarial loop.

3.	 To achieve an unbiased training of the Oracle, top-k most confident labeled data samples 
have been used to train it.

4.	 Wide range of resampling techniques have been thoroughly tested using two different 
datasets from two different social media platforms to better understand the suitability of 
undersampling, oversampling and hybrid methods in the context of COVID-19 vaccine 
sentiment classification.

The rest of the article is arranged as follows: Sect. 2 describes the dataset used in the cur-
rent study. Next, in Sect.  3, the deep active learning framework has been explained in 
detail. This is followed by Sect.  4 which introduces the proposed RS-DAAL method to 
predict COVID-19 vaccine sentiment. Section 5 describes the baseline model, resampling 
techniques, task learners along with all parametric setups. In addition, various performance 
metrics used to measure the performance are also described. Finally, Sect.  6 reports the 
experimental results and analysis.

2 � Dataset description

The first dataset denoted as the D1 dataset throughout the article has been obtained from 
‘COVID-19 All Vaccines Tweets’, created by Gabriel Preda, and is publicly available on 
Kaggle (Preda, 2021). The tweets were extracted using the Twitter API, utilizing filter 
criteria based on vaccine-related hashtags. The original dataset features 2,28,207 unique 
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tweets, acquired between 12th December 2020 and 24th November 2021 in its 113th ver-
sion. Studies have been conducted on the subsequent dataset (Alam et al., 2021; Prabucki, 
2021; Alanazi, 2021); however, class imbalance in a Deep adversarial AL scenario has 
not been explored yet. Preprocessing and cleaning the text field has been among the initial 
steps in our experiment, which involved lowercase conversion, removal of URLs, punctua-
tion, emojis, double spacing, and stopword removal. We have developed a dataset of 68,035 
tweets with the objective of building an unlabeled pool for batch-mode active learning. The 
rest of the tweets were manually annotated as positive or negative for the purpose of our 
study. A group of undergraduate students, and research scholars who were fluent in English 
and familiar with social media language voluntarily participated in annotating the tweets. 
We instructed them to label a tweet as neutral if it did not express any clear or strong senti-
ment, or if it expressed both positive and negative sentiment. We asked each tweet to be 
labeled by at least three different annotators, and we computed the majority vote for the 
final label. We found that 28,420 tweets were labeled as positive, 7990 tweets were labeled 
as negative, and 1,23,762 tweets were labeled as neutral by the majority of annotators. We 
decided to discard the neutral tweets from our dataset, as we were interested in the binary 
classification of positive and negative sentiment, which is a common and challenging task 
in sentiment analysis. Moreover, we observed that the neutral class was very subjective and 
difficult to define and annotate, as different annotators might have different interpretations 
of what constitutes a neutral tweet. For example, some annotators might consider a tweet 
neutral if it contains factual information or sarcasm, while others might consider it positive 
or negative depending on the tone or context. Therefore, we only kept the tweets that had a 
clear positive or negative sentiment, resulting in a final dataset of 36,410 tweets.

Accordingly, the labeled D1 dataset (as shown in Fig.  1a) is developed containing 
28,420 positive and 7990 negative sentiment tweets. The imbalance ratio in our labeled 
D1 dataset is recorded to be 3.56. From Fig. 2, it is visible that Indian Twitter users have 
been most active during the pandemic. Evidently, in the labeled dataset (Fig. 2a), tweets 
originating from the United States, the United Kingdom, Canada, Russia, and China have 
been observed. Although, in the unlabeled set (Fig. 2b), tweets generated from India have 
outnumbered tweets originating from other countries.

Word visualization for the D1 dataset based on the sentiment polarity has been shown 
in Fig. 3, offering an intuition into the most prevalent keywords. In (Fig. 3a), it has been 
noticed that along with vaccine dissatisfaction, there has been animosity towards Justin 
Trudeau and Doug Ford, owing to the 2021 Canadian federal election. Words like ’safe’, 

Fig. 1   Class distribution in labeled datasets
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’effective’, ’vaccinated’, ’Thank’, ’best’, and ’happy’ in Fig. 3b have conveyed a positive 
opinion in regard to COVID-19 vaccines.

The second dataset which is referred to D2 dataset, has been developed by extracting 
Reddit comments from the subreddit Coronavirus. Each data record contains a comment 
collected from a Reddit post about COVID-19 vaccine news in ‘/r/Coronavirus’. Here, 
the Python Reddit API Wrapper was used for data collection. Further, preprocessing 
and cleaning of data were performed. The unlabeled D2 dataset, for our study, contains 
19,201 Reddit comments, while similar to the procedure followed for the D1 dataset, 
manual labeling was conducted to obtain the labeled set. 4500 comments were labeled 
as positive and 1250 were labeled as negative, forming a labeled D2 dataset of size 5750 
(as shown in Fig. 1b). Subsequently, for the D2 dataset, the Imbalance ratio is 3.6. The 
word cloud visualization for the D2 dataset is depicted in Fig. 4.

Fig. 2   The countries from which the most tweets about COVID-19 vaccines have emerged in D1 dataset

Fig. 3   Wordcloud visualization for D1 dataset



	 Machine Learning

1 3

3 � Deep adversarial active learning framework

In recent times, several DAL approaches have employed adversarial training for parameter 
optimization. It has been observed that through adversarial training, the model performance 
is much superior when compared to traditional AL methods. This is because, in the case of 
adversarial learning, it sets up a min-max game, permitting models to optimize their train-
ing parameters in a fully differentiable setting. The authors Shui et  al. (2020) employed 
the Wasserstein distance and provided a hybrid query approach, balancing uncertainty and 
heterogeneity explicitly, and proposed Wasserstein Adversarial Active Learning (WAAL). 
Similarly, Adversarial Sampling for Active Learning (ASAL) (Mayer  & Timofte, 2020) 
presented a novel sample selection process for multi-class problems, with an emphasis 
on obtaining high-quality synthetic samples. In Zhang et  al. (2020), the state relabeling 
adversarial active learning model (SRAAL) was introduced that incorporated annotation as 
well as labeled/unlabeled state information to derive the most informative unlabeled data 
points. The authors in Liu et al. (2019) further worked on GAAL (Zhu  & Bento, 2017) and 
proposed a novel Single-Objective Generative Adversarial Active Learning (SO-GAAL) 
framework for outlier detection. In another approach, Wang and Ren (2020) studied hyper-
spectral image classification with feature-oriented adversarial AL (FAAL) strategy, with 
the help of adversarially learned acquisition heuristic.

