
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-024-06561-8

1 3

Permutation‑invariant linear classifiers

Ludwig Lausser1,2 · Robin Szekely1 · Hans A. Kestler1 

Received: 30 November 2022 / Revised: 31 January 2024 / Accepted: 26 April 2024 
© The Author(s) 2024

Abstract
Invariant concept classes form the backbone of classification algorithms immune to specific 
data transformations, ensuring consistent predictions regardless of these alterations. How-
ever, this robustness can come at the cost of limited access to the original sample informa-
tion, potentially impacting generalization performance. This study introduces an addition 
to these classes—the permutation-invariant linear classifiers. Distinguished by their struc-
tural characteristics, permutation-invariant linear classifiers are unaffected by permutations 
on feature vectors, a property not guaranteed by other non-constant linear classifiers. The 
study characterizes this new concept class, highlighting its constant capacity, independent 
of input dimensionality. In practical assessments using linear support vector machines, the 
permutation-invariant classifiers exhibit superior performance in permutation experiments 
on artificial datasets and real mutation profiles. Interestingly, they outperform general lin-
ear classifiers not only in permutation experiments but also in permutation-free settings, 
surpassing unconstrained counterparts. Additionally, findings from real mutation profiles 
support the significance of tumor mutational burden as a biomarker.

Keywords Permutation invariance · Linear classifiers · Concept classes · Tumor mutational 
burden

Editors: Michelangelo Ceci, João Gama, Jose Lozano, André de Carvalho, Paula Brito.

Ludwig Lausser and Robin Szekely contributed equally to this work.

 * Hans A. Kestler 
 hans.kestler@uni-ulm.de

 Ludwig Lausser 
 ludwig.lausser@thi.de

 Robin Szekely 
 robinsz@web.de

1 Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, 
Germany

2 Faculty of Computer Science, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, 
Germany

http://orcid.org/0000-0002-4759-5254
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06561-8&domain=pdf


 Machine Learning

1 3

1 Introduction

Supervised machine learning techniques are a key ingredient in analyses and diagnoses 
based on high-dimensional data (Kraus et al., 2018). Their underlying algorithms allow for 
screening through molecular marker profiles of tens of thousands of measurements that by 
far exceed the capability of a manual inspection. The revealed multivariate patterns have 
therefore a high potential of extending the existing toolbox of known diagnostic models.

Nevertheless, these new classification tasks come also with new challenges (L’Heureux 
et  al., 2017). A prominent example might be the joint analysis of heterogeneous data 
sources that were recorded under varying conditions. Here, subgroups or single samples 
of a data collection might be affected by individual intended or unintended modifications. 
Depending on the number of affected samples, they will be called group-wise or sample-
wise data transformations in the following. Both data transformations can affect a classifier 
in two different ways. The corresponding altered samples can distract a training algorithm 
from its original classification task or directly corrupt the predictions of the trained clas-
sifier. In both cases, classifiers can suffer from a degenerated generalization performance.

Various countermeasures against these effects of heterogeneous data sources were pro-
posed  (Valente & Rocha, 2015). They try to reduce or even neglect the influence of the 
corresponding data transformations. If a countermeasure is guaranteed to neglect the effect 
of a specific data transformation it is said to induce an invariance (Haasdonk & Burkhardt, 
2007). These methods will be the major focus of this article.

Group-wise transformations (e.g. common biases) affect subsets of samples identically 
and therefore might be detected and identified by comparisons of multiple samples. Their 
influence might be reduced by group-wise normalization techniques that estimate the com-
mon parameters of a transformation from a set of affected training or test samples (Singh 
& Singh, 2020). Other classifiers directly induce invariances against global group-wise 
transformations. An example might be distance-based classifiers, such as the k-NN, that 
are invariant against a common global rescaling of all training and test samples  (Fix & 
Hodges, 1951).

Sample-wise transformations affect individual samples by different data transformations 
from a family of data transformations. They can be considered as a generalization of the 
group-wise ones. In this setting, no common parameters exist and can therefore not be esti-
mated. As a consequence, most of the techniques described above do not protect from this 
type of influence. We will concentrate on this type of data transformation in the following.

Sample-wise data transformations of this type can in general be detected during the 
training phase of a classifier and a corresponding invariance might be induced by the 
underlying training algorithm (Haasdonk & Burkhardt, 2007). In this case, the predictions 
of a so-called invariant classifier will not be influenced by a specific data transformation or 
a family of data transformations. However, inducing a sample-wise invariance via adapta-
tion can increase the complexity of the original learning task, as the corresponding models 
often require exact parameter settings. It is therefore necessary to increase the required 
amount of training samples, which might not be available. This especially holds for the 
high-dimensional setting ( n ≫ m ), in which the number of features n by far exceeds the 
number of available samples m.

Alternatively, an invariance can be induced during the design phase of a classifier (Lausser 
et al., 2018a). Here, an invariant model or concept class might be chosen in order to counteract 



Machine Learning 

1 3

a known or assumed type of sample-wise data transformation (Lausser et al., 2020). In con-
trast to the training approach, this design choice is not data-driven and does not require addi-
tional training samples. However, it requires an a priori assumption of the type of data 
transformation and is likely to be designed for a more general family. As an invariant model 
generally cannot distinguish between the original sample and the overlaying noise effects a 
certain amount of information is excluded from the classification process in any case. The 
choice of an invariant concept class should therefore be as specific as possible.

Invariant concept classes can be generated in two different ways. The first option is to cou-
ple a non-invariant concept class to a preprocessing that generates an invariant data represen-
tation. In this way, the new concept class will again neglect the influence of the corresponding 
data transformation. However, the new concept class is only loosely related to the original one 
and loses its interpretation. For example, a linear classifier operating on rank-transformed data 
is not linear in the original feature space (Lausser et al., 2018a). It is therefore unclear how to 
switch from these invariant concept classes to another. The second option is to determine a 
subclass of all classifiers of a concept class that fulfills an invariance property. The invariant 
subclass keeps the interpretation of the original one and can easily be extended or restricted in 
order to adapt the invariance property. They can generate a fine granular grid of related invari-
ant concept classes.

We previously outlined the landscape of invariant subclasses of the concept class 
of linear classifiers  (Schmid et  al., 2014; Lausser & Kestler, 2014; Lausser et  al., 
2020). In this work, we extend this roadmap by the concept class of permutation-
invariant linear classifiers. This type of linear classifier neglects the effects of dis-
ordered feature representations. We characterize this concept class by its capacity, 
which is constant regardless of the dimensionality of its underlying feature represen-
tation. We utilize the concept class for the design of a permutation-invariant version 
of the (linear) support vector machine (SVM)  (Vapnik, 1998), which interestingly 
seems to be beneficial in specific permutation-free scenarios.

Our theoretical work indicates that for a linear classifier, the gain of a permutation 
invariance coincides with the restriction to the analysis of unweighted sums or rates. 
Those features were found to be valuable features in the context of tumor classifica-
tion (Stenzinger et al., 2019). Here, the tumor mutational burden, the number of muta-
tions within a sample, was found to allow various classifications in this field of appli-
cation  (Chalmers et  al., 2017). Our own experiments with the permutation-invariant 
SVM on the COSMIC Cell Line Gene Mutation Profiles dataset (Forbes et al., 2010) 
fall in line with these observations.

The remaining article is organized as follows. Section 2 provides the utilized nota-
tion and the underlying notion of concept classes and their invariance properties. The 
concept class of permutation-invariant linear classifiers is introduced and analyzed in 
Sect. 3. It especially introduces a permutation-invariant version of the linear support 
vector machine, which is later evaluated and compared against its unconstrained coun-
terpart in experiments on artificial and real-life datasets (Sect. 4). The corresponding 
results are reported in Sect. 5. The theoretical findings and empirical results are finally 
summarised and discussed in Sect. 6.



