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Abstract
Effective streaming feature selection in dynamic online environments is essential in numer-
ous applications. However, most existing methods evaluate high-dimensional features indi-
vidually and ignore the potentially pertainable group structures of features. Moreover, the 
class imbalance underlying streaming data may further decrease the discriminative efficacy 
of the selected features, resulting in deteriorated classification performance. Motivated by 
this observation, we propose a cost-sensitive sparse group online learning (CSGOL) frame-
work and its proximal version (PCSGOL) to handle imbalanced and high-dimensional 
streaming data. We formulate this issue as a new cost-sensitive online optimization prob-
lem by leveraging the �

2
-norm, �

1
-norm, and groupwise sparsity constraints in the dual 

averaging regularization. Inspired by the proximal optimization, we further introduce the 
average weighted distance in CSGOL and develop the PCSGOL method to achieve sta-
ble prediction results. We mathematically derive closed-form solutions to the optimization 
problems with four modified hinge loss functions, leading to four variants of CSGOL and 
PCSGOL. Extensive empirical studies on real-world streaming datasets and online anom-
aly detection tasks demonstrate the effectiveness of our proposed methods.

Keywords  Imbalanced data streams · Cost-sensitive learning · Online learning · Group 
sparsity · Online anomaly detection

1  Introduction

With the rapid development of information technologies, a large amount of data are being 
generated and collected from open and dynamic environments across diverse fields such 
as financial analysis, surveillance systems, and sensor networks (Ho & Wechsler, 2010). 
Data generation over time is referred to as streaming data. They contain valuable informa-
tion that needs to be processed and distilled for real-time data analytics. In traditional data 
mining tasks, data are presumably stationary. That is, the training and test data come from 
the same distribution, and their statistical properties do not change over time. However, in 
dynamic environments, changes in data distribution and changes in feature relevance are 
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common. Moreover, traditional batch offline processing requires the data to be completely 
available and stored in a database or file before processing. Such learning paradigms suffer 
from expensive retraining costs and poor scalability when facing new data with unknown 
patterns. Nevertheless, in streaming data, stationary characteristics no longer exist. The 
patterns are more likely to evolve unpredictably as time passes. For example, the network 
traffic flow fluctuates daily due to potential hacking attempts, malicious software out-
breaks, unexpected mail server problems, etc. Hence, as a powerful learning paradigm, 
online learning (Hoi et al., 2021) has emerged to incrementally update the model and make 
real-time predictions on a stream of examples before obtaining feedback about the true 
label, thereby making the learning process efficient, scalable, and adaptable and continu-
ously processing incoming instances.

The unbounded sequences of real-time data are often characterized by fast veloc-
ity, high-throughput, and large volume attributes, and with new properties such as high 
dimensionality and skewed distribution. These new properties introduce unprecedented 
challenges to traditional online learning techniques. To address these challenges, sparse 
online learning that combines the merits of online learning and sparse learning was 
proposed. Sparse online learning can incrementally update a trained model and learn 
a sparse solution with a limited number of active features. There are two major groups 
of sparse online learning methods. The first group seeks sparse solutions through sub-
gradient descent with truncation (Langford et al., 2009; Duchi & Singer, 2009; Ma & 
Zheng, 2017). The second group focuses on the dual averaging methods that can explic-
itly exploit the regularization structure in an online manner. These include regularized 
dual averaging (RDA) (Xiao, 2010) and RDA+ (Lee and Wright, 2012). Despite their 
success, sparse online learning models ignore the underlying group structures of fea-
tures (Hu et  al., 2017) when minimizing the empirical loss. For example, most of the 
user data gathered or collected in network security management (NSM) are in open 
environments, and the features of the data, such as user profiles, user communities, vis-
its/attacks, and access controls, are collected from different groups (e.g., user profiles 
and communities). For instance, the attacks may fall into some main categories: DOS 
(denial-of-service, e.g., syn flood), R2L (unauthorized access from a remote machine, 
e.g., guessing password), U2R (unauthorized access to local superuser privileges, e.g., 
various “buffer overflow” attacks), and PROBING (surveillance and other probing, e.g., 
port scanning) (Wang et al., 2011). These group features are collectively concatenated 
or merged in the final feature space for further analysis. As an effective method, the 
original group lasso can yield solutions with sparsity at the group level (Ni et al., 2019). 
However, this model is built for batch-mode offline learning and usually lacks the ability 
to further investigate the key factors in an important group. In contrast, in many real-
world applications, to select important groups and key features within a group, online 
models need to promote sparsity at both the group and individual feature levels. There-
fore, only seeking sparsity at the individual or group level (Yang et  al., 2010; Simon 
et al., 2013; Wang et al., 2015; Zhou et al., 2021) may lose some useful information that 
is important to accurately interpret the continuously evolving streaming data.