One of the most remarkable approaches that have been introduced in AL, in recent 
years, has been Variational Adversarial Active Learning (VAAL) (Sinha et al., 2019). The 
pictorial representation of the algorithm proposed by VAAL is shown in Fig. 5. The learner 
interacts with an oracle, which is a source of labels for unlabeled data in active learning 
(Hacohen et al., 2022), usually a human expert or a ground-truth dataset. It is queried with 
a set of unlabelled data to obtain the labels of the same. The number of unlabelled data 
samples that can be queried to the Oracle is limited by ‘Budget’. However, in real applica-
tions, a human oracle could be unreliable, or too costly to access, and therefore a surrogate 
model can be used to approximate the oracle’s behavior. Deep learning models have been 
used as surrogates in active learning setup for code verification (Stark et al., 2015), Text 
classification (Zhang et al., 2017). In text classification, labeling queries by human oracles 
are too expensive (Figueroa et al., 2012) which motivated the authors to employ a surrogate 
model to act as the oracle. Using a VAE, optimized with both reconstruction and adversar-
ial losses, VAAL learns the distribution of labeled data in latent space. Unlabeled instances 

Fig. 4   Wordcloud visualization for D2 dataset
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are predicted by a binary adversarial classifier (discriminator) and sent to an Oracle for 
annotation. The technique is task-agnostic since sample selection is done independently of 
the main-stream job of identifying data inputs. Furthermore, another method, task-aware 
variational adversarial AL (TA-VAAL) (Kim et al., 2021) is based on VAAL (Sinha et al., 
2019) and Adversarial Representation AL (ARAL) (Mottaghi  & Yeung, 2019), and takes 
into account a ranking loss prediction technique. Correspondingly, our proposed algorithm 
is greatly influenced by VAAL, where we studied the class distribution of the labeled set in 
latent space and introduced well-established resampling techniques with the aim of provid-
ing an unbiased classification on the binary COVID-19 vaccine sentiment dataset.

4 � Imbalanced COVID‑19 sentiment prediction

In the current article, randomly selected COVID-19 vaccine texts have been considered 
as an unlabeled set, represented as XU , where the sentiment labels have been dropped off. 
The rest of the data samples have been included in the labeled set, denoted by (XL, YL) . The 
labeled set is imbalanced, where texts with positive sentiment are the majority class, while 
negative sentiment texts are the minority. According to recent literature (Aggarwal et al., 
2020; Dong, 2021), it has been established that in case of extreme imbalance in the labeled 
set, the algorithm stays heavily biased towards the majority class and hence proves fatal to 
the entire intelligent system. However, there have been few efforts made to counteract the 
consequences of this problem. Thus, in the current study, it has become imperative to miti-
gate the effects of imbalanced classes. To achieve this goal, our model begins by learning 
the most effective compressed latent representation of the COVID-19 vaccine texts using 
both labeled and unlabeled data pools. Since the labeled set suffers from class imbalance, 
synthetic resampling strategies are implemented.

The proposed framework, illustrated in Fig. 6, learns a latent representation by map-
ping the labeled and unlabeled sets into the same latent space, similar to the methodol-
ogy presented by VAAL (Sinha et  al., 2019). The binary adversarial network is then 
constructed to distinguish one from the other. Bi-LSTM VAE and the discriminator 

Fig. 5   Variational adversarial active learning
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have the structure of a two-player min-max game. The Bi-LSTM VAE is trained to 
learn a feature space in order to fool the adversarial network into believing that all data 
points from both the labeled and unlabeled sets are from the labeled pool. In contrast, 
the discriminator network learns how to tell the difference. As it is an adversarial train-
ing, the Bi-LSTM VAE is forced to come up with a better representation of the labeled 
data instances. This aforementioned strategy aids in the selection of the most informa-
tive unlabeled samples xU for the query. It also helps in acknowledging the prevalent 
problem of selecting outliers for querying using Oracle. Next, the merged resampled 
and unlabeled latent sets are classified into labeled and unlabeled by using this binary 
adversarial network. The individual unlabeled data points, on acquiring labels from 
Oracle, denoted as (x∗, y∗) , are then added to the resampled labeled set (XL, YL) . Once 
the updated balanced annotated set, represented as (xL, yL) ∪ (x∗, y∗) , is obtained at the 
end of each iteration, it is then sent to the set of task-learners i.e classifiers for sentiment 
classification. As a consequence, the size of the annotated set increases after every loop, 
and also the overall quality of the set is improved.

To address the issue of uneven distribution, our RS-DAAL architecture ensures 
that adversarial training is free of class bias and offers the most informative cases for 
oracle annotation. Our method aims to increase classifier performance by using both 
labeled and chosen data samples collected by carefully querying an unlabeled data 
pool, as explained above. In this case, data instances from the unlabeled set are drawn 
with a limited budget. The loss function LVAE for unlabeled and labeled data has been 
expressed as:

where the encoder and decoder are denoted by q� and p� , the Gaussian distribution is p(z), 
and KL(⋅ ) is Kullback-Leibler distance. Here, the loss function seeks to reduce loss by 
maximizing the lower bound of the chance of creating authentic data points. The repa-
rameterization trick, outlined below, has been applied to compute the gradients properly 
(Kingma  & Welling, 2013).

where � and � imply mean and standard deviation, respectively, and ⊙ signifies element-
wise product. Firstly, by mapping the labeled and unlabeled data into the same feature 
space with identical probability distributions q(zL|xL) and q(zU|xU) , the VAE fools the dis-
criminator. Next, the adversarial network is trained to assign a binary label to the latent 
representation of zL ∪ zU , which is 1 if the sample belongs to XL and 0 if it does not. For the 
discriminator D training, the loss function LD is as follows:

(1)
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The following is the concept of the optimization algorithm:

where q� is the VAE encoder and zL and zU are feature spaces for labeled and unlabeled 
data samples, respectively. In this expression, zL ∼ pxL is denoted by zL = q�(zL|xL) with 
xL ∼ pdata and zU ∼ pxU is identical to zL ∼ pxL.

