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Abstract
In this paper, we propose systematic approaches for learning imbalanced data based on a
two-regime process: regime 0, which generates excess zeros (majority class), and regime 1,
which contributes to generating an outcome of one (minority class). The proposed model
contains two latent equations: a split probit (logit) equation in the first stage and an ordinary
probit (logit) equation in the second stage. Because boosting improves the accuracy of
prediction versus using a single classifier, we combined a boosting strategy with the two-
regime process. Thus, we developed the zero-inflated probit boost (ZIPBoost) and zero-
inflated logit boost (ZILBoost) methods. We show that the weight functions of ZIPBoost
have the desired properties for good predictive performance. Like AdaBoost, the weight
functions upweight misclassified examples and downweight correctly classified examples.
We show that the weight functions of ZILBoost have similar properties to those of Logit-
Boost. The algorithm will focus more on examples that are hard to classify in the next
iteration, resulting in improved prediction accuracy. We provide the relative performance of
ZIPBoost and ZILBoost, which rely on the excess kurtosis of the data distribution. Fur-
thermore, we show the convergence and time complexity of our proposed methods. We
demonstrate the performance of our proposed methods using a Monte Carlo simulation,
mergers and acquisitions (M&A) data application, and imbalanced datasets from the Keel
repository. The results of the experiments show that our proposed methods yield better
prediction accuracy compared to other learning algorithms.

Keywords Imbalance learning · Zero-inflated models · Ensemble learning · Excessive
zeros

1 Introduction

Most canonical classifiers assume that the number of examples in each of the different
classes is approximately the same. Unfortunately, class imbalances are present in many real-
life situations (Fernández et al., 2018). Class imbalance refers to the dominance of one class
(i.e., the majority class) over the other (i.e., the minority class). It occurs when the prior
probability of belonging to the majority class is significantly higher than that of belonging to
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the minority class (Koziarski et al., 2021). The presence of class imbalance is known to
deteriorate the prediction of the minority class (Thanathamathee & Lursinsap, 2013). The
minority class is usually overlooked. One of the main issues in imbalance problems is that,
despite its rareness, the minority class is generally of more interest from an application
perspective, as it may contain important and useful knowledge (Krawczyk, 2016). Thus, it is
necessary to correct the prediction of the minority class. Furthermore, because any dataset
with an unequal class distribution is technically considered imbalanced, proposing new
learning methods for imbalanced data is an important topic in the machine learning
community.

In this study, we propose systematic approaches to learning imbalanced data. The sys-
tematic imbalanced learning method allows us to think more mechanistically about the data
generation processes used to produce imbalanced examples. For instance, in the case of the
survival rate of sea turtle eggs, ones are recorded for survivors and zeros for hatchlings who
did not survive to adulthood. Since the estimated survival rate of hatchlings is about 0.1% (1
one and 999 zeros), the zero (failure) examples outnumber the one (success) examples
(Janzen, 1993); the case of successful hatchlings can be characterized as an imbalanced
classification. In this case, the survival process consists of two regimes. First, on the beach,
hatchlings must escape natural predators, such as birds, crabs, raccoons, and foxes, to make
it to the sea (regime 0); second, once in the water, few hatchlings survive to adulthood as a
result of anthropogenic activities, such as overexploitation for food, the pet trade, and the
threat of global climate change (regime 1) (Stanford et al., 2020). Turtles typically expe-
rience the highest mortality rates during the hatchling and early life stages (Gibbons, 1987;
Heppell et al., 1996; Perez-Heydrich et al., 2012); the majority of the class (i.e., excessive
zeros) is generated in regime 0. However, the survival rate increases rapidly as turtles grow
and age (Brooks et al., 1988; Congdon et al., 1994); after passing the first hurdle (regime 0),
the minority class (i.e., ones) enters into regime 1. Thus, the minority class comprises
survivors, whereas the majority class consists of hatchlings who either failed to approach the
water or did not survive to adulthood in the water. Nature operates in this way.

Therefore, in some cases, it is ideal to propose a method that generates two models
(regimes). First, a probit (or logit) model is generated for the excessive zero examples (e.g.,
predicting whether a hatchling will escape from predators); this is identified as regime 0 for
the majority class. Then, another probit (or logit) model is generated for the underrepre-
sented examples (e.g., predicting whether or not those hatchlings who graduate from the first
regime would survive to adulthood); this is identified as regime 1 for the minority class.
Finally, the two models are combined. Notably, each of the two models may use a different
set of predictors. In the above example, the factors related to natural predators are more
critical to survival in regime 0 than in regime 1. Similarly, the factors related to human
activities are more critical to survival in regime 1 than in regime 0. For more details, see
Fig. 1.

We argue that systematic approaches that rely on data-generating processes may be
appropriate for imbalance learning in particular cases (e.g., survival of sea turtle eggs). We
then develop zero-inflated probit boost (ZIPBoost) and zero-inflated logit boost (ZILBoost)
methods to account for imbalance learning based on two distinct regimes. More specifically,
the proposed ZIPBoost (ZILBoost) uses a two-regime process that combines a split probit
(logit) model for regime 0 with an ordinary probit (logit) model for regime 1. Since boosting
(e.g., LogitBoost and AdaBoost) is known to improve accuracy compared with a single
classifier, we combine a boosting strategy (incremental learning rules) with the framework
of the two-regime process.
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Notably, we show that the weight functions of ZIPBoost have the desired properties for
achieving good predictive performance. Similar to AdaBoost, the weight functions
upweight misclassified examples and downweight correctly classified examples. We present
these properties as propositions. The properties make the algorithm focus more on mis-
classified examples during iterations, resulting in a reduction in errors. Since ZIPBoost
involves updating two functions—one for probabilities in the split probit model and the
other for probabilities in the ordinary probit model—we apply cyclic coordinate descent,
which is a repeated application of the Newton–Raphson method. In the case of imbalanced
data, it is known that the logit model outperforms the probit model for a leptokurtic dis-
tribution (a distribution with positive excess kurtosis), whereas the probit model is preferred
for a platykurtic distribution (a distribution with negative excess kurtosis) (Chen & Tsurumi,
2010). Thus, we also introduce the ZILBoost algorithm, wherein the two probit models in
ZIPBoost are replaced with two logit models. We show that the weight functions of ZIL-
Boost have similar properties to LogitBoost. The weight functions upweight examples that
have low confidence (i.e., the fitted values are around zero) and downweight examples that
have high confidence (i.e., the fitted values are not around zero). These properties imply that
the algorithm will prioritize examples that are hard to classify in the next iteration, leading to
improved prediction accuracy. Like ZIPBoost, ZILBoost requires updating two functions,
and thus, we employ cyclic coordinate descent. We use a simulation to demonstrate that the
excess kurtosis of the data distribution determines the relative performance of ZIPBoost and
ZILBoost. In addition, we present the convergence and time complexity of the proposed
methods.

We demonstrate the performance of our proposed methods using experiments by a Monte
Carlo simulation, a real data application for predicting M&A outcomes, and imbalanced
datasets from the Keel repository. For comparison, we consider standard learning algo-
rithms, including Adaboost, Logitboost, and Probitboost, and existing approaches for
learning imbalanced data, such as AdaC2, SMOTEBoost, and generative adversarial net-
works (GANs). The results from the experiments show that our proposed methods provide
the best prediction accuracy. We believe that when data are generated from a two-regime
process, our proposed methods outclass existing methods in terms of predictive
performance.

Fig. 1 Distribution of data in the
two-regime process
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To implement the proposed methods, it is necessary to have prior information on two
different sets of predictors that affect the probabilities of belonging to either regime 0 or 1. If
researchers do not have access to knowledge of the optimal predictor splits, they can
empirically determine the splits that provide the best predictive performance on data.
However, we note that this data-driven approach to the predictor splits may be computa-
tionally expensive. For more details, please see Sect. 5.3. Furthermore, the proposed
methods can be generalized to multiclass problems, but we note that other updating schemes
should be employed to reduce the computational burden. This study also provides the
possibility for future work on the refinement functions of the proposed methods.

This paper is organized as follows. We review the existing approaches to imbalanced
learning in Sect. 2. In Sect. 3, we set up the problem. In Sect. 4, we introduce the proposed
methods (ZIPBoost and ZILBoost). We present experiments in Sect. 5. In Sect. 6, we
conclude the paper with suggestions for future work.

2 Related work

Numerous efforts have been made in the machine learning community to classify the
minority class correctly in the presence of class imbalance. A large number of techniques
can be broadly categorized into four groups based on how they tackle the class imbalance
problem (Fernández et al., 2018).

First, data-level approaches try to rebalance the class distribution by resampling the
imbalanced examples (e.g., Batista et al., 2004; Fernández et al., 2008; Koziarski &
Woźniak, 2017; Napierała et al., 2010; Stefanowski & Wilk, 2008). Notably, data-level
approaches include sampling methods consisting of oversampling, undersampling, and a
combination of both. Oversampling attempts to increase the size of the minority class,
whereas undersampling discards the examples in the majority class. Among the sampling
methods, the Synthetic Minority Over-sampling TEchnique (SMOTE), proposed by Chawla
et al. (2002), is quite popular. SMOTE generates synthetic minority examples through linear
interpolation. However, the presence of disjoint data distribution and outliers is known to
hinder improvements in classification using synthetic examples (Koziarski, 2020). Recently,
the GANs approach has been adopted to deal with the imbalance problem (e.g., Frid-Adar
et al., 2018). The GANs approach consists of the following two components (Huang et al.,
2022): (1) a generator that attempts to generate data similar to the real imbalanced data, and
(2) a discriminator that attempts to discriminate between the real imbalanced data and the
generated data. Unlike conventional oversampling methods used to address class imbalance,
GANs may not suffer from overfitting, because their training is based on adversarial
learning between the two components. Data-level approaches do not require modification of
the learning algorithm, because sampling methods alter data distribution to train a classifier
under class balance. However, the sampling methods have a limitation in that the resampled
data may follow a distribution that is different from that of the original data (Sun et al.,
2015).

Second, algorithm-level approaches aim to modify existing classification algorithms to
bias learning toward the minority class (e.g., Barandela et al., 2003; Lin et al., 2002; Liu
et al., 2000). For instance, a support vector machine (SVM), one of the popular classifi-
cation methods, can be combined with different classification strategies, such as kernel
modifications and weighting schemes based on the importance of each example for clas-
sification, to alleviate the tendency to classify a minority example as the majority class while
learning imbalanced data (Hwang et al., 2011; Liu & He, 2022). For algorithmic
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approaches, it is vital to have sufficient knowledge of the causes of bias from the underlying
mechanisms of the original algorithms so that appropriate modifications can be considered
(Krawczyk, 2016). Without a precise identification of the reasons for a failure in classifying
the minority class, classifiers still tend to predict the majority class at the cost of losing the
minority class’s predictive power.

Third, cost-sensitive approaches consist of a combination of data-level transformations
and algorithm-level adaptations (e.g., Chawla et al., 2008; Lee et al., 2020; Ling et al., 2006;
Zhang et al., 2008). The classification algorithm is biased toward the minority class by
adding costs to instances and is modified to account for misclassification costs. More
precisely, to build a cost-sensitive classifier, different misclassification costs for different
classes are incorporated into the learning process, such as making the cost of misclassifying
a minority example at a higher level than that of misclassifying a majority example. One of
the cost-sensitive approaches is the cost-sensitive decision tree, in which different mis-
classification costs can be used for splitting or pruning criteria (López et al., 2012).
However, the major drawback of this approach is that it assumes a known cost matrix that is
unknown in most cases (Krawczyk et al., 2014; Pei et al., 2021; Saber et al., 2020; Sun
et al., 2007). The cost-sensitive approach has difficulty finding the optimal cost matrix to
handle the class imbalance problem (Ren et al., 2022).

Fourth, ensemble-based approaches are hybrid methods that usually combine an
ensemble learning algorithm with a data-level (or cost-sensitive) approach (e.g., Wang &
Japkowicz, 2010; Wang et al., 2014). For example, ensemble-based approaches include
combinations of cost-sensitive approaches with boosting or bagging, which are ensemble
learning algorithms designed to improve predictive accuracy. This combination processes
imbalanced data before utilizing multiple learning algorithms. To accept costs in the training
process, cost-sensitive ensembles guide cost minimization using the ensemble learning
algorithm (Galar et al., 2012). Despite this, ensemble learning methods, such as boosting
and bagging, can play a role only in producing more accurate predictions than stand-alone
learning algorithms. Specifically, unless the combined data-level (or cost-sensitive)
approach appropriately addresses the imbalance problem, ensemble-based approaches are
unable to resolve the imbalance problem. For example, cost-sensitive ensembles still require
an optimal cost matrix.

However, the existing approaches do not account for the possibility that two different
types of zeros exist, as they do not distinguish between zeros that may stem from regime 0
(e.g., a hatchling that did not escape from predators on the beach) and zeros generated from
regime 1 (e.g., a hatchling that graduated from the first regime but did not ultimately survive
to adulthood in the water). In other words, the existing approaches assume that only one
regime generates the majority and minority classes. Departing from the existing approaches,
we propose systematic approaches to address the imbalance problem for classification by
assuming that two distinct regimes produce the majority and minority classes.

3 Problem setup

In this section, we describe the two-regime process and illustrate how boosting can be
applied to the process.
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3.1 The two-regime process

In this study, we assume that the sample is obtained from a two-regime process: regime 0,
which generates excess zeros, and regime 1, which contributes to generating a minority
class. We present the distribution of fictitious data from the two-regime process in Fig. 1.
We consider the fictitious data to be imbalanced, as an outcome of 0 significantly outweighs
an outcome of 1: Among the 500 examples, 400 examples (80%) have an outcome of 0,
while only 100 examples (20%) have an outcome of 1. The majority class is an outcome of
0. This two-regime process assumes the following: (1) For the instances of the outcome of 0,
regime 0 generates the gray portion (300 examples, representing the excess zeros) and
regime 1 generates the black portion (100 examples), and (2) for the instances of the
outcome of 1, regime 1 generates the black portion (100 examples, representing the minority
class). Thus, in this two-regime process, zeros are composed of two parts: gray and black
portions of the zero bar. The black portions of the zero and one bars indicate the examples in
regime 1, which passed the first hurdle (regime 0). Notably, in the absence of excess zeros (i.
e., without the gray portion), the data would seem balanced, since the zero and one bars
have the same height with 100 examples for each outcome. In this case, canonical classi-
fiers, including ordinary probit or logit models, would perform well in predicting outcomes.
However, in the presence of a gray portion, it becomes essential to differentiate between the
gray portion and the black portion of the zero bar. To this end, a systematic approach is
required to identify whether examples belong to the gray portion or black portion of the zero
and one bars, as well as to ascertain whether examples in the black portion have an outcome
of 0 or 1.

More specifically, let us consider a sample of N observed units with binary outcomes 0
and 1 and assume that a zero outcome is inflated. To put it differently, the sample represents
a class imbalance whose majority is a zero outcome. In this setting, let q� be a latent variable
to represent the propensity of regime 1 as.

q� ¼ x
0
bþ u; ð1Þ

where x indicates a vector of covariates that cause inflated zeros for the majority class, b is a
vector of coefficients, and u represents the error term. Equation (1) represents the splitting
equation (SE), which accounts for excess zeros. For example, the SE identifies whether a
hatchling will reach the water or not. Depending on the value of q�, we define the two
regimes indicated by q 2 f0,1g such that a unit with q� � 0 belongs to regime 0 (i.e., q ¼ 0),
and the observed zero turns out to be an inflated case, and if a unit has q� [ 0, we may
observe one of the possible outcomes, 0 or 1, in regime 1 (i.e., q ¼ 1). The probability of
belonging to regime 1 is defined as

Prðq ¼ 1 xj Þ ¼ Pr q� [ 0jxð Þ:

For those with q ¼ 1, the observed outcome is determined by the underlying latent
variable ey� defined as follows: ey� ¼ z0cþ e; ð2Þ
where z indicates a vector of covariates that generate the minority class, c is a vector of
coefficients, and e represents the error term. We refer to Eq. (2) as the outcome equation
(OE) (Hill et al., 2011). For example, the OE identifies whether a hatchling will survive to
adulthood or not. To state it differently, depending on the value of ey� for those with q ¼ 1,
one of the possible outcomes is observed. Under regime 1, the possible outcomes, ey, are
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defined as follows:

~y ¼ 0 if y� � 0
1 if y� [ 0:

�
Notably, zero outcomes can be generated from either q in the SE or ey in the OE, but it is

not distinguishable. The full probabilities for observed outcomes, y, are then jointly based
on the results from the SE and OE:

Pr yð Þ ¼ Pr y ¼ 0jx; zð Þ ¼ Pr q ¼ 0jxð Þ þ Pr q ¼ 1jxð Þ � Pr ey ¼ 0jzð Þ;
Pr y ¼ 1jx; zð Þ ¼ Pr q ¼ 1jxð Þ � Pr ey ¼ 1jzð Þ:

�
ð3Þ

The SE and OE can be modeled using probit or logit models. The choice between probit
and logit models depends on the characteristics of the data distribution. For example, if the
data distribution exhibits negative excess kurtosis, a probit model is preferred over a logit
model, while a logit model is deemed more suitable for data with positive excess kurtosis
(Chen & Tsurumi, 2010). When the probit model is applied, Eq. (3) becomes

Pr yð Þ ¼ Pr y ¼ 0jx; zð Þ ¼ 1� U x0bð Þ½ � þ U x0bð Þ � 1� U z0cð Þ½ �;
Pr y ¼ 1jx; zð Þ ¼ U x0bð Þ � U z0cð Þ;

�
ð4Þ

where Uð�Þ is the cumulative distribution function of the standard univariate normal dis-
tribution. Notably, it is shown that the parameters of Eq. (4) are consistently and efficiently
estimated through maximum likelihood estimation (Harris & Zhao, 2007). Based on the
probabilities in Eq. (4), the log-likelihood function to find an optimal solution is defined as.

l fð Þ ¼ 1� yð Þlog 1� U f 1 xð Þð Þð Þ þ U f 1 xð Þð Þ � 1� U f 2 zð Þð Þð Þf g
þ ylog U f 1 xð Þð Þ � U f 2 zð Þð Þf g; ð5Þ

where f 1 xð Þ ¼ x
0
b, f 2 zð Þ ¼ z

0
c, and f 2 ff 1 xð Þ; f 2 zð Þg.

If the SE and OE are modeled by the logit model, Eq. (4) can be rewritten as

Pr yð Þ ¼ Pr y ¼ 0jx; zð Þ ¼ 1� 1þ exp �x0bð Þð Þ�1
h i

þ 1þ exp �x0bð Þð Þ�1 � 1� 1þ exp �z0cð Þð Þ�1
h i

;

Pr y ¼ 1jx; zð Þ ¼ 1þ exp �x0bð Þð Þ�1 � 1þ exp �z0cð Þð Þ�1;

(
ð6Þ

and the log-likelihood function is

l fð Þ ¼ 1� yð Þ log 1� 1þ exp �f1 xð Þð Þð Þ�1
� �

þ 1þ exp �f1 xð Þð Þð Þ�1� 1� 1þ exp �f2 zð Þð Þð Þ�1
� �n o

þ ylog 1þ exp �f1 xð Þð Þð Þ�1� 1þ exp �f2 zð Þð Þð Þ�1
n o

;

ð7Þ
where f 1 xð Þ ¼ x

0
b, f 2 zð Þ ¼ z

0
c, and f 2 ff 1 xð Þ; f 2 zð Þg.

3.2 Boosting with cyclic coordinate descent

Boosting is an ensemble method that combines many weak classifiers to generate a powerful
learning rule (Oentaryo et al., 2014). Notably, it is widely acknowledged that ensembles of
many classifiers, such as boosting, often exhibit higher prediction accuracy compared to
individual models that produce a single classifier (Guelman, 2012; Provost & Domingos,
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2003; Ren et al., 2016). Thus, we employ boosting to update f 1 xð Þ and f 2 zð Þ to obtain the
final classifier.

To this end, we use the expected negative log-likelihood as a loss function, denoted as
E �l fð Þjx; z½ �. Hence, the expected log-likelihood maximization problem becomes the
expected negative log-likelihood minimization problem, and the minimizer f �1 xð Þ and f �2 zð Þ
of E �l fð Þjx; z½ � is the maximizer of the expected log-likelihood.

In the iterative process of updating f 1 xð Þ and f 2 zð Þ, we use a cyclic coordinate descent
algorithm. This sequential update involves updating one of them while keeping the other
fixed at each iteration, reducing multivariate optimization to sequential univariate (Tang &
Wu, 2014). Owing to computational efficiency, cyclic coordinate descent has gained pop-
ularity for solving problems with more than one parameter (Massias et al., 2020; Saha &
Tewari, 2013). In each update of f 1 xð Þ and f 2 zð Þ, the Newton–Raphson method is applied
(Wu, 2013; Wu & Lange, 2010).