Moreover, in real-world applications, such as fraud detection, streaming data are both 
high-dimensional and highly class imbalanced. There have been many attempts such 
as Multiset feature learning (MFL) (Wu et  al., 2017), Confusion Matrix-based Kernel 
Logistic Regression (CM-KLOGR) (Ohsaki et al., 2017), DDAE (Yin et al., 2020), and 
Gaussian Distribution based Oversampling (GDO) (Xie et  al., 2022) to handle imbal-
anced data. This occurs because the imbalance classification is crucial in a large number 
of applications related to the detection of outliers, anomalies, failures, and risks. In such 
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cases, existing sparsity-aware online algorithms usually ignore the minority classes, 
which can be important in these applications. The class-imbalance issue seriously 
affects the performance of sparse (group) online learning methods since they treat the 
misclassification cost of different classes equally and choose the sparse features with the 
highest classification accuracy, which may deteriorate the performance for imbalanced 
streaming data. To solve this issue, cost-sensitive online learning methods that use more 
meaningful cost-sensitive metrics such as the F-measure (Wong, 2020) have been stud-
ied extensively. Representative methods include CPA (Crammer et al., 2006), CPA-PB 
(Crammer et  al., 2006), PAUM (Li et  al., 2002), CSOGD (Wang et  al., 2013), CSTG 
(Chen et al., 2017), and CSRDA (Chen et al., 2021). For example, Wang et al. (2013) 
proposed CSOGD to directly optimize the weighted sum of sensitivity and specificity 
and classification cost of false positives and false negatives by minimizing the weighted 
indicator function. Chen et  al. (2017, 2021) extended the TG and RDA techniques to 
cost-sensitive online learning scenarios by proposing CSTG and CSRDA, respectively. 
Although these methods are effective in combating skewed distributions in online set-
tings, they often lack sparse group solutions for online interpretation. Hence, it is chal-
lenging to learn from high-dimensional and class imbalanced data streams in an online 
manner.

Although both learning paradigms have achieved promising performance, most 
methods are inappropriate to jointly solve the cost-sensitive and group sparsity prob-
lems because they often seek cost-insensitive measurements or unexplainable decision 
models. In light of these observations, we introduce a cost-sensitive sparse group online 
learning (CSGOL) method to classify imbalanced data streams with high dimensional-
ity. We directly make CSGOL cost-sensitive by integrating the misclassification cost 
into the formulated objective function. Then, discriminative learning of the sparse 
group classifier is achieved through the groupwise �2-norm and �1-norm combination. 
To stabilize the prediction model with both imbalanced and high-dimensional issues, 
the next-round update involves the average of all past subgradients of the loss functions. 
As a result, the obtained model can automatically seek a favorable trade-off between 
the low misclassification cost and high group/feature sparsity. We also derive closed-
form solutions of CSGOL and its proximal version PCSGOL. Four types of modified 
hinge loss functions are adopted by CSGOL and PCSGOL, leading to four versions 
of algorithm implementations. We further analyze the time and space complexity and 
derive the analytical regret bounds of CSGOL and PCSGOL. Empirical studies dem-
onstrate that the proposed CSGOL and PCSGOL algorithms are more effective than the 
advanced sparse group and cost-sensitive (sparse) online learning algorithms for high-
dimensional streaming data with varied imbalance ratios.

The main contributions of our work are summarized as follows. 

(1)	 We formulate a new cost-sensitive sparse group online learning optimization problem 
and its proximal version by jointly optimizing the misclassification cost and sparsity 
of the weight vectors at the group level.

(2)	 We derive closed-form solutions to effectively solve both CSGOL and PCSGOL opti-
mization problems for imbalanced data streams.

(3)	 We consider four types of modified hinge loss functions in CSGOL and PCSGOL 
optimization through a solid theoretical regret bound guarantee.
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(4)	 We verify the effectiveness and interpretation ability of CSGOL and PCSGOL through 
a series of experiments on high-dimensional streaming datasets with various imbalance 
ratios.

The rest of the paper is organized as follows. The related work is discussed in Sect. 2. Our 
proposed methods and algorithms are elaborated in Sect. 3. The theoretical regret bound 
analysis is presented in Sect. 4. The experimental results are reported in Sect. 5. Our con-
clusion and future work are summarized in Sect. 6.

2 � Related work

We summarize the state-of-the-art methods of sparse online learning, sparse group online 
learning, and cost-sensitive online learning, which are highly related to our work.

2.1 � Sparse online learning

The goal of sparse online learning is to induce sparsity in the weights of online learning 
algorithms, ensuring that the prediction model only contains a limited size of active fea-
tures. These algorithms thus have the potential to achieve better performance and interpret-
ability in practice. Existing solutions for sparse online learning can be categorized into 
two main groups: truncation gradient-based methods and regularized dual averaging-based 
methods. The former group follows the general idea of subgradient descent with trunca-
tion. For example, Langford et al. (2009) proposed a simple yet efficient modification of 
the standard stochastic gradient via truncated gradient (TG) to achieve sparsity in online 
learning. Duchi and Singer (2009) further proposed a forward-backward splitting (FOBOS) 
algorithm to solve the sparse online learning problems by performing an unconstrained 
subgradient descent step and casting an instantaneous optimization problem with a trade-
off between minimizing the regularization term and keeping close to the result obtained in 
the previous phase. However, with high-dimensional streaming data, the TG and FOBOS 
methods suffer from slow convergence and high variance due to heterogeneity in feature 
sparsity. To this end, Ma and Zheng (2017) introduced a stabilized truncated stochastic 
gradient descent (STSGD) algorithm where a soft-thresholding scheme on the weight vec-
tor is employed by imposing an adaptive shrinkage to the amount of information available 
in each feature. The latter group focuses on the dual averaging methods that can explic-
itly exploit the regularization structure in an online manner. One representative method is 
the regularized dual averaging (RDA) proposed in Xiao (2010), which learns the variables 
by solving a regularized optimization problem that involves the average of all past sub-
gradients of the loss functions instead of the subgradient in the current iteration. Lee and 
Wright (2012) extended the RDA algorithm to RDA+ by using a more aggressive trunca-
tion threshold. Ushio and Yukawa (2019) proposed the projection-based regularized dual 
averaging (PDA) method to simultaneously exploit a sparsity-promoting metric and a spar-
sity-promoting regularizer. Zhou et al. (2019) proposed an online algorithm GraphDA for 
graph-structured sparsity constraint problems using the dual averaging method.
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2.2 � Sparse group online learning