The discriminator is trained to differentiate between unlabeled and re-sampled labeled 
encoded vectors in feature space, as evident in Fig. 6. Unlike VAAL (Sinha et al., 2019), 
our method adds the data points, provided by Oracle, to the re-sampled set and not to the 
original labeled set, due to the fact that the original set is imbalanced and hence, will pro-
vide a skewed sentiment prediction.

The proposed resampling-assisted VAAL technique is outlined in algorithm 1. The pri-
mary training loop begins at step 3 when the model parameters are set up. It begins by 
selecting samples from labeled and unlabeled sets. In order to perform unsupervised train-
ing of the VAE with Gaussian priors, these two sets of data samples have been used. The 
loss function 1 gets minimized in an effort to train the Bi-LSTM VAE. The trained encoder 
is then used to generate latent space-compressed representations of the input COVID-19 
tweets (line 7), where zU and zL indicate latent vectors corresponding to unlabeled and 
labeled sets, respectively. Lines 8–10 are overseeing the model’s adversarial training. To 
overcome the inherent imbalanced distribution of the labeled set, the latent vectors belong-
ing to the labeled set are resampled.

(4)
min
q�
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D

�zL∼pxL

[
log

(
D
(
q�

(
zL ∣ xL

)))]

+ �zU∼pxU

[
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(
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Fig. 6   Addressing imbalanced COVID-19 sentiment classification with synthetic resampling coupled vari-
ational adversarial active learning
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Algorithm 1   Variational Adversarial Active Learning with Synthetic Resampling

The corresponding algorithm 2 describes the Oracle training for RS-DAAL. It is criti-
cal to train Oracle using a balanced dataset to prevent it from being biased towards the 
majority class. Initially, the complete labeled dataset ( XL, YL ) is used to train a Multilayer 
Perceptron (MLP) model. In line 4, the selection of the top-k data samples is explained. 
This is accomplished by taking into account the output layer values of the MLP classifier. 
Top-k data instances are chosen from each class ( Xk, Yk ). This balanced dataset is made out 
of the most confident data samples from the original labeled dataset. Lines 5–7 sum up the 
process of how the Oracle gets trained using Xk, Yk.

Algorithm 2   RS-DAAL Oracle Training

5 � Experimental setup

The Bi-LSTM Variational Autoencoder, being an unsupervised learning method, has been 
trained on the combined labeled and unlabeled set. In order to study the semantic informa-
tion in latent space, all text sequences have been padded, having the same length of 30, 
and passed to the model. The embedding dimension has been chosen to be 150, while the 
batch size is 100. The bidirectional LSTM layer has a memory unit of size 128, thereby the 
concatenated hidden state dimension is 256. The second Bi-LSTM layer has a memory unit 
of 64, hence the latent vectors obtained are of size 128. The ReLU activation function has 
been utilized for the Bi-LSTM layers. A dropout value of 0.4 and a learning rate of 0.001 
has been selected. The validation split is 0.5. Additionally, Early stopping which monitors 
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the validation loss, with a patience value of 3, has been implemented. Sparse categorical 
crossentropy as the loss function and Nesterov-accelerated Adaptive Moment Estimation, 
or Nadam (Dozat, 2016), as the model optimizer have been employed. Figure  7a and b 
have displayed the model accuracy and model loss, respectively. It can be observed that 
after 92 epochs, the training loss, training accuracy, validation loss, and validation accu-
racy have been 0.4892, 0.8725, 1.0255, and 0.8024, respectively.

The binary adversarial classifier, or discriminator, has been trained with the Encoder 
weights of the Bi-LSTM VAE, thereby enabling our approach to learn to differentiate 
between unlabeled and labeled data. The training process has been in a manner similar to 
that of a GAN. RMSprop with a learning rate of 5 ×10−4 ., clip value of 1.0, and decay of 
1e-8 have been employed. Besides, for model loss function, binary crossentropy has been 
used. The threshold for the discriminator prediction has been chosen to be 0.5.

The individual labeled and unlabeled sets are passed through the encoder model to pro-
duce the latent vectors once the Bi-LSTM VAE is trained. The acquired labeled latent vec-
tor set is, however, imbalanced and hence is re-sampled with 15 different resampling meth-
ods. These resampling techniques used in our method include (I) eight under-sampling 
techniques, viz., OSS (OSS), Neighbourhood Cleaning Rule (NCLR), Near Miss, Instance 
Hardness Threshold (IHT), Edited Nearest Neighbours (ENN), Repeated Edited Near-
est Neighbours (RENN), All KNN, and Cluster Centroids (CC), (II) five over-sampling 
techniques, viz., Random Oversampler (ROS), SMOTE, ADASYN, Borderline SMOTE 
(BSMOTE), and SVM-SMOTE, and (III) two hybrid sampling techniques, viz., SMOTE-
TOMEK, and SMOTE-ENN. The hyper-parameters chosen for the resampling techniques 
have been outlined in Table 1. The top-k most confident data instances from the resampled 
labeled set are given to an MLP classifier with ReLU activation function and Adam opti-
mizer for oracle training. For our experiment, the value of k is set to 10,000.

With a budget of 50,000, 5000 data samples have been sent to Oracle for annotation 
which is then added to the initial balanced labeled set and training is repeated on the 
improved training set. We have selected a varied range of classifiers, viz. Decision Tree 
(DT), Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 
Logistic Regression (LR), Bernoulli Naıve Bayes (BNB), Light Gradient Boosted Machine 
(LGBM), and Multi-Layer Perceptron (MLP), with the help of which the performance of 
the updated labeled set is evaluated. The classifiers have been implemented using scikit-
learn (Pedregosa et al., 2011) package. Tenfold cross-validation has been utilized with the 

Fig. 7   Bi-LSTM variational autoencoder training for D1 dataset
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aim of achieving concrete performance results. Each fold of the testing set contains both 
positive and negative tweet data. Hyperparameters that have been employed for the task 
learners, i.e classifiers have been presented in Table 2. In order to compare our proposed 
framework, we have tested our model with a baseline algorithm. VAAL (Sinha et al., 2019) 
has been fed with an imbalanced labeled set, and the performance of the task learners has 
been assessed with respect to our method. Our tests were implemented with an Intel Core 
i5-1035G1 CPU with Intel UHD Graphics 620, 8 GB RAM, Windows 10 Home 21H1, and 
TensorFlow 2.5.0.