 Machine Learning

1 3

2  Methods

Our work is mainly based on a standard notation for classification experiments. We will 
focus on crisp classification functions c ∈ C that predict a categorical class label y ∈ Y of 
an object according to a set of measurements x ∈ X

The feature space is assumed to be embedded in an n-dimensional Euclidean space X ⊆ ℝ
n . 

The label space is assumed to comprise a finite set of discrete class labels ( |Y| < ∞ ). We 
concentrate on binary classification problems (e.g. Y = {0, 1} ) in the following.

A sample x ∈ X  is given by a n-dimensional vector x = (x(1),… , x(n))T . We make use of 
index vectors i = (i1,… , ik)

T , k ≤ n to indicate specific subsets or permutations of a sample 
x . In this case, x(i) = (x(i1),… , x(ik))T . As we focus on permutations, we allow i ∈ I  with 
I =

⋃n

k=1
Ik , Ik ⊂ ℕ

k and

The classifier itself is chosen from a predefined concept or function class c ∈ C , which 
characterizes the structural properties and the layout of a classifier  (Anthony & Biggs, 
1997). Typically, the optimal structure c ∈ C is unknown a priori and is learned in a data-
driven training phase for a specific classification task

Here, l is the chosen learning algorithm and T = {(xi, yi)}
m
i=1

 denotes a set of labeled train-
ing examples. If the training set is known from the context, the subscript T  will be omitted. 
The generalization performance of a trained classifier is estimated on an independent vali-
dation set V = {(x�

i
, y�

i
)}m

�

i=1
 . We will use empirical accuracy as a quality measure

where �[⋅] denotes the indicator function.

2.1  Invariant concept classes

Invariance properties guarantee a classifier to be unaffected by a certain family of data 
transformations  (Haasdonk & Burkhardt, 2007; Lausser et  al., 2018a). That is, the clas-
sifier will predict the same class label in the presence or absence of a transformation. It 
might be used to neglect certain types of noise or confounders. Although invariances can 
in general be the result of the training process l, they are more likely to be induced by some 
kind of design principle in order to counteract assumed interference.

We previously found that invariances can be traced back to structural properties of clas-
sifiers and can therefore be formulated as invariant concept (sub-) classes (Lausser et al., 
2020). Those can be chosen a priori according to external domain knowledge and linked to 
standard training algorithms. Invariances can therefore be incorporated during the design 
phase of a classification algorithm.

We will use the following definition of invariant classifiers and concept classes (Schmid 
et al., 2014):

(1)c ∶ X → Y.

(2)Ik = {(i1,… , ik)
T |∀j ∶ 1 ≤ ij ≤ n,∀j� ≠ j ∶ ij� ≠ ij}.

(3)l ∶ C × T ↦ cT ∈ C.

(4)Acc(c,V) =
1

m�

∑

(x,y)∈V

�[c(x)=y],



Machine Learning 

1 3

Definition 1 A classifier c ∶ X → Y is invariant against a parameterised class of data 
transformations f� ∶ X → X  if

A concept class C is invariant against f� if each c ∈ C is invariant against f�.

Definition 1 allows for following three major implications: 

(a) Sample-wise invariance The invariant classifier does not assume a common data trans-
formation for all test samples in V . In principle, each test sample can be affected by an 
individual one (individual choice of �i ∈ Θ ) 

(b) Invariance against cascaded data transformations Invariant classifiers can absorb the 
influence of cascaded applications of data transformations 

(c) Inheritance of invariance Ensembles classifiers h(x) ∈ H(C) and their underlying fusion 
architectures u based on classifiers c(x) ∈ E ⊆ C inherit the invariance properties of C

 where h ∶ X ⟶ Y and u ∶ Y1 ×… × Y|E| ⟶ Y.
 Note that constant classifiers (e.g., ∀x ∶ c(x) = 1 ) are invariant against all data transforma-
tions. However, they are also uninformative and are therefore neglected in the following.

2.2  Concept classes and their capacity

The choice of a concept class C does not only determine the structural properties of the 
finally trained classifier cT  but also the training process l itself. It affects the risk of overfit-
ting and a declined generalization performance. That is a complex concept class that can 
be adapted to any dataset T  of size m is likely to result in a classifier cT  that misclassifies 
unseen samples V . More rigid concept classes (of a lower complexity) have a lower chance 
of adapting to arbitrary structures and tend to have more accurate predictions.

Different notions of complexity exist. In the following, we will utilize the Vapnik-
Chervonenkis dimension (VCdim), which is a combinatorial measure for the capacity of 
a concept class (Vapnik, 1998). It is based on the identification of a maximal set of m data 
points Xm = {xi}

m
i=1

 , xi ∈ X  that can receive all 2m binary labelings Ym = {yi}
m
i=1

 , yi ∈ Y 
by a classifier c ∈ C

(5)∀ � ∈ Θ,∀ x ∈ X ∶ c(f�(x)) = c(x).

(6)∀(xi, yi) ∈ V ∶ c(f�i (xi)) = c(xi).

(7)∀�1,… , �k ∈ Θ ∶ c(f�1 (f�2 (… (f�k (x)))))

(8)= c(f�2 (… (f�k (x))))

(9)= c(f�k (x))

(10)= c(x).

(11)h
(
f�(x)

)
= u

(
c1
(
f�(x)

)
,… , c|E|

(
f�(x)

))
= u

(
c1(x),… , c|E|(x)

)
= h(x),



 Machine Learning

1 3

The influence of the VCdim on the generalization ability of a classification model is 
for example described in the probably approximately correct (PAC) learning framework, 
where it is applied to obtain upper bounds of the generalization performance of a classifier 
(Valiant, 1984). If two classifiers with equal empirical performance are available, the one 
with the lower VCdim should be preferred (Burges, 1998). This especially holds for nested 
hierarchies of concept classes ( C ⊇ C1 ⊇ ⋯ ⊇ Ck ). The smallest reasonable subclass of C 
should be chosen.

2.3  The concept class of linear classifiers ( Clin)

One of the oldest formalized classification principles is the idea of linear classifica-
tion models (Fisher, 1936). The underlying concept class will be denoted by Clin in the 
following. Classifiers of this concept class separate the feature space into two classes 
via linear hyperplanes (Fig. 1). The theoretical capabilities of Clin were analyzed in dif-
ferent ways. It was especially shown that some rather simple patterns are not linearly 
separable (XOR problem) (Minsky & Papert, 1988). However, it was proven by Cover 
that the probability for linearly separable patterns increases with the dimensionality n 
of the data if the samples lie in general position (Cover, 1965). Nowadays it is known 
that the VCdim of Clin depends on the dimensionality n of the underlying feature space 
X  (Burges, 1998). It corresponds to VCdim(Clin) = n + 1.

Many training algorithms in the literature explicitly or implicitly utilize Clin as under-
lying concept class (Lausser & Kestler, 2010). Some well-known examples are the per-
ceptron (Rosenblatt, 1958), the linear discriminant analysis (Fisher, 1936), or the sup-
port vector machine (Vapnik, 1998). Linear classifiers are also basic building blocks for 
various ensemble techniques (Freund & Schapire, 1997; Kestler et al., 2011) and espe-
cially multi-class classifier systems (Abe, 2010; Lausser et al., 2018b, 2019).

We utilize the following definition for the concept class of linear classifiers Clin.

Definition 2 ( Clin) The concept class of linear classifiers Clin is defined as

The two parameters of a linear classifier are w ∈ ℝ
n , determining the orientation of 

its hyperplane, and t ∈ ℝ , providing the distance of the hyperplane to the origin. An 
overview of the influence of the two parameters is given in Fig. 1.

For a one-dimensional input space ( n = 1 ) it can be simplified as follows

(12)VCdim(C) = argmax
m

∃Xm∀Ym∀i∃c ∈ C ∶ c(xi) = yi.

(13)Clin =
�
𝕀[⟨w,x⟩≥t] �w ∈ ℝ

n, t ∈ ℝ

�
.