To efficiently investigate the important explanatory factors in a grouped manner, Yang 
et al. (2010) developed an online learning algorithm DAGL for group lasso that updates 
the learning weight vector at each iteration by a closed-form solution based on the average 
of the previous subgradients. To address the group structures in the feature stream, Wang 
et al. (2015) developed an online group feature selection method OGFS including an online 
intragroup selection stage and online intergroup selection stage. A criterion based on 
spectral analysis is designed to select discriminative features in each group for intragroup 
selection, and a linear regression model is utilized to select an optimal subset for inter-
group selection. However, OGFS needs to choose a small number of positive parameters 
in advance, which is relatively difficult without prior information in practical applications. 
To deal with new features that arrive by groups, Group-SAOLA (Yu et al., 2016) extended 
the SAOLA algorithm, which can online yield a set of feature groups that is sparse between 
groups and within each group. Ni et  al. (2019) proposed a new algorithm called Group 
Follow The Regularized Leader (GFTRL) for neural feature selection models that directly 
adds a sparse group lasso regularizer into the FTRL optimizer.

2.3 � Cost‑sensitive online learning

Cost-sensitive classification has been extensively studied in the area of data mining (Leevy 
et al., 2018), where the weighted sum of sensitivity and specificity and the weighted mis-
classification cost of false positives and false negatives (Elkan, 2001) are widely used 
to quantitatively measure the asymmetric classification outcomes in imbalanced learn-
ing. However, there are only a few works specifically for cost-sensitive online learning 
for imbalanced data streams, including PAUM (Li et  al., 2002), CPA (Crammer et  al., 
2006), CSOGD (Wang et al., 2013), CSDUOL (Zhao and Hoi, 2013), ARCSOGD (Zhao 
et  al., 2015), CSTG (Chen et  al., 2017), ACOG (Zhao et  al., 2018), and CSRDA (Chen 
et al., 2021). Specifically, Wang et al. (2013) proposed a cost-sensitive online classifica-
tion framework that directly optimizes two well-known cost-sensitive measures: weighted 
cost and weighted sum. Zhao and Hoi (2013) tackled the same problem by adopting the 
double updating technique and proposed a cost-sensitive double updating online learning 
(CSDUOL) algorithm. Zhao et al. (2015) proposed an adaptively regularized cost-sensitive 
online gradient descent (ARCSOGD) method based on the confidence-weighted strategy, 
which combines the first-order and second-order information for online model updates. 
Zhao et  al. (2018) adopted adaptive regularization for cost-sensitive online classification 
problems by proposing ACOG, which can significantly reduce the regret bound by incor-
porating second-order information to enhance the prediction performance. Chen et  al. 
(2017, 2021) proposed a cost-sensitive sparse online learning framework including CSTG 
and CSRDA by making TG and RDA cost-sensitive, which improves the trade-off between 
low cost and high sparsity for imbalanced high-dimensional streaming data.

For addressing the imbalanced data streams with concept drifts, Mirza et  al. (2015) 
propose a computationally efficient framework, named ensemble of subset online sequen-
tial extreme learning machine (ESOS-ELM), which comprises an ensemble represent-
ing short-term memory, an information storage module representing long-term memory 
and a change detection mechanism to promptly detect concept drifts. Wang et al. (2016) 
introduce two resampling-based ensemble methods, named MOOB and MUOB, which 
can process multi-class data directly and strictly online with an adaptive sampling rate 
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for multiclass imbalance and online learning. Cano and Krawczyk (2020) propose a new 
ensemble method named Kappa Updated Ensemble (KUE), which is a combination of 
online and block-based ensemble approaches that uses Kappa statistic for dynamic weight-
ing and selection of base classifiers. Bernardo and Della Valle (2021) propose the very fast 
continuous synthetic minority oversampling technique (VFC-SMOTE). It is a novel meta-
strategy to be prepended to any streaming machine learning classification algorithm aiming 
at oversampling the minority class using a new version of SMOTE and BORDERLINE-
SMOTE inspired by Data Sketching. Liu et  al. (2021) propose a comprehensive active 
learning method for multiclass imbalanced streaming data with concept drift (CALMID), 
which designs a novel sample weight formula that comprehensively considers the class 
imbalance ratio of the sample’s category and the prediction difficulty. Recently, Cano and 
Krawczyk (2022) introduce a novel online ensemble classifier named Robust Online Self-
Adjusting Ensemble (ROSE) for online training of base classifiers and online detection of 
concept drift and creation of a background ensemble for faster adaptation to changes.

Although the above learning paradigms have achieved promising performance in a large 
number of applications, they are somewhat inappropriate to jointly solve the cost-sensitive, 
individual-level sparsity and groupwise sparsity problems in online imbalanced classifi-
cation, as they often seek cost-insensitive measurements or unexplainable individual- and 
group-level decision models. These observations motivate us to introduce a new cost-sen-
sitive sparse group online learning method that incorporates the regularized dual averaging 
technique for stabilizing the prediction performance in handling imbalanced data streams 
with high dimensionality.