6 � Results and discussion

On the basis of F1-Score, Geometric Mean, Balanced Accuracy, and Area Under the Curve 
(AUC), we have recorded the performance of our proposed model.

Table 1   Hyperparameter grid for the synthetic resampling methods

Resampling methods Hyperparameters used

OSS Sampling strategy = ‘auto’
Number of seeds to extract to build set S = 1

NCLR Sampling strategy = ‘auto’, Number of neighbors= 3
Strategy used to exclude samples in
ENN sampling = ‘all’, threshold cleaning value= 0.5

NEAR MISS Sampling strategy = ‘auto’, version =1
Number of neighbors= 3
Number of neighbors for subset selection= 3

IHT Sampling strategy = ‘auto’, Number of folds= 5
ENN Sampling strategy = ‘auto’, Number of neighbors= 3

Strategy used to exclude samples= ‘all’
RENN Sampling strategy = ‘auto’

Number of neighbors= 3, Maximum iterations= 100
Strategy used to exclude samples= ‘all’

All KNN Sampling strategy = ‘auto’, Number of neighbors= 3
Strategy used to exclude samples= ‘all’

CC Sampling strategy = ‘auto’, Voting strategy= ‘auto’
ROS Sampling strategy = ‘auto’
SMOTE Number of nearest neighbors = 5
BSMOTE Number of nearest neighbors = 5

Number of nearest neighbors to determine if a minority
sample is in danger= 10

SVM-SMOTE Number of nearest neighbors = 5
Number of nearest neighbors to determine if a minority
sample is in danger= 10, Step size when extrapolating = 0.5

ADASYN Number of nearest neighbors = 5
SMOTE-TOMEK Sampling strategy = ‘auto’
SMOTE-ENN Sampling strategy = ‘auto’
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where TP is the number of positive tweets successfully categorized by the model, TN refers 
to the negative tweets classified as negative, FP is the number of negative tweets inaccu-
rately recognized as positive, and FN is the number of positive tweets identified as negative 
tweets.

The results and analysis section is divided as follows: 

1.	 We have conducted a thorough analysis of classifier performance, as outlined in 
Sect. 6.1, providing a detailed examination of their effectiveness.

2.	 In Sect. 6.2, we have delved into resampling approaches, offering a comprehensive 
overview of their impact on our framework.

3.	 Sect. 6.3 focuses on assessing the efficacy of our framework through varied resampling 
levels, showcasing its adaptability and robustness.

4.	 A comparative evaluation in Sect. 6.4 has positioned our model against an imbalanced 
baseline, highlighting its superiority in handling imbalance.

5.	 Statistical analysis, detailed in Sect. 6.5, demonstrates consistent improvement in AUC 
scores across 10 iterations, reinforcing the reliability of our framework.

6.	 Sect. 6.6 places our results in context by comparing them with state-of-the-art methods, 
underscoring the competitive edge of our approach in addressing the challenges posed 
by imbalanced datasets.

(5)F1-Score =
2 ⋅ TP

2 ⋅ TP + FP + FN

(6)Geometric mean (GM) =

√
TP

TP + FN
⋅

TN

TN + FP

(7)Balanced Accuracy (BACC) =
1

2

(
TP

TP + FN
+

TN

TN + FP

)

Table 2   Hyperparameter grid for the classification algorithms

Classifiers Hyperparameters used

DT Criterion=‘entropy’, Maximum depth of the tree= 11
Minimum number of samples required to be at a leaf node = 2

RF Number of trees in the forest =100, Criterion=‘entropy’
KNN Number of neighbors = 5, Weight function used in prediction = ‘uni-

form’, Leaf size = 30
SVM Kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’ =‘auto’
LR C =0.1, Maximum number of iterations =100000, Penalty=‘l1’

Algorithm to use in the optimization problem =‘saga’
BNB Additive smoothing parameter = 1.0
LGBM Maximum tree leaves for base learners = 31, Type of boosting = ‘gbdt’

Number of samples for constructing bins = 200000
MLP Solver for weight optimization = ‘adam’, Learning rate = ‘constant’

Initial learning rate = 0.001, Maximum number of iterations = 200
Tolerance for the optimization = 1e-4
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6.1 � Performance of classifiers

To examine the efficiency of RS-DAAL, over the course of 10 iterations, the values of 
three evaluation metrics, viz. F1-Score, Geometric mean (GM), and Balanced Accu-
racy (BACC) have been recorded for D1 and D2 datasets. Since it is an iterative pro-
cess, after every insertion of new data samples, the constructed annotated dataset has 
been sent to the task learner, viz. DT, RF, KNN, SVM, LR, BNB, LGBM, and MLP, 
and the scores mentioned above have been calculated. Here, the datasets have been 
100% resampled and the scores have been recorded.

Figures 8 and 9 have reported the F1-score behavior of the 8 classifiers over a span 
of 10 iterations for D1 and D2 datasets, respectively. It can be observed that the MLP 
classifier has exhibited the highest F1 scores for both datasets. At the same time, 
Figs. 10 and 11 illustrate the performance improvement of the classifiers for D1 and 
D2 datasets over 10 iterations. Existing research (Kuncheva et  al., 2019) has proved 
that geometric mean, due to its multiplicative nature, is a distinctive evaluation met-
ric indicative of the model’s performance. Here, a similar trend is observed in these 
figures as well. Furthermore, Figs.  12 and 13 demonstrate the effectiveness of MLP, 
LGBM, and LR classifiers in classifying vaccine sentiment.