To minimize the expected negative log-likelihood, the update schemes based on the
Newton–Raphson method at iteration m are defined as follows:

f mþ1
1 ðxÞ ¼ f m1 ðxÞ � H�1 f m1 xð Þ� �

Dðf m1 ðxÞÞgiven f m2 ðzÞ;

f mþ1
2 ðzÞ ¼ f m2 ðzÞ � H�1 f m2 zð Þ� �

D f m2 zð Þ� �
given f mþ1

1 ðxÞ;
where D :ð Þ and H :ð Þ are the gradient and Hessian of the objective function, respectively.

Given initial values of 0 for f 01ðxÞ and f 02ðzÞ, the final values after M iterations are f M1 xð Þ ¼PM
m¼1f

m
1 ðxÞ and f M2 zð Þ ¼ PM

m¼1f
m
2 ðzÞ, and the predicted probabilities of observing each

possible outcome for unit i are calculated based on f M1 xð Þ and f M2 zð Þ. The final classifier isby ¼ argmax
j2 0,1f g

Prðy ¼ jjx; zÞ, where by represents the predicted outcome and j indicates possible

outcomes.

4 Proposed methods

In this section, we propose two novel methods, ZIPBoost and ZILBoost, that integrate the
two-regime process with boosting techniques to reduce the misclassification of the minority
class. We also show the convergence of the proposed methods.

4.1 ZIPBoost

ZIPBoost consists of two types of iterations: one with respect to the SE and the other with
respect to the OE. The objective function in ZIPBoost is the expected negative log-likeli-
hood, E �l fð Þjx; z½ �, where l fð Þ is defined as in Eq. (5). Like AdaBoost, the observation
weights for the SE and OE increase when units are misclassified and decrease for units that
are correctly classified.

4.1.1 Splitting equation iterations

ZIPBoost starts by fitting the SE, f 1 xð Þ. We use f x ¼ f 1ðxÞ and f z ¼ f 2ðzÞ interchangeably
for simplicity in notation. Using the properties of the cumulative distribution function and
the probability distribution function of the standard normal distribution, we can infer that
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U �f �ð Þð Þ ¼ 1� U f �ð Þð Þ, u �f �ð Þð Þ ¼ u f �ð Þð Þ; and u0 f �ð Þð Þ ¼ �f �ð Þu f �ð Þð Þ, where U �ð Þ
represents the standard normal cumulative distribution function and u �ð Þ indicates the
standard normal probability density function. We also assume the natural logarithm for the
negative log-likelihood function for simplicity. The gradient of the objective function is
defined as

D f xð Þ ¼ oE �l fð Þjx½ �
of x

¼ E � u f xð Þ y� U f xð ÞU f zð Þð Þ
U �f xð Þ þ U f xð ÞU �f zð Þf gU f xð Þ jx

� �
:

For the derivation of the gradient D f xð Þ, please see Appendix A.
In addition, the Hessian is defined as

H f xð Þ ¼ oD f xð Þ
of x

¼ E
o
of x

� u f xð Þ y� U f xð ÞU f zð Þð Þ
U �f xð Þ þ U f xð ÞU �f zð Þf gU f xð Þ

� �
jx

� �
¼ E h f xð Þjx½ �: ð8Þ

Equation (8) indicates that when y ¼ 0, h f xð Þ can be written as h f xð Þ ¼
� f xu f xð ÞU f zð Þ 1�U f xð ÞU f zð Þ½ ��u2 f xð ÞU2 f zð Þf g

1�U f xð ÞU f zð Þf g2 and when y ¼ 1, h f xð Þ can be written as h f xð Þ ¼
� �f xu f xð ÞU f xð Þ�u2 f xð Þf g

U f xð Þf g2 : Therefore,

E h f xð Þjx½ � ¼ E
u f xð Þ 1� yð ÞU f zð ÞG0 f xð Þ þ yG1 f xð Þf g
1� yð Þ 1� U f xð ÞU f zð Þð Þ þ yU f xð Þf g2 jx

" #
; ð9Þ

where G0 f xð Þ ¼ �f x þ f xU f xð ÞU f zð Þ þ u f xð ÞU f zð Þ; G1 f xð Þ ¼ f xU f xð Þ þ u f xð Þ, and
G0 f xð Þ ¼ �f x þ U f zð ÞG1 f xð Þ.

Descent methods require convexity of the loss function to guarantee optimality. The
convexity can be proven by showing that the Hessian of E �l fð Þjx½ � is positive definite.
However, the Hessian in Eq. (9) is indefinite, since h f xð Þ[ 0 if f x � 0 but h f xð Þ\0 if
f x [ 0 when y ¼ 1. This means that our algorithm can converge to saddle points (Dauphin
et al., 2014). Thus, we use the absolute value of the Hessian to force the matrix to be
positive definite. Notably, for the non-convex functions in the Newton–Raphson method,
the eigenvalues of the Hessian can be replaced with absolute values (Paternain et al., 2019;
Wright & Nocedal, 2006). In our setting, since the Hessian is a 1� 1 matrix and the
eigenvalue is the value of the Hessian itself, the modification is achieved by taking the
absolute value, represented as jh f xð Þj.
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Based on the gradient and the modified Hessian, the Newton–Raphson method is applied
to minimize the expected negative log-likelihood as follows:

f mþ1
1 xð Þ ¼f m1 xð Þ � H�1 f m1 xð Þ� �

D f m1 xð Þ� �
¼f m1 xð Þ þ 1

E jh f mx
� �jjx	 
E u f mx

� �
y� U f mx

� �
U f zð Þ� �

U �f mx
� �þ U f mx

� �
U �f zð Þ� �

U f mx
� � jx" #

¼f m1 xð Þ þ Ejhj
u f mx
� �

y� U f mx
� �

U f zð Þ� �
jh f mx
� �j U �f mx

� �þ U f mx
� �

U �f zð Þ� �
U f mx
� � jx" #

;

where Ewð�jxÞ indicates the weighted conditional expectation such that

Ew g x; yð Þjxð Þ ¼ E w x;yð Þg x;yð Þjx½ �
Ew x;yð Þjx½ � ;with w x; yð Þ[ 0.

Furthermore, the weights are expected to increase for misclassification but decrease for
correct classification. Thus, we provide the property of the weight function, jh f xð Þj:

W f xð Þ ¼ h f xð Þj j ¼ u f xð Þ 1� yð ÞU f zð ÞG0 f xð Þ þ yG1 f xð Þf g
1� yð Þ 1� U f xð ÞU f zð Þð Þ þ yU f xð Þf g2


: ð10Þ

When y ¼ 0; Eq. (10) becomes

W f xð Þ ¼ � f xu f xð ÞU f zð Þ 1� U f xð ÞU f zð Þ½ � þ U2 f xð ÞU2 f zð Þ� �
1� U f xð ÞU f zð Þf g2


:

The weight function with y ¼ 0 upweights the misclassified units and downweights the
units that are correctly classified. We summarize these properties in the following
propositions:

Proposition 1 (Correct classification) We have lim
f x!�1

W f xð Þ ¼ 0.

Proposition 2 (Correct classification) Given f z � �N, where N is an arbitrarily large
positive number, lim

f x!1
W f xð Þ ¼ 0.

Proposition 1 holds because u f xð Þ ! 0 and f xð Þ ! 0, and Proposition 2 holds because
u f xð Þ ! 0 andU f xð Þ ! 1, butU f zð Þ 	 0.

Proposition 3 (Misclassification) Given f z 
 N, where N is an arbitrarily large positive
number, lim

f x!1
W f xð Þ ¼ 1.

Proof Given f z 
 N , lim
f x!1

W f xð Þ ¼ lim
f x!1

�f xu f xð ÞU f zð Þþf xu f xð ÞU f zð ÞU f xð ÞU f zð Þþu2 f xð ÞU2 f zð Þ
1�U f xð ÞU f zð Þf g2

  ¼ 0
0,

which is an indeterminate form, since U f xð ÞUðf zÞ ! 1 and u f xð Þ ! 0 as f x ! 1. Thus,
following Zheng and Liu (2012), we apply L’Hôpital’s rule repeatedly:
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lim
f x!1

W f xð Þ ¼ lim
f x!1

�f xu f xð ÞU f zð Þ þ f xu f xð ÞU f zð ÞU f xð ÞU f zð Þ þ u2 f xð ÞU2 f zð Þ
1� U f xð ÞU f zð Þf g2




¼ lim
f x!1

d
df x

�f xu f xð ÞU f zð Þ þ f xu f xð ÞU f zð ÞU f xð ÞU f zð Þ þ u2 f xð ÞU2 f zð Þ	 

d
df x

1� U f xð ÞU f zð Þf g2



¼ lim

f x!1
�u f xð ÞU f zð Þ þ f 2xu f xð ÞU f zð Þ þ u f xð ÞU f xð ÞU2 f zð Þ � f 2xu f xð ÞU f xð ÞU2 f zð Þ � f xu

2 f xð ÞU2 f zð Þ
�2u f xð ÞU f zð Þ þ 2u f xð ÞU f xð ÞU2 f zð Þ

 
¼ lim

f x!1
1

2
þ f 2xu f xð ÞU f zð Þ � f 2xu f xð ÞU f xð ÞU2 f zð Þ � f xu

2 f xð ÞU2 f zð Þ
�2u f xð ÞU f zð Þ þ 2u f xð ÞU f xð ÞU2 f zð Þ

 
¼ lim

f x!1
1

2
þ f 2xU f zð Þ � f 2xU f xð ÞU2 f zð Þ � f xu f xð ÞU2 f zð Þ

�2U f zð Þ þ 2U f xð ÞU2 f zð Þ

 
¼ lim

f x!1
1

2
þ 2f xU f zð Þ � 2f xU f xð ÞU2 f zð Þ � u f xð ÞU2 f zð Þ

2u f xð ÞU2 f zð Þ

 
¼ lim

f x!1
1

2
� 1

2
þ f xU f zð Þ � f xU f xð ÞU2 f zð Þ

u f xð ÞU2 f zð Þ

 
¼ lim

f x!1
f x � f xU f xð ÞU f zð Þ

u f xð ÞU f zð Þ
 

¼ lim
f x!1

1þ 1� U f xð ÞU f zð Þ
�f xu f xð ÞU f zð Þ

 
¼ lim

f x!1
1þ u f xð ÞU f zð Þ

u f xð ÞU f zð Þ � f 2xu f xð ÞU f zð Þ




¼ lim
f x!1

1þ u f xð Þ
u f xð Þ � f 2xu f xð Þ




¼ lim
f x!1

1þ 1

1� f 2x


 ¼ 1;

where the second, sixth, ninth, and tenth equations hold by L’Hôpital’s rule. □

Propositions 1 and 2 provide the weight functions with y ¼ 0 in the SE iterations when a
unit is correctly classified (i.e., the predicted outcome is 0). As f x decreases, it is more likely
that the unit is identified as an inflated case, resulting in the correct classification. In such a
case, the weight function downweights the unit. When f x increases, the algorithm will
correctly classify the unit only if f z is sufficiently small (i.e., U f zð Þ 	 0Þ. It implies that
when f z is smaller than an arbitrarily large negative number, �N , the weight for the unit
decreases as f x increases. On the other hand, Proposition 3 provides the weight function
with y ¼ 0 in the case of misclassification. When f x increases and a sufficiently large value
of f z (i.e., U f zð Þ 	 1Þ is given, it is more likely that the unit is misclassified as an outcome
of 1, and hence, its weight is increased.

When y ¼ 1; Eq. (10) becomes

W f xð Þ ¼ f xu f xð ÞU f xð Þ þ u2 f xð Þ
U f xð Þf g2


:

The weight function with y ¼ 1 increases the weights for the misclassified units and
decreases the weights for the units that are correctly classified. We summarize these
properties in the following propositions:
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Proposition 4 (Correct classification) We have lim
f x!1

W f xð Þ ¼ 0:

The proof of Proposition 4 is trivial because u f xð Þ ! 0.

Proposition 5 (Misclassification) We have lim
f x!�1

W f xð Þ ¼ 1.

Proof The proof of Proposition 5 is similar to that of Proposition 3. For more details, please
see Appendix B.

Proposition 4 provides the weight function with y ¼ 1 for correct classification. An increase
in f x indicates a higher likelihood of passing the first hurdle (regime 0), and hence, the
weight for the unit is decreased. Proposition 5 shows the weight function with y ¼ 1 in the
case of misclassification. When f x decreases, it is more likely that the unit, whose actual
outcome is 1, is mistakenly identified as an inflated case. In such a case, our algorithm will
increase its weight in the next iteration.

4.1.2 Outcome equation iterations

Next, the algorithm updates f 2 zð Þ based on the previously updated f 1 xð Þ. The gradient of
the objective function is defined as

D f zð Þ ¼ oE �l fð Þjz½ �
of z

¼ E � u f zð Þ y� U f zð ÞU f xð Þð Þ
U �f xð Þ þ U f xð ÞU �f zð Þf gU f zð Þ jz

� �
:

We provide details on the derivation of the gradient D f zð Þ in Appendix A.
Furthermore, the Hessian is defined as

H f zð Þ ¼ oD f zð Þ
of z

¼ E
o
of z

� u f zð Þ y� U f zð ÞU f xð Þð Þ
U �f xð Þ þ U f xð ÞU �f zð Þf gU f zð Þ

� �
jz

� �
¼ E h f zð Þjz½ �: ð11Þ

When y ¼ 0; h f zð Þ in Eq. (11) becomes h f zð Þ ¼ � f zu f zð ÞU f xð Þ 1�U f zð ÞU f xð Þ½ ��u2 f zð ÞU2 f xð Þf g
1�U f zð ÞU f xð Þf g2 ,

and when y ¼ 1; it becomes h f zð Þ ¼ � �f zu f zð ÞU f zð Þ�u2 f zð Þf g
U f zð Þf g2 . Therefore, the Hessian can be

rewritten as

E h f zð Þjz½ � ¼ E
u f zð Þgf 1� yð ÞU f xð ÞG0 f zð Þ þ yG1 f zð Þf g
1� yð Þ 1� U f zð ÞU f xð Þð Þ þ yU f zð Þf g2 jz

" #
; ð12Þ

where G0 f zð Þ ¼ �f z þ f zU f zð ÞU f xð Þ þ u f zð ÞU f xð Þ; G1 f zð Þ ¼ f zU f zð Þ þ u f zð Þ, and
G0 f zð Þ ¼ �f z þ U f xð ÞG1 f zð Þ.

Like in Sect. 4.1.1, the Hessian in Eq. (12) is not positive definite, which means that our
objective function, E �l fð Þjz½ �, is not convex. Thus, we use the modified Hessian by using
the absolute value of the Hessian.

Based on the gradient and the modified Hessian, the Newton–Raphson method is applied
to minimize the negative log-likelihood with f 2ðz) as follows:
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f mþ1
2 zð Þ ¼f m2 zð Þ � H�1 f m2 zð Þ� �

D f m2 zð Þ� �
¼f m2 zð Þ þ 1

E jh f mz
� �jjz	 
E u f mz

� �
y� U f mz

� �
U f xð Þ� �

U �f xð Þ þ U f xð ÞU �f mz
� �� �

U f mz
� � jz" #

¼f m2 zð Þ þ Ejhj
u f mz
� �

y� U f mz
� �

U f xð Þ� �
jh f mz
� �j U �f xð Þ þ U f xð ÞU �f mz

� �� �
U f mz
� � jz" #

;

where Ewð�jzÞ indicates the weighted conditional expectation such that Ew g z; yð Þjzð Þ ¼
E w z;yð Þg z;yð Þjz½ �
Ew z;yð Þjz½ � ; with w z; yð Þ[ 0.

Furthermore, we provide the properties of the weight function, jh f zð Þj, which is defined
as

W f zð Þ ¼ h f zð Þj j ¼ u f zð Þgf 1� yð ÞU f xð ÞG0 f zð Þ þ yG1 f zð Þf g
1� yð Þ 1� U f zð ÞU f xð Þð Þ þ yU f zð Þf g2


:

The weight function with y ¼ 0 can be rewritten as

W f zð Þ ¼ � f zu f zð ÞU f xð Þ 1� U f zð ÞU f xð Þ½ � � u2 f zð ÞU2 f xð Þ� �
1� U f zð ÞU f xð Þf g2




and has the properties of increasing the weights for the misclassified units and decreasing
the weights for the correctly classified units as follows:

Proposition 6 (Correct classification) We have lim
f z!�1

W f zð Þ ¼ 0.

Proposition 7 (Correct classification) Given f x � �N ; where N is an arbitrarily large
positive number, lim

f z!1
W f zð Þ ¼ 0.

Proposition 6 holds because u f zð Þ ! 0 and U f zð Þ ! 0, and Proposition 7 holds
because u f zð Þ ! 0 and U f zð Þ ! 1, but U f xð Þ 	 0.

Proposition 8 (Misclassification) Given f x 
 N ; where N is an arbitrarily large positive
number, lim

f z!1
W f zð Þ ¼ 1.

Proof The proof of Proposition 8 is similar to that of Proposition 3. For more details, please
see Appendix B.

Propositions 6 and 7 provide the weight functions with y ¼ 0 in the OE iterations in the case
of correct classification. As f z decreases, our algorithm predicts an outcome of 0 for the unit,
implying that the observed outcome and the predicted outcome are identical. Thus, its
weight is decreased. When f z increases, correct classification occurs only if f x is sufficiently
small (i.e., U f xð Þ 	 0). In other words, for a given f x smaller than an arbitrarily large
negative number, �N , the weight for the unit is decreased, as the unit is identified as an
inflated case. However, with a sufficiently large value of f x(i.e., U f xð Þ 	 1), an increase in
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f z implies a higher possibility of being misclassified as an outcome of 1 and the weight for
the unit is increased, as shown in Proposition 8.

The weight function with y ¼ 1 can be rewritten as

W f zð Þ ¼ � �f zu f zð ÞU f zð Þ � u2 f zð Þ� �
U f zð Þf g2


;

and we provide the properties that upweight the misclassified units and downweight the
units as follows:

Proposition 9 (Correct classification) lim
f z!1

W f zð Þ ¼ 0.

It is easy to see that Proposition 9 holds because u f zð Þ ! 0.

Proposition 10 (Misclassification) lim
f z!�1

W f zð Þ ¼ 1.

Proof To prove Proposition 10, we apply L’Hôpital’s rule repeatedly since we have an
indeterminate form due to the fact that U f zð Þ ! 0 and u f zð Þ ! 0 as f z ! �1. Please see
Appendix B.

Proposition 9 provides the weight function with y ¼ 1 in the OE iterations for correct
classification. As f z increases, it is more likely that the predicted outcome of the unit is 1,
leading to a decrease in the corresponding weight. On the other hand, Proposition 10 shows
a decrease in weights for misclassification. When f z decreases, the unit is more likely to be
misclassified as an outcome of 0. In such a case, our algorithm will increase its weight.

4.1.3 Pseudo-code for ZIPBoost

We summarize the proposed algorithm ZIPBoost by presenting the pseudo-code in Algo-
rithm 1. The algorithm requires a set of samples xi; zi; yið Þ for i 2 f1; . . .;Ng, where xi and
zi are sets of variables for the SE and OE, respectively, and the maximum number of
iterations, M . In Step A, we set the initial fitted values of f 01 xið Þ and f 02 zið Þ to zero.

Next, in Step B, we run the ZIPBoost iterations to sequentially update the fitted values
for the SE (Lines 3–6) and for the OE (Lines 7–10). More precisely, for each iteration of
m 2 f1; . . .;Mg, we first run the SE iterations with the transformed response qmi;se in Line 3

and weights for the SE wm
i;se in Line 4, which are defined as follows:

qmi;se ¼
u f m�1

x

� �
y� U f m�1

x

� �
U f m�1

z

� �� �
jh f m�1

x

� �j U �f m�1
x

� �þ U f m�1
x

� �
U �f m�1

z

� �� �
U f m�1

x

� � ;
and

wm
i;se ¼

u f m�1
1 xið Þ� �gf 1� yð ÞU f m�1

2 zið Þ� �
G0 f m�1

1 xið Þ� �þ yG1 f m�1
1 xið Þ� �� �

1� yð Þ 1� U f m�1
1 xið Þ� �

U f m�1
2 zið Þ� �� �þ yU f m�1

2 zið Þ� �� �2


; ð13Þ

where G0 f xð Þ ¼ �f x þ f xU f xð ÞU f zð Þ þ u f xð ÞU f zð Þ; G1 f xð Þ ¼ f xU f xð Þ þ u f xð Þ, and
G0 f xð Þ ¼ �f x þ U f zð ÞG1 f xð Þ.