3 � Proposed method

3.1 � Problem statement

In this study, we concentrate on cost-sensitive sparse group online learning for imbal-
anced and high-dimensional binary classification, which can be easily extended to multi-
class scenarios through one-vs-one or one-vs-all strategies. We make explicit assumptions 
on the data streams with stationary settings in our study. Let X ⊆ ℝ

d be the feature space 
and Y = {−1,+1} be the label space. We consider a data stream that sequentially comes 
D = {(xt, yt) ∣ t ∈ [T]} , where xt ∈ X  is the instance received at timestamp t, yt ∈ Y is the 
true class label of xt , and [T] = {1, 2,… , T} . We assume that (1) d is a large number, (2) 
The high-dimensional features are sparse and have group effects, and (3) Among the two 
classes present in D , the size of the positive class is much smaller than that of the nega-
tive class, that is, Tp ≪ Tn . At each timestamp t, a linear model wt ∈ X  will be learned 
and assigns a predicted label ŷt to xt by ŷt = sign(wT

t
xt) . The model is then updated for 

the next-round prediction according to the true label yt and predefined loss functions, i.e., 
�(wt;(xt, yt)) . To achieve high scalability and interpretability, most of the elements in wt are 
required to be zero, making the obtained model have a limited number of active groups and 
features. Our learning task is thus to seek such a sparse group model that can simultane-
ously reduce the overall misclassification cost incurred by the skewed class distribution. 
Table 1 summarizes the major notations used in this paper.
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3.2 � Proposed cost‑sensitive online learning framework

Previous studies cast the online learning problem as learning a set of decision models to 
minimize regret. However, a critique of the standard surrogate loss functions is that they 
ignore the misclassification cost asymmetry between the majority and minority classes. To 
resolve this imbalance issue, cost-sensitive objectives such as weighted cost have been pro-
posed for different weight costs of different classes. The accumulated weighted cost is 
defined by cost = 𝜇+Ip + 𝜇−In = 𝜇+

∑
yt=+1

�(yt ŷt<0)
+ 𝜇−

∑
yt=−1

�(yt ŷt<0)
 , where 

Table 1   Major notations

Notation Description

X Domain of an input feature space with d dimensions ( X ⊆ R
d)

Y Domain of class labels (binary classes, Y = {−1,+1})
x An instance in the feature space X
y True class label of x
D A data stream comes sequentially
ŷ Predicted class label of x
w Weight vector of the classifier
‖w‖1 �1-norm of the weight vector w
‖w‖2 �2-norm of the weight vector w , or ‖w‖ for short
Tp Number of positive instances
Tn Number of negative instances
Ip Number of false negatives
In Number of false positives
�+,�− Cost parameters for a false negative and a false positive
� Ratio between �+ and �−

t Index of the t-th streaming data
T Number of instances
[T] Index set: {1, 2,⋯ ,T}

sign(⋅) Sign function
𝓁(⋅) Loss function
�� Indicator function that outputs 1 if � holds and 0 otherwise
Φ(⋅) Smooth regularization term
Ψ(⋅) Sparsity regularization term
∇𝓁⋆(⋅) Subgradient of loss function 𝓁⋆(⋅) , where ⋆ ∈ {I, II, III, IV}

FT (⋅) Objective function over T instances
gt A single stochastic subgradient of the loss function at the current timestamp t
ḡt Average subgradients from the start timestamp to the current timestamp t
𝜆1, 𝜆2, 𝜆3, 𝛾 , 𝜎 > 0 Regularization parameters
K The number of groups over all the features
k The group index of the features ( k = 1, 2,⋯ ,K)
dk The feature dimension of the k-th group ( k = 1, 2,⋯ ,K)
L The length of the sliding window
R⋆
T
(w) Regret of CSGOL/PCSGOL-I/II/III/IV

S(w) The Hoyer sparsity measurement of the weight vector w ∈ X
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Ip =
∑

yt=+1
�(yt ŷt<0)

 and In =
∑

yt=−1
�(yt ŷt<0)

 are the numbers of false positives and false neg-
atives, respectively; 0 ≤ �+ ≤ 1 and 0 ≤ �− ≤ 1 ( �+ + �− = 1 ) are the misclassification 
cost parameters for false positives and false negatives, respectively; and �(⋅) denotes the 
indicator function. In the study, since we assume that the positives are the minority class, 
that is, Tp ≪ Tn , we take 𝜇+ > 𝜇− to weight more cost in misclassifying the true positives 
of the objective function. Note that minimizing the cost is equivalent to minimizing the 
objective function: 𝜅

∑
yt=+1

�(yt ŷt<0)
+
∑

yt=−1
�(yt ŷt<0)

 , where 𝜅 =
𝜇+

𝜇−

> 1.
However, it is NP-hard to minimize the above cost indicator function (Wang et al., 2013; 