Fig. 8   Performance analysis in terms of F1-score for D1 dataset

Fig. 9   Performance analysis in terms of F1-score for D2 dataset
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6.2 � Performance of resampling techniques

On the basis of F1, Geometric mean (GM), and Balanced Accuracy (BACC), the perfor-
mance of the resampling strategies has been evaluated and analyzed across 10 iterations for 
D1 and D2 datasets. Here, for each resampling technique, the mean of the classifier scores 
in terms of F1, GM, and BACC, have been noted. Similar to Sect. 6.1, the datasets have 
undergone 100% resampling.

Figures 14, 16, and 18 demonstrate the performance analysis of the resampling tech-
niques in terms of F1, GM, and BACC for D1 dataset. At the same time, for the D2 dataset, 

Fig. 10   Performance analysis in terms of Geometric mean for D1 dataset

Fig. 11   Performance analysis in terms of Geometric mean for D2 dataset

Fig. 12   Performance analysis in terms of balanced accuracy for D1 dataset
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Figs.  15, 17, and 19 illustrate the performance evaluation with regards to F1, GM and 
BACC, respectively. IHT undersampling strategy has been the most optimal resampling 
strategy for the D1 dataset. Meanwhile, the performance of ROS has been poor. Overall, 
for the D1 dataset, the undersampling methods have excelled in showcasing noteworthy 
performance scores over a period of 10 iterations.

Fig. 13   Performance analysis in terms of balanced accuracy for D2 dataset

Fig. 14   Performance analysis based on F1-Score for D1 dataset

Fig. 15   Performance analysis based on F1-Score for D2 dataset
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In the case of the D2 dataset, the hybrid-sampling techniques, viz. SMOTE-ENN and 
SMOTE-Tomek have performed quite remarkably. In terms of GM and BACC, SMOTE-
Tomek has exhibited an increase of 6.19%, and 15.11%, respectively. As shown in Fig. 15, 

Fig. 16   Performance analysis based on geometric mean for D1 dataset

Fig. 17   Performance analysis based on geometric mean for D2 dataset

Fig. 18   Performance analysis based on balanced accuracy for D1 dataset
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techniques like NEAR MISS, IHT, ENN, RENN, and BSMOTE have also shown notable 
performance rise in terms of F1-score. All in all, SMOTE-Tomek has been the most opti-
mal resampling strategy for the D2 dataset over 10 iterations.

6.3 � Performance comparison using different levels of resampling

This section elaborates on the results obtained by using the best-performing resampling 
strategies (as apprehended in Sect. 6.2) for D1 and D2 datasets with 4 different levels of 
resampling, viz. 20, 50, 70, and 100. Here, the MLP classifier has been used, with IHT 
undersampling for the D1 dataset and SMOTE-Tomek hybrid sampling for the D2 dataset, 
to classify the positive and negative vaccine sentiments. Table 3 illustrates the performance 
scores in terms of F1-score, Geometric mean, and Balanced Accuracy, for D1 and D2 data-
sets after 10th iteration (best scores are highlighted in bold). It can be observed that with an 
increase in the levels of resampling, the performance improves notably. After 10 iterations, 
100% resampling delivers the most optimal performance for D1 and D2 datasets.

6.4 � Performance comparison with baseline

Here, comparative research has been conducted with respect to the baseline model in order 
to validate the efficiency of the proposed framework. The individual performance meas-
ures have been examined and analyzed for Iteration 10. In relation to the baseline model, 
a labeled imbalanced set has been used, here, mentioned as “Imbalance” in the respective 

Fig. 19   Performance analysis based on balanced accuracy for D2 dataset

Table 3   Performance comparison with different levels of resampling

Levels of  
resampling

D1 D2

F1-SCORE GM BACC​ F1-SCORE GM BACC​

20% 0.8847 0.8645 0.8718 0.827 0.8476 0.8502
50% 0.8943 0.8853 0.8995 0.8467 0.8698 0.8686
70% 0.9106 0.9148 0.9287 0.8632 0.8816 0.8907
100% 0.9156 0.9312 0.9429 0.8703 0.891 0.8956
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tables. We have consciously preferred not to depend on the accuracy score when dealing 
with imbalanced data since it might be deceiving and lead to incorrect conclusions (Sour-
bier et al., 2022; Ren et al., 2022; Borowska  & Stepaniuk, 2022; Cao et al., 2013).

Tables 4, 5, 6 reflect the performance with 100% resampling on comparison with the 
baseline model in terms of F1-Score, Geometric mean (GM), and Balanced Accuracy 
(BACC) for D1 and D2 datasets (best scores are highlighted in bold). The highest scores 
for each classifier in the D1 and D2 datasets have been highlighted in bold. In the case of 
IHT with MLP classifier in the D1 dataset, a 23.99% increment in F1-Score is observed 
when compared to the baseline. While for GM and BACC in the D1 dataset, MLP with 
IHT has demonstrated a 26.88% and 27.29% increase on comparing with baseline. In terms 

Table 4   A comparative study in terms of F1-score

DT RF KNN SVM LR BNB LGBM MLP

IMBALANCE D1 0.7113 0.9198 0.7187 0.6034 0.7137 0.5647 0.8296 0.7384
D2 0.5638 0.5227 0.6632 0.7239 0.6922 0.2235 0.7896 0.7959

OSS D1 0.8549 0.8801 0.8696 0.8914 0.9106 0.7491 0.9113 0.9233
D2 0.6496 0.812 0.7867 0.7727 0.7838 0.3135 0.8084 0.8193

NCLR D1 0.7857 0.8666 0.8885 0.8792 0.8707 0.7339 0.8655 0.8957
D2 0.7478 0.7492 0.7671 0.7944 0.8274 0.3474 0.8426 0.8474

NEAR MISS D1 0.9233 0.9077 0.9238 0.9151 0.931 0.7327 0.9322 0.9376
D2 0.7976 0.8345 0.8434 0.8547 0.8527 0.3576 0.8466 0.8533

IHT D1 0.8259 0.8595 0.8865 0.8647 0.8742 0.7835 0.8796 0.9156
D2 0.7882 0.7937 0.8529 0.8763 0.8448 0.3813 0.8385 0.8624