(14)Clin =
{
𝕀[w⋅x≥t] |w ∈ ℝ, t ∈ ℝ

}

(15)=
{
𝕀[sgn(w)|w|⋅x≥t] |w ∈ ℝ, t ∈ ℝ

}

(16)=
{
𝕀[a⋅x≥t] | a ∈ {−1, 0,+1}, t ∈ ℝ

}
,



Machine Learning 

1 3

where function sgn(w) denotes the signum function fulfilling w = sgn(w)|w| . It is therefore 
solely determined by its distance to the origin and its polarisation.

2.4  The concept class of fixed linear projections ( C
w∗ ⊆ Clin)

The concept class of linear classifiers comprises various subclasses with individual struc-
tural properties inducing distinct characteristics in terms of complexity, invariances, and 
interpretation. We focus on the complexity-reducing concept class of fixed linear projec-
tions C

w∗ ⊆ Clin in the following (Fig. 2A).

Definition 3 ( C
w∗) The concept class of fixed linear projections C

w∗ ⊆ Clin is defined as

where w∗ is an arbitrary but fixed vector w∗ ∈ ℝ
n.

(17)C
w∗ =

�
𝕀[⟨w,x⟩≥t] �w = a ⋅ w∗, a ∈ ℝ, t ∈ ℝ

�
,

10 5 0 5 10

10

5

0

5

10

t
=

+
6

10 5 0 5 10

10

5

0

5

10

t
=

0

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10 10 5 0 5 10

10

5

0

5

10

w = (2/3, 1/3)Tw = (1, 0)T w = (−1/3, 2/3)T

t
=

−
4

Fig. 1  Concept class Clin : General linear classifiers. The figure shows examples of general linear classifiers 
for three different orientations ( w ∈ ℝ

2 ) and three different distances to the origin ( t ∈ ℝ ). The classifiers 
shown in the first column are additionally members of the concept class of single threshold classifiers ( Cstc)



 Machine Learning

1 3

The concept class C
w∗ comprises linear classifiers that operate on a priori selected 

weight vector that is selected during the design phase of a classification algorithm. 
This vector was neither trained nor adapted on the training samples T  or the validation 

10 5 0 5 10

10

5

0

5

10

a
=

+
1

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10 10 5 0 5 10

a
=

−
1

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10

10

5

0

5

10

a
=

−
1

t = 0 t = +6t = −4

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10

10

5

0

5

10

a
=

+
1

A

B

Fig. 2  Concept class C
w∗ : Fixed linear projections. The figure shows linear classifiers for two fixed linear 

projection w∗ . They vary in their distances to the origing ( t ∈ ℝ ) and polarisations a ∈ {+1,−1} . A Classi-
fiers for the fixed projection w∗ = (1, 2)T . B Illustrates w∗ = (1, 1)T , the permutation-invariant concept class 
Csum



Machine Learning 

1 3

samples V . This especially excludes data-driven projection methods such as principle 
components (Jolliffe, 1986) or independent components (Stone, 2004).

The restriction to an a priori fixed (untrainable) weight vector w∗ ∈ ℝ
n clearly 

reduces the flexibility of Clin and also affects its complexity as

where x� = ⟨w∗, x⟩ ∈ ℝ is an univariate projection. Linear classifiers C
w∗ ⊆ Clin originally 

designed for a multivariate input space X ⊆ ℝ
n are therefore equivalent to linear classifiers 

for a (projected) univariate input space X′ ⊆ ℝ . As a consequence VCdim(C
w∗ ) = 2 and 

C
w∗ = Clin if n = 1.

Note that C
w∗ absorbs size and polarisation of w∗ . It is therefore shared by different pro-

jections w ∈ ℝ
n with w∗ = a ⋅ w , a ∈ ℝ.

2.4.1  Single threshold classifiers ( Cstc)

The concept class C
w∗ is a basic building block for constructing other subclasses of Clin 

by allowing multiple weight vectors. A prominent example is the concept class of single 
threshold classifiers stc ⊆ lin , which utilizes the union of basis vector ei , 1 ≤ i ≤ n , with 
e
(j)

i
= 1 if i = j and e(j)i = 0 else. It can summarized as

It can again be observed that Cstc = Clin if n = 1 . Cstc is especially suitable for analyzing 
single features independently. They are often used as base learners in classifier ensem-
bles (Freund & Schapire, 1997; Kestler et al., 2011).

As C
w∗ can provide at most 2m labelings for m fixed data points, Cstc can provide at most 

2mn labelings in an n dimensional setting. As a consequence and because of Cstc ⊂ Clin , 
VCdim(Cstc) ≤ min (m∗, n + 1) , where

(18)C
w∗ =

�
𝕀[⟨w,x⟩≥t] �w = a ⋅ w∗, a ∈ ℝ, t ∈ ℝ

�

(19)=
�
𝕀[a⋅⟨w∗ ,x⟩≥t] � a ∈ ℝ, t ∈ ℝ

�

(20)=
{
𝕀[a⋅x�≥t] | a ∈ ℝ, t ∈ ℝ

}
,

(21)Cstc = {𝕀[a⋅x(i)≥t] ∣ a = ±1, t ∈ ℝ, i ∈ {1,… , n}}.

(22)m∗ = argmax
m

{2mn ≥ 2m}.



 Machine Learning

1 3

3  Permutation‑invariant linear classifiers ( Csum ⊆ Clin)

Various subclasses of linear classifiers fulfill invariance properties  (Lausser et  al., 2020; 
Schmid et al., 2014; Lausser & Kestler, 2014). In the following, we add the invariant sub-
class of linear classifiers Csum ⊆ Clin to this list. It is characterized by equivalent weights 
for all feature dimensions. An illustration of Csum can be found in Fig. 2B. The influence of 
permuted feature representations is given in Fig. 3.

Definition 4 ( Csum) The concept class of permutation-invariant linear classifiers Csum ⊆ Clin 
is defined as

where 1n = (1,… , 1)T denotes an n-dimensional one.

(23)Csum =
�
𝕀[⟨w,x⟩≥t] �w = a ⋅ 1n, a ∈ ℝ, t ∈ ℝ

�
,

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10

10

5

0

5

10

t
=

−
4

w = (1, 0)Tw = (1/3, 2/3)T w = (1/3,−2/3)T

10

5

0

5

10

t
=

0

10

5

0

5

10

t
=

+
6

Fig. 3  Influence of permuted feature representations. The influence of permuted feature representations on 
the classification via general linear classifiers c ∈ Clin⧵Csum is shown. Each sample x((1,2)T ) is connected to its 
permuted counterpart x((2,1)T ) . Those pairs that receive two different class labels are marked by a gray box



Machine Learning 

1 3

It can be seen that Csum = C
w∗ for w∗ = 1n . As a consequence the complexity of Csum is 

VCdim(Csum) = 2 , which is constant and independent from the dimensionality of the input 
space. Fixing all weights w(i) = a results in a ridged linear classifier, which no longer can 
alter the direction of its hyperplane. Only its distance to its origin and its polarization can 
be adapted. Let c(x) ∈ Csum be a randomly chosen classifier. Then

where x̄ ∈ ℝ denotes the sample-wise average of x ∈ ℝ
n and x� = nx̄.

Csum also induces an invariance against permutations of the features of x , which cannot 
be achieved by any other non-constant linear classifier Clin⧵Csum.

Theorem  1 A non constant linear classifier c ∈ Clin is invariant against permutations of 
feature entries

with x ∈ X ⊆ ℝ
n and � ∈ In if and only if c ∈ Csum.