Chen et al., 2017). Thus, we replace the objective function with its convex surrogates. The 
tightest surrogate of the indicator function is the hinge loss. Hence, we adopt four types of 
modified hinge loss as the tight and convex surrogates of the weighted cost, which are sum-
marized as follows:

where 𝜅̄ = 𝜅�(y=+1) + �(y=−1) . These four loss functions are illustrated in Fig. 1. Compared 
with the cost indicator function, �II is much tighter than �I and �III when x > 0 . However, 
�
I is much tighter than �II and �IV , and �III is much tighter than �II when x < 0 . All of the 

loss functions enjoy the same value when x = 0.
Using these loss functions, we have four types of cost-sensitive algorithms to minimize 

the objective function in Eq.  (9). The corresponding update rule in the average gradient 
step (i.e., ḡt =

t−1

t
ḡt−1 +

1

t
gt , where gt = ∇�(wt;(xt, yt)) ) can be expressed as follows:

(1)�
I(w;(x, y)) =max (0, 𝜅̄ − ywT

x),

(2)�
II(w;(x, y)) =𝜅̄ ∗ max (0, 1 − ywT

x),

(3)�
III(w;(x, y)) =𝜅̄ ∗ log (1 + exp (−ywT

x)),

(4)�
IV (w;(x, y)) =𝜅̄ ∗ exp (−ywT

x),

Fig. 1   Four modified hinge loss 
functions are utilized as tight 
convex surrogate of cost function 
in CSGOL and PCSGOL
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where 𝜅̄t = 𝜅t�(yt=+1) + �(yt=−1)
 . Note that �t =

�+(
∑t

r=max{1,t−L+1}
�(yr=−1)

+1)

�−(
∑t

r=max{1,t−L+1}
�(yr=+1)

+1)
= �

∑t

r=max{1,t−L+1}
�(yr=−1)

+1
∑t

r=max{1,t−L+1}
�(yr=+1)

+1
 

is dynamically determined by the most recent L timestamps in the range of [t − L + 1, t] , 
where L is the length of the sliding window. Therefore, 𝜅̄t and �t are both bounded by 
𝜅̄t ≤ 𝜅t ≤ max{1, 𝜅}(L + 1) for any t ∈ [T] . In this way, we can dynamically update �t 
regardless of the initiation of the imbalance parameter � . In addition, the term ∑t

r=max{1,t−L+1}
�(yr=−1)

+1
∑t

r=max{1,t−L+1}
�(yr=+1)

+1
 can still be bounded by (L + 1) even though a window includes all 

majorities only. Note that our proposed methods are single-pass online learning; the 
dynamical sliding windows are only used to estimate the local imbalance ratio.

To balance the low misclassification cost and high sparsity, we formulate the objective 
function as follows:

where �(w;(xt, yt)) is the loss function, which has the above four specific forms in cost-
sensitive online learning. The smooth term Φ(w) regularizes the complexity of the classi-
fier to avoid overfitting, and Ψ(w) regularizes the (group) sparsity of the weight vector. Our 
goal is to find an online learning solution to tackle the convex optimization problem, which 
can be approximately solved by the RDA technique (Xiao, 2010). Instead of utilizing only 
a single stochastic subgradient gt = ∇�(wt;(xt, yt)) of the loss function at the current times-
tamp t, RDA updates the next-round weight vector wt+1 using the average of all past sto-
chastic subgradients {gs}ts=1 (i.e., ḡt =

1

t

∑t

s=1
gs ) and hence leads to improved empirical 

performance. Next, we will elaborate on the key techniques of CSGOL and PCSGOL and 
derive the update rule for iteratively minimizing the objective function at the group level.

3.3 � Cost‑sensitive sparse group online learning

Suppose that the d features are divided into K nonoverlapping groups with size dk in the 
k-th group, i.e., 

∑K

k=1
dk = d . Hence, we can rewrite xt = [(x

(1)
t )T , (x

(2)
t )T ,… , (x

(K)
t )T ]T with 

the group of variables x(k)t ∈ ℝ
dk , where k = 1, 2,… ,K . The data do not form a group in 

the feature space when dk = 1 for k. To handle imbalanced and high-dimensional stream-
ing data, CSGOL is introduced to achieve the desired low cost and high sparsity at the 
group and within-group levels for real-time classification and online interpretation. To 

(5)ḡt =
t − 1

t
ḡt−1 −

yt

t
�(�I>0)xt,

(6)ḡt =
t − 1

t
ḡt−1 −

𝜅̄tyt

t
�(�II>0)xt,

(7)ḡt =
t − 1

t
ḡt−1 −

𝜅̄tyt exp (−ytw
T
t
xt)

t(1 + exp (−ytw
T
t xt))

�(�III>0)xt,

(8)ḡt =
t − 1

t
ḡt−1 −

𝜅̄tyt exp (−ytw
T
t
xt)

t
�(�IV>0)xt,

(9)FT (w;{(xt, yt)}
T
t=1

) =

T∑

t=1

�(w;(xt, yt)) + Φ(w) + Ψ(w),
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address the imbalance issue, we directly minimize the misclassification cost through the 
modified hinge loss functions. To yield both sparse group selection and sparse solutions in 
the selected group, we impose the �1∕�2 mixed regularizations at the group level. The �1

-norm-based RDA technique is adopted in CSGOL to promote overall sparsity. For times-
tamp t, based on the current model wt ∈ ℝ

d , we use the following optimization solution to 
update the next-round wt+1 ∈ ℝ

d:

where w = [(w(1))T , (w(2))T ,… , (w(K))T ]T , w(k) ∈ ℝ
dk is the k-th group vector of w ; 𝛾 > 0 , 

𝜆1 > 0 , 𝜆2 > 0 , and 𝜆3 > 0 are the regularization parameters. The �1∕�2 mixed regularizers 
at the group level can not only promote sparsity for selecting individual features but also 
endow the feature space with an additional structure so that features are not penalized indi-
vidually but collectively, encouraging entire groups of features to be sparse by promoting 
intergroup and intragroup sparsity. The proposed cost-sensitive sparse group constraints for 
online learning have a mixing parameter representing the ratio of lasso to group lasso, thus 
providing a compromise between selecting a subset of sparse feature groups and introduc-
ing sparsity within each group.