ENN D1 0.7496 0.8124 0.8094 0.719 0.8264 0.6683 0.8507 0.9044
D2 0.7549 0.7539 0.8136 0.8457 0.8034 0.3649 0.8148 0.8396

RENN D1 0.749 0.8117 0.8305 0.7067 0.8175 0.5846 0.8585 0.9051
D2 0.7686 0.7725 0.8337 0.8654 0.8129 0.3671 0.8211 0.8348

ALL KNN D1 0.7614 0.832 0.8359 0.7329 0.8631 0.6223 0.8697 0.9125
D2 0.7423 0.8056 0.8379 0.8438 0.7932 0.3576 0.8389 0.7937

CC D1 0.8402 0.8625 0.8534 0.8569 0.8974 0.6587 0.9085 0.9235
D2 0.6934 0.7844 0.783 0.8563 0.8026 0.3462 0.8448 0.8178

ROS D1 0.5401 0.6842 0.6237 0.4682 0.6024 0.5738 0.6538 0.6415
D2 0.6257 0.7256 0.7129 0.7682 0.7239 0.2764 0.7954 0.7539

SMOTE D1 0.6926 0.7907 0.6436 0.7689 0.7812 0.4699 0.7999 0.8307
D2 0.7468 0.6968 0.7802 0.8155 0.8011 0.2452 0.7731 0.8173

BSMOTE D1 0.7068 0.8156 0.5967 0.6809 0.7689 0.6534 0.8143 0.8398
D2 0.7877 0.8053 0.8278 0.8413 0.8425 0.3305 0.8286 0.8497

SVM-SMOTE D1 0.6819 0.8273 0.6881 0.7646 0.7889 0.6464 0.8475 0.8362
D2 0.7824 0.7308 0.8135 0.7755 0.8375 0.3034 0.8059 0.7952

ADASYN D1 0.7557 0.7887 0.6766 0.7988 0.7865 0.7922 0.8373 0.8239
D2 0.7729 0.7856 0.7865 0.7869 0.7938 0.2964 0.7976 0.8224

SMOTE-TOMEK D1 0.7028 0.8272 0.6566 0.7924 0.8279 0.5932 0.8835 0.8549
D2 0.7681 0.8178 0.8666 0.8664 0.8638 0.397 0.8559 0.8703

SMOTE-ENN D1 0.6698 0.7897 0.7961 0.3904 0.7656 0.3562 0.792 0.8233
D2 0.7963 0.8128 0.846 0.8572 0.8513 0.3717 0.8596 0.8524
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of GM in the D1 dataset, ENN, RENN, and ALL KNN have also documented notable per-
formance gains. For the D2 dataset, SMOTE-Tomek with MLP has recorded a 13.46% 
15.8% in terms of GM and BACC in comparison to the baseline with the imbalanced set. 
With respect to BACC, NEAR MISS, SMOTE-ENN, NCLR have also reported remarkable 
performance increments at the end of 10 iterations.

6.5 � Statistical analysis

For an extensive and meticulous analysis, the trade-off between True Positive Rate (or Sen-
sitivity) and False Positive Rate (1-Specificity) has been measured with the help of ROC 

Table 5   A comparative study in terms of geometric mean

DT RF KNN SVM LR BNB LGBM MLP

IMBALANCE D1 0.5141 0.58 0.546 0.2369 0.5051 0.5742 0.6189 0.7339
D2 0.5934 0.5811 0.6725 0.5483 0.6177 0.2758 0.7932 0.7853

OSS D1 0.7162 0.7678 0.7629 0.6572 0.8164 0.6041 0.8062 0.8546
D2 0.6842 0.8417 0.8132 0.8524 0.7538 0.3368 0.8202 0.8341

NCLR D1 0.806 0.8512 0.8765 0.7905 0.866 0.7467 0.8888 0.9063
D2 0.7961 0.8166 0.8157 0.8263 0.8219 0.3563 0.8328 0.8633

NEAR MISS D1 0.7367 0.817 0.7166 0.5659 0.8324 0.641 0.7498 0.791
D2 0.8439 0.8548 0.8765 0.8578 0.8728 0.3742 0.8699 0.876

IHT D1 0.8801 0.916 0.8868 0.9019 0.9131 0.8576 0.9202 0.9312
D2 0.7705 0.815 0.8436 0.8689 0.8632 0.4415 0.8736 0.866

ENN D1 0.7927 0.8553 0.842 0.7957 0.8535 0.7208 0.8774 0.9245
D2 0.8017 0.8404 0.8666 0.8544 0.8076 0.3732 0.852 0.8478

RENN D1 0.8146 0.8528 0.8827 0.7948 0.8547 0.7473 0.9129 0.9259
D2 0.8031 0.8367 0.8728 0.8748 0.8027 0.3744 0.8538 0.8507

ALL KNN D1 0.7929 0.8538 0.8774 0.7687 0.8801 0.6691 0.8868 0.9238
D2 0.8124 0.8356 0.8432 0.8645 0.8439 0.3769 0.8038 0.8286

CC D1 0.7715 0.8431 0.7701 0.7801 0.8754 0.557 0.8873 0.9176
D2 0.7452 0.8122 0.8239 0.8729 0.8326 0.3587 0.8532 0.8435

ROS D1 0.6366 0.7617 0.7073 0.5622 0.6899 0.601 0.7275 0.7151
D2 0.6888 0.7627 0.7916 0.7433 0.7633 0.2538 0.8122 0.8049

SMOTE D1 0.7097 0.8685 0.6915 0.7853 0.8405 0.5421 0.8595 0.8445
D2 0.7936 0.7653 0.8027 0.8329 0.8216 0.3053 0.8319 0.8386

BSMOTE D1 0.7612 0.8493 0.6424 0.7567 0.8178 0.6304 0.8494 0.8638
D2 0.8035 0.8496 0.8649 0.8626 0.8628 0.3628 0.8123 0.8632

SVM-SMOTE D1 0.7393 0.8272 0.7125 0.7951 0.8116 0.5843 0.8276 0.853
D2 0.8126 0.7928 0.8322 0.8027 0.8264 0.2976 0.8018 0.8146