Since the update scheme is based on the Newton–Raphson method, the classifier can be
obtained by fitting a weighted least square regression of the transformed response qmi;se on xi
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with the weight wm
i;se. Thus, the optimal classifier, gmðx; bÞ in Line 5, is

gm xi; bð Þ ¼ argminf
XN
i¼1

wm
i;se qmi;se � f 1 xið Þ

� �2
: ð14Þ

Based on gmðxi; bÞ, we update the probability for the SE, f m1 ðxiÞ, in Line 6. Then, we
have

f m1 xið Þ ¼ f m�1
1 xið Þ þ gm xi; bð Þ:

Given f m1 ðxiÞ, we run the OE iterations to update f 2 zið Þ with the transformed response
ymi;oe in Line 7 and weights wm

i;oe in Line 8, which are defined as

ymi;oe ¼
u f m�1

z

� �
y� U f m�1

z

� �
U f mx
� �� �

jh f m�1
z

� �j U �f mx
� �þ U f mx

� �
U �f m�1

z

� �� �
U f m�1

z

� � ;
and

wm
i;oe ¼

u f m�1
2 zið Þ� �� �

1� yð ÞU f m1 xið Þ� �
G0 f m�1

2 zið Þ� �þ yG1 f m�1
2 zið Þ� �� �

1� yð Þ 1� U f m�1
2 zið Þ� �

U f m1 xið Þ� �� �þ yU f m�1
2 zið Þ� �� �2


; ð15Þ

where G0 f zð Þ ¼ �f z þ f zU f zð ÞU f xð Þ þ u f zð ÞU f xð Þ; G1 f zð Þ ¼ f zU f zð Þ þ u f zð Þ, and
G0 f zð Þ ¼ �f z þ U f xð ÞG1 f zð Þ.

Like in the SE iterations, we fit a weighted least square regression of the transformed
response ymi;oe on zi with the weight wm

i;oe. The optimal classifier for the OE, gmðzi; cÞ in Line

10, is

gmðzi; cÞ ¼ argminf
XN
i¼1

wm
i;oe ymi;oe � f 2 zið Þ

� �2
: ð16Þ

We update the probability for the OE, f m2 ðziÞ, in Line 6 as follows:

f m2 zið Þ ¼ f m�1
2 zið Þ þ gm zi; cð Þ:

In Step C, after M iterations, the probability of belonging to each class can be calculated
based on the fitted values of f M1 xið Þ and f M2 zið Þ. Using these estimated final values, the final
probability and the corresponding predicted class for unit i are produced.

We note that assuming k � N (sample size is much larger than number of variables), the
overall time complexity of ZIPBoost is Oðk2NMÞ, where the bottleneck is the estimation of
gmðxi; bÞ and gmðzi; cÞ in Lines 5 and 9, requiring build of weighted least square regression
in each iteration of Step B, where each estimation requires Oðk2NÞ steps.
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Algorithm 1: ZIPBoost

During iterations, the weights might become extremely small, especially in regions
where units are perfectly classified, leading to potential computational problems. More
precisely, in cases of perfect classification, in which the weights are too small (i.e., the
weights are close to zero since they are bounded to zero), the denominator of the trans-
formed response can be such a small value that the transformed response is not well defined.
To avoid the numerical problems involved in defining the transformed response, we adopt a
lower threshold of 2 �machine� zero on the weights, following the work of Friedman et al.
(2000). In addition, the transformed response can become extreme values, resulting in
numerical instability. To be specific, the transformed responses for SE and OE in ZIPBoost
can be rewritten as qi;se ¼ 1

f xþu f xð Þ
/ f xð Þ

  and yi;oe ¼ 1

f zþu f zð Þ
/ f zð Þ

  when y ¼ 1, respectively. If f x or f z is

too small, qi;se or yi;oe becomes very large. When y ¼ 0, we have qi;se ¼ �1

�f xþ u f xð Þ/ f zð Þ
1�/ f xð Þ/ f zð Þ

  and
yi;oe ¼ �1

�f zþ u f zð Þ/ f xð Þ
1�/ f xð Þ/ f zð Þ

 . For a unit with large f x and f z values, qi;se and yi;oe become quite

small. Therefore, we enforce the working responses to fall in the interval of �4; 4½ �, which
was derived according to Friedman et al. (2000). This interval shows that we construct the
transformed responses with a lower threshold of -4 and an upper threshold of 4.

4.2 ZILBoost

ZILBoost also proceeds with the iterations for the SE and OE sequentially, utilizing the
expected negative log-likelihood, E �l fð Þjx; z½ �, where l fð Þ is defined as Eq. (7), serving as
the objective function. The weight function operates similarly to LogitBoost: The
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observation weights increase for those with f 1ðxÞ or f 2 zð Þ close to zero, whereas the weights
decrease for those with f 1ðxÞ or f 2 zð Þ far from zero.

4.2.1 Splitting equation iterations

The algorithm starts by updating f 1 xð Þ. The gradient of the objective function is defined as

D f xð Þ ¼ oE �l fð Þjx½ �
of x

¼E
exp �f xð Þ 1þ exp �f xð Þð Þ�1 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1 � y

h i
1� 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1 jx

24 35;
and the Hessian is defined as

H f xð Þ ¼ oD f xð Þ
of x

¼E
o
of x

exp �f xð Þ 1þ exp �f xð Þð Þ�1 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1 � y
h i

1� 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1

24 35jx
24 35

¼E h f xð Þjx½ �:
ð17Þ

The derivation of the gradient D f xð Þ is provided in Appendix A.
Equation (17) indicates that when y ¼ 0, h f xð Þ can be written as

h f xð Þ ¼ exp �f xð Þ 1þ exp �f xð Þð Þ�3 1þ exp �f zð Þð Þ�1 exp �f xð Þ � 1ð Þ þ exp �f xð Þ 1þ exp �f xð Þð Þ�4 1þ exp �f zð Þð Þ�2

1� 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1
n o2

and when y ¼ 1, h f xð Þ can be written as

h f xð Þ ¼ expð�f xÞ
1þ exp �f xð Þð Þ2 : ð18Þ

Therefore,

E h f xð Þjx½ � ¼ E
expð�f xÞ yþ 1� yð ÞL f xð Þf g

1� yð Þ 1� 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1
� �

þ y 1þ exp �f xð Þð Þ
n o2 jx

264
375;
ð19Þ

where L f xð Þ ¼ 1þ exp �f xð Þð Þ�3 1þ exp �f zð Þð Þ�1 expð �f xð Þ � 1Þ þ 1þ exp �f xð Þð Þ�4

1þ exp �f zð Þð Þ�2.
Since we cannot guarantee the positive definiteness of the Hessian in Eq. (19), we replace

h f xð Þ with its absolute value in our algorithm. Based on the gradient and the modified
Hessian, the Newton–Raphson method is applied to minimize the expected negative log-
likelihood as follows:
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f mþ1
1 xð Þ ¼f m1 xð Þ � H�1 f m1 xð Þ� �

D f m1 xð Þ� �
¼f m1 xð Þ þ 1

E jh f mx
� �jjx	 
E �

exp �f xð Þ 1þ exp �f xð Þð Þ�1 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1 � y
h i

1� 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1 jx
24 35

¼f m1 xð Þ þ Ejhj �
exp �f xð Þ 1þ exp �f xð Þð Þ�1 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1 � y

h i
h f mx
� � f1� 1þ exp �f xð Þð Þ�1 1þ exp �f zð Þð Þ�1g jx

24 35;
where Ewð�jxÞ indicates the weighted conditional expectation such that

Ew g x; yð Þjxð Þ ¼ E w x;yð Þg x;yð Þjx½ �
Ew x;yð Þjx½ � ;with w x; yð Þ[ 0.

The weight function of ZILBoost, jh f xð Þj, is similar to that of LogitBoost in that the
algorithm upweights the units that are hard to classify (i.e., the fitted values are around zero)
and downweights the units that can be classified with high confidence (i.e., the fitted values
are not around zero).

From Eq. (18), we can infer that the weight function with y ¼ 1 is similar to the
probability distribution function (PDF) of the logistic distribution with a location parameter
of 0 and a scale parameter of 1. The PDF of the logistic distribution has the maximum
probability at the center of 0 and is symmetric around zero. Consequently, the maximum
weights will be assigned to units whose fitted values are zero.

Next, we provide the property of the weight function, jh f xð Þj, when y ¼ 0 and f z 
 N .
In this case, whether a unit is misclassified depends on the value of f x because f z is greater

than an arbitrarily large positive number, resulting in 1þ exp �f zð Þð Þ�1 being approxi-
mately 1. Assuming this, let us rewrite the weight function as follows:

exp �f xð Þ 1þ exp �f xð Þð Þ�3 exp �f xð Þ � 1ð Þ þ exp �f xð Þ 1þ exp �f xð Þð Þ�4

1� 1þ exp �f xð Þð Þ2


: ð20Þ

Let 1þ exp �f xð Þ ¼ K. Then, we can rewrite Eq. (20) as

K�1ð ÞK�3 K�2ð Þþ K�1ð ÞK�4

1�K�1ð Þ2


¼ K�1ð ÞK�3 K�2ð Þ
K�1ð Þ2K�2

þ K�1ð ÞK�4

K�1ð Þ2K�2




¼ K�1 K�2ð Þ
K�1

þ K�2

K�1

 ¼ K�1 K�2ð ÞþK�2

K�1

 
¼ 1�2K�1þK�2

K�1

 ¼ 1�K�1ð Þ2
K�1




¼ K�1ð Þ2K�2

K�1


¼ K�1ð ÞK�2

 ¼ exp �fxð Þ
1þexp �fxð Þð Þ2


;

which is similar to the PDF of the logistic distribution with a location parameter of 0 and a
scale parameter of 1.

In addition, we provide the property of the weight function with y ¼ 0 and f z � �N . In
this case, f x does not play an important role in the classification because the negative value
of f z indicates that the predicted class for a unit would be zero. This means that f z is smaller

than an arbitrarily large negative number such that 1þ exp �f zð Þð Þ�1 	 0, which reduces
the weight function to zero.
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4.2.2 Outcome equation iterations

Next, the algorithm updates f z given the updated value of f x. For updating f z, the gradient
of the objective function is defined as

D fzð Þ ¼ oE �l fð Þjz½ �
ofz

¼E
exp �fzð Þ 1þ exp �fzð Þð Þ�1 1þ exp �fzð Þð Þ�1 1þ exp �fxð Þð Þ�1�y

h i
1� 1þ exp �fzð Þð Þ�1 1þ exp �fxð Þð Þ�1 jz

24 35:
For the derivation of the gradient D f zð Þ, please see Appendix A.
The Hessian is defined as

H fzð Þ ¼ oD fzð Þ
ofz

¼E
o
ofz

exp �fzð Þ 1þ exp �fzð Þð Þ�1 1þ exp �fzð Þð Þ�1 1þ exp �fxð Þð Þ�1�y
h i

1� 1þ exp �fzð Þð Þ�1 1þ exp �fxð Þð Þ�1

24 35jz
24 35

¼E h fzð Þjz½ �:
ð21Þ

According to Eq. (21), when y ¼ 0, h f zð Þ can be rewritten as

h f zð Þ ¼ exp �f zð Þ 1þ exp �f zð Þð Þ�3 1þ exp �f xð Þð Þ�1 exp �f zð Þ � 1ð Þ þ exp �f zð Þ 1þ exp �f zð Þð Þ�4 1þ exp �f xð Þð Þ�2

1� 1þ exp �f zð Þð Þ�1 1þ exp �f xð Þð Þ�1
n o2 ;

and when y ¼ 1, h f zð Þ can be rewritten as

h f zð Þ ¼ expð�f zÞ
1þ exp �f zð Þð Þ2 :

Thus, the Hessian of the objective function is as follows:

E h f zð Þjz½ �¼E
expð�f zÞ yþ 1�yð ÞL f zð Þf g

1�yð Þ 1� 1þexp �f zð Þð Þ�1 1þexp �f xð Þð Þ�1
� �

þy 1þexp �f zð Þð Þ
n o2 jz

264
375;

ð22Þ
where L f zð Þ¼ 1þexp �f zð Þð Þ�3 1þexp �f xð Þð Þ�1 exp �f zð Þ�1ð Þþ 1þexp �f zð Þð Þ�4

1þexp �f xð Þð Þ�2.
As before, we use the modified Hessian, given that the Hessian in Eq. (22) is not positive

definite. Based on the gradient and the modified Hessian, we apply the Newton–Raphson
method to minimize the expected negative log-likelihood as follows:
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f mþ1
2 zð Þ ¼f m2 zð Þ � H�1 f m2 zð Þ� �

D f m2 zð Þ� �
¼f m2 zð Þ þ 1

E jh f mz
� �jjz	 
E �

exp �f zð Þ 1þ exp �f zð Þð Þ�1 1þ exp �f zð Þð Þ�1 1þ exp �f xð Þð Þ�1 � y
h i

1� 1þ exp �f zð Þð Þ�1 1þ exp �f xð Þð Þ�1 jz
24 35

¼f m2 zð Þ þ Ejhj �
exp �f zð Þ 1þ exp �f zð Þð Þ�1 1þ exp �f zð Þð Þ�1 1þ exp �f xð Þð Þ�1 � y

h i
h f mz
� � f1� 1þ exp �f zð Þð Þ�1 1þ exp �f xð Þð Þ�1g jz

24 35;
where Ewð�jzÞ indicates the weighted conditional expectation such that

Ew g z; yð Þjzð Þ ¼ E w z; yð Þg z;yð Þjz½ �
E w z;yð Þjz½ � ;with w z; yð Þ[ 0.

Since the Hessian serving as the weight function in Eq. (22) is akin to the one in Eq. (19)
used during the SE iterations, it is easy to see that the update for f z results in increased
weights for units having high classification confidence and decreased weights for those with
low classification confidence.

4.2.3 Pseudo-code for ZILBoost

In this section, we summarize the ZILBoost algorithm through pseudo-code in Algorithm 2.
The pseudo-code of ZILBoost is similar to that of ZIPBoost presented in Sect. 4.1.3 except the
formulas for the transformed response variables, qmi;se and y

m
i;oe, and the weight functions, w

m
i;se

andwm
i;oe. For the SE iterations, the transformed response and theweight function are defined as

qmi;se¼�
exp �f m�1

1 xið Þ� �
1þexp �f m�1

1 xið Þ� �� ��1
1þexp �f m�1

1 xið Þ� �� ��1
1þexp �f m�1

2 zið Þ� �� ��1�yi
h i

h f m�1
1 xið Þ� �  1� 1þexp �f m�1

1 xið Þ� �� ��1
1þexp �f m�1

2 zið Þ� �� ��1
n o ;

and

wm
i;se¼

exp �f m�1
1 xið Þ� �

yiþ 1�yið ÞL f m�1
i;x

� �n o
1�yið Þ 1� 1þexp �f m�1

1 xið Þ� �� ��1
1þexp �f m�1

2 zið Þ� �� ��1
� �

þyi 1þexp �f m�1
1 xið Þ� �� �n o2


;

ð23Þ

where L f m�1
i;x

� �
¼ 1þexp �f m�1

1 xið Þ� �� ��3
1þexp �f m�1

2 zið Þ� �� ��1
expð

�f m�1
1 xið Þ� ��1Þþ 1þexp �f m�1

1 xið Þ� �� ��4
1þexp �f m�1

2 zið Þ� �� ��2
. Using qmi;se and wm

i;se,

we obtain the optimal classifier by fitting a weighted least square regression such that

gmðxi;bÞ¼argminf
XN
i¼1

wm
i;se qmi;se�f 1 xið Þ

� �2
: ð22Þ

For the OE iterations, the algorithm uses the following transformed response and the
weight function:

ymi;oe ¼ �
exp �f m�1

2 zið Þ� �
1þ exp �f m�1

2 zið Þ� �� ��1
1þ exp �f m�1

2 zið Þ� �� ��1
1þ exp �f m1 xið Þ� �� ��1 � yi

h i
h f m�1

2 zið Þ� �  1� 1þ exp �f m�1
2 zið Þ� �� ��1

1þ exp �f m1 xið Þ� �� ��1
n o

and
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wm
i;oe ¼

exp �f m�1
2 zið Þ� �

yþ 1� yið ÞL f m�1
2 zið Þ� �� �

1� yið Þ 1� 1þ exp �f m�1
2 zið Þ� �� ��1

1þ exp �f m1 xið Þ� �� ��1
� �

þ y 1þ exp �f m�1
2 zið Þ� �� �n o2


; ð25Þ

where L f m�1
i;z

� �
¼ 1þexp �f m�1

2 zið Þ� �� ��3
1þexp �f m1 xið Þ� �� ��1

exp �f m�1
2 zið Þ� ��1

� �þ
1þexp �f m�1

2 zið Þ� �� ��4
1þexp �f m1 xið Þ� �� ��2

. Like in the OE, we fit a weighted least
square regression to obtain the optimal classifier as

gmðzi;cÞ¼argminf
XN
i¼1

wm
i;oe ymi;oe�f 2 zið Þ

� �2
: ð26Þ

After M iterations, using f M1 xið Þ and f M2 zið Þ, the probabilities of belonging to each class
can be calculated, and the corresponding predicted class for unit i is determined.

Similar to ZIPBoost, assuming k � N (the sample size is much larger than the number of
variables), the overall time complexity of ZILBoost is Oðk2NMÞ.

Algorithm 2: ZILBoost
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Similar to ZIPBoost, we set a lower threshold of the weights as 2 �machine� zero.
Furthermore, the transformed responses for SE and OE in ZILBoost can be defined as
qi;se ¼ 1þ expð�f xÞ and yi;oe ¼ 1þ expð�f zÞ when y ¼ 1. In this case, they become very
large values with a small value f x or f z. For y ¼ 0, qi;se ¼ � 1þ exp �f xð Þð Þ
1� 1þ exp �f xð Þð Þ�1 1þ exp �f xð Þð Þ�1

� �
= �1þ exp �f xð Þ þ 1þ exp �f xð Þð Þ�1

1þexp �f zð Þð Þ�1j and yi;oe¼� 1þexp �f zð Þð Þ 1� 1þexp �f zð Þð Þ�1 1þexp �f xð Þð Þ�1
� �

=

j�1þexp �f zð Þþ 1þexp �f zð Þð Þ�1 1þexp �f xð Þð Þ�1j so that the transformed responses
can be extremely small while having large values of f x and f z. Thus, to maintain numerical
stability, we limit the range of the working responses to �4;4½ �.

4.3 Convergence of proposed methods

ZIPBoost and ZILBoost follow the modified Newton method, f mþ1
x ¼ f mx � D f mxð Þ

H f mxð Þj j for SE

and f mþ1
z ¼ f mz � D f mzð Þ

H f mzð Þj j for OE, where D f mx
� � ¼ oE½�lðf Þjx�

of x
, H f mx

� � ¼ o
of x

oE½�lðf Þjx�
of x

h i
,

D f mz
� � ¼ oE½�lðf Þjz�

of z
, and H f mz

� � ¼ o
of z

oE½�lðf Þjz�
of z

h i
. Here, we show the convergence of the

proposed methods to a local minimum. As the iterations for the splitting equation and OE in
the proposed methods rely on the same updated scheme, we provide only the convergence
for the spitting equation iteration, f mx , because the convergence for the OE iteration is
similar.

Let us define a function g f mx
� � ¼ f mx � D f mxð Þ

H f mxð Þj j to have f mþ1
x ¼ g xkð Þ. For the conver-

gence, we use the fact that g f mx
� �

is a contraction in a neighborhood of a local minimum. We
define a contraction in Definition 1.

Definition 1 A function gðxÞ is called a contraction in the interval ½a; b� if there exists a
number L 2 ½0,1Þ such that

g xð Þ � g yð Þj j �Ljx� yj
for any x; y 2 ½a; b�.

However, in our setting, it is challenging to apply Definition 1 directly to prove that g f mx
� �

is
a contraction. Thus, we rely on Theorem 1, which is equivalent to Definition 1 (For more
details, please see Babajee & Dauhoo, 2006).

Theorem 1 (Babajee & Dauhoo, 2006). If g is differentiable and a number L 2 ½0,1Þ exists
such that g0 xð Þj j � L for all x 2 ½a; b�, then g is a contraction on ½a; b�.

Proof Let x; y 2 ½a; b� and assume x\y. According to the mean value theorem, we have
g xð Þ�g yð Þ

x�y ¼ g0ðcÞ for some c 2 ðx; yÞ. If g0 xð Þj j �Lfor all x 2 ½a; b�, then g0 cð Þj j �L.
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Therefore, we have g xð Þ�g yð Þ
x�y

 � L, and equivalently, g xð Þ � g yð Þj j � Lðx� yÞ, which is

the definition of the contraction. □
Based on Theorem 1, we now show that the iteration gðf mx Þ converges to a local mini-

mum by following Süli and Mayers (2003, Theorem 1.5).

Theorem 2 Let f �x be the actual solution of D f �x
� � ¼ 0, and assume f 0x � f �x

 \d, where f 0x
is an initial guess and d is an arbitrary positive number. If g f mx

� �
is a contraction on

f �x � d; f �x þ d
� �

, the iteration converges to f �x .