We can derive the closed-form solution to solve the above optimization problem. That 
is, given ḡt in the t-th iteration, for the k-th group, the optimal solution is updated corre-
spondingly as follows:

where p(k)t = sign(ḡ
(k)
t )

⨀
max (∣ ḡ

(k)
t ∣ −(𝜆2 + 𝜆3)1, 0) , ḡ

(k)
t ∈ ℝ

dk is the k-th group vector 
of ḡt , 

⨀
 is the elementwise multiplication, 1 = [1,… , 1]T ∈ ℝ

dk , and 0 = [0,… , 0]T ∈ ℝ
dk 

( k = 1, 2,… ,K ). Hence, the larger the (�2 + �3) , the higher the probability of the compo-
nents of p(k)t  being zero, leading to a higher sparsity of w(k)

t+1
 in the CSGOL model overall. 

However, a decreased performance may occur at the same time.

3.4 � Proximal cost‑sensitive sparse group online learning

Inspired by the proximal optimization, we introduce a proximal constraint in CSGOL and 
develop the PCSGOL method. Specifically, in addition to the above minimization con-
straints, to achieve stable prediction results, we try to minimize the distance between the 
next-round weight vector wt+1 and all previous weight vectors {ws}

t
s=1

 . Hence, we introduce 
the average weighted distance �

2t

∑t

s=1
��w − ws

��
2

2
 in PCSGOL to replace �

2
√
t
‖w‖2

2
 in 

(10)wt+1 = argmin
w∈ℝd

{< ḡt,w > +
𝛾

2
√
t
‖w‖2

2
+

(11)
K�

k=1

(�1
���w

(k)���2 + �2
���w

(k)���1) + �3‖w‖1},

(12)w
(k)

t+1
= −

√
t

�
max

⎛
⎜
⎜
⎝
1 −

�1
���p

(k)
t

���2
, 0

⎞
⎟
⎟
⎠
p
(k)
t ,
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CSGOL, which tries to ensure that w is close to all previous weight vectors w1,w2,⋯ ,wt . 
Therefore, for timestamp t, based on the current model wt ∈ ℝ

d , we use the following opti-
mization solution to update the next-round wt+1 ∈ ℝ

d:

where w(k) ∈ ℝ
dk is the k-th group vector of w ; 𝜎 > 0 , 𝜆1 > 0 , 𝜆2 > 0 , and 𝜆3 > 0 are the 

regularization parameters.
We can derive the closed-form solution to solve the above optimization problem. That 

is, given ḡt in the t-th iteration, for the k-th group, the optimal solution is updated corre-
spondingly as follows:

where q(k)t = sign(ḡ
(k)
t − 𝜎w̄

(k)
t )

⨀
max (∣ ḡ

(k)
t − 𝜎w̄

(k)
t ∣ −(𝜆2 + 𝜆3)1, 0) , w̄

(k)
t ∈ ℝ

dk is the k-
th group vector of w̄t , and w̄t =

1

t

∑t

s=1
ws is the average weight. Similarly, the larger the 

(�2 + �3) , the higher the probability of the components of q(k)t  being zero, leading to a 
higher sparsity of w(k)

t+1
 in the PCSGOL model overall. However, a decreased performance 

may occur at the same time.
All proofs on the closed-form solutions of CSGOL and PCSGOL are provided in the 

Appendices. Note that these closed-form results of CSGOL and PCSGOL are based on 
the assumption that the groups are divided in nonoverlapping ways. However, if the data 
contain overlapped groups, then we can simply replicate the overlapped features as in Yang 
et al. (2010) to obtain similar solutions of CSGOL and PCSGOL.

3.5 � Algorithms

We summarize the key steps of the CSGOL and PCSGOL algorithms in Algorithm  1. 
It is obvious that the overall time complexity of the algorithm is O(Td) , which is linear 
with respect to the total number of instances T when the dimensionality d is not too high 
and can be treated as a constant. The space complexity of each learning step is O(d) , lin-
ear with respect to d. In practice, when the dataset is high-dimensional, the sparse group 
mechanism introduced in CSGOL and PCSGOL can further reduce the computational 
cost.

(13)wt+1 = argmin
w∈ℝd

{
< ḡt,w > +

𝜎

2t

t∑

s=1

‖‖w − ws
‖‖
2

2
+

(14)
K�

k=1

(�1
���w

(k)���2 + �2
���w

(k)���1) + �3‖w‖1

�
,

(15)w
(k)

t+1
= −

1

�
max

⎛
⎜
⎜
⎝
1 −

�1
���q

(k)
t

���2
, 0

⎞
⎟
⎟
⎠
q
(k)
t ,
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4 � Theoretical analysis

Based on the regret bound of RDA (Xiao, 2010), we can derive the regret bounds of 
CSGOL and PCSGOL in Theorems  1 and 2, respectively. We also compare the regret 
bounds of some existing cost-sensitive and sparse group online learning methods.