Proof of Theorem 1 In order to prove the invariance of a linear classifier to a certain type of 
data transformation f� , we have to prove that

⟹ : For c ∈ Csum ( w = a ⋅ 1n ) all permutations lead to the same projection

A classifier c ∈ Csum is therefore invariant against feature permutations.
⟸ : The opposite direction is proven by providing a counterexample for each 

c(x) ∈ Clin⧵Csum that fulfills

As Clin = Csum for univariate input spaces ( n = 1 ) a minimal example requires at least 
n = 2 dimensions. Additionally, there must be at least two weights w(i) ≠ w(j) (e.g., 
w(i) > w(j) ). Let �ij be an arbitrary permutation swapping features i and j. We construct 
x = (0,… , 0, x(i), 0,… , 0)T  with x(i) = x� ≠ 0 fulfilling

As a consequence c(x) = 1 and c(�ij(x)) = 0 .   ◻

3.1  Permutation‑invariant SVMs (SVM
sum

)

In this article, we will focus on the support vector machine (SVM) as a training algorithm for 
linear classifiers (Vapnik, 1998). It is designed to maximize the margin between the training 
samples and the linear hyperplane separating two classes.

(24)c(x) = �[⟨w,x⟩≥t] = �[a
∑n

i=1
x(i)≥t] = �[anx̄≥t] = �[ax�≥t],

(25)f� ∶ x ↦ x
(�)

(26)∀x∀� ∶ ⟨w, f�(x)⟩ ≥ t ⟺ ⟨w, x⟩ ≥ t.

(27)∀x∀𝜋 ∶ ⟨w, f𝜋(x)⟩ = a ⋅

n�

i=1

x(𝜋(i)) = anx̄.

(28)∀c∃𝜋∃x ∶ ⟨w, f𝜋(x)⟩ < t ⟺ ⟨w, x⟩ ≥ t.

(29)w(i)x� ≥ t and w(j)x� < t.



 Machine Learning

1 3

The original SVM maximizes the margin by regularisation of ‖w‖2 . This can be summa-
rised by the following constrained optimization problem

The class labels are assumed to be Y = {−1,+1} . C ∈ ℝ
+ denotes the cost parameter 

that represents the trade-off between margin maximization and error minimization. The 
parameters �i denote the slack variables, enabling SVMs to operate in the non-separable 
case by measuring the deviation from the ideal condition. An SVM operating on a general 
linear classifier Clin will be denoted as SVMlin.

The SVM can be adapted for different subclasses of Clin  (Lausser et  al., 2020). For a 
fixed linear projection w∗ the SVM can be modified for C

w∗ by projecting each data point 
xi to x�

i
= ⟨w∗, xi⟩ ∈ ℝ before starting its training (or its validation). This simplifies the 

optimization as only a univariate w ∈ ℝ is required. For Csum this projection is given by 
x�
i
= nx̄i . The corresponding SVM will be denoted as SVMsum.

4  Experiments

We compared SVMsum and SVMlin in experiments on artificial datasets and real data-
sets. All experiments were performed in R using the TunePareto package (Müssel 
et al., 2012). For the training of all support vector machines, the e1071 package was uti-
lised  (Meyer et al., 2020). A fixed cost parameter of C = 1 was chosen. All experiments 
were additionally repeated for two types of reference classifiers. Random forest classifiers 
(RF) with 100, 250, 500 trees (Breiman, 2001), and k-Nearest Neighbor classifiers (k-NN) 
with 1, 3, 5 neighbors, were chosen (Fix & Hodges, 1951), the corresponding figures can 
be found in the Appendix. The classifiers were compared in the absence and presence of 
permutations.

The accuracy difference of classifiers SVMsum and SVMlin is reported as

where csum ∈ Csum and clin ∈ Clin . A positive value denotes a higher accuracy of SVMsum , 
and a negative one a higher accuracy of SVMlin.

4.1  Permutation experiments

For experiments with permutations, we replaced the original validation set V = {(x�
i
, y�

i
)}m

�

i=1
 

by

where each test sample was individually affected by a permutation

(30)min
w,t,�

1

2
‖w‖2

2
+ C

m�

i=1

�i

(31)s.t. ∀i ∶ yi(⟨w, xi⟩ − t) ≥ 1 − �i

(32)∀i ∶ �i ≥ 0.

(33)Adiff (V) = Acc(csum,V) − Acc(clin,V),

(34)V� = {(fi,p(x
�
i
), y�

i
)}m

�

i=1
,



Machine Learning 

1 3

That is the original feature vector x is replaced by a permuted version x(�i) . The influence of 
the permutation is regulated by the parameter p ∈ [0, 1] , which will be called permutation 
rate in the following. At most np randomly selected feature values are permuted. The cor-
responding percentage is chosen in p ∈ {0%, 20%,… , 100%} . Note that p = 0% denotes a 
permutation-free experiment.

4.2  Experiments on artificial datasets

The classifiers were evaluated in various settings with and without permutations. 
Those settings are based on distinct artificial datasets of varying dimensionality 
n ∈ {10, 100, 500, 1000} . Each experiment was repeated 1000 times. In a single experi-
ment, a classifier was adapted on a training set T  and evaluated on a validation set V of 
2 × 50 samples each. That is each datasets comprises 50 samples of class y = 1 and 50 
samples of class y = 0 . The samples themselves were drawn according to setting-specific 
distributions. See Table 1 for an overview. For a specific type of artificial data, results are 
summarised by the median value and the interquartile range (IQR).

4.2.1  Basic experiments

We conducted experiments on three types of permutation-free settings (Table 1), which we 
believe to be suitable for SVMsum as they resemble unweighted sums. The optimal decision 
boundaries of these settings correspond to linear classifiers. They, therefore, also lie in the 
range of the more general SVMlin . All settings are parameterized by a free parameter d that 
can be used to adjust the overlap of the classes ( d > 0 ). Here, a smaller value of d indicates 
a higher overlap of the classes. For larger values of d, the settings become linear separable 
thereby allowing for optimal accuracy of linear classifiers.

In the first one, the classifiers were applied to discriminate binary feature vectors x ∈ �
n . 

The individual entries of a sample were drawn (independent from their position) according 

(35)fi,p(x) = x
(�i) with �i ∈ In and p ≤

1

n

n∑

j=1

�[
j≠�

(j)

i

].

Table 1  Artificial datasets for basic experiments: The table provides the distributions of analyzed samples 
x ∈ X  in dependency on their class label y ∈ {+,−} and their dimensionality n 

Each training dataset and each test dataset comprises 2 × 50 samples

Distribution Sampling of (x, y) Input space Parameter ranges
x = (x(1),… , x(n))T X (class-specific y ∈ {+,−})

Bernoulli x(i) ∼ Be(py) X ⊆ �
n py ∈ {0.05, 0.10,… , 0.95}

Gamma x(i) ∼ Γ(�y, �) X ⊆ ℝ
n �y ∈ {0.05, 0.10,… , 0.95} , � = 1

Gaussian x(i) ∼ N(cy, I) X ⊆ ℝ
n

c+ = (c
(1)
+ ,… , c

(n)
+ )T

c− = c+ + dw∕‖w‖2
c
(i)
+ ∼ U(0, 10)

w(i) ∼ U(0, 1)

d ∈ {1, 1.1,… , 10}



 Machine Learning

1 3

to Bernoulli distributions with a class-specific probability of success py . The overlap can 
be regulated by d = |p+ − p−| . All features have the same influence on the class label.

In the second experiment, a comparable setting based on real-valued samples was ana-
lyzed x ∈ ℝ

n . Here, the samples were drawn according to Gamma distributions with class-
specific shape parameters �y ( d = |�+ − �−|).

The third experiment is based on Gaussian distributions with class-specific centroids 
cy . Those centroids are chosen randomly but have to fulfill a predefined distance d. As 
a consequence, the individual features have an individual influence on the optimal linear 
classifier.

4.2.2  Permutation experiments

For the permutation experiments, we generated artificial datasets comprising 0.25 ⋅ n 
informative and 0.75 ⋅ n uninformative features. In the case of an uninformative feature, the 
values were drawn according to a common distribution for both classes. The corresponding 
distributions and parameter settings are listed in Table 2. All experiments were repeated in 
the absence ( p = 0% ) and presence ( p > 0% ) of permutations.