Proof Let us assume there exists a solution f �x satisfying the following three conditions: (i)
oE½�lðf Þjx�

of x


f x¼f �x

¼ D f �x
� � ¼ 0, (ii) o2E½�lðf Þjx�

o2f x


f x¼f �x

¼ H f �x
� �

[ 0, (iii) o3E½�lðf Þjx�
o3f x

is bounded

near x. We also assume that an initial guess f 0x is sufficiently close to the solution f �x
satisfying f 0x � f �x

 \d. We note that the standard Newton method also requires this
assumption for convergence (Casella & Bachmann, 2021).

First, we show gðf mx Þ is a contraction using Theorem 1. We know that gðf mx Þ is differentiable
since the third-order derivatives can be defined.1 Then, there exists a number L 2 ½0,1Þ such
that g0 f mx

� � � L for all f x 2 ½f �x � d; f �x þ d�. With

g0 f mx
� � ¼ 1� H f mxð Þ

H f mxð Þj j þ
D f mxð Þ H f mxð Þ

H f mxð Þj j
o3E½�lðf Þjx�

o3 f x


f x¼f mx

H f mxð Þj jð Þ2 , we can show lim
f x!f �x

g0 f mx
� � ¼ 0, since the first

and second terms converge to 1 and 0, respectively, because D f �x
� � ¼ 0 and H f �x

� �
[ 0.

This result implies that g0 f mx
� �

is near zero for f x around f �x , and there exists an interval

½f �x � d; f �x þ d� where g0 f mx
� � \L\1 for all f x 2 ½f �x � d; f �x þ d�. This means that the

assumptions of Theorem 1 hold, and hence, we conclude that gðf mx Þ is a contraction on
½f �x � d; f �x þ d�.

Next, we show that the iteration gðf mx Þ converges to f �x . For f �x, we have g f �x
� � ¼

f �x �
D f �xð Þ
H f �xð Þj j ¼ f �x since D f �x

� � ¼ 0 and H f �x
� �

[ 0. Thus,

1 The third derivative of the objective function for ZIPBoost is
f xuðf xÞUðf xÞðy�U f xð ÞU f zð Þ U �f xð ÞþU f xð ÞU �f zð Þð Þþu2 f xð ÞU f xð ÞU f zð Þ U �f xð ÞþU �f xð ÞU �f zð Þð Þþu f xð ÞU f xð Þ y�U f xð ÞU f zð Þð Þ �u f xð Þþu f xð ÞU �f zð Þð Þþu2 f xð Þ y�U �f xð ÞU f zð Þð Þ U �f xð ÞþU f xð ÞU �f zð Þð Þ

U �f xð ÞþU f xð ÞU �f zð Þf g2U2 f xð Þ
for the splitting equation, and for the outcome equation,

f zuðf zÞUðf zÞðy� U f zð ÞU f xð Þ U �f xð Þ þ U f xð ÞU �f zð Þð Þ þ u2 f zð ÞU f zð ÞU f xð Þ U �f xð Þ þ U �f xð ÞU �f zð Þð Þ � u2 f zð ÞU f zð ÞU f xð Þ y� U f zð ÞU f xð Þð Þ þ u2 f zð Þ y� U f zð ÞU f xð Þð Þ U �f xð Þ þ U f xð ÞU �f zð Þð Þ
U �f xð Þ þ U f xð ÞU �f zð Þf g2U2 f zð Þ :

The objective function for ZILBoost has the third derivative since, for the splitting equation, we have,
exp 4f xð Þ� exp f zð Þþ2ð Þexp 3f xð Þ�6 exp f zð Þþ1ð Þexp 2f xð Þ� exp f zð Þþ1ð Þðexp f zð Þþ2ð Þexp f xð Þþexp 2f zð Þþ2exp f zð Þþ1ÞÞexp f xþf zð Þ

exp f xð Þþ1ð Þ3 exp f xð Þþexp f zð Þþ1ð Þ3

when y ¼ 0, and � exp f xð Þ�1ð Þexp f xð Þ
exp f xð Þþ1ð Þ3 when y ¼ 1. For the outcome equation, we have,

exp 4f zð Þ� exp f xð Þþ2ð Þexp 3f zð Þ�6 exp f xð Þþ1ð Þexp 2f zð Þ� exp f xð Þþ1ð Þðexp f xð Þþ2ð Þexp f zð Þþexp 2f xð Þþ2exp f xð Þþ1ÞÞexp f xþf zð Þ
exp f zð Þþ1ð Þ3 exp f xð Þþexp f zð Þþ1ð Þ3 ,

when y ¼ 0, and � exp f zð Þ�1ð Þexp f zð Þ
exp f zð Þþ1ð Þ3 when y ¼ 1.
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f 1x � f �x
  ¼ g f 0x

� �� g f �x
� � �L f 0x � f �x

 \Ld;

f 2x � f �x
  ¼ g f 1x

� �� g f �x
� � �L f 1x � f �x

 \L2d;

f 3x � f �x
  ¼ g f 2x

� �� g f �x
� � �L f 2x � f �x

 \L3d;

..

.

f mx � f �x
  ¼ g f m�1

x

� �� g f �x
� � � L f m�1

x � f �x
 \Lmd:

Since L\1, we have lim
m!1 f mx � f �x

  ¼ 0, implying that f mx ! f �x . Therefore, the iteration

by the modified Newton method leads to convergence to f �x . □

5 Computational experiment

In this section, we show that our proposed methods outperform other boosting methods,
such as AdaBoost, LogitBoost, ProbitBoost, AdaC2, SMOTEBoost, and GANs, using a
Monte Carlo Simulation, a real data application for predicting M&A outcomes, and
imbalanced datasets from the Keel repository. We implemented all algorithms in R (version
4.2.2) on a Mac-OS system with M1 and 16 GB RAM.

5.1 Monte Carlo simulation

We simulate hypothetical data with the zero-inflated case to demonstrate the performance of
ZIPBoost and ZILBoost. We include AdaBoost (Freund & Schapire, 1996), LogitBoost
(Friedman et al., 2000), ProbitBoost (Zheng & Liu, 2012), AdaC2 (Sun et al., 2007),
SMOTEBoost (Chawla et al., 2003), and GANs (Goodfellow et al., 2014) as benchmark
models. AdaBoost, LogitBoost, and ProbitBoost update classifiers based on prediction error
without accounting for class imbalance. AdaC2 is a variant of AdaBoost with unequal
misclassification costs for majority and minority classes. In addition to AdaC2, several other
cost-sensitive learning algorithms based on AdaBoost have been proposed, such as Ada-
Cost, AdaC1, and AdaC3. However, this simulation study considers only AdaC2 as one of
the benchmark models since previous research shows that AdaC2 outperforms other
modifications of AdaBoost (e.g., Sun et al., 2007; Yin et al., 2013). Since AdaC2 embeds
unequal misclassification costs for each class in a cost matrix, we select costs that maximize
the F-score2 in the training data following Sun et al. (2007). Meanwhile, SMOTEBoost, a
combination of SMOTE (an oversampling method) and boosting, requires the oversampling
rate, which is the ratio of the number of synthetic minority examples to that of the original
minority examples (Gao et al., 2014), and the number of nearest neighbors. Based on prior
studies (e.g., Wei et al., 2021), we set the oversampling rate to the rounded-down value of
the imbalance ratio (IR)—that is, the ratio of the number of the majority examples to that of
the minority examples. Along with the oversampling rate, the synthetic examples were
generated based on the five nearest neighbors. To train weak learners with the synthetic
examples, we experimented with various learning algorithms, including classification and
regression tree (CART), C.50 Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB),
and SVM. We also considered combinations of GANs and learning algorithms as bench-
marks. Specifically, we trained the GANs to generate synthetic examples and, thus, balance

2 The F-score is a harmonic mean of precision and recall (Lin et al., 2020; Liu et al., 2012).
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distributions across the two classes. We applied learning algorithms, including the gener-
alized boost method (GBM), logit, DT, RF, and SVM, for classification after adding the
synthetic examples to the dataset.

We generated the dataset 1,000 times following the data-generating process (DGP):
For i 2 f1; . . .; 1000g,

Splitting equation : q�i ¼ b0 þ b1xi1 þ b2xi2 þ b3xi3 þ ui;

Outcome equation : eyi� ¼ c0 þ c1zi1 þ c2zi2 þ c3zi3 þ ei:

We examined the performance under various proportions of the minority class in the
data, which are 5%, 10%, 20%, 30%, and 40%, by adjusting the parameter values.
Specifically, we set b1, b2; b3; c1; c2; and c3 to 0.5, –3.5, –1.5, –2, 1.5, and 0.5, respectively,
across all cases. In addition, we adjusted the values of b0 and c0 to change the proportions of
the minority class: b0; c0ð Þ ¼ ð�5;�5Þ for the 5% minority examples, b0; c0ð Þ ¼
ð�3;�2:5Þ for the 10% minority examples, b0; c0ð Þ ¼ ð�1:5; 0:1Þ for the 20% minority
examples, b0; c0ð Þ ¼ ð0,1:5Þ for the 30% minority examples, and b0; c0ð Þ ¼ ð2; 2:5Þ for the
40% minority examples. In addition, xi1; xi2, xi3; zi1; zi2; and zi3 are iid with N 0,2ð Þ, and ui
and ei are iid with N 0,1ð Þ: The observed outcome yi is determined as

yi ¼ 1 if eyi� [ 0 and q�i [ 0
0 otherwise:

�
We considered a zero outcome as the majority class. To assess the predictive performance

of our proposed methods against other benchmark methods, we used the first 500 obser-
vations as the training set and the remaining 500 observations as the test set. The predictive
performance was measured by F-scores and Matthews correlation coefficient (MCC) in the
training and test data. The F-score is widely considered an appropriate measure for handling
imbalance problems since it does not rely on the true negative rate (Waegeman et al., 2014).
While prioritizing accurate predictions for the minority class, we aimed to maintain preci-
sion in the majority class. Therefore, we used the F-scores measured in both the minority
class and the majority class. For instance, the F-score measured in the minority class
indicates that the minority class is considered the positive class so that the proportion of
correctly classified majority examples does not affect the F-score. To examine the average
performance over all classes, we considered a macro F-score that averages the F-scores
measured in each class. All the F-scores range from 0 to 1, with a higher value indicating
better accuracy.

In addition to the F-scores, we evaluated the classification performance using MCC.
Since the MCC is calculated based on all the information in the confusion matrix, it has
been regarded as a summary of a model’s predictive performance and is thus widely used in
the presence of class imbalance (Boughorbel et al., 2017). The MCC can take a value from –
1 to 1, implying that with the correct classification for all examples, the value of the MCC is
equal to 1, while a value below zero indicates that the classifier performs worse than a
random classifier.

Regarding predictors, our proposed approaches considered x1; x2, and x3 for the SE
iterations and z1; z2; and z3 for the OE iterations, assuming that x1; x2, and x3 are predictors
that may generate the inflated zeros in regime 0, and z1; z2; and z3 predict the minority class
in regime 1. Other benchmark models utilized all predictors, x1; x2, x3; z1; z2; and z3, to
construct the final classifiers.
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We first illustrate the performance of ZIPBoost and ZILBoost over several iterations in
Fig. 2. To this end, we provide the F-scores measured on each class and the macro F-score at
each number of iterations. Notably, ZIPBoost and ZILBoost provided rapid convergence,
attributed to the sequential application of the Newton–Raphson method to update the
probability function of the SE and OE.

We note that early stopping conditions can be added to the algorithms of the proposed
methods. Notably, the proposed methods show the rapid convergence, which is the
advantage of the Newton method (Rohde & Wand, 2016). Given this quick convergence of
the proposed methods, an extensive number of iterations may be unnecessary. Thus, in
practice, an early stopping condition can be integrated into the algorithms of the proposed
methods in many ways. First, one of the possible conditions is to stop iterations when all
gradients for SE and OE reach zero, because a zero gradient indicates that no further
improvement is possible (London et al., 2023). Second, early stopping can also be done
using a validation set (Drucker, 2002). Generally, algorithms aim for optimal performance
on unseen data. Thus, we can choose a subsample from the training data for a validation set
and limit the iteration to a point where the predictive performance of the algorithm hits its
maximum or its error rate approaches a minimum on the validation set.

The results of the simulation using the test data are presented in Table 1. To save space,
we reported the performance of the proposed methods on the training data and training time
in Appendix C1. The number of iterations for each boosting method was set to 100. Across
all datasets, our algorithms returned the final classifier within 1 s, similar to AdaBoost,
LogitBoost, and ProbitBoost, regardless of the proportions of the minority class. Using
AdaC2, we did not find large differences in training time across the proportions of the
minority class. It required about 7–8 s to generate the final classifier, starting with a cost
matrix search. The training time of SMOTEBoost varied based on the learning algorithms
and the proportions of the minority examples. When synthetic examples were generated
from the 10% minority examples and CART was used to construct the classifier from

Fig. 2 Predictive performance by the number of iterations. The black dashed line indicates a F-score on the
training data, while the black solid line represents a F-score on the test data
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augmented data, the final classifier was provided within 2 s. However, the training time of
SMOTEBoost-SVM exceeded 14 s when the size of the minority class comprised 30% of
the dataset. GANs required the longest training time, ranging from about 6–29 s in most
cases, except when synthetic examples were generated from the 20% minority examples.

In terms of predictive performance, we found that the prediction accuracy for the
minority class from most of the models improved with an increase in the proportion of the
minority class. AdaBoost, SMOTEBoost-C.50, and SMOTEBoost-RF achieved perfect
classifications in the training data, regardless of the proportions of the minority class. AdaC2
resulted in perfect classifications when the proportion of the minority class was less than or
equal to 20%. SMOTEBoost-SVM achieved a macro F-score of 1 and an MCC of 1 when
the size of the minority class was extremely small (i.e., 5% minority examples), whereas
GANs-RF produced zero classification error when the number of minority examples was
greater than or equal to 20% of the dataset. ZIPBoost and ZILBoost showed moderate
performance across all proportions of the minority examples.

Using the test data, our proposed methods showed superior predictive performance
compared to the benchmark models for both classes. The proposed methods produced
maximum F-scores for both classes and the macro F-score and MCC across all cases. We
also found that the performance of the two proposed methods was similar. This may be due
to the fact that the data-generating process for the OE follows a normal distribution with
zero excess kurtosis. For more details, see Appendix D, where we discuss the relative
performance of ZIPBoost and ZILBoost depending on the excess kurtosis of the OE data-
generating process. The results indicate that our proposed methods improved the accuracy
of predicting the minority class without significant sacrifice in predicting the majority class,
in comparison to the benchmark models. Even the benchmark models that achieved perfect
classifications on the training data exhibited less accuracy than the proposed methods in
terms of the macro F-score and MCC.

Classifiers built using conventional boosting methods are trained to minimize overall
misclassification error at the expense of neglecting the minority class (Song et al., 2011; Sun
et al., 2007). AdaC2 also requires obtaining a cost matrix based on an F-score from the
training data without considering the inherent class imbalance, which may result in over-
fitting. Furthermore, oversampling methods, including SMOTE and GANs, may not be
optimal for handling imbalance problems in the presence of two distinct DGPs. SMOTE is
vulnerable to disjoint data distributions (Koziarski, 2020), which the two-regime process
may cause, and GANs can fail to learn the true distribution of the minority class (Yang &
Zhou, 2021), which results in synthetic examples that inadequately represent the minority
class.

Therefore, our proposed methods outperform the benchmark methods because the
benchmark methods do not reflect the existence of the two-regime process that causes the
excess zeros.

5.2 M&A data

We examine the performance of ZIPBoost and ZILBoost using real data to predict M&A
outcomes. Notably, most M&A deals end up being successful, making failures relatively
rare occurrences. Nevertheless, the misclassification of the failures can induce substantial
costs because it may be accompanied by missed opportunities to look for other potential
deals (Lee et al., 2020).
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We considered M&A deals spanning from 2009 to 2014. The information on M&A deals
was collected from the Securities Data Company’s (SDC) U.S. Mergers and Acquisitions
database and coupled with financial data from Compustat. To construct the final sample, we
started by retaining the first takeover announcement during the sample period. We also
excluded cases in which the acquirer and target firm tickers were identical. Since Compustat
provides financial information for public firms, being matched with Compustat lets us
restrict our sample to the takeover whose acquirer and target firm were both publicly held.
Finally, we included only deals with a completed or withdrawn status. The final sample
consists of 411 completed deals and 56 withdrawn takeover deals.

In this application, the target variable is whether a takeover was completed successfully
or withdrawn. We assign values of zero and one to represent successful and withdrawn
takeovers, respectively, and this leads to a zero-inflated case in which approximately 86% of
the sample has zero outcomes. Notably, based on the previous study (Lee et al., 2020), we
assumed that the completion of takeovers may be caused by either deals’ characteristics or
financial characteristics of the acquirer or target firm. More specifically, some takeovers may
be completed mainly due to deal characteristics, whereas others were completed based on
financial characteristics, without deal characteristics forcing the decision. For example, the
presence of a termination fee may lead to the completion of a takeover (Butler & Sauska,
2014). On the other hand, without such a termination fee, the decision to complete the deal
may hinge on the financial performance of the acquirer or target firm, possibly leading to
deal withdrawal. Thus, we included two types of predictors: (1) M&A-related predictors to
account for successfully completed cases (zeros; majority class) and (2) financial perfor-
mance-related predictors to account for withdrawn cases (ones; minority class).

The majority of completed cases (SE) are likely to be driven by factors associated with
M&A-related predictors based on the literature review (Bugeja, 2005; Gao et al., 2021;
Renneboog & Vansteenkiste, 2019; Renneboog & Zhao, 2014; Stahl et al., 2012). More
specifically, hostile deals may face resistance from target firms (Renneboog & Zhao, 2014;
Stahl et al., 2012), making nonhostile deals more likely to succeed. Tender offers also
convey confidence in the deal (Renneboog & Vansteenkiste, 2019). We considered addi-
tional factors that can affect the probability of completing a deal, such as its relative, which
indicates the risk to which an acquirer and target firm can be exposed (Gao et al., 2021), and
an increase in the target firm’s share price prior to a merger announcement, which reduces
the probability of bid competition and price revision (Bugeja, 2005). Thus, q� is likely to be
related to the presence of a termination fee, a termination fee imposed on the acquirer, a
termination fee imposed on the target firm, a hostile deal, a tender offer, and relative deal
size (i.e., deal size related to the size of the acquirer) and the target firm’s share price one
day prior to the announcement. In mathematical notation, for each M&A deal i, we assumed
the following data-generating process for SE:

q�i ¼ b0 þ b1feei þ b2feeacq;i þ b3feetarget;i þ b4hostilei þ b5tenderi þ b6dealsizei
þ b7sharei þ ui;

where feei indicates a dummy variable for the presence of a termination fee, feeacq;i is a
termination fee imposed on the acquirer, feetarget;i is a termination fee imposed on the target
firm, hostilei indicates hostile deals, tenderi indicates tender offers, dealsizei represents
relative deal size, sharei indicates the target firm’s share price one day prior to the
announcement, and ui is random error.

Regarding the withdrawn cases (OE) conditional on M&A-related predictors, the existing
literature typically focuses on financial predictors (Baker & Wurgler, 2006; Rodrigues &
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Stevenson, 2013). We used financial characteristics of the acquirer and target firms, such as
dividend per share, the ratio of inventory to total assets, the market-to-book ratio, the price-
to-earnings ratio, the growth rate in sales over the past year, the ratio of capital expenditure
to operating revenue, invested capital turnover, dividend yield, and the logarithm of total
assets. Following Lee et al. (2020), we used the difference in financial performance between
the acquirer and the target firm to measure the dyadic relationship between them, since the
extent of this difference can be used to predict the completion of deals. More precisely, the
purpose of M&As between two firms (i.e., acquirers and target firms) is to strategically
combine their resources. Such interfirm relationships require firms to get better at identi-
fying the potential sources of dyadic conflict that arise during M&A negotiations (Lee et al.,
2020). This implies that evaluating these dyadic conflicts is important when assessing why
two firms engaged in a takeover process, which could be either completed or withdrawn.
Thus, eyi� is likely to be associated with dividend, the ratio of inventory to total assets, the
market-to-book ratio, the price-to-earnings ratio, the growth rate in sales, the ratio of capital
expenditure to operating revenue, capital turnover, dividend yield, and total assets. In
mathematical notation, for each M&A deal i, we assumed the following data-generating
process for OE:

eyi� ¼ c0 þ c1dividendi þ c2inventoryi=assetsi þ c3M=Bratioi þ c4P=Eratioi þ c5growthi
þ c6expenditurei=revenuei þ c7capital turnoveri þ c8yieldi þ c9log assetsið Þ þ ei;

where dividendi indicates dividend per share, inventoryi=assetsi indicates the ratio of
inventory to total assets, M=Bratioi represents the market-to-book ratio, P=Eratioi represents
the price-to-earnings ratio, growthi indicates the growth rate in sales over the past year,
expenditurei=revenuei indicates the ratio of capital expenditure to operating revenue,
capitalturnoveri indicates invested capital turnover, yieldi represents dividend yield,
log assetsið Þ indicates the log of total assets, and ei is random error. Based on q�i and eyi�, the
outcome of deal i, yi, is determined as

yi ¼ 1 if eyi� [ 0andq�i [ 0
0 otherwise:

�
To demonstrate the predictive performance of our proposed approaches, we used the

examples from 2009 to 2012 as the training set (314 deals: 273 completed and 41 with-
drawn) and the examples from 2013 and 2014 as the test set (153 deals: 138 completed and
15 withdrawn). The goal of this application was to predict the outcomes of M&A deals in
2013 and 2014. As in the simulation study, we considered the following benchmark models:
AdaBoost, LogitBoost, ProbitBoost, AdaC2, SMOTEBoost, and GANs. We also considered
different learning algorithms to build classifiers using SMOTEBoost and GANs. For
AdaC2, we derived the cost matrix based on the F-score. For SMOTEBoost, the over-
sampling rate was fixed to 500, which is a rounded-down value of the IR in the training
data, with five nearest neighbors. To train GANs, we used a batch size of 20 since we had
only 41 withdrawn cases in the training set. In terms of predictors, the benchmark models
used all M&A- and financial-related variables.