4.1 � Regret bound of CSGOL

Theorem  1  (Regret Bound of CSGOL) Let the sequences of {wt}
T
t=1

 and 
{gt = ∇�(wt;(xt, yt))}

T
t=1

 be generated by the CSGOL algorithm, where wt, xt ∈ ℝ
d , 

yt ∈ {−1,+1} , and �(wt;(xt, yt)) is a convex loss function. We assume that there is a constant 
A > 0 such that ‖gt‖22 ≤ A2 and ‖xt‖22 ≤ 1 for all t ≥ 1 . Then, for any w ∈ ℝ

d with 1
2
‖w‖2

2
≤ B2 

( B > 0 ), we have the regret R
∗
T
(w) =

∑T

t=1
[�∗(wt;(xt, yt)) + Φ(wt) + Ψ(wt)]−∑T

t=1
[�∗(w;(xt, yt)) + Φ(w) + Ψ(w)] ( ∗∈ {I, II, III, IV} ) of CSGOL is bounded by 

R
∗
T
(w) ≤ �B2

√
T +

A2

2�

∑T

t=1

1√
t
≤ �B2

√
T +

A2

2�
2
√
T = (�B2 +

A2

�
)
√
T.
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Remark 1  (I) If 𝓁∗(⋅) = 𝓁
I(⋅) , then we can derive the following bound of ‖gt‖22 for all t ≥ 1 : 

‖gt‖22 = ‖∇�I(wt;(xt, yt))‖22 = ‖ − ytxt‖22 ≤ 1 . Thus, replacing A2 = 1 in Theorem  1 will 
obtain the regret bound of CSGOL-I: RI

T
(w) ≤ (�B2 +

1

�
)
√
T ; (II) If 𝓁∗(⋅) = 𝓁

II(⋅) ,  

then we can derive the following bound of ‖gt‖22 for all t ≥ 1 : 
‖gt‖22 = ‖∇�II(wt;(xt, yt))‖22 = ‖ − 𝜅̄tytxt‖22 ≤ 𝜅̄2

t
≤ 𝜅2

t
≤ max2 (1, 𝜅)(L + 1)2 . Thus, replac-

ing A2 = max2 (1, �)(L + 1)2 in Theorem  1 will obtain the regret bound of CSGOL-II: 
R

II
T
(w) ≤ (�B2 +

max2 (1,�)(L+1)2

�
)
√
T ; (III) If 𝓁∗(⋅) = 𝓁

III(⋅) , then we can derive the following 

bound of ‖gt‖22 for all t ≥ 1 : ‖gt‖22 = ‖∇�III(wt;(xt, yt))‖22 = ‖ − 𝜅̄tytxt
exp (−ytw

T
t
xt)

1+exp (−ytw
T
t xt)

‖2
2
≤ 𝜅̄2

t

‖gt‖22 = ‖∇�III(wt;(xt, yt))‖22 = ‖ − 𝜅̄tytxt
exp (−ytw

T
t
xt)

1+exp (−ytw
T
t xt)

‖2
2
≤ 𝜅̄2

t
≤ 𝜅2

t
≤ max2 (1, 𝜅)(L + 1)2  , 

where exp (−ytw
T
t
xt)

1+exp (−ytw
T
t xt)

≤ 1 . Thus, replacing A2 = max2 (1, �)(L + 1)2 in Theorem 1 will obtain 
the regret bound of CSGOL-III: R

III
T
(w) ≤ (�B2 +

max2 (1,�)(L+1)2

�
)
√
T ; and (IV) If 

𝓁
∗(⋅) = 𝓁

IV (⋅) , then we can derive the following bound of ‖gt‖22 for all t ≥ 1 : 
‖gt‖22 = ‖∇�IV (wt;(xt, yt))‖22 = ‖ − 𝜅̄tytxt exp (−ytw

T
t
xt)‖22 ≤ exp (−

√
2B)𝜅̄2

t
≤ exp (−

√
2B)

�2
t
≤ exp (−

√
2B)max2 (1, �)(L + 1)2 , where exp (−ytwT

t
xt) ≤ exp (−

√
2B) . Thus, replacing 

A2 = exp (−
√
2B)max2 (1, �)(L + 1)2 in Theorem 1 will obtain the regret bound of CSGOL-

IV: RIV
T
(w) ≤ (�B2 +

exp (−
√
2B)max2 (1,�)(L+1)2

�
)
√
T.

4.2 � Regret bound of PCSGOL

Theorem  2  (Regret Bound of PCSGOL) Let the sequences of {wt}
T
t=1

 and 
{gt = ∇�(wt;(xt, yt))}

T
t=1

 be generated by the PCSGOL algorithm, where 
wt, xt ∈ ℝ

d , yt ∈ {−1,+1} , and �(wt;(xt, yt)) is a convex loss function. We 
assume that there is a constant A > 0 such that ‖gt‖22 ≤ A2 and ‖xt‖22 ≤ 1 for 
all t ≥ 1 . Then, for any w ∈ ℝ

d with 1

2
‖w‖2

2
≤ B2 ( B > 0 ), we have the regret 

R
∗
T
(w) =

∑T

t=1
[�∗(wt;(xt, yt)) + Φ(wt) + Ψ(wt)] −

∑T

t=1
[�∗(w;(xt, yt)) + Φ(w) + Ψ(w)] 

( ∗∈ {I, II, III, IV} ) of PCSGOL is bounded by 
R

∗
T
(w) ≤ �B2

√
T +

A2

2�

∑T

t=1

1

t
≤ �B2

√
T +

A2

2�
log T .