4.3  Experiments on real datasets

We additionally performed experiments on the COSMIC Cell Line Gene Mutation Profiles 
dataset (Forbes et al., 2010). Its main characteristics are provided in Table 3.

COSMIC, the Catalogue Of Somatic Mutations In Cancer, provides comprehensive 
information on somatic mutations in human cancers. The cell line gene mutation profiles 
dataset summarises gene mutations in cancer cell lines from low-throughput or high-
throughput studies. Classes with less than 9 samples were removed. Overall, the dataset 
comprises n = 17,972 binary variables (gene mutated yes/no) for m = 728 samples from 
|Y| = 20 different tissues.

We compared the performance of SVMsum and SVMlin systematically in binary clas-
sification experiments for each pair of classes of the COSMIC Cell Line Gene Mutation 
Profiles dataset (190 experiments). Those experiments were designed as 10 × 10 cross-vali-
dation experiments (Japkowicz & Shah, 2011).

Table 2  Artificial datasets for permutation experiments: The table provides the parameter settings for gen-
erating informative and uninformative features for the permutation experiment

The informative features use distinct distributions for each class label y ∈ {+,−} . The uninformative ones 
use a common distribution for both classes. Each training dataset and each test dataset comprises 2 × 50 
samples

Distribution Parameter ranges

Class specific y ∈ {+,−} Uninformative y = ◦

Bernoulli p+ = 0.05, p− = 0.8 p
◦
= 0.5

Gamma �+ = 0.05, �− = 0.8 �
◦
= 0.5

Gaussian c+ = (c
(1)
+ ,… , c

(n)
+ )T , c(i)+ ∼ U(0, 10) c

◦
= (0,… , 0)T

c− = c+ + dw∕‖w‖2 , w(i) ∼ U(0, 1)



Machine Learning 

1 3

4.3.1  Permutation experiments

Similar to the artificial datasets, the real datasets were analyzed in the absence ( p = 0% ) 
and presence of permutations ( p > 0% ). The permutations were introduced as defined 
in Eqs. 34 and 35 and again applied to the validation sets of the 10 × 10 cross-validation 
experiments.

5  Results

The results of the experiments described in Sect. 4 are summarized here. The evaluation of 
the artificial experiments is given in Sect. 5.1. The results for the real dataset can be found 
in Sect. 5.2.

5.1  Results on artificial datasets

The following section provides the results achieved on the artificial datasets.

Table 3  Summary of the 
COSMIC Cell Line Gene 
Mutation Profiles dataset (Forbes 
et al., 2010)

The table gives the class labels yi , a short description, the number 
of samples per class, and the mean mutational burden per class. All 
samples are given by mutation profiles of n = 17,972 binary variables 
(mutation yes/no)

Class Description Samples Mutational 
burden (%)

y1 Autonomic ganglia 33 2.54
y2 Bone 35 2.03
y3 Breast 43 3.33
y4 Central nervous system 53 2.24
y5 Cervix 11 4.28
y6 Endometrium 9 10.20
y7 Haematopoietic and lymphoid tissue 123 4.89
y8 Kidney 27 2.83
y9 Large intestine 41 9.74
y10 Liver 9 2.83
y11 Lung 136 3.71
y12 Oesophagus 23 4.11
y13 Ovary 33 3.76
y14 Pancreas 17 1.89
y15 Skin 46 4.70
y16 Soft tissue 18 4.24
y17 Stomach 20 4.95
y18 Thyroid 11 2.64
y19 Upper aerodigestive tract 22 2.57
y20 Urinary tract 18 3.08



 Machine Learning

1 3

5.1.1  Results for basic experiments

The results gained for the comparison of SVMsum and SVMlin on the basic permutation-
free settings are presented in Fig. 4 and summarized in Table 4. The parameter differ-
ence d with the highest median accuracy difference is also reported. The comparisons to 
the other reference classifiers can be found in Supplementary Fig. 7.

For the Bernoulli distributed data (Fig. 4A), SVMsum achieved non-negative median 
accuracy differences for all parameter differences. For higher dimensionalities, positive 
accuracy differences are concentrated on smaller parameter differences d. The highest 
median accuracy difference was observed for the smallest parameter difference d = 0.05 . 
For n = 100 it is equal to 13.0% . It increased to 17.0% for n = 500 . A median value of 
15.0% was observed for n = 1000 . Similar patterns were observed for the reference clas-
sifiers RF and k-NN, where in general the k-NNs were more affected by changes in d.

For the Gamma distributed data (Fig. 4B), the results were comparable. Increasing per-
formance differences again occurred for higher dimensionality. The highest median differ-
ences were observed for smaller parameter differences. For n = 100 , the highest median 
difference ( 13.0% ) was achieved for d = 0.10 . For n = 500 a value of 18.0% was achieved 
for d = 0.10 . For n = 1000 , a median difference of 21.0% was observed for d = 0.05 . In 
this setting, RFs and k-NNs show different behaviour. While the accuracy differences 
against RFs are negative for some experiments of n = 10 , the k-NNs are outperformed in 
almost all settings.

Equivalent patterns were identified for the Gaussian distributed data (Fig.  4C). For 
n = 100 the highest median difference of 11.0% occurred for d = 1.3 . For n = 500 it 
increased to 16.0% occurred for d = 1.6 and for n = 1000 it finally achieved 19.0% for 
d = 1.8 . For all reference classifiers, no negative median accuracy difference was observed.

Table 4  Table summary on basic experiments (SVMsum vs SVMlin ): The table provides the achieved median 
accuracy differences and the corresponding interquartile range for each data type and each dimensionality n 

Additionally, the parameter difference d with the highest median accuracy differences is reported

Distribution Dimensionality Differences in accuracy Top differences

Median (%) IQR 
[
q0.25, q0.75

]
Top d Median acc (%)

Bernoulli n = 10 1.0 [0.0%, 4.0%] 0.10 4.0
n = 100 0.0 [0.0%, 6.0%] 0.05 13.0
n = 500 0.0 [0.0%, 0.0%] 0.05 17.0
n = 1000 0.0 [0.0%, 0.0%] 0.05 15.0

Gamma n = 10 2.0 [0.0%, 5.0%] 0.10 3.0
n = 100 2.0 [0.0%, 9.0%] 0.10 13.0
n = 500 0.0 [0.0%, 4.0%] 0.05 18.0
n = 1000 0.0 [0.0%, 1.0%] 0.05 21.0

Gaussian n = 10 0.0 [−1.0%, 1.0%] 0.5 3.0
n = 100 0.0 [0.0%, 5.0%] 1.3 11.0
n = 500 2.0 [0.0%, 10.0%] 1.6 16.0
n = 1000 3.0 [0.0%, 13.0%] 1.8 19.0



Machine Learning 

1 3

Overall experiments, the use of SVMsum led to a decline of more than 5% accuracy only 
in a small number of experiments (Bernoulli: 0.6%, Gamma: 0.7%, Gaussian: 1.7%). For 
the RFs and k-NNs these numbers do not exceed 1.6% . An exception is the Gamma set-
ting for RFs. Due to the effects in n = 10 , the corresponding numbers are between 8.9 and 
9.8%.

n=10 n=100

n=500 n=1000

n=10 n=100

n=500 n=1000

n=10 n=100

n=500 n=1000

0
0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

8.
5 9

9.
5 10 0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

8.
5 9

9.
5 10

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

d d

A
d
if

f
A

d
if

f
A

d
if

f
A

d
if

f
A

d
if

f
A

d
if

f

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

A

B

C

Fig. 4  Results of basic experiments. The figure shows boxplots for the accuracy differences of SVMsum and 
SVMlin on the Bernoulli, Gamma, and Gaussian distributed datasets (A–C). Positive values indicate a better 
performance of SVMsum . Results for different dimensionalities n ∈ {10, 100, 500, 1000} are shown. Each 
boxplot summarizes the results of 1000 repeated experiments for a specific parameter difference d 



 Machine Learning

1 3

5.1.2  Results for permutation experiments

The results for the comparison of SVMsum and SVMlin on the permutation experiments are 
given in Fig. 5. A summary can be found in Table 5. The results for the reference classifiers 
can be found in Supplementary Fig. 8. The underlying datasets of these experiments com-
prise informative and uninformative features. Both will equivalently influence SVMsum as 
its structural properties do not allow the selection of individual features. This is of course 
a disadvantage in the absence of permutations ( p = 0 ). However, the invariance property 
of SVMsum becomes an advantage for increasing permutation rates ( p > 0 ). The highest 
median accuracy differences were in general achieved for the highest permutation levels 
( p = 1).