The results of this application are presented in Table 2. Using the training data, we
computed the training times: 0.551 s for AdaBoost, 0.049 s for LogitBoost, 0.101 s for
ProbitBoost, 6.845 s for AdaC2, 3.723 s for SMOTEBoost-C.50, 7.987 s for GANs-GBM,
0.216 s for ZIPBoost, 0.199 s for ZILBoost, 1.970 s for SMOTEBoost-CART, 3.025 s for
SMOTEBoost-RT, 4.087 s for SMOTEBoost-NB, 3.226 s for SMOTEBoost-SVM, 3.410 s
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for GANs-Logit, 3.413 s for GANs-DT, 4.058 s for GANs-RF, and 3.406 s for GANs-SVM.
Notably, the proposed methods produced a final classifier within 1 s.

For brevity, we present results for the test data only. The findings revealed that ZIPBoost
performed best in terms of prediction accuracy for the minority class (i.e., failure of M&A
deals) and average performance across both classes. It had the highest F-score of 0.619,
along with a macro F-score of 0.779 and an MCC of 0.597. ZILBoost’s predictive per-
formance was moderate, yielding a macro F-score of 0.724 and an MCC of 0.482. Since
ZIPBoost relies on the probit model, distributions that favor the probit may lead to better
performance of ZIPBoost than ZILBoost. By contrast, for distributions favoring the logit,
ZILBoost, based on the logit model, may outperform ZIPBoost.

As detailed in Appendix D1, the OE data-generating process determines the performance
of the proposed algorithms. When the OE data-generating process is based on positive
excess kurtosis (i.e., leptokurtic—sharply peaked with heavy tails), ZILBoost performs
better than ZIPBoost. Conversely, when this process is based on negative excess kurtosis (i.
e., platykurtic—the curve has a flat peak and more dispersed values with lighter tails),
ZIPBoost exhibits superior performance to ZILBoost. Thus, we can infer that M&A data
may be generated by a platykurtic distribution, which is flatter than a normal distribution
with fewer values in the tails.

It is also worth mentioning that GANs, a recently adopted method for tackling the
imbalance problem, performed better than all other benchmark models. When a decision
tree was employed to construct the classifier, GANs provided the second-highest macro
F-score (0.761) and MCC (0.553). Moreover, GANs with SVM had the highest F-scores
measured in the majority class. Nevertheless, of the systematic approaches, ZIPBoost was
the best predictor of M&A deal failure without losing predictive accuracy for successful
deals compared to the benchmark models.

As a robustness check, we motivate the adopted predictor splitting (in SE and OE) and
evaluate the effect of this predictor split (and its possible variants) on the performance of the
proposed algorithms. The performance distributions of predictors splitting rules are shown
in Fig. 3. The performance distributions were evaluated on the basis of their macro F-scores.
In this figure, each box represents the minimum (bottom whisker), the 25th percentile (box
base), the median (bold line), the 75th percentile (box top), the maximum (top whisker), and
outliers (dots located outside the whisker). The red dashed line in each part of the fig-
ure indicates the performance-adopted predictors (before predictor splitting) based on the
literature review.

Fig. 3 Effect of predictor splitting on the performance of ZIPBoost
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In Experiment 1, we examined various splits in question by relocating predictors adopted
for SE into OE. The number of predictors in OE ranged from 10 to 15. For instance, we
started with splits involving 1 predictor moving from SE to OE, resulting in 10 predictors in
OE. To this end, we had 7 candidate predictors for splits. When 2 predictors in SE were
added to OE, resulting in 11 predictors in OE, we considered 21 candidate predictors for
splits. For each split candidate, we obtained a macro F-score produced by ZIPBoost only, as
it showed better predictive performance than ZILBoost for the adopted predictor splitting.
We grouped the candidates based on the number of predictors in OE and plotted their
distributions of macro F-scores in Fig. 3a. Notably, we did not report cases with more than
14 predictors in OE, as they predicted all examples as the majority class, making it
impossible to obtain a macro F score. We also did not consider cases in which all predictors
were contained in either SE or OE.

In Experiment 2, we examined all possible candidates for splits that had predictors
related to OE in SE. Similar to Experiment 1, we allowed SE to have a varying number of
predictors (8–15). Starting with 9 candidates where one predictor in OE was shifted to SE,
we obtained macro F-scores produced by ZIPBoost for each candidate. We repeated this
process until 8 out of 9 predictors in OE were contained in SE. The distributions of macro F-
scores by the number of predictors in SE are shown in Fig. 3b. As in Experiment 1, we
excluded splits where all predictors were in one of SE or OE.

In Fig. 3a, the results of Experiment 1 show that all boxplots are below the red dashed
line. This means that the adopted predictor splitting (based on the literature review) out-
performs all possible splitting cases. Unlike Experiment 1, Experiment 2 shows that when
the number of predictors in SE is between 9 and 13, the top whisker of the boxplots is above
the red dashed line. This suggests that, in some cases, variant splitting performs better than
the adopted predictor splitting using prior knowledge. However, the medians (or 75th
percentile) in all cases remain below the red dashed line. Thus, we found that a systematic
approach leveraging prior knowledge about predictor splitting can significantly improve
imbalanced learning.

5.3 Keel repository

As previously mentioned, the proposed methods require prior information about the data-
generating processes for SE and OE. However, prior knowledge is not always available in
practice. In such cases, researchers can turn to data-driven approaches to identify optimal
predictor splits. We show the effectiveness of the proposed methods in terms of predictive
performance with data-driven predictor splits using 36 imbalanced datasets from the Keel
repository; please see the following link: https://sci2s.ugr.es/keel/imbalanced.php. We
considered datasets with an IR between 1.5 and 9 (Fernández et al., 2008) and the first part
of the datasets whose IR is higher than 9 (Fernández et al., 2008, 2009). Notably, to reduce
complexity, we focused on the datasets with fewer than 9 predictors. A summary of the
datasets is provided in Table 3.

Each dataset was randomly split into 50% training and 50% test sets. In this experiment,
we did not consider the selection of predictors for simplicity purposes, implying that all
predictors in each dataset were used. Notably, for the proposed methods, we relied on the
split of predictors for SE and OE using the training set, aiming to maximize the macro F-
score among the possible splits since the DGP in most datasets was unknown. For k
predictors, we examine 2k � 2 possible splits. We did not consider splits where all pre-
dictors belonged to either OE or SE. More precisely, we measured the macro F-score using
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the training set for each candidate for the splits, and the optimal split was identified based on
the highest macro F-score. In addition, we generated synthetic examples for SMOTE and
GANs to balance the number of examples between the majority and minority classes.

We obtained the macro F-score for each model on each test set to compare the proposed
methods with other benchmark models. The results of our experiments are summarized in
Fig. 4. The bars show the number of datasets in which a particular model outperformed
others in the macro F-score (i.e., the number of outperformed cases). We defined outper-
formance as the algorithm achieving the highest macro F-score for a given data set. It is
important to note that some models failed to generate final classifiers for certain datasets that
lack predictor variation. More precisely, in ecoli1, ecoli2, ecoli-0_vs_1, ecoli-0-1-3-7_vs_2-
6, ecoli4, and yeast-2_vs_4 datasets, classifiers were not defined from LogitBoost, Pro-
bitBoost, ZILBoost, ZIPBoost, and GANs-SVM. In addition, SMOTEBoost-NB failed to
provide predictions for the ecoli-0-1-3-7_vs_2-6 data. In these cases, we were not able to

Table 3 Summary of datasets

Data Number of
predictors

Sample
size

IR Data Number of
predictors

Sample
size

IR

IR between 1.5 and 9 IR higher than 9

haberman 3 306 2.78 ecoli-0-1-3-
7_vs_2-6

7 281 39.14

iris0 4 150 2 ecoli4 7 336 15.8

new-thyroid1 5 215 5.14 yeast-1_vs_7 7 459 14.3

new-thyroid2 5 215 5.14 abalone9-18 8 731 16.4

ecoli1 7 336 3.36 abalone19 8 4174 129.44

ecoli2 7 336 5.46 yeast-0-5-6-7-
9_vs_4

8 528 9.35

ecoli3 7 336 8.6 yeast-1-2-8-
9_vs_7

8 947 30.57

ecoli-0_vs_1 7 220 1.86 yeast-1-4-5-
8_vs_7

8 693 22.1

yeast1 8 1484 2.46 yeast-2_vs_4 8 514 9.08

yeast3 8 1484 8.1 yeast-2_vs_8 8 482 23.1

pima 8 768 1.87 yeast4 8 1484 28.1

glass0 9 214 2.06 yeast5 8 1484 32.73

glass1 9 214 1.82 yeast6 8 1484 41.4

glass6 9 214 6.38 glass-0-1-
6_vs_2

9 192 10.29

glass-0-1-2-
3_vs_4-5-6

9 214 3.2 glass-0-1-
6_vs_5

9 184 19.44

wisconsin 9 683 1.86 glass2 9 214 11.59

glass4 9 214 15.47

glass5 9 214 22.78

shuttle-c0-vs-
c4

9 1829 13.87

shuttle-c2-vs-
c4

9 129 20.5
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calculate F-scores. Thus, we excluded models that failed to generate final classifiers from
empirical evaluations. For more details, see Appendix E1. In the table, “N.A.” indicates
cases in which the model failed to produce the final classifier.

In Fig. 4, the total number of outperformed cases across the models is greater than 36, the
number of datasets we used for this experiment. This is because in some datasets, more than
one model had the maximum F-score. For example, in the new-thyroid2 data, ZIPBoost,
ZILBoost, AdaBoost, AdaC2, SMOTEBoost-SVM, GANs-RF, and GANs-SVM produced
the maximum F score of 0.984. In such cases, we considered it an outperformed case for all
models with the maximum F score.

The dark gray bars represent the proposed methods, ZIPBoost and ZILBoost, while the
light gray bars indicate the benchmark models. We arranged the bars from the highest to the
lowest number of outperformed cases. Figure 4 shows that ZIPBoost achieved the best
predictive performance in 12 out of 36 datasets, while ZILBoost produced the best per-
formance in 8 out of 36 datasets, similar to SMOTEBoost-C.50, which outperformed all
other benchmark models. These results show the effectiveness of the proposed methods
compared to other benchmark models in handling imbalanced data.

6 Conclusions and future work

The learning problems of imbalanced data have been widely discussed in the machine
learning community because standard learning algorithms pay less attention to classifying
the minority class in such datasets. With the present study, we hope to contribute to this
community by proposing a systematic approach to learning imbalanced data.

Fig. 4 Results of the experiments. SMOTEB-c50, SMOTEB-RF, SMOTEB-NB, GANs-RF, SMOTEB-
CART, SMOTEB-SVM, GANs-DT, GANs-SVM, GANs-Logit, and GANs-GBM refer to SMOTEBoost with
C.50 Decision Tree (DT), SMOTEBoost with Random Forest (RF), SMOTEBoost with Naïve Bayes (NB),
GANs with Random Forest (RF), SMOTEBoost with classification and regression tree (CART),
SMOTEBoost with Support Vector Machine (SVM), GANs with DT, GANs with SVM, GANs with logit,
and GANs with the generalized boost method, respectively
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In contrast to existing studies, the proposed approach described in this paper assumes the
existence of two distinct regimes (two-regime process). Regime 0 identifies the inflated
zeros, and regime 1 identifies the minority class. More specifically, our model generates two
models (regimes). First, a probit (or logit) model is generated for the excessive zero
examples, which is identified as regime 0 for the majority class. Then, another probit (or
logit) model is generated for the underrepresented examples, which is identified as regime 1
for the minority class. Notably, each of the two models may use a different set of predictors.
Thus, our model embraces two distinct regimes that describe majority and minority classes,
allowing us to flexibly account for the DGP of the imbalance class.

Because boosting is known for its enhanced accuracy compared to single classifiers, we
integrated incremental learning rules into the framework for the proposed approach. More
specifically, the proposed ZIPBoost (ZILBoost) algorithm uses a combination of a split
probit (logit) model for regime 0 and a traditional probit (logit) model for regime 1 through
a boosting strategy. We implement boosting to obtain final probabilities, distinguishing
whether a unit belongs to regime 1 (i.e., SE iterations) or is classified as the minority class (i.
e., OE iterations). ZIPBoost relies on the probit model to estimate probabilities, while
ZILBoost employs the logit model. Furthermore, in this study we show that the OE data-
generating process determines the performance of the proposed algorithms. When dealing
with imbalanced data, ZILBoost performs better than ZIPBoost when the OE data-gener-
ating process exhibits positive excess kurtosis. In contrast, ZIPBoost is preferred when this
process is characterized by negative excess kurtosis (Chen & Tsurumi, 2010).

Using Monte Carlo simulation, we showed that in terms of the predictive performance on
the test data, ZIPBoost and ZILBoost surpass standard learning algorithms, including
AdaBoost, LogitBoost, and ProbitBoost, as well as existing approaches for learning
imbalanced data, such as AdaC2, SMOTEBoost, and GANs. The results of the simulation
show that in a particular case in which the majority class is related to two distinct DGPs, the
proposed systematic approaches can result in an improvement of prediction accuracy for the
minority class without sacrificing the predictive power for the majority class.

In the real data application, we considered the classification of M&A outcomes in which
the majority class was successful takeovers. Successful takeovers may arise from two
different motivations, either related to M&A deal characteristics or the dyadic relationship
between the acquirer and the target firm. On the other hand, the failure of M&A deals can
occur if the acquirer may not expect any gain from the deal due to financial differences with
the target firm, especially when deal characteristics do not force its completion. Thus, we
assumed that the financial performances of the acquirer and target firm might be important
for predicting the failure of M&A deals, whereas deal characteristics may affect their
success. From a modeling point of view, M&A-related predictors were considered in the SE
iterations to account for successfully completed cases (zeros; majority class) and 2) financial
performance-related predictors in the OE iterations to account for withdrawn cases (ones;
minority class). As a result, we found that ZIPBoost achieved the best prediction accuracy
for the minority class, with the highest F-score measured in the minority class. At the same
time, it produced the highest macro F-score and MCC, suggesting that ZIPBoost can predict
the failure of M&A deals more accurately without compromising predictive performance for
successful takeovers compared to other benchmark models.
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It is important to note that our proposed method requires two sets of predictors, one for
SE and the other for OE. In other words, researchers should know which factors are critical
for representing the majority class (i.e., inflated case), as well as which factors predict the
minority class. This is because the systematic approaches leverage prior information about
how the data were generated—the proposed methods require knowledge about the data-
generating process. Thus, the proposed methods may not be suitable for exploratory anal-
yses. However, given appropriate sets of predictors based on prior knowledge, we believe
that the proposed methods, which are systematic approaches that accommodate the domi-
nance of one class, can outperform existing learning methods in terms of their predictive
performance on imbalanced data.

When researchers lack prior information about how the data were generated, however,
the optimal predictor selection for both SE and the OE should be determined from the data.
Thus, data-driven modeling as a preprocessing step for predictor selection is necessary for
the application of our proposed methods to any dataset. To demonstrate this data-driven
approach, in this study, we selected 36 imbalanced datasets from the Keel repository. The
results of the experiments show the effectiveness of the proposed methods based on data-
driven strategies compared with other benchmark models in handling imbalanced data. Not
surprisingly, data-driven modeling is computationally very expensive, and thus, in these
experiments, we focused on the datasets with a number of predictors less than 10 in order to
reduce computational costs. Notably, data-driven strategies may not be appropriate in cases
with a large number of predictors.

This study opens the possibility for future work in multiclass problems. The proposed
methods can be extended to classification problems with more than two classes, as discussed
in Appendix F. However, for such extensions, the update schemes reliant on the Newton–
Raphson method may be computationally too expensive since the gradient and Hessian
functions should be defined for each class over iterations. Thus, other update schemes—for
example, the application of gradient boosting, which requires only the defining gradient—
can be explored in future work for multiclass cases with class imbalance. Finally, we
propose a possible idea for future work involving refinement functions. In this study, we
assume that the observed outcome of y is the realization of two separated latent equations,
(1) and (2), with uncorrelated error terms. However, in certain cases, it may be necessary to
assume that u and e are related. To address this, ZIPBoost based on a bivariate normal
distribution with correlation coefficients seems appropriate to extend the model to correlate
the two error terms.

Appendix A. Derivations of the gradients

In this appendix, we derive the gradients of the loss functions in ZIPBoost and ZILBoost. In
ZIPBoost, the gradient for the OE iterations is defined as follows:
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oE �l fð Þjx½ �
of x

¼E � 1� yð Þ � 1� U �f zð Þð Þu f xð Þð Þ
1� U f xð Þ½ � þ U f xð ÞU �f zð Þ þ yU f zð Þu f xð Þ

U f xð ÞU f zð Þ jx
� �

¼E �� 1� U �f zð Þð Þu f xð Þ þ y 1� U �f zð Þð Þu f xð Þ
1� U f xð Þ½ � þ U f xð ÞU �f zð Þ þ yU f zð Þu f xð Þ

U f xð ÞU f zð Þ jx
� �

¼ E � �U f zð Þu f xð ÞU f xð ÞU f zð Þ þ yU f zð Þu f xð Þ
1� U f xð Þð Þ þ U f xð ÞU �f zð Þf g U f xð ÞU f zð Þf g jx

� �
¼E � u f xð Þ y� U f xð ÞU f zð Þð Þ

1� U f xð Þð Þ þ U f xð ÞU �f zð Þf gU f xð Þ jx
� �

¼E � u f xð Þ y� U f xð ÞU f zð Þð Þ
U �f xð Þ þ U f xð ÞU �f zð Þf gU f xð Þ jx

� �
:

For the SE iterations, the gradient is obtained by

oE �l fð Þjz½ �
of z

¼E � 1� yð Þ �U f xð Þu f zð Þð Þ
1� U f xð Þ½ � þ U f xð ÞU �f zð Þ þ

yU f xð Þu f zð Þ
U f xð ÞU f zð Þ jz

� �
¼E � �U f xð Þu f zð ÞU f xð ÞU f zð Þ þ yU f xð Þu f zð Þ

1� U f xð Þð Þ þ U f xð ÞU �f zð Þf g U f xð ÞU f zð Þf g jz
� �

¼E � u f zð Þ y� U f xð ÞU f zð Þð Þ
1� U f xð Þð Þ þ U f xð ÞU �f zð Þf gU f zð Þ jz

� �
¼E � u f zð Þ y� U f xð ÞU f zð Þð Þ

U �f xð Þ þ U f xð ÞU �f zð Þf gU f zð Þ jz
� �

:

In ZILBoost, the gradient of the OE iterations is defined as

oE �l fð Þjx½ �
ofx

¼E �
1�yð Þ �exp �fxð Þ 1þexp �fxð Þð Þ�2 1þexp �fzð Þð Þ�1

� �
1� 1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1 �yexp �fxð Þ 1þexp �fxð Þð Þ�2 1þexp �fzð Þð Þ�1

1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1 jx
24 35

¼E
1�yð Þ exp �fxð Þ 1þexp �fxð Þð Þ�3 1þexp �fzð Þð Þ�2

� �
�y 1� 1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1

h i
exp �fxð Þ 1þexp �fxð Þð Þ�2 1þexp �fzð Þð Þ�1

1� 1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1
h i

1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1
jx

24 35
¼E

exp �fxð Þ 1þexp �fxð Þð Þ�3 1þexp �fzð Þð Þ�2�yexp �fxð Þ 1þexp �fxð Þð Þ�2 1þexp �fzð Þð Þ�1

1� 1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1
h i

1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1
jx

24 35
¼E

exp �fxð Þ 1þexp �fxð Þð Þ�2 1þexp �fzð Þð Þ�1�yexp �fxð Þ 1þexp �fxð Þð Þ�1

1� 1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1 jx
" #

¼E
exp �fxð Þ 1þexp �fxð Þð Þ�1 1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1�y

h i
1� 1þexp �fxð Þð Þ�1 1þexp �fzð Þð Þ�1 jx

24 35;
and the gradient of the SE iterations is as follows:

oE �l fð Þjz½ �
ofz

¼E �
1�yð Þ �exp �fzð Þ 1þexp �fzð Þð Þ�2 1þexp �fxð Þð Þ�1

� �
1� 1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1 �yexp �fzð Þ 1þexp �fzð Þð Þ�2 1þexp �fxð Þð Þ�1

1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1 jz
24 35

¼E
1�yð Þ exp �fzð Þ 1þexp �fzð Þð Þ�3 1þexp �fxð Þð Þ�2

� �
�y 1� 1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1

h i
exp �fzð Þ 1þexp �fzð Þð Þ�2 1þexp �fxð Þð Þ�1

1� 1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1
h i

1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1
jz

24 35
¼E

exp �fzð Þ 1þexp �fzð Þð Þ�3 1þexp �fxð Þð Þ�2�yexp �fzð Þ 1þexp �fzð Þð Þ�2 1þexp �fxð Þð Þ�1

1� 1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1
h i

1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1
jz

24 35
¼E

exp �fzð Þ 1þexp �fzð Þð Þ�2 1þexp �fxð Þð Þ�1�yexp �fzð Þ 1þexp �fzð Þð Þ�1

1� 1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1 jz
" #

¼E
exp �fzð Þ 1þexp �fzð Þð Þ�1 1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1�y

h i
1� 1þexp �fzð Þð Þ�1 1þexp �fxð Þð Þ�1 jz

24 35:
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Appendix B. Proofs of propositions

Proposition 5. (Misclassification) we have lim
f x!�1

W f xð Þ ¼ 1.