ADASYN D1 0.6867 0.7861 0.8901 0.5407 0.854 0.6132 0.7656 0.8417
D2 0.7524 0.7933 0.8165 0.7635 0.8172 0.3027 0.8124 0.842

SMOTE-TOMEK D1 0.7326 0.8614 0.7017 0.7863 0.8355 0.5492 0.8584 0.8904
D2 0.8339 0.8653 0.8882 0.8853 0.8833 0.3314 0.881 0.891

SMOTE-ENN D1 0.7694 0.8405 0.7968 0.5958 0.7949 0.6703 0.8428 0.9091
D2 0.8128 0.8444 0.8904 0.8421 0.8537 0.3828 0.8724 0.8823
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curves. Here, for D1 and D2 datasets, we have chosen IHT undersampling and SMOTE-
Tomek hybrid sampling techniques and examined the improvement of the AUC scores over 
10 iterations. From our analysis, it has been observed that IHT and SMOTE-Tomek have 
been most successful in alleviating the class imbalance problem in the text corpus in each 
dataset. In implementing our proposed Deep AL model, we have studied how the addition 
of Oracle-based selected data to the balanced labeled set has enhanced the performance of 
the classification algorithms.

Figures 20,  21, and  22 have demonstrated how the respective classifiers have been 
capable of distinguishing between positive and negative vaccine tweets over a span of 
10 iterations for D1 dataset. AUC, being the degree of separability, has assisted us in 
interpreting the model performance in terms of the binary classification task. Similarly, 

Table 6   A comparative study in terms of balanced accuracy

DT RF KNN SVM LR BNB LGBM MLP

IMBALANCE D1 0.5108 0.5767 0.5348 0.2429 0.5126 0.5698 0.6272 0.7407
D2 0.5825 0.5632 0.6853 0.5601 0.6522 0.3322 0.7846 0.7734

OSS D1 0.7086 0.7543 0.7676 0.6653 0.8195 0.5935 0.8134 0.8506
D2 0.6996 0.8643 0.8328 0.8352 0.7326 0.3428 0.8235 0.8236

NCLR D1 0.8045 0.8538 0.8729 0.7986 0.8726 0.7744 0.8984 0.9285
D2 0.7947 0.8248 0.8459 0.8331 0.8205 0.3592 0.8301 0.8732

NEAR MISS D1 0.7439 0.8059 0.721 0.5736 0.8074 0.6621 0.7696 0.7825
D2 0.8523 0.8644 0.8636 0.8611 0.8864 0.4122 0.8588 0.8829

IHT D1 0.8738 0.9037 0.8949 0.9065 0.9086 0.8642 0.9244 0.9429
D2 0.7706 0.8151 0.8448 0.8689 0.8632 0.574 0.8738 0.8661

ENN D1 0.7947 0.8429 0.8398 0.7865 0.8425 0.7389 0.8974 0.9214
D2 0.8031 0.8423 0.8606 0.8474 0.8233 0.7539 0.8438 0.8239

RENN D1 0.8163 0.8589 0.8739 0.7985 0.8487 0.7528 0.9086 0.9143
D2 0.8054 0.8387 0.8699 0.8544 0.8154 0.4237 0.8571 0.8302

ALL KNN D1 0.7996 0.8586 0.8829 0.7742 0.8722 0.6729 0.8875 0.9247
D2 0.8226 0.8362 0.8221 0.8543 0.8422 0.4056 0.7966 0.8244

CC D1 0.7637 0.8395 0.7496 0.784 0.8794 0.5753 0.8635 0.9048
D2 0.7535 0.8221 0.8273 0.8703 0.8378 0.3627 0.8512 0.8457

ROS D1 0.6496 0.7486 0.7175 0.5646 0.6974 0.6138 0.7295 0.7385
D2 0.7129 0.7855 0.7935 0.7457 0.8064 0.2849 0.7864 0.7935

SMOTE D1 0.7154 0.8751 0.6853 0.7742 0.8564 0.5539 0.8595 0.8445
D2 0.7632 0.7773 0.7923 0.8215 0.8528 0.2948 0.8422 0.8014

BSMOTE D1 0.7782 0.8503 0.6375 0.7428 0.8293 0.6296 0.8375 0.8529
D2 0.8148 0.8429 0.8456 0.8633 0.8764 0.3777 0.8328 0.8489

SVM-SMOTE D1 0.7428 0.8364 0.7195 0.7985 0.8073 0.5928 0.8395 0.8429
D2 0.8244 0.8032 0.8207 0.8165 0.8312 0.3155 0.8245 0.8117

ADASYN D1 0.6687 0.7879 0.8857 0.5503 0.8497 0.6352 0.7556 0.8597
D2 0.7952 0.8374 0.8122 0.7928 0.8122 0.3327 0.8465 0.8426

SMOTE-TOMEK D1 0.7486 0.8534 0.7297 0.7486 0.8357 0.5486 0.8574 0.8914
D2 0.8393 0.8695 0.8935 0.8905 0.8887 0.5538 0.886 0.8956

SMOTE-ENN D1 0.7617 0.8423 0.7987 0.5911 0.7858 0.6849 0.843 0.8947
D2 0.8123 0.8458 0.8743 0.8453 0.8697 0.4522 0.8714 0.8803
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Figs. 23, 24, and 25 illustrate the ROC curves for D2 dataset. A noteworthy increment 
is observed for both datasets over 10 iterations. In particular, a consistent increase in the 
AUC score from Iteration 1 to 10 for the MLP classifier has been observed for D1 and 
D2 datasets. At the end of Iteration 10, MLP with IHT and MLP with SMOTE-Tomek 
for datasets D1 and D2 respectively have recorded the highest AUC scores. While the 

Fig. 20   Analysis of ROC curves over 10 iterations in D1 dataset

Fig. 21   Analysis of ROC curves over 10 iterations in D1 dataset
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BNB classifier has showcased the lowest AUC scores for D1 and D2 datasets after 10 
iterations.