For the Bernoulli distributed data (Fig.  5A) the highest median accuracy differences 
start with 11.0% at n = 10 reach their overall maximum of 21.0% at n = 100 and afterward 
decline to 11.0% and 6.0% for higher dimensionalities ( n = 500 and n = 1000 ). Negative 
median accuracy differences become rare with increasing dimensionality.

Comparable results were found for the Gamma distributed data (Fig. 5B). Here the high-
est median accuracy differences start with 6.0% for n = 10 , increase to 22.0% at n = 100 , 
and afterward decline to 14.0% for n = 500 and 8.0% for n = 1000 . Negative median accu-
racy differences were observed up to a dimensionality of n = 100.

For the Gaussian distributed data (Fig. 5C) positive effects of the permutation invari-
ance were observed for smaller values of p than for the former two settings. For all n > 10 
positive median accuracy differences were observed for all p > 0 . In this case, negative 
median accuracy differences only occurred for the permutation-free experiments ( p = 0 ). 
The highest median accuracy differences were observed for p = 1.0 ( n = 10 ), p = 0.6 
( n = 100 ), p = 0.4 ( n = 500 and n = 1000 ). For n = 10 a level of 26.0% was achieved. The 
remaining dimensionalities form a plateau at 30.0%.

In general, for lower dimensionalities, the SVMlin can counteract the effects of permu-
tations for smaller values of p. Here better results for the general classifier can be found. 

Table 5  Summary of permutation experiments (SVMsum vs SVMlin ): The table provides the achieved 
median accuracy differences and the corresponding interquartile range

Additionally, the parameter difference with the highest median accuracy differences is reported

Distribution Dimensionality Differences in accuracy Top differences

Median (%) IQR 
[
q0.25, q0.75

]
Top d Median acc (%)

Bernoulli n = 10 −7.0 [−18.0%, 4.0%] p = 1.0 11.0
n = 100 0.0 [−2.0%, 8.0%] p = 1.0 21.0
n = 500 0.0 [0.0%, 0.0%] p = 1.0 11.0
n = 1000 0.0 [0.0%, 0.0%] p = 1.0 6.0

Gamma n = 10 −11.0 [−20.0%,−1.0%] p = 1.0 6.0
n = 100 −2.0 [−7.0%, 11.0%] p = 1.0 22.0
n = 500 0.0 [0.0%, 2.0%] p = 1.0 14.0
n = 1000 0.0 [0.0%, 0.0%] p = 1.0 8.0

Gaussian n = 10 7.0% [−10.0%, 20.0%] p = 1.0 26.0
n = 100 27.0 [16.8%, 31.0%] p = 0.6 30.0
n = 500 29.0 [24.0%, 32.0%] p = 0.4 30.0
n = 1000 30.0 [25.0%, 33.0%] p = 0.4 31.0



Machine Learning 

1 3

Comparable patterns can be observed for the RFs and the k-NNs, where the effect disap-
pears in earlier stages for k-NNs than for SVMlin and RFs. A reason might be the training 
of the classifiers on permutation-free training samples T .

n=10 n=100

n=500 n=1000

n=10 n=100

n=500 n=1000

n=10 n=100

n=500 n=1000

A
d
if

f
A

d
if

f
A

d
if

f
A

d
if

f
A

d
if

f
A

d
if

f

p p

A

B

C

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

0.4

0.2

 0.0

 0.2

 0.4

Fig. 5  Results of permutation experiments. The figure shows boxplots for the accuracy differences of 
SVMsum and SVMlin on the Bernoulli, Gamma, and Gaussian distributed datasets (A–C). Positive values 
indicate a better performance of SVMsum . Results for different dimensionalities n ∈ {10, 100, 500, 1000} are 
shown. Each boxplot summarises the results of 1000 repeated experiments for a specific permutation rate 
p ∈ [0, 1] . Note that p = 0 corresponds to a permutation-free experiment



 Machine Learning

1 3

5.2  Results on real datasets

The results of the 10 × 10 CV experiments with the COSMIC Cell Line Gene Mutation 
Profiles dataset (Forbes et al., 2010) are given in Fig. 6. It comprises the accuracy differ-
ences for the experiments with all 190 pairs of classes and all permutation rates.

5.2.1  Results for permutation‑free experiments ( p = 0)

In the permutation-free experiments ( p = 0 ), the SVMlin was not able to outperform 
SVMsum in 60.00% of all cases. However, both classifiers showed an equal median perfor-
mance, which is indicated by a median accuracy difference of 0% . The IQR ranges from 
[−2.4%, 0.6%] . Against the RFs, the median accuracy difference varied from 0.5 to 0.8%. 
The first quartile ranged from − 1.4 to −1.5% and the third quartile ranged from 4.5 to 
4.6% . Compared to k-NNs median accuracy differences in the range of 2.3% and 3.4% were 
achieved. All first quartiles lie at 0% while the third quartiles lie between 15.1 and 17.1%.

5.2.2  Results for permutation experiments ( p > 0)

With the introduction of permutations ( p > 0 ), SVMlin was able to outperform SVMsum 
less frequently. With an increasing value of p, the accuracy difference also increased in 
favor of SVMsum . For p = {0.2, 0.4, 0.6, 0.8} , SVMsum performed worse in 23.7% , 21.1% , 
20.0% , and 19.0% of all experiments, respectively. When all features are permuted, SVMsum 
outperforms SVMlin in 50.0% and achieves equal accuracy in 31.0% of all cases. The RFs 

SVM

RF 100 RF 250 RF 500

1 NN 3 NN 5 NN

A
d
if

f

A
d
if

f
A

d
if

f

p p p

0.6
0.4
0.2
 0.0
 0.2
 0.4
 0.6

0.6
0.4
0.2
 0.0
 0.2
 0.4
 0.6

0.6
0.4
0.2
 0.0
 0.2
 0.4
 0.6

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6  Results for permutation experiments (reference classifiers). The figure summarises all experi-
ments conducted for all pairs of classes {yi, yj} ∈ Y of the COSMIC dataset ( |Y| = 20 ). It shows boxplots 
for the accuracy differences of the reference classifiers and SVMsum . SVMlin , RF, and k-NN classifiers are 
shown. Positive values indicate a better performance of SVMsum . Results for different dimensionalities 
n ∈ {10, 100, 500, 1000} are shown. Each boxplot summarises the results of 1000 repeated experiments for 
a specific permutation rate p ∈ [0, 1] . Note that p = 0 corresponds to a permutation-free experiment



Machine Learning 

1 3

outperform the SVMsum only in 19.0% up to 24.2% of all cases. For the k-NNs these num-
bers range from 12.1 to 16.3%

6  Discussion and conclusion

In this work, we extended the canon of invariant concept classes by the concept class of 
permutation-invariant linear classifiers. The structural properties of these classifiers guar-
antee predictions that are immune against disordered feature representations and there-
fore might be preferable in the presence of this type of noise. However, they might also 
be restrictive as their invariance property is directly coupled to a fixed linear projection 
towards the sample-wise centroids.