Proof Note that lim
f x!�1

W f xð Þ ¼ lim
f x!�1

f xu f xð ÞU f xð Þþu2 f xð Þ
U f xð Þf g2

  ¼ 0
0, which is an indeterminate form, since U f xð Þ !

0 and u f xð Þ ! 0 as f x ! �1. As before, we apply L’Hôpital’s rule repeatedly:

lim
fx!�1

W fxð Þ ¼ lim
fx!�1

fxu fxð ÞU fxð Þ þ u2 fxð Þ
U fxð Þf g2




¼ lim
fx!�1

d
dfx

fxu fxð ÞU fxð Þ þ u2 fxð Þ½ �
d
dfx
U2 fxð Þ




¼ lim
fx!�1

u fxð ÞU fxð Þ � f 2x u fxð ÞU fxð Þ � fxu2 fxð Þ	 

2U fxð Þu fxð Þ

 
¼ lim

fx!�1
1

2
� f 2x U fxð Þ þ fxu fxð Þ

2U fxð Þ
 

¼ lim
fx!�1

1

2
� 2fxU fxð Þ þ u fxð Þ

2u fxð Þ
 

¼ lim
fx!�1

1

2
� 1

2
� fxU fxð Þ

u fxð Þ
 

¼ lim
fx!�1

�U fxð Þ þ fxu fxð Þ
�fxu fxð Þ

 
¼ lim

fx!�1
1� U fxð Þ

�fxu fxð Þ
 

¼ lim
fx!�1

1� u fxð Þ
�u fxð Þ þ f 2x u fxð Þ

 
¼ lim

fx!�1
1þ 1

1� f 2x

  ¼ 1;

where the second, fifth, seventh, and ninth equations hold by L’Hôpital’s rule. □

Proposition 8. (Misclassification) Given fx 
 N ; where N is an arbitrarily large positive
number, lim

fz!1
W fzð Þ ¼ 1.

Proof Given fx 
 N ; lim
fz!1

W fzð Þ ¼ lim
fz!1

� fzu fzð ÞU fxð Þ 1�U fzð ÞU fxð Þ½ ��u2 fzð ÞU2 fxð Þf g
1�U fzð ÞU fxð Þf g2

  ¼ 0
0, which is an indeterminate

form, since U fzð ÞU fxð Þ ! 1 and u fzð Þ ! 0 as fz ! 1 Therefore, we apply L’Hôpital’s rule repeatedly:
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lim
fz!1

W fzð Þ ¼ lim
fz!1

�fzu fzð ÞU fxð Þ þ fzu fzð ÞU fzð ÞU fxð ÞU fxð Þ þ u2 fzð ÞU2 fxð Þ
1� U fxð ÞU fzð Þf g2




¼ lim
fz!1

d
dfz

�fzu fzð ÞU fxð Þ þ fzu fzð ÞU fzð ÞU fxð ÞU fxð Þ þ u2 fzð ÞU2 fxð Þ	 

d
dfz

1� U fxð ÞU fzð Þf g2



¼ lim

fz!1
�u fzð ÞU fxð Þ þ f 2z u fzð ÞU fxð Þ þ u fzð ÞU fzð ÞU2 fxð Þ � f 2z u fzð ÞU fzð ÞU2 fxð Þ � fzu2 fzð ÞU2 fxð Þ

�2u fzð ÞU fxð Þ þ 2u fzð ÞU fzð ÞU2 fxð Þ

 
¼ lim

fz!1
1

2
þ f 2z u fzð ÞU fxð Þ � f 2z u fzð ÞU fzð ÞU2 fxð Þ � fzu2 fzð ÞU2 fxð Þ

�2u fzð ÞU fxð Þ þ 2u fzð ÞU fzð ÞU2 fxð Þ

 
¼ lim

fz!1
1

2
þ f 2z U fxð Þ � f 2z U fzð ÞU2 fxð Þ � fzu fzð ÞU2 fxð Þ

�2U fxð Þ þ 2U fzð ÞU2 fxð Þ

 
¼ lim

fz!1
1

2
þ 2fzU fxð Þ � 2fzU fzð ÞU2 fxð Þ � u fzð ÞU2 fxð Þ

2u fzð ÞU2 fxð Þ

 
¼ lim

fz!1
1

2
� 1

2
þ fzU fxð Þ � fzU fzð ÞU2 fxð Þ

u fzð ÞU2 fxð Þ

 
¼ lim

fz!1
fz � fzU fzð ÞU fxð Þ

u fzð ÞU fxð Þ
 

¼ lim
fz!1

1þ 1� U fzð ÞU fxð Þ
�fzu fzð ÞU fzð Þ

 
¼ lim

fz!1
1þ u fzð ÞU fxð Þ

u fzð ÞU fxð Þ � f 2z u fzð ÞU fxð Þ
 

¼ lim
fz!1

1þ u fzð Þ
u fzð Þ � f 2z u fzð Þ

 
¼ lim

fz!1
1þ 1

1� f 2z

  ¼ 1;

where the second, sixth, ninth, and tenth equations hold by L’Hôpital’s rule. □

Proposition 10. (Misclassification) lim
fz!�1

W fzð Þ ¼ 1.

Proof To prove Proposition 10, we apply L’Hôpital’s rule repeatedly since we have an indeterminate form
due to the fact that U fzð Þ ! 0 andu fzð Þ ! 0 as fz ! �1.

123

Machine Learning



lim
fz!�1

W zð Þ ¼ lim
fz!�1

fzu fzð ÞU fzð Þ þ u2 fzð Þ
U fzð Þf g2




¼ lim
fz!�1

d
dfz

fzu fzð ÞU fzð Þ þ u2 fzð Þ½ �
d
dfz
U2 fzð Þ




¼ lim
fz!�1

u fzð ÞU fzð Þ � f 2z u fzð ÞU fzð Þ � fzu2 fzð Þ	 

2U fzð Þu fzð Þ

 
¼ lim

fz!�1
1

2
� f 2z U fzð Þ þ fzu fzð Þ

2U fzð Þ
 

¼ lim
fz!�1

1

2
� 2fzU fzð Þ þ u fzð Þ

2u fzð Þ
 

¼ lim
fz!�1

1

2
� 1

2
� fzU fzð Þ

u fzð Þ
 

¼ lim
fz!�1

�U fzð Þ þ fzu fzð Þ
�fzu fzð Þ

 
¼ lim

fz!�1
1� U fzð Þ

�fzu fzð Þ
 

¼ lim
fz!�1

1� u fzð Þ
�u fzð Þ þ f 2z u fzð Þ

 
¼ lim

fz!�1
1þ 1

1� f 2z

  ¼ 1;

where the second, fifth, seventh, and ninth equations hold by L’Hôpital’s rule. □

Appendix C. Simulation results using training data

Appendix C1 Monte Carlo Simulation results using training data

AdaBoost Logit
Boost

Probit
Boost

AdaC2 SMOTE
boost
-C.50

GANs-
GBM

ZIPBoost ZILBoost

5% minority examples

F-score:

minority

1.000
(0.000)

0.729

(0.109)

0.602

(0.113)

1.000
(0.000)

1.000
(0.000)

0.194

(0.115)

0.808

(0.136)

0.907

(0.059)

F-score:

majority

1.000
(0.000)

0.985

(0.057)

0.984

(0.004)

1.000
(0.000)

1.000
(0.000)

0.963

(0.015)

0.992

(0.005)

0.996

(0.003)

Macro F-score 1.000
(0.000)

0.857

(0.072)

0.793

(0.057)

1.000
(0.000)

1.000
(0.000)

0.578

(0.059)

0.900

(0.070)

0.951

(0.031)

MCC 1.000
(0.000)

0.724

(0.131)

0.597

(0.108)

1.000
(0.000)

1.000
(0.000)

0.144

(0.127)

0.766

(0.223)

0.903

(0.061)

Training Time

(sec)

0.625

(0.028)

0.047
(0.023)

0.113

(0.019)

6.858

(0.205)

4.616

(0.179)

18.959

(3.468)

0.419

(0.049)

0.215

(0.025)
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AdaBoost Logit
Boost

Probit
Boost

AdaC2 SMOTE
boost
-C.50

GANs-
GBM

ZIPBoost ZILBoost

10% minority examples

F-score:

minority

1.000
(0.000)

0.712

(0.066)

0.660

(0.061)

1.000
(0.000)

1.000
(0.001)

0.502

(0.0124)

0.887

(0.034)

0.899

(0.035)

F-score:

majority

1.000
(0.000)

0.966

(0.008)

0.961

(0.006)

1.000
(0.000)

1.000
(0.000)

0.943

(0.011)

0.986

(0.004)

0.987

(0.005)

Macro F-score 1.000
(0.000)

0.839

(0.036)

0.811

(0.033)

1.000
(0.000)

1.000
(0.000)

0.722

(0.066)

0.936

(0.019)

0.943

(0.020)

MCC 1.000
(0.000)

0.682

(0.071)

0.628

(0.063)

1.000
(0.000)

1.000
(0.001)

0.451

(0.129)

0.874

(0.037)

0.887

(0.040)

Training Time

(sec)

0.629

(0.030)

0.066
(0.020)

0.112

(0.023)

7.536

(0.197)

5.664

(0.202)

13.267

(90.269)

0.458

(0.054)

0.229

(0.023)

20% minority examples

F-score:

minority

1.000
(0.000)

0.739

(0.045)

0.709

(0.043)

1.000
(0.000)

1.000
(0.000)

0.683

(0.072)

0.905

(0.023)

0.911

(0.025)

F-score:

majority

1.000
(0.000)

0.932

(0.010)

0.928

(0.009)

1.000
(0.000)

1.000
(0.000)

0.908

(0.024)

0.975

(0.006)

0.976

(0.007)

Macro F-score 1.000
(0.000)

0.836

(0.026)

0.819

(0.024)

1.000
(0.000)

1.000
(0.000)

0.795

(0.046)

0.940

(0.014)

0.944

(0.016)

MCC 1.000
(0.000)

0.672

(0.052)

0.641

(0.047)

1.000
(0.000)

1.000
(0.000)

0.594

(0.092)

0.880

(0.028)

0.888

(0.031)

Training Time

(sec)

0.637

(0.031)

0.078
(0.020)

0.112

(0.028)

8.039

(0.214)

7.136

(0.303)

17.526

(2.241)

0.481

(0.051)

0.242

(0.029)

30% minority examples

F-score:

minority

1.000
(0.000)

0.777

(0.032)

0.755

(0.032)

0.996

(0.047)

1.000
(0.000)

0.781

(0.039)

0.919

(0.017)

0.924

(0.018)

F-score:

majority

1.000
(0.000)

0.902

(0.013)

0.899

(0.012)

0.996

(0.063)

1.000
(0.000)

0.892

(0.022)

0.965

(0.007)

0.966

(0.008)

Macro F-score 1.000
(0.000)

0.840

(0.021)

0.827

(0.020)

0.997

(0.048)

1.000
(0.029)

0.837

(0.029)

0.942

(0.012)

0.945

(0.013)

MCC 1.000
(0.001)

0.680

(0.042)

0.655

(0.040)

0.992

(0.087)

1.000
(0.000)

0.679

(0.056)

0.884

(0.023)

0.890

(0.026)

Training Time

(sec)

0.631

(0.038)

0.073
(0.022)

0.104

(0.023)

7.871

(0.218)

8.085

(0.447)

22.289

(2.904)

0.472

(0.045)

0.238

(0.036)

40% minority examples

F-score:

minority

1.000
(0.001)

0.811

(0.026)

0.795

(0.026)

0.970

(0.107)

1.000
(0.000)

0.856

(0.021)

0.933

(0.013)

0.937

(0.014)

F-score:

majority

1.000
(0.001)

0.864

(0.017)

0.861

(0.015)

0.969

(0.172)

1.000
(0.000)

0.890

(0.015)

0.953

(0.009)

0.956

(0.010)

Macro F-score 1.000
(0.001)

0.838

(0.019)

0.828

(0.019)

0.978

(0.122)

1.000
(0.000)

0.873

(0.017)

0.943

(0.011)

0.946

(0.012)

MCC 1.000
(0.002)

0.677

(0.039)

0.656

(0.037)

0.929

(0.254)

1.000
(0.000)

0.749

(0.033)

0.887

(0.021)

0.893

(0.023)

Training Time

(sec)

0.637

(0.041)

0.076
(0.027)

0.105

(0.029)

8.008

(0.242)

8.361

(0.402)

28.856

(2.770)

0.470

(0.050)

0.240

(0.036)
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SMOTE
Boost—
Cart

SMOTE
Boost -
RF

SMOTE
Boost -
NB

SMOTE
Boost -
SVM

GANs-
Logit

GANs-
DT

GANs-
RF

GANs-
SVM

5% minority examples

F-score:

minority

0.997

(0.010)

1.000
(0.000)

0.575

(0.083)

1.000
(0.003)

0.129

(0.061)

0.282

(0.203)

0.997

(0.011)

0.513

(0.161)

F-score:

majority

1.000
(0.000)

1.000
(0.000)

0.966

(0.009)

1.000
(0.000)

0.769

(0.031)

0.974

(0.007)

1.000
(0.000)

0.982

(0.005)

Macro F-score 0.998

(0.005)

1.000
(0.000)

0.770

(0.045)

1.000
(0.002)

0.449

(0.042)

0.628

(0.103)

0.998

(0.006)

0.747

(0.082)

MCC 0.996

(0.010)

1.000
(0.000)

0.606

(0.071)

1.000
(0.003)

0.099

(0.121)

0.120

(0.201)

0.997

(0.011)

0.496

(0.172)

Training Time

(sec)

1.926

(0.134)

2.952

(0.179)

6.197

(0.179)

6.910

(1.031)

10.443

(3.462)

10.453

(3.463)

10.867

(3.478)

10.460

(3.464)

10% minority examples

F-score:

minority

0.992

(0.009)

1.000
(0.000)

0.687

(0.047)

0.992

(0.011)

0.356

(0.071)

0.604

(0.134)

0.999

(0.002)

0.791

(0.047)

F-score:

majority

0.999

(0.001)

1.000
(0.000)

0.945

(0.009)

0.999

(0.001)

0.762

(0.034)

0.956

(0.009)

1.000
(0.000)

0.974

(0.005)

Macro F-score 0.996

(0.005)

1.000
(0.000)

0.816

(0.027)

0.995

(0.006)

0.559

(0.051)

0.780

(0.070)

1.000
(0.001)

0.883

(0.026)

MCC 0.991

(0.010)

1.000
(0.000)

0.668

(0.045)

0.991

(0.012)

0.298

(0.110)

0.565

(0.142)

0.999

(0.002)

0.767

(0.051)

Training Time

(sec)

2.729

(0.169)

3.854

(0.197)

7.098

(0.217)

11.573

(1.369)

6.320

(0.467)

6.331

(0.466)

6.275

(0.480)

6.343

(0.467)

20% minority examples

F-score:

minority

0.993

(0.006)

1.000
(0.000)

0.779

(0.032)

0.982

(0.011)

0.593

(0.063)

0.755

(0.050)

1.000
(0.001)

0.850

(0.032)

F-score:

majority

0.998

(0.002)

1.000
(0.000)

0.928

(0.011)

0.995

(0.003)

0.800

(0.042)

0.933

(0.013)

1.000
(0.000)

0.957

(0.010)

Macro F-score 0.996

(0.004)

1.000
(0.000)

0.853

(0.021)

0.989

(0.007)

0.697

(0.051)

0.844

(0.030)

1.000
(0.001)

0.904

(0.020)

MCC 0.992

(0.007)

1.000
(0.000)

0.720

(0.038)

0.977

(0.014)

0.488

(0.084)

0.691

(0.058)

1.000
(0.001)

0.809

(0.040)

Training Time

(sec)

3.864

(0.211)

4.941

(0.221)

8.465

(0.271)

14.391

(0.931)

17.486

(2.758)

17.496

(2.758)

17.837

(2.761)

17.509

(2.759)

30% minority examples

F-score:

minority

0.994

(0.004)

1.000
(0.000)

0.819

(0.023)

0.978

(0.010)

0.725

(0.039)

0.823

(0.031)

1.000
(0.001)

0.882

(0.025)

F-score:

majority

0.998

(0.002)

1.000
(0.000)

0.912

(0.012)

0.990

(0.005)

0.825

(0.033)

0.918

(0.015)

1.000
(0.000)

0.944

(0.014)

Macro F-score 0.996

(0.003)

1.000
(0.000)

0.865

(0.016)

0.984

(0.008)

0.775

(0.034)

0.870

(0.022)

1.000
(0.001)

0.913

(0.019)

MCC 0.992

(0.006)

1.000
(0.000)

0.735

(0.032)

0.968

(0.015)

0.597

(0.053)

0.744

(0.043)

1.000
(0.001)

0.829

(0.037)

Training Time

(sec)

4.703

(0.224)

5.744

(0.273)

9.469

(0.263)

14.387

(1.225)

17.486

(3.314)

17.496

(3.314)

17.837

(3.309)

17.509

(3.314)

40% minority examples

F-score:

minority

0.994

(0.004)

1.000
(0.000)

0.846

(0.021)

0.974

(0.009)

0.806

(0.023)

0.883

(0.021)

1.000
(0.000)

0.919

(0.017)
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Appendix D. Comparison of ZILBoost and ZIPBoost

We conducted simulations based on different combinations of data-generating processes to
investigate the relative performance of ZILBoost and ZIPBoost. Previous research has
indicated that probit and logit models can be differentiated depending on the kurtosis of
their data distribution (Chen & Tsurumi, 2010). More precisely, when data have positive
excess kurtosis (i.e., leptokurtic data), the logit model outperforms the probit model; for data
with negative excess kurtosis (i.e., platykurtic data), the probit model outperforms the logit
model. Based on these previous findings, we considered two distributions—the Laplace
distribution and a mixture of truncated normal distributions—to manipulate the kurtosis of
the data. The Laplace distribution produces positive excess kurtosis (Alashwali & Kent,
2016), while a mixture of truncated normal distributions is flexible for generating data
across a wide kurtosis range (Xu, 2020). For comparative purposes, we set the parameters
for the mixture of truncated normal distributions to induce negative kurtosis.

In Scenario 1, echoing Chen and Tsurumi (2010), we generated data for both SE and OE
from the Laplace distribution, resulting in positive kurtosis for both equations. Similarly, in
Scenario 2, we derived data for SE and OE from a mixture of two truncated normal
distributions, leading to negative kurtosis for both equations.

In Scenarios 3 and 4, we mixed the two distributions such that either SE or OE had
positive kurtosis while the other had negative kurtosis. In Scenario 3, we generated data for
SE from a mixture of two truncated normal distributions while deriving data for OE from
the Laplace distribution. Thus, in this scenario, the excess SE and OE kurtoses were neg-
ative and positive, respectively. In Scenario 4, we generated data for SE from the Laplace
distribution and derived data for OE from a mixture of two truncated normal distributions so
that the excess SE and OE kurtoses were positive and negative, respectively.

Based on these scenarios, we generated 1,000 observations, with the first 500 used as the
training set and the remaining 500 as the test set. The average ratio of the minority class was
about 0.3. As expected, ZILBoost and ZIPBoost were preferable in Scenarios 1 and 2,
respectively. In Scenarios 3 and 4, ZILBoost and ZIPBoost, respectively, were preferable.
This suggests that the OE data–generating process determines the performance of the
proposed algorithms.