6.6 � Comparison with state‑of‑the‑art

In this section, we compare our proposed architecture with existing state-of-the-art meth-
ods on the basis of F1-score, and the same is reported in Table  7. All comparisons are 
reported for dataset ‘D1’. One primary reason for this choice is the substantial disparity in 
the sample sizes between the datasets ‘D1’ and ‘D2’. Dataset ‘D1’ boasts a significantly 
larger number of samples compared to Dataset ‘D2’. This difference in sample sizes can 
significantly impact the statistical robustness and generalizability of the results. Hence, 
in order to maintain a fair and consistent evaluation and to ensure statistical significance, 
we concentrated our state-of-the-art comparisons on the larger Dataset ‘D1’. Here, the 
best-obtained results using RS-DAAL with IHT and MLP for the D1 dataset have been 

Fig. 22   Analysis of ROC curves over 10 iterations in D1 dataset

Fig. 23   Analysis of ROC curves over 10 iterations in D2 dataset
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considered for comparison. The authors in Akpatsa et  al. (2022) and Kunneman et  al. 
(2020) have employed support vector machines to analyze COVID-19 vaccine tweets. In 
To et  al. (2021), a Bi-LSTM model is trained to identify anti-vaccination attitudes gen-
erated during the COVID-19 pandemic. The support vector machine-based hierarchical 

Fig. 24   Analysis of ROC curves over 10 iterations in D2 dataset

Fig. 25   Analysis of ROC curves over 10 iterations in D2 dataset

Table 7   Comparison of proposed 
work with existing state-of-the-
art results

F1-score

Akpatsa et al. (2022) 0.835
To et al. (2021) 0.455
Yue et al. (2022) 0.8173
Kunneman et al. (2020) 0.36
Jingcheng et al. (2017) 0.7442
Proposed method 0.9156
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classification model with optimized feature sets and model parameters is implemented in 
Jingcheng et al. (2017). Lastly, a contrastive adaptation network for early misinformation 
detection algorithm has been used in Yue et al. (2022). It can be observed that our pro-
posed approach has successfully outperformed existing state-of-the-art methods.

6.7 � Summary of results analysis

Overall, the results can be summarized as follows; In Sect. 6.1, MLP is the best-performing 
classifier in terms of the performance measures. Section 6.2 demonstrates that IHT under-
sampling is the most optimal sampling strategy for the D1 dataset and the hybrid sampling 
strategies, i.e., SMOTE-Tomek and SMOTE-ENN, have exhibited the highest results in 
the case of D2 dataset. As shown in Sect. 6.3, 100% resampling is the most optimal level 
of resampling in terms of F1-score, Geometric mean, and Balanced Accuracy. Section 6.4 
indicates that IHT undersampling for the D1 dataset and SMOTE-Tomek for the D2 dataset 
show remarkable performance improvement over the baseline model, in the case of each 
classifier algorithm. Post Iteration 10 in Sect. 6.5, MLP with IHT secured the highest AUC 
score for D1, while MLP with SMOTE-Tomek led in the D2 dataset. Lastly, Sect. 6.6 high-
lights that our proposed methodology in comparison to various state-of-the-art methods 
have outperformed significantly.

Further, we calculate the inter-rater agreement scores in terms of Cohen’s Kappa statis-
tic of human annotators for both datasets and report it in the ‘Human Annotator’ columns 
of Table  8. Here, a correlation analysis is conducted between the inter-rater agreement 
scores and the performance of the best-performing configuration (MLP) of the proposed 
RS-DAAL model in terms of F1-Score, Geometric mean, and Balanced Accuracy for both 
datasets. The correlation coefficients obtained for the performance metrics are 0.8678, 
0.8252, and 0.9929 respectively. It indicates a positive relationship between inter-rater 
agreement scores (Cohen’s kappa) and classifier performance. The higher the agreement 
among human annotators, the better the classifier tends to perform.

7 � Conclusion

The current study has proposed a new deep active learning framework by incorporating 
the latent space resampling method to mitigate the imbalanced class problem for efficient 
detection of COVID-19 vaccine sentiment prediction. The proposed RS-DAAL method has 
utilized a large amount of unlabeled data along with a small labeled dataset. Eventually, 
most informative unlabeled samples have been picked up by training the VAE and discrim-
inator in an adversarial fashion. To mitigate the effect of the imbalanced labeled dataset, a 

Table 8   Comparison between human annotator and our proposed method

F1-score Geometric mean Balanced accuracy

Human  
annotator

Proposed 
method

Human  
annotator

Proposed 
method

Human  
annotator

Proposed 
method

D1 0.9824 0.9376 0.9739 0.9312 0.9907 0.9429
D2 0.9043 0.8703 0.8853 0.891 0.8934 0.8956
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new resampling phase has been introduced inside the adversarial training. Experimental 
studies have revealed that the RS-DAAL model has been able to improve task learner per-
formance after every iteration as the training progressed indicating an enhancement in the 
quality of the labeled data pool. Results have indicated that undersampling methods can be 
better suited to mitigating imbalanced class problems in the context of the current study. 
Resampling methods such as IHT, ENN, RENN, and ALL KNN have performed signifi-
cantly well for all task learners. In addition, a comparative study with the baseline VAAL 
method has established that the proposed RS-DAAL method is better equipped to identify 
COVID-19 vaccine sentiment from social media platforms. To establish the improvement 
of classifiers in predicting the sentiment labels, a wide variety of task learners have been 
thoroughly investigated. It has been found that the performance of the MLP classifier has 
been improved to a greater extent compared to other classifiers in the current study.

However, the current study is limited to investigating the proposed model in the context 
of COVID-19 sentiment classification only. Future studies could investigate the possibility 
of applying the model in other text classification tasks where an abundant amount of unla-
belled data is available. The computational complexity involved in training the proposed 
model could also be improved in future studies.

Nevertheless, future studies can be directed toward developing more trustworthy 
COVID-19 sentiment prediction models to help healthcare workers in the endeavor to vac-
cinate the population as swiftly and comprehensively as possible. The proposed frame-
work can be extended to handle multilingual social media posts, enabling a comprehen-
sive understanding of global vaccine sentiment across different languages and regions. In 
addition, the possibility of using other types of surrogate models as the oracle can also be 
investigated.
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