Our experiments identified scenarios in which the permutation-invariant SVM was able 
to outperform its non-invariant counterpart. Interestingly, not all of these scenarios were 
affected by permutations. In this context, the permutation-invariant SVM can be seen as a 
randomly chosen fixed projection SVM. Applied to the correct context it can achieve bet-
ter results than the unguided large margin criterion. Coupled with a smaller (and constant) 
VC-dimension the identification of a fixed projection seems to be worthwhile. However, 
this projection has to be selected a priori based on external domain knowledge or independ-
ent experiments. It has to be chosen during the design phase of a classifier before starting 
its training. Otherwise, the data-driven adaptation (on the training set) would lead to the 
adaptation of a general linear classifier. Although it might be unrealistic for de novo experi-
ments, it might be realistic for larger research contexts with multiple (related) classes (Pan 
& Yang, 2010; Lausser et al., 2018b).

In the basic permutation-free scenario, performance differences were especially detected 
in settings with highly overlapping class-wise distributions. They were in general in favor 
of the permutation-invariant SVM. This result is a direct consequence of the declined per-
formance of the standard version of the SVM. It might be partially explained by an overad-
aptation of this more flexible model. Capable of adapting to potentially more informative 
features the standard SVM might be misled by the relatively small number of available 
training samples. In contrast, the permutation-invariant version has to rely on the overall 
sample-wise mean values of its training samples, which can only provide a rough overview 
of the characteristics of the classes. Although in general suboptimal for the tested classifi-
cation problems, this simpler and more ridged learning task seems to be more suitable for 
the limited amount of training samples and leads to a higher generalization performance.

Other settings with well-separable class-wise distributions allowed high classification 
performance for both types of classifiers. While the standard SVM is designed to take 
advantage of a large margin between two classes the good performance of the permutation-
invariant SVM might not be obvious. However, if the projections of both classifiers are not 
orthogonal to each other a larger margin for the standard SVM directly implies a larger 
margin for the permutation-invariant version. In other words, a larger margin for the stand-
ard SVM increases the differences in the sample-wise means of the two classes. Otherwise, 
if the projections of both classifiers are orthogonal to each other the large margin of the 
standard SVM does not influence the permutation-invariant version at all. In this case, the 
permutation-invariant SVM is likely to lead to severely declined performance.

As expected, the permutation-invariant SVM was not affected by permuting the fea-
ture representation of individual samples. As both its training algorithm and its trained 



 Machine Learning

1 3

classifier are invariant against this type of data transformation its classification perfor-
mance is constant within each permutation experiment. It also allows for high classifica-
tion performance in these settings. In contrast, the standard SVM (based on general lin-
ear classifiers) can severely suffer from affecting training and test samples. While affected 
training samples distract the standard SVM’s focus from potentially informative features, 
affected test samples no longer fulfill patterns identified for the original data. Interestingly, 
the reference classifiers were able to counteract lower permutation rates, which was most 
prominent in low-dimensional settings. A reason might be the design of our study. While 
we applied permutations to the validation samples, the training samples were not modified. 
This allows feature-selecting classifiers to deselect uninformative features and to concen-
trate on a small set of informative ones. If the random permutation swaps two uninforma-
tive features it will not be recognized by these classifiers.

We observed similar behavior for our experiments with the mutation profiles of the 
COSMIC dataset, where again the performance of the standard SVM decreased with 
increasing permutation rates. However, these effects can be more decisive than in the well-
controlled artificial experiment on binary profiles. A possible reason might be the more 
complex structure of the mutation dataset. Besides their high dimensionality ( n ≫ m ), 
the underlying mutation profiles can also be seen as sparse data as they contain in mean 
between 1.9 and 10.2% mutations per class. The dataset therefore draws per se the attention 
of feature-sensitive classifiers to a smaller subset of features (whether they are informative 
or not). Those preselected features are likely to be depleted by permutations.

In contrast to the corresponding artificial datasets, we can not assume the cancer types 
in the COSMIC dataset to be simply characterized by their mutational burden. Specific 
patterns of cancer development must be assumed. However, these patterns might be hard 
to detect due to the dimensionality of mutation profiles. Based on an analysis of the muta-
tional burden the permutation-invariant SVM achieved at least the same accuracy in 114 of 
190 permutation-free settings of our experiments. This also strongly supports the usage of 
tumor mutational burden (Stenzinger et al., 2019), a recently identified biomarker, as part 
of a diagnosis. Differences in the mutational burden of tumor entities were also observed in 
large-scale studies (Chalmers et al., 2017) and were shown to predict survival after immu-
notherapy across multiple cancer types (Samstein et al., 2019).

This said we believe the concept class of permutation-invariant linear classifiers to be a 
concept class with unique structural properties and its dedicated field of application. How-
ever, it is also limited in its possibility of taking different types of information into account. 
In the presence of large training sets and in the absence of permutations other classification 
models might be preferable. Nevertheless, the permutation-invariant SVM showed com-
parable performance to the standard linear counterpart in most of our test scenarios. It is 
therefore a strong reference classifier for other more complex approaches.

As we are mainly interested in an outline of the concept class of permutation-invariant 
linear classifiers, we needed to decide on a training algorithm for an empirical evaluation. 
The SVM was chosen as a state-of-the-art training algorithm for the concept class of lin-
ear classifiers. However, other training algorithms for the concept class of linear classifiers 
exist and they might be adapted for the permutation-invariant subclass (Bishop, 2006; Abe, 
2010; Hastie et al., 2001). The performance of these classifiers must be evaluated in differ-
ent experiments.

The baseline performance achieved by any permutation-invariant linear classifier is 
also of interest for theoretical purposes. In contrast to other classifiers, the permutation-
invariant ones react identically in the absence or presence of permutation rates of up to 
100% . They are totally unaware of the assignment of features to values. Their baseline 



Machine Learning 

1 3

performance could be used to estimate the benefit of this assignment in the form of perfor-
mance differences.

From a structural point of view, the concept class of permutation-invariant linear clas-
sifiers evaluates an unweighted sum or (in case of binary features) an unweighted major-
ity vote (Kuncheva et al., 2003). It might be misguided by a large number of uninforma-
tive features. It is therefore more suitable for the application on a semantically preselected 
panel of measurements (Taudien et al., 2016). In future work, we will address this point by 
coupling permutation-invariant linear classifiers to feature selection processes and feature-
selecting multi-classifier systems in order to identify a suitable tradeoff between permuta-
tion invariance and generalization ability.

Appendix: Results on artificial datasets (reference classifiers)

The following appendix provides the results achieved by the reference classifiers on the 
artificial datasets. The accuracy difference towards SVMsum is shown.

• Figure 7: Results for basic experiments (reference classifiers).
• Figure 8: Results for permutation experiments (reference classifiers).



 Machine Learning

1 3

Fig. 7  Results for basic experiments (reference classifiers). The figure shows boxplots for the accuracy dif-
ferences of SVMsum , and the reference classifiers on the Bernoulli, Gamma, and Gaussian distributed data-
sets (A–C). RF and k-NN classifiers are shown. Positive values indicate a better performance of SVMsum . 
Results for different dimensionalities n ∈ {10, 100, 500, 1000} are shown. Each boxplot summarizes the 
results of 1000 repeated experiments for a specific parameter difference d 



Machine Learning 

1 3

Author contributions L.L. conceived the idea and performed theoretical analysis, L.L. and R.S. conceived 
the experiments, R.S. performed data acquisition, L.L. and R.S. analyzed the results, L.L. implemented the 
algorithms, L.L. drafted the manuscript, H.A.K. supervised and guided the study. L.L., R.S., and H.A.K. 
wrote the manuscript. All authors reviewed the manuscript.