SMOTE
Boost
—Cart

SMOTE
Boost
-RF

SMOTE
Boost
-NB

SMOTE
Boost -
SVM

GANs- Logit GANs-
DT

GANs-
RF

GANs-SVM

F-score:

majority

0.996

(0.003)

1.000
(0.000)

0.893

(0.014)

0.982

(0.006)

0.840

(0.018)

0.914

(0.014)

1.000
(0.000)

0.941

(0.013)

Macro F-score 0.995

(0.003)

1.000
(0.000)

0.870

(0.016)

0.978

(0.008)

0.823

(0.019)

0.898

(0.017)

1.000
(0.000)

0.930

(0.014)

MCC 0.991

(0.006)

1.000
(0.000)

0.739

(0.032)

0.956

(0.015)

0.658

(0.035)

0.799

(0.033)

1.000
(0.001)

0.862

(0.028)

Training Time

(sec)

5.227

(0.242)

6.104

(0.257)

10.001

(0.292)

12.070

(0.341)

24.965

(3.112)

24.974

(3.111)

25.245

(3.102)

24.983

(3.111)

“F score: minority” indicates F-scores measured on the minority class while “F score: majority” represents F-
scores measured on the majority class. Entries in bold indicate the best performance on training data; the
values in parentheses are standard deviations.
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Scenario 1. Excess kurtoses of SE and OE are positive:

Splitting equation : q�i ¼ b0 þ b1xi þ ui;

Outcome equation : eyi� ¼ c0 þ c1zi þ ei;

where b0; b1ð Þ ¼ ð0; 1Þ, c0; c1ð Þ ¼ ð0; 1Þ, xi �Lð0; 1Þ, zi � Lð1,1Þ, and ui and ei are iid with
N 0,2ð Þ:

Scenario 2. Excess kurtoses of SE and OE are negative:

Splitting equation : q�i ¼ b0 þ b1xi þ ui;

Outcome equation : eyi� ¼ c0 þ c1zi þ ei;

where b0; b1ð Þ ¼ ð�1; 1Þ, c0; c1ð Þ ¼ ð0; 1Þ, xi � 0.75 TN �1; 2; �2; 2½ �ð Þ þ 0:25TN
0; 1:5; �1,6½ �ð Þ, zi � 0.25 TN �2; 1; �3; 1½ �ð Þ þ 0:75TN 2; 1; �1,3½ �ð Þ, and ui and ei are iid
with N 0,2ð Þ:

Scenario 3. Excess kurtoses of SE and OE are negative and positive, respectively:

Splitting equation : q�i ¼ b0 þ b1xi þ ui;

Outcome equation : eyi� ¼ c0 þ c1zi þ ei;

where b0; b1ð Þ ¼ ð0; 1Þ, c0; c1ð Þ ¼ ð0; 1Þ, xi xi � 0.75 TN �1; 2; �2; 2½ �ð Þ þ 0:25TN
0; 1:5; �1,6½ �ð Þ, zi �Lð1,1Þ, and ui and ei are iid with N 0,2ð Þ:
Scenario 4. Excess kurtoses of SE and OE are positive and negative, respectively.

Splitting equation : q�i ¼ b0 þ b1xi þ ui;

Outcome equation : eyi� ¼ c0 þ c1zi þ ei;

where b0; b1ð Þ ¼ ð0; 1Þ, c0; c1ð Þ ¼ ð0; 1Þ, xi �Lð0,1Þ, zi � 0.25 TN �2; 1; �3; 1½ �ð Þþ
0:75TN 2; 1; �1,3½ �ð Þ, and ui and ei are iid with N 0,2ð Þ:

Due to space constraints, the simulation results presented in Appendix D1 focus on the
performance of the test data. In this simulation, the overall performance measured by macro
F-score and MCC depended on OE kurtosis signs. More specifically, we found that for
Scenarios 1 and 2, the kurtosis of OE determined overall performance: When both equations
provided positive excess kurtosis, ZILBoost produced more accurate predictions than
ZIPBoost; with negative excess kurtosis, ZIPBoost was preferable. Similarly, for Scenarios
3 and 4, we discovered that relative performance relied on the kurtosis of OE. When OE
exhibited positive kurtosis, ZILBoost provided better overall predictive performance, while
negative OE kurtosis yielded a higher macro F-score and MCC in ZIPBoost. This is con-
sistent with findings in the literature (Chen & Tsurumi, 2010).

Notably, ZILBoost showed better predictive performance for the minority class than
ZIPBoost across all scenarios. In contrast, ZIPBoost outperformed ZILBoost in terms of
majority-class F-scores. This implies that favor toward the minority class involves sacri-
ficing the majority class’s predictive performance. This is consistent with the fact that the
logit model is more robust to outliers than the probit model (Copas, 1988).
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Appendix D1 Comparison of ZILBoost and ZIPBoost

Scenario 1
(Excess kurtoses of SE and OE are
positive)

Scenario 2
(Excess kurtoses of SE and OE are
negative)

ZILBoost ZIPBoost ZILBoost ZIPBoost

F-score: minority 0.557
(0.030)

0.386
(0.146)

0.610
(0.028)

0.563
(0.070)

F-score: majority 0.667
(0.047)

0.764
(0.036)

0.569
(0.066)

0.692
(0.042)

Macro F-score 0.612
(0.028)

0.575
(0.063)

0.589
(0.039)

0.627
(0.033)

MCC 0.278
(0.042)

0.200
(0.083)

0.243
(0.056)

0.270
(0.049)

Scenario 3
(Excess kurtoses of SE and OE are
negative and positive, respectively)

Scenario 4
(Excess kurtoses of SE and OE are positive
and negative, respectively)

ZILBoost ZIPBoost ZILBoost ZIPBoost

F-score: minority 0.544
(0.058)

0.481
(0.124)

0.602
(0.028)

0.535
(0.082)

F-score: majority 0.673
(0.048)

0.727
(0.045)

0.570
(0.064)

0.699
(0.065)

Macro F-score 0.608
(0.038)

0.604
(0.032)

0.586
(0.036)

0.617
(0.035)

MCC 0.253
(0.061)

0.241
(0.072)

0.253
(0.048)

0.268
(0.047)

Standard errors are in parentheses. Entries in bold indicate the best performance in each
scenario.

Appendix E. Results for 36 imbalanced datasets

Appendix E1 Results of the experiments using test data

AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

haberman

F-score:
minority

0.388 0.222 0.122 0.500 0.449 0.328 0.082 0.547

F-score:
majority

0.828 0.833 0.833 0.578 0.774 0.833 0.825 0.839
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AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

Macro F-
score

0.608 0.528 0.478 0.539 0.612 0.580 0.453 0.648

MCC 0.258 0.183 0.127 0.221 0.224 0.235 0.046 0.328

iris0

F-score:
minority

1.000 1.000 1.000 1.000 0.962 1.000 1.000 1.000

F-score:
majority

1.000 1.000 1.000 1.000 0.980 1.000 1.000 1.000

Macro F-
score

1.000 1.000 1.000 1.000 0.971 1.000 1.000 1.000

MCC 1.000 1.000 1.000 1.000 0.943 1.000 1.000 1.000

new-thyroid1

F-score:
minority

0.933 0.970 1.000 0.914 0.933 0.903 0.815 0.909

F-score:
majority

0.989 0.994 1.000 0.983 0.989 0.984 0.973 0.983

Macro F-
score

0.961 0.982 1.000 0.949 0.961 0.943 0.894 0.946

MCC 0.925 0.965 1.000 0.902 0.925 0.887 0.807 0.893

new-thyroid2

F-score:
minority

0.974 0.947 0.923 0.826 0.947 0.857 0.974 0.974

F-score:
majority

0.994 0.989 0.983 0.952 0.989 0.972 0.994 0.994

Macro F-
score

0.984 0.968 0.953 0.889 0.968 0.915 0.984 0.984

MCC 0.969 0.936 0.906 0.800 0.936 0.834 0.969 0.969

ecoli1

F-score:
minority

0.757 N.A N.A 0.766 0.767 0.000 N.A N.A

F-score:
majority

0.931 N.A N.A 0.909 0.920 0.876 N.A N.A

Macro F-
score

0.844 N.A N.A 0.838 0.844 0.438 N.A N.A

MCC 0.688 N.A N.A 0.711 0.702 0.000 N.A N.A

ecoli2

F-score:
minority

0.830 N.A N.A 0.600 0.830 0.000 N.A N.A

F-score:
majority

0.968 N.A N.A 0.875 0.968 0.916 N.A N.A

Macro F-
score

0.899 N.A N.A 0.738 0.899 0.458 N.A N.A

MCC 0.799 N.A N.A 0.551 0.799 0.000 N.A N.A

ecoli3

F-score:
minority

0.483 0.643 0.645 0.435 0.629 0.000 0.645 0.485
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AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

F-score:
majority

0.951 0.968 0.964 0.910 0.957 0.960 0.964 0.944

Macro F-
score

0.717 0.805 0.805 0.673 0.793 0.480 0.805 0.714

MCC 0.437 0.612 0.620 0.418 0.614 0.000 0.620 0.444

ecoli-0_vs_1

F-score:
minority

0.975 N.A N.A 0.897 0.975 0.000 N.A N.A

F-score:
majority

0.986 N.A N.A 0.932 0.986 0.785 N.A N.A

Macro F-
score

0.980 N.A N.A 0.915 0.980 0.392 N.A N.A

MCC 0.961 N.A N.A 0.842 0.961 0.000 N.A N.A

yeast1

F-score:
minority

0.750 0.784 0.734 0.758 0.800 0.745 0.494 0.538

F-score:
majority

0.932 0.939 0.918 0.905 0.932 0.901 0.840 0.818

Macro F-
score

0.841 0.861 0.826 0.832 0.866 0.823 0.667 0.678

MCC 0.682 0.723 0.655 0.702 0.745 0.681 0.346 0.356

yeast3

F-score:
minority

0.744 0.710 0.680 0.738 0.782 0.000 0.821 0.755

F-score:
majority

0.968 0.966 0.965 0.958 0.970 0.941 0.976 0.973

Macro F-
score

0.856 0.838 0.823 0.848 0.876 0.471 0.899 0.874

MCC 0.712 0.678 0.652 0.716 0.755 0.000 0.798 0.749

pima

F-score:
minority

0.626 0.656 0.627 0.609 0.586 0.546 0.641 0.655

F-score:
majority

0.827 0.825 0.821 0.635 0.802 0.796 0.817 0.798

Macro F-
score

0.726 0.741 0.724 0.622 0.694 0.671 0.729 0.726

MCC 0.458 0.482 0.450 0.349 0.390 0.350 0.459 0.457

glass0

F-score:
minority

0.738 0.690 0.642 0.729 0.771 0.000 0.640 0.649

F-score:
majority

0.831 0.787 0.782 0.780 0.855 0.791 0.806 0.803

Macro F-
score

0.784 0.739 0.712 0.755 0.813 0.000 0.723 0.726

MCC 0.584 0.501 0.431 0.577 0.639 0.000 0.446 0.454

glass1
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AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

F-score:
minority

0.738 0.690 0.642 0.729 0.771 0.000 0.431 0.412

F-score:
majority

0.871 0.753 0.737 0.726 0.839 0.762 0.752 0.726

Macro F-
score

0.784 0.739 0.712 0.728 0.813 0.381 0.591 0.569

MCC 0.584 0.501 0.431 0.577 0.639 0.000 0.198 0.145

glass6

F-score:
minority

0.769 0.769 0.720 0.579 0.741 0.769 0.909 0.833

F-score:
majority

0.968 0.968 0.963 0.909 0.963 0.968 0.990 0.979

Macro F-
score

0.869 0.869 0.841 0.744 0.852 0.869 0.949 0.906

MCC 0.740 0.740 0.684 0.558 0.710 0.740 0.903 0.812

glass-0-1-2-3 vs 4-5-6

F-score:
minority

0.750 0.800 0.714 0.815 0.844 0.800 0.886 0.818

F-score:
majority

0.943 0.947 0.930 0.938 0.959 0.939 0.929 0.953

Macro F-
score

0.846 0.873 0.822 0.877 0.902 0.870 0.834 0.886

MCC 0.706 0.747 0.650 0.769 0.803 0.744 0.668 0.773

wisconsin

F-score:
minority

0.958 0.934 0.938 0.946 0.963 0.938 0.882 0.944

F-score:
majority

0.981 0.970 0.973 0.974 0.983 0.969 0.950 0.974

Macro F-
score

0.969 0.952 0.955 0.960 0.973 0.953 0.916 0.959

MCC 0.939 0.905 0.911 0.921 0.946 0.908 0.835 0.918

ecoli-0-1-3-7_vs_2-6

F-score:
minority

0.667 N.A N.A 0.500 0.400 0.000 N.A N.A

F-score:
majority

0.993 N.A N.A 0.970 0.978 0.986 N.A N.A

Macro F-
score

0.830 N.A N.A 0.735 0.689 0.493 N.A N.A

MCC 0.702 N.A N.A 0.560 0.387 0.000 N.A N.A

ecoli4

F-score:
minority

0.727 N.A N.A 0.750 0.783 0.000 N.A N.A

F-score:
majority

0.981 N.A N.A 0.981 0.984 0.966 N.A N.A

Macro F-
score

0.854 N.A N.A 0.866 0.883 0.483 N.A N.A

MCC 0.708 N.A N.A 0.734 0.768 0.000 N.A N.A
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AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

yeast-1_vs_7

F-score:
minority

0.300 0.118 0.125 0.200 0.250 0.000 0.111 0.133

F-score:
majority

0.968 0.966 0.968 0.879 0.944 0.971 0.964 0.971

Macro F-
score

0.634 0.542 0.547 0.540 0.597 0.486 0.537 0.552

MCC 0.285 0.111 0.138 0.156 0.200 0.000 0.092 0.180

abalone9-18

F-score:
minority

0.194 0.550 0.579 0.312 0.346 0.391 0.650 0.619

F-score:
majority

0.964 0.974 0.977 0.919 0.950 0.918 0.980 0.977

Macro F-
score

0.579 0.762 0.778 0.616 0.648 0.654 0.815 0.798

MCC 0.175 0.525 0.560 0.287 0.305 0.404 0.631 0.596

abalone19

F-score:
minority

0.000 0.000 0.000 0.018 0.043 0.000 0.000 0.000

F-score:
majority

0.996 0.997 0.997 0.973 0.978 0.953 0.997 0.996

Macro F-
score

0.498 0.499 0.499 0.496 0.511 0.477 0.499 0.498

MCC -0.002 0.000 0.000 0.010 0.045 -0.025 0.000 -0.004

yeast-0-5-6-7-9_vs_4

F-score:
minority

0.519 0.500 0.432 0.476 0.484 0.000 0.655 0.612

F-score:
majority

0.945 0.955 0.957 0.901 0.931 0.948 0.960 0.960

Macro F-
score

0.732 0.727 0.695 0.689 0.708 0.000 0.807 0.786

MCC 0.464 0.465 0.440 0.439 0.424 0.000 0.616 0.574

yeast-1-2-8-9_vs_7

F-score:
minority

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.286

F-score:
majority

0.986 0.989 0.989 0.967 0.975 0.989 0.989 0.934

Macro F-
score

0.493 0.495 0.495 0.484 0.488 0.495 0.495 0.635

MCC -0.012 0.000 0.000 -0.031 -0.025 0.000 0.000 0.270

yeast-1-4-5-8_vs_7

F-score:
minority

0.118 0.000 0.000 0.184 0.308 0.000 0.000 0.095

F-score:
majority

0.978 0.972 0.981 0.883 0.959 0.981 0.981 0.972

Macro F-
score

0.548 0.486 0.491 0.534 0.633 0.491 0.491 0.534
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AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

MCC 0.121 -0.026 0.000 0.194 0.290 0.000 0.000 0.071

yeast-2_vs_4

F-score:
minority

0.739 N.A N.A 0.754 0.745 0.000 N.A N.A

F-score:
majority

0.974 N.A N.A 0.967 0.972 0.953 N.A N.A

Macro F-
score

0.857 N.A N.A 0.861 0.859 0.477 N.A N.A

MCC 0.713 N.A N.A 0.753 0.722 0.000 N.A N.A

yeast-2_vs_8

F-score:
minority

0.182 0.462 0.364 0.276 0.364 0.000 0.364 0.462

F-score:
majority

0.981 0.985 0.985 0.954 0.985 0.983 0.985 0.985

Macro F-
score

0.581 0.723 0.674 0.615 0.674 0.492 0.674 0.723

MCC 0.188 0.461 0.397 0.271 0.397 0.000 0.397 0.461

yeast4

F-score:
minority

0.378 0.294 0.074 0.373 0.417 0.000 0.074 0.316

F-score:
majority

0.984 0.983 0.983 0.967 0.981 0.982 0.983 0.982

Macro F-
score

0.681 0.639 0.528 0.670 0.699 0.491 0.528 0.649

MCC 0.401 0.335 0.193 0.362 0.399 0.000 0.193 0.324

yeast5

F-score:
minority

0.711 0.541 0.579 0.759 0.800 0.000 0.526 0.636

F-score:
majority

0.991 0.988 0.989 0.990 0.993 0.984 0.988 0.989

Macro F-
score

0.851 0.764 0.784 0.875 0.897 0.492 0.757 0.813

MCC 0.704 0.556 0.591 0.761 0.794 0.000 0.535 0.628

yeast6

F-score:
minority

0.500 0.400 0.240 0.364 0.545 0.000 0.000 0.478

F-score:
majority

0.988 0.986 0.987 0.960 0.986 0.986 0.986 0.983

Macro F-
score

0.744 0.693 0.613 0.662 0.766 0.493 0.493 0.731

MCC 0.495 0.394 0.320 0.400 0.532 0.000 0.000 0.464

glass-0-1-6_vs_2

F-score:
minority

0.182 0.000 0.000 0.190 0.200 0.118 0.235 0.100

F-score:
Majority

0.950 0.921 0.933 0.773 0.956 0.914 0.926 0.895
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AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

Macro F-
score

0.566 0.461 0.467 0.482 0.578 0.516 0.581 0.498

MCC 0.142 -0.079 -0.066 0.121 0.180 0.036 0.167 0.006

glass-0-1-6_vs_5

F-score:
minority

0.889 0.889 0.800 0.545 0.727 0.000 0.889 0.889

F-score:
majority

0.994 0.994 0.989 0.971 0.983 0.978 0.994 0.994

Macro F-
score

0.942 0.942 0.894 0.758 0.855 0.489 0.942 0.942

MCC 0.889 0.889 0.807 0.542 0.743 0.000 0.889 0.889

glass2

F-score:
minority

0.286 0.276 0.296 0.213 0.364 0.000 0.455 0.500

F-score:
majority

0.922 0.886 0.898 0.778 0.927 0.966 0.938 0.948

Macro F-
score

0.604 0.581 0.597 0.500 0.645 0.483 0.696 0.724

MCC 0.234 0.239 0.261 0.186 0.329 0.000 0.438 0.480

glass4

F-score:
minority

0.000 0.167 0.154 0.727 0.400 0.000 0.778 0.824

F-score:
majority

0.946 0.950 0.945 0.969 0.955 0.956 0.980 0.985

Macro F-
score

0.473 0.559 0.550 0.848 0.677 0.478 0.879 0.904

MCC -0.042 0.153 0.118 0.712 0.365 0.000 0.757 0.810

glass5

F-score:
minority

0.444 0.333 0.400 0.667 0.667 0.000 1.000 0.667

F-score:
majority

0.976 0.981 0.986 0.990 0.990 0.991 1.000 0.995

Macro F-
score

0.710 0.657 0.693 0.829 0.829 0.496 1.000 0.831

MCC 0.522 0.337 0.395 0.700 0.700 0.000 1.000 0.704

shuttle-c0-vs-c4

F-score:
minority

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991

F-score:
majority

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

Macro F-
score

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

MCC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991

shuttle-c2-vs-c4

F-score:
minority

1.000 0.800 0.800 1.000 1.000 0.000 1.000 1.000
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AdaBoost LogitBoost ProbitBoost AdaC2 SMOTE
Boost -
C.50

GANs-
GBM

ZIPBoost ZILBoost

F-score:
majority

1.000 0.992 0.992 1.000 1.000 0.984 1.000 1.000

Macro F-
score

1.000 0.896 0.896 1.000 1.000 0.492 1.000 1.000

MCC 1.000 0.810 0.810 1.000 1.000 0.000 1.000 1.000

SMOTE
Boost-Cart

SMOTE
Boost -RF

SMOTE
Boost -NB

SMOTE
Boost -
SVM

GANs-
Logit

GANs-
DT

GANs-
RF

GANs-
SVM

haberman

F-score: minority 0.521 0.300 0.493 0.430 0.282 0.319 0.286 0.242

F-score:
majority

0.781 0.752 0.841 0.802 0.754 0.802 0.815 0.792

Macro F-score 0.651 0.526 0.667 0.616 0.518 0.560 0.550 0.517

MCC 0.306 0.056 0.356 0.238 0.042 0.149 0.155 0.069

iris0

F-score: minority 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F-score:
majority