Fig. 8  Results for permutation experiments (reference classifiers). The figure shows boxplots for the accu-
racy differences of SVMsum and the reference classifiers on the Bernoulli, Gamma, and Gaussian distrib-
uted datasets (A–C). RF and k-NN classifiers are shown. Positive values indicate a better performance of 
SVMsum . Results for different dimensionalities n ∈ {10, 100, 500, 1000} are shown. Each boxplot summa-
rises the results of 1000 repeated experiments for a specific permutation rate p ∈ [0, 1] . Note that p = 0 
corresponds to a permutation-free experiment



 Machine Learning

1 3

Funding Open Access funding enabled and organized by Projekt DEAL. The research leading to these results has 
received funding from the German Research Foundation (DFG, SFB 1074 project Z1; SFB 1506 project B6), and 
TRANSCAN VI - PMTR-pNET, ID 01KT1901B ) all to HAK.

Data availability The data used in this work is all public.

Code availability Code will be made available after publication.

Declarations 

Conflict of interest The authors declare not conflict of interest.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abe, S. (2010). Support vector machines for pattern classification. Berlin: Springer.
Anthony, M. H. G., & Biggs, N. (1997). Computational learning theory (Vol. 30). Cambridge: Cambridge 

University Press.
Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). Ber-

lin: Springer.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and 

Knowledge Discovery, 2(2), 121–167.
Chalmers, Z. R., Connelly, C. F., Fabrizio, D., et al. (2017). Analysis of 100,000 human cancer genomes 

reveals the landscape of tumor mutational burden. Genome Medicine, 9(1), 34.
Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities with applica-

tions in pattern recognition. IEEE Transactions on Electronic Computers, 3, 326–334.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 

179–188.
Fix, E., & Hodges, J. L. (1951). Discriminatory analysis: Nonparametric discrimination: Consistency prop-

erties. Tech. Rep. Project 21-49-004, Report Number 4, USAF School of Aviation Medicine, Randolf 
Field, Texas.

Forbes, S. A., Bindal, N., & Bamford, S., et al. (2010). Cosmic: mining complete cancer genomes in the 
catalogue of somatic mutations in cancer. Nucleic Acids Research 39(suppl_1):D945–D950.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an applica-
tion to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

Haasdonk, B., & Burkhardt, H. (2007). Invariant kernel functions for pattern analysis and machine learning. 
Machine Learning, 68(1), 35–61.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning. New York: 
Springer.

Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: A classification perspective. New York: 
Cambridge University Press.

http://creativecommons.org/licenses/by/4.0/


Machine Learning 

1 3

Jolliffe, I. (1986). Principal component analysis. New York: Springer.
Kestler, H. A., Lausser, L., Lindner, W., et al. (2011). On the fusion of threshold classifiers for categoriza-

tion and dimensionality reduction. Computational Statistics, 26(2), 321–340.
Kraus, J. M., Lausser, L., Kuhn, P., et al. (2018). Big data and precision medicine: Challenges and strategies 

with healthcare data. International Journal of Data Science and Analytics, 6(3), 241–249.
Kuncheva, L. I., Whitaker, C. J., Shipp, C. A., et al. (2003). Limits on the majority vote accuracy in classi-

fier fusion. Pattern Analysis & Applications, 6(1), 22–31.
Lausser, L., & Kestler, H. A. (2010). Robustness analysis of eleven linear classifiers in extremely high-

dimensional feature spaces. In: Schwenker, F., Gayar, N. E. (Eds.), Artificial neural networks in pattern 
recognition (Vol LNAI 5998, pp. 72–83).

Lausser, L., & Kestler, H. A. (2014). Fold change classifiers for the analysis for the analysis of gene expres-
sion profiles. In: Gaul, W., Geyer-Schulz, A., Baba, Y., et al. (Eds.), proceedings volume of the Ger-
man/Japanese workshops in 2010 (Karlsruhe) and 2012 (Kyoto), studies in classification, data analy-
sis, and knowledge organization (pp. 193–202).

Lausser, L., Schäfer, L. M., Schirra, L. R., et al. (2019). Assessing phenotype order in molecular data. Scien-
tific Reports, 9(1), 11746.

Lausser, L., Schmid, F., Schirra, L. R., et al. (2018). Rank-based classifiers for extremely high-dimensional 
gene expression data. Advances in Data Analysis and Classification, 12(4), 917–936.

Lausser, L., Szekely, R., Klimmek, A., et al. (2020). Constraining classifiers in molecular analysis: Invari-
ance and robustness. Journal of the Royal Society Interface, 17(163), 20190612.

Lausser, L., Szekely, R., Schirra, L. R., et al. (2018). The influence of multi-class feature selection on the 
prediction of diagnostic phenotypes. Neural Processing Letters, 48(2), 863–880.

L’Heureux, A., Grolinger, K., Elyamany, H. F., et al. (2017). Machine learning with big data: Challenges 
and approaches. IEEE Access, 5, 7776–7797.

Meyer, D., Dimitriadou, E., & Hornik, K., et al. (2020). e1071: Misc functions of the department of sta-
tistics, probability theory group (Formerly: E1071), TU Wien. https:// CRAN.R- proje ct. org/ packa ge= 
e1071, r package version 1.7-4.

Minsky, M., & Papert, S. A. (1988). Perceptrons: An introduction to computational geometry. Cambridge: 
MIT Press.

Müssel, C., Lausser, L., Maucher, M., et al. (2012). Multi-objective parameter selection for classifiers. Jour-
nal of Statistical Software, 46(5), 1–27.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data 
Engineering, 22(10), 1345–1359.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the 
brain. Psychological Review, 65(6), 386.

Samstein, R. M., Lee, C. H., Shoushtari, A. N., et al. (2019). Tumor mutational load predicts survival after 
immunotherapy across multiple cancer types. Nature Genetics, 51(2), 202–206.

Schmid, F., Lausser, L., & Kestler, H. A. (2014). Linear contrast classifiers in high-dimensional spaces. In 
El Gayar, N., Schwenker, F., Suen, C. (Eds.), IAPR workshop on artificial neural networks in pattern 
recognition (pp. 141–152).

Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. 
Applied Soft Computing, 97(105), 524.

Stenzinger, A., Allen, J. D., Maas, J., et  al. (2019). Tumor mutational burden standardization initiatives: 
Recommendations for consistent tumor mutational burden assessment in clinical samples to guide 
immunotherapy treatment decisions. Genes, Chromosomes and Cancer, 58(8), 578–588.

Stone, J. (2004). Independent component analysis: A tutorial introduction. Cambridge: MIT Press.
Taudien, S., Lausser, L., Giamarellos-Bourboulis, E. J., et al. (2016). Genetic factors of the disease course 

after sepsis: Rare deleterious variants are predictive. EBioMedicine, 12, 227–238.
Valente, E., & Rocha, M. (2015). Integrating data from heterogeneous DNA microarray platforms. Journal 

of Integrative Bioinformatics, 12, 281.
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142.
Vapnik, V. (1998). Statistical learning theory. New York: Wiley.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071

	Permutation-invariant linear classifiers
	Abstract
	1 Introduction
	2 Methods
	2.1 Invariant concept classes
	2.2 Concept classes and their capacity
	2.3 The concept class of linear classifiers ( )
	2.4 The concept class of fixed linear projections ( )
	2.4.1 Single threshold classifiers ( )


	3 Permutation-invariant linear classifiers ( )
	3.1 Permutation-invariant SVMs (SVM)

	4 Experiments
	4.1 Permutation experiments
	4.2 Experiments on artificial datasets
	4.2.1 Basic experiments
	4.2.2 Permutation experiments

	4.3 Experiments on real datasets
	4.3.1 Permutation experiments


	5 Results
	5.1 Results on artificial datasets
	5.1.1 Results for basic experiments
	5.1.2 Results for permutation experiments

	5.2 Results on real datasets
	5.2.1 Results for permutation-free experiments ( )
	5.2.2 Results for permutation experiments ( )


	6 Discussion and conclusion
	Appendix: Results on artificial datasets (reference classifiers)
	References