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Macro F-score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MCC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

new-thyroid1

F-score: minority 0.994 0.994 1.000 1.000 0.994 0.972 0.995 1.000

F-score:
majority

0.970 0.970 1.000 1.000 0.970 0.848 0.968 1.000

Macro F-score 0.982 0.982 1.000 1.000 0.982 0.910 0.981 1.000

MCC 0.965 0.965 1.000 1.000 0.965 0.821 0.963 1.000

new-thyroid2

F-score: minority 0.923 0.923 0.884 0.974 0.974 0.857 0.973 0.974

F-score:
majority

0.983 0.983 0.971 0.994 0.994 0.972 0.994 0.994

Macro F-score 0.953 0.953 0.927 0.984 0.984 0.915 0.983 0.984

MCC 0.906 0.906 0.864 0.969 0.969 0.834 0.968 0.969

ecoli1

F-score: minority 0.824 0.776 0.737 0.721 0.727 0.703 0.780 N.A

F-score:
majority

0.940 0.924 0.896 0.904 0.919 0.916 0.929 N.A

Macro F-score 0.882 0.850 0.817 0.812 0.823 0.809 0.855 N.A

MCC 0.777 0.713 0.671 0.639 0.647 0.619 0.716 N.A

ecoli2

F-score: minority 0.815 0.815 0.759 0.793 0.680 0.696 0.800 N.A

F-score:
majority

0.965 0.965 0.950 0.957 0.944 0.952 0.969 N.A

Macro F-score 0.890 0.890 0.854 0.875 0.812 0.824 0.885 N.A

MCC 0.780 0.780 0.714 0.756 0.625 0.656 0.783 N.A
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SMOTE
Boost-Cart

SMOTE
Boost -RF

SMOTE
Boost -NB

SMOTE
Boost -
SVM

GANs-
Logit

GANs-
DT

GANs-
RF

GANs-
SVM

ecoli3

F-score: minority 0.595 0.562 0.000 0.606 0.625 0.462 0.455 0.621

F-score:
majority

0.950 0.954 0.960 0.957 0.961 0.955 0.962 0.964

Macro F-score 0.772 0.758 0.480 0.782 0.793 0.708 0.708 0.792

MCC 0.582 0.530 0.000 0.581 0.600 0.416 0.426 0.589

ecoli-0_vs_1

F-score: minority 0.963 0.951 0.951 0.975 0.962 1.000 1.000 N.A

F-score:
majority

0.978 0.971 0.971 0.986 0.979 1.000 1.000 N.A

Macro F-score 0.971 0.961 0.961 0.980 0.970 1.000 1.000 N.A

MCC 0.943 0.925 0.925 0.961 0.941 1.000 1.000 N.A

yeast1

F-score: minority 0.776 0.776 0.719 0.707 0.732 0.703 0.779 0.767

F-score:
majority

0.924 0.924 0.899 0.906 0.913 0.916 0.934 0.935

Macro F-score 0.850 0.850 0.809 0.806 0.823 0.809 0.857 0.851

MCC 0.713 0.713 0.638 0.619 0.652 0.619 0.715 0.703

yeast3

F-score: minority 0.791 0.750 0.232 0.705 0.702 0.798 0.708 0.721

F-score:
majority

0.971 0.966 0.288 0.960 0.966 0.975 0.969 0.969

Macro F-score 0.881 0.858 0.260 0.832 0.834 0.886 0.838 0.845

MCC 0.766 0.718 0.149 0.666 0.673 0.773 0.688 0.698

pima

F-score: minority 0.654 0.630 0.649 0.608 0.641 0.602 0.634 0.588

F-score:
majority

0.826 0.814 0.821 0.796 0.817 0.798 0.828 0.795

Macro F-score 0.740 0.722 0.735 0.702 0.729 0.700 0.731 0.692

MCC 0.480 0.445 0.470 0.404 0.459 0.400 0.466 0.384

glass0

F-score: minority 0.795 0.815 0.611 0.790 0.650 0.684 0.779 0.441

F-score:
majority

0.870 0.887 0.604 0.872 0.791 0.826 0.876 0.787

Macro F-score 0.833 0.851 0.607 0.831 0.721 0.755 0.828 0.614

MCC 0.678 0.710 0.351 0.670 0.446 0.511 0.657 0.262

glass1

F-score: minority 0.704 0.773 0.308 0.531 0.418 0.514 0.667 0.562

F-score:
majority

0.853 0.878 0.698 0.800 0.735 0.743 0.831 0.813

Macro F-score 0.779 0.826 0.503 0.666 0.576 0.628 0.749 0.688

MCC 0.562 0.651 0.018 0.354 0.163 0.257 0.500 0.399

glass6

F-score: minority 0.741 0.800 0.769 0.762 0.667 0.769 0.833 0.857
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SMOTE
Boost-Cart

SMOTE
Boost -RF

SMOTE
Boost -NB

SMOTE
Boost -
SVM

GANs-
Logit

GANs-
DT

GANs-
RF

GANs-
SVM

F-score:
majority

0.963 0.974 0.968 0.974 0.958 0.968 0.979 0.984

Macro F-score 0.852 0.887 0.869 0.868 0.812 0.869 0.906 0.921

MCC 0.710 0.774 0.740 0.746 0.625 0.740 0.812 0.853

glass-0-1-2-3 vs 4-5-6

F-score: minority 0.732 0.810 0.667 0.800 0.744 0.629 0.667 0.683

F-score:
majority

0.936 0.953 0.926 0.947 0.936 0.927 0.926 0.925

Macro F-score 0.834 0.882 0.796 0.873 0.840 0.778 0.796 0.804

MCC 0.677 0.769 0.610 0.747 0.683 0.607 0.610 0.616

wisconsin

F-score: minority 0.963 0.953 0.938 0.907 0.954 0.949 0.958 0.946

F-score:
majority

0.983 0.979 0.973 0.957 0.978 0.976 0.981 0.974

Macro F-score 0.973 0.966 0.955 0.932 0.966 0.963 0.969 0.960

MCC 0.946 0.932 0.911 0.864 0.933 0.925 0.939 0.922

ecoli-0-1-3-7_vs_2-6

F-score: minority 0.364 0.444 N.A 0.000 0.889 0.000 0.000 N.A

F-score:
majority

0.974 0.982 N.A 0.986 0.996 0.986 0.986 N.A

Macro F-score 0.669 0.713 N.A 0.493 0.943 0.493 0.493 N.A

MCC 0.354 0.429 N.A 0.000 0.891 0.000 0.000 N.A

ecoli4

F-score: minority 0.783 0.857 0.857 0.833 0.769 0.700 0.706 N.A

F-score:
majority

0.984 0.990 0.990 0.987 0.981 0.981 0.984 N.A

Macro F-score 0.883 0.924 0.924 0.910 0.875 0.841 0.845 N.A

MCC 0.768 0.849 0.849 0.824 0.761 0.685 0.727 N.A

yeast-1_vs_7

F-score: minority 0.211 0.258 0.126 0.303 0.111 0.000 0.235 0.267

F-score:
majority

0.929 0.946 0.286 0.946 0.964 0.971 0.971 0.975

Macro F-score 0.570 0.602 0.206 0.624 0.537 0.486 0.603 0.621

MCC 0.156 0.209 0.106 0.258 0.092 0.000 0.255 0.383

abalone9-18

F-score: minority 0.327 0.298 0.244 0.279 0.537 0.000 0.160 0.308

F-score:
majority

0.945 0.952 0.904 0.955 0.972 0.965 0.970 0.974

Macro F-score 0.636 0.625 0.574 0.617 0.755 0.482 0.565 0.641

MCC 0.285 0.252 0.205 0.234 0.509 −0.026 0.200 0.376

abalone19

F-score: minority 0.038 0.029 0.017 0.019 0.000 0.000 0.000 0.000

F-score:
majority

0.962 0.984 0.871 0.975 0.989 0.996 0.997 0.994

Macro F-score 0.500 0.506 0.444 0.497 0.495 0.498 0.499 0.497

123

Machine Learning



SMOTE
Boost-Cart

SMOTE
Boost -RF

SMOTE
Boost -NB

SMOTE
Boost -
SVM

GANs-
Logit

GANs-
DT

GANs-
RF

GANs-
SVM

MCC 0.047 0.023 0.012 0.011 −0.010 −0.003 0.000 −0.006

yeast-0-5-6-7-9_vs_4

F-score: minority 0.581 0.464 0.000 0.509 0.180 0.175 0.206 0.000

F-score:
majority

0.944 0.936 0.940 0.943 0.008 0.103 0.373 0.935

Macro F-score 0.762 0.700 0.470 0.726 0.094 0.139 0.289 0.468

MCC 0.535 0.402 −0.041 0.453 0.020 −0.029 0.112 −0.050

yeast-1-2-8-9_vs_7

F-score: minority 0.000 0.000 0.041 0.000 0.000 0.000 0.000 0.000

F-score:
majority

0.971 0.974 0.339 0.956 0.989 0.988 0.988 0.989

Macro F-score 0.485 0.487 0.190 0.478 0.495 0.494 0.494 0.495

MCC -0.028 -0.026 0.002 -0.038 0.000 -0.007 -0.007 0.000

yeast-1-4-5-8_vs_7

F-score: minority 0.279 0.303 0.079 0.238 0.000 0.000 0.000 0.000

F-score:
majority

0.952 0.965 0.170 0.951 0.981 0.981 0.979 0.981

Macro F-score 0.616 0.634 0.124 0.595 0.495 0.495 0.490 0.495

MCC 0.263 0.277 0.062 0.215 0.000 0.000 -0.011 0.000

yeast-2_vs_4

F-score: minority 0.755 0.784 0.679 0.714 0.698 0.684 0.844 NA

F-score:
majority

0.972 0.976 0.961 0.965 0.972 0.975 0.985 NA

Macro F-score 0.863 0.880 0.820 0.840 0.835 0.830 0.915 NA

MCC 0.735 0.765 0.654 0.695 0.672 0.678 0.830 NA

yeast-2_vs_8

F-score: minority 0.364 0.364 0.111 0.308 0.364 0.364 0.364 0.364

F-score:
majority

0.985 0.985 0.966 0.981 0.985 0.985 0.985 0.985

Macro F-score 0.674 0.674 0.538 0.644 0.674 0.674 0.674 0.674

MCC 0.397 0.397 0.078 0.298 0.397 0.397 0.397 0.397

yeast4

F-score: minority 0.393 0.391 0.085 0.415 0.143 0.303 0.143 0.000

F-score:
majority

0.976 0.981 0.477 0.978 0.984 0.984 0.984 0.982

Macro F-score 0.685 0.686 0.281 0.697 0.563 0.644 0.563 0.491

MCC 0.370 0.376 0.079 0.394 0.273 0.360 0.273 0.000

yeast5

F-score: minority 0.750 0.784 0.378 0.735 0.579 0.323 0.452 0.345

F-score:
majority

0.992 0.992 0.942 0.991 0.989 0.986 0.988 0.987

Macro F-score 0.871 0.888 0.660 0.863 0.784 0.654 0.720 0.666

MCC 0.742 0.778 0.455 0.726 0.591 0.376 0.534 0.451

yeast6
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SMOTE
Boost-Cart

SMOTE
Boost -RF

SMOTE
Boost -NB

SMOTE
Boost -
SVM

GANs-
Logit

GANs-
DT

GANs-
RF

GANs-
SVM

F-score: minority 0.500 0.512 0.115 0.500 0.345 0.619 0.320 0.000

F-score:
majority

0.983 0.985 0.729 0.983 0.987 0.989 0.988 0.986

Macro F-score 0.742 0.749 0.422 0.742 0.666 0.804 0.654 0.493

MCC 0.488 0.497 0.176 0.488 0.376 0.608 0.431 0.000

glass-0-1-6_vs_2

F-score: minority 0.182 0.000 0.000 0.190 0.200 0.118 0.667 0.113

F-score:
majority

0.950 0.921 0.933 0.773 0.956 0.914 0.978 0.927

Macro F-score 0.566 0.461 0.467 0.592 0.578 0.516 0.822 0.530

MCC 0.142 -0.079 -0.066 0.121 0.180 0.036 0.656 0.060

glass-0-1-6_vs_5

F-score: minority 0.600 0.700 0.571 0.889 0.800 0.000 0.000 0.000

F-score:
majority

0.977 0.989 0.965 0.994 0.989 0.978 0.972 0.978

Macro F-score 0.789 0.894 0.768 0.942 0.894 0.489 0.486 0.489

MCC 0.591 0.807 0.611 0.889 0.807 0.000 -0.022 0.000

glass2

F-score: minority 0.308 0.250 0.169 0.375 0.308 0.286 0.182 0.000

F-score:
majority

0.904 0.905 0.587 0.949 0.904 0.950 0.956 0.966

Macro F-score 0.606 0.578 0.378 0.662 0.606 0.618 0.569 0.483

MCC 0.273 0.195 0.140 0.328 0.273 0.236 0.147 0.000

glass4

F-score: minority 0.462 0.429 0.500 0.308 0.000 0.000 0.000 0.000

F-score:
majority

0.965 0.960 0.970 0.955 0.935 0.956 0.956 0.956

Macro F-score 0.713 0.694 0.735 0.631 0.468 0.478 0.478 0.478

MCC 0.473 0.412 0.560 0.295 -0.050 0.000 0.000 0.000

glass5

F-score: minority 0.667 0.333 0.400 0.667 0.286 0.000 0.667 0.000

F-score:
majority

0.990 0.981 0.971 0.995 0.976 0.991 0.990 0.991

Macro F-score 0.829 0.657 0.685 0.831 0.631 0.496 0.829 0.496

MCC 0.700 0.337 0.486 0.704 0.296 0.000 0.700 0.000

shuttle-c0-vs-c4

F-score: minority 1.000 1.000 1.000 0.983 0.982 1.000 1.000 0.966

zF-score:
majority

1.000 1.000 1.000 0.999 0.999 1.000 1.000 0.998

Macro F-score 1.000 1.000 1.000 0.991 0.991 1.000 1.000 0.982

MCC 1.000 1.000 1.000 0.982 0.981 1.000 1.000 0.964

shuttle-c2-vs-c4

F-score: minority 1.000 1.000 1.000 1.000 0.800 0.571 1.000 1.000

F-score:
majority

1.000 1.000 1.000 1.000 0.992 0.976 1.000 1.000
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SMOTE
Boost-Cart

SMOTE
Boost -RF

SMOTE
Boost -NB

SMOTE
Boost -
SVM

GANs-
Logit

GANs-
DT

GANs-
RF

GANs-
SVM

Macro F-score 1.000 1.000 1.000 1.000 0.896 0.774 1.000 1.000

MCC 1.000 1.000 1.000 1.000 0.810 0.617 1.000 1.000

“F score: minority” indicates F-scores measured on the minority class while “F score: majority” represents F-
scores measured on the majority class. Entries in bold indicate the best performance on data. N.A. indicates a
particular algorithm fails to return a final classifier.

Appendix F. Extension to multiclass problems

To extend the application of ZILBoost and ZIPBoost to problems with more than two
classes, we assume J þ 1 classes (i.e., possible outcomes) by defining a discrete random
variable y 2 f0,1; . . .; Jg that is observable. In multiclass problems, we aim to obtain a final
classifier for each class. Let q denote a binary variable indicating the split between regime 0
and 1 via the mapping of a latent variable q�: q ¼ 1 for q� [ 0 and q ¼ 0 for q� � 0. In this
setting, q� represents the propensity of regime 1 as

q* = x
0
b+ u,

where x indicates a vector of covariates that creates inflated zeros for the majority class, b is
a vector of coefficients, and u represents the error term. This equation represents the SE,
which accounts for excess zeros.

Conditional on q ¼ 1, the multi-class outcomes under regime 1 are represented by a
discrete variable ey ey ¼ 0,1; . . .; Jð Þ, which is generated by an OE model via a second latent
variable ey�:
ey* = z0c+ e,

where z indicates a vector of covariates that generate the minority class, c is a vector of
coefficients, and e represents the error term. We refer to the second equation as the OE.
Then, for the multiclass extension, the mapping between ey� and ey is given by

ey ¼
0if ey� � 0;

jifsj�1\ey� � sjðj ¼ 1; . . .; J � 1Þ;
JifsJ�1\ey�;

8<:
where sjðj ¼ 1; . . .; J � 1Þ refer to the boundary parameters to be estimated in addition to c.
The full probabilities for the observed outcomes, y, are then jointly based on the results of
the SE and OE:

Pr yð Þ ¼ Pr y ¼ 0jx; zð Þ ¼ Pr q ¼ 0jxð Þ þ Pr q ¼ 1jxð Þ � Pr ey ¼ 0jzð Þ;
Pr y ¼ jjx; zð Þ ¼ Pr q ¼ 1jxð Þ � Pr ey ¼ jjzð Þ;

�
where j ¼ 1; . . .; J � 1. Based on probit models, the full probabilities can be written as
follows:
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Pr yð Þ ¼
Pr y ¼ 0jx; zð Þ ¼ 1� U x0bð Þ½ � þ U x0bð Þ � 1� U z0cð Þ½ �;
Pr y ¼ jjx; zð Þ ¼ U x0bð Þ � U sj � z0c� �� U sj�1 � z0c� �	 


;
Pr y ¼ J jx; zð Þ ¼ U x0bð Þ � ½1� U sJ�1 � z0cð Þ�;

8<:
where j ¼ 1; . . .; J � 1. The full probabilities for logit models are described as follows:

Pr yð Þ ¼
Pr y ¼ 0jx; zð Þ ¼ 1� 1þ exp �x

0
b

� �� ��1
h i

þ 1þ exp �x
0
b

� �� ��1 � 1� 1þ exp �z
0
c

� �� ��1
h i

;

Pr y ¼ jjx; zð Þ ¼ 1þ exp �x
0
b

� �� ��1 � 1þ exp �z
0
cþ sj

� �� ��1 � 1þ exp �z
0
cþ sj�1

� �� ��1
h i

;

Pr y ¼ J jx; zð Þ ¼ 1þ exp �x
0
b

� �� ��1 � 1þ exp �z
0
cþ sJ�1

� �� ��1
;

8>>><>>>:
where j ¼ 1; . . .; J � 1. Let us define the binary variable yj ¼ Iðy ¼ jÞ, which allows us to
formulate the log-likelihood function as follows:

l fð Þ ¼ PJ
j¼0yjlogPr y ¼ jjx; zð Þ, where f 2

ff 1;j¼0 xð Þ; . . .; f 1;j¼J xð Þ; f 2;j¼0 zð Þ; . . .; f 2;j¼J zð Þg with f 1;j xð Þ = x
0
b and f 2;j zð Þ = z

0
c for each

possible outcome j. Since we construct a final classifier for each class, a centering condition
may help achieve numerical stability (Friedman et al., 2000). Thus, we modify the log-
likelihood by adding the centering condition as follows:

l fð Þ ¼
XJ

j¼0
yjlogPr y ¼ jjx; zð Þ �

XJ

j¼0
yjlog

XJ

k¼0
Pr y ¼ kjx; zð Þ:

The expected negative log-likelihood can be defined using the aforementioned log-
likelihood function with the centering condition. Given the expected negative log-likeli-
hood, we can fit weighted least square regressions for SE and OE for each class over M
iterations using the following update schemes:

f mþ1
1;j¼0 xð Þ ¼ f m1;j¼0 xð Þ � H�1 f m1;j¼0 xð Þ

� �
D f m1;j¼0 xð Þ
� �

given f m2;j¼0 zð Þ;

f mþ1
2;j¼0 zð Þ ¼ f m2;j¼0 zð Þ � H�1 f m2;j¼0 zð Þ

� �
D f m2;j¼0 zð Þ
� �

given f mþ1
1;j¼0 xð Þ;

f mþ1
1;j¼1 xð Þ ¼ f m1;j¼1 xð Þ � H�1 f m1;j¼1 xð Þ

� �
D f m1;j¼1 xð Þ
� �

given f m2;j¼1 zð Þ;

f mþ1
2;j¼1 zð Þ ¼ f m2;j¼1 zð Þ � H�1 f m2;j¼1 zð Þ

� �
D f m2;j¼1 zð Þ
� �

given f mþ1
1;j¼1 xð Þ;

..

.

f mþ1
1;j¼J xð Þ ¼ f m1;j¼J xð Þ � H�1 f m1;j¼J xð Þ

� �
D f m1;j¼J xð Þ
� �

given f m2;j¼J zð Þ;

f mþ1
2;j¼J zð Þ ¼ f m2;j¼J zð Þ � H�1 f m2;j¼J zð Þ

� �
D f m2;j¼J zð Þ
� �

given f mþ1
1;j¼J xð Þ:

Notably, the values of the boundary parameters sj do not depend on the predictors;
therefore, they can be estimated via maximum likelihood at the initial stage and remain fixed
for the iterations. The predicted probabilities of observing each possible outcome j for unit i
are calculated based on f M1;j xð Þ and f M2;j zð Þ. At the M iteration, the final classifier is

argmax
j2 0;...;Jf g

Prðy ¼ jjx; zÞ.
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