Remark 2  (I) If 𝓁∗(⋅) = 𝓁
I(⋅) , then we can derive the following bound of ‖gt‖22 for all t ≥ 1 : 

‖gt‖22 = ‖∇�I(wt;(xt, yt))‖22 = ‖ − ytxt‖22 ≤ 1 . Thus, replacing A2 = 1 in Theorem  2  
will obtain the regret bound of PCSGOL-I: R

I
T
(w) ≤ �B2

√
T +

1

2�
log T  ; (II) If 

𝓁
∗(⋅) = 𝓁

II(⋅) , then we can derive the following bound of ‖gt‖22 for all t ≥ 1 : 
‖gt‖22 = ‖∇�II(wt;(xt, yt))‖22 = ‖ − 𝜅̄tytxt‖22 ≤ 𝜅̄2

t
≤ 𝜅2

t
≤ max2 (1, 𝜅)(L + 1)2 . Thus,  

replacing A2 = max2 (1, �)(L + 1)2 in Theorem  2 will obtain the regret bound  
of PCSGOL-II: R

II
T
(w) ≤ �B2

√
T +

max2 (1,�)(L+1)2

2�
log T  ; (III) If 𝓁

∗(⋅) = 𝓁
III(⋅) , then  

we can derive the following bound of ‖gt‖22 for all t ≥ 1 : 
‖gt‖22 = ‖∇�III(wt;(xt, yt))‖22 = ‖ − 𝜅̄tytxt

exp (−ytw
T
t
xt)

1+exp (−ytw
T
t xt)

‖2
2
≤ 𝜅̄2

t
≤ 𝜅2

t
≤ max2 (1, 𝜅)(L + 1)2  , 

where exp (−ytw
T
t
xt)

1+exp (−ytw
T
t xt)

≤ 1 . Thus, replacing A2 = max2 (1, �)(L + 1)2 in Theorem  2  
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will obtain the regret bound of PCSGOL-III: RIII
T
(w) ≤ �B2

√
T +

max2 (1,�)(L+1)2

2�
log T  ;  

and (IV) If 𝓁
∗(⋅) = 𝓁

IV (⋅) , then we can derive the following bound of ‖gt‖22  
for all t ≥ 1 : ‖gt‖22 = ‖∇�IV (wt;(xt, yt))‖22 = ‖ − 𝜅̄tytxt exp (−ytw

T
t
xt)‖22

≤ exp (−
√
2B)𝜅̄2

t
≤ exp (−

√
2B)𝜅2

t
≤ exp (−

√
2B)max2 (1, 𝜅)(L + 1)2 , where 

exp (−ytw
T
t
xt) ≤ exp (−

√
2B) . Thus, replacing A2 = exp (−

√
2B)max2 (1, �)(L + 1)2 in 

Theorem  2 will obtain the regret bound of PCSGOL-IV: 
R

IV
T
(w) ≤ �B2

√
T +

exp (−
√
2B)max2 (1,�)(L+1)2

2�
log T .

Remark 3  Theorems 1 and 2 reveal the mathematical relationships of regret bounds of CSGOL 
and PCSGOL with the imbalanced parameter � , size of sliding windows L, and regulariza-
tion parameters � and � , respectively. Since the gradient of �I is independent of �t , R

I
T
 is also 

irrelevant to �t . Furthermore, it is easy to derive the cost bounds of CSGOL and PCSGOL by 
cost∗ ≤ �−

∑T

t=1
�
∗(wt;(xt, yt)) , where ∗∈ {I, II, III, IV} . Hence, using Theorems  1 and 2, 

we can determine that the cost bounds of CSGOL and PCSGOL depend on the corresponding 
regret bounds and the trade-off between the misclassification cost, individual feature sparsity, 
and groupwise sparsity. The lower the regret bound and/or higher feature or groupwise sparsity 
of CSGOL (or PCSGOL), the lower the cost bound of CSGOL (or PCSGOL).

Table 2   Regret bound comparison: TG, RDA, CSOGD, CSTG, CSRDA, DAGL/DASGL/DAESGL, 
CSGOL, and PCSGOL

Method Regret bound Complexity

TG (Langford et al., 2009) 1+2B2

2

√
T O(

√
T)

RDA (Xiao, 2010) (�B2 +
A2

�
)
√
T O(

√
T)

CSOGD-I (Wang et al., 2013)
√
2B2

√
T O(

√
T)

CSOGD-II (Wang et al., 2013) max (1, �)
√
2B2

√
T O(

√
T)

CSTG-I (Chen et al., 2017) C(1+2B2)

2

√
T O(

√
T)

CSTG-II (Chen et al., 2017) C(max2 (1,�)+2B2)

2

√
T O(

√
T)

CSRDA-I (Chen et al., 2021) (�B2 +
1

�
)
√
T O(

√
T)

CSRDA-II (Chen et al., 2021) (�B2 +
max2 (1,�)(L+1)2

�
)
√
T O(

√
T)

DAGL/DASGL/DAESGL (Yang et al., 
2010)

(�B2 +
A2

�
)
√
T O(

√
T)

CSGOL-I (�B2 +
1

�
)
√
T O(

√
T)

CSGOL-II (�B2 +
max2 (1,�)(L+1)2

�
)
√
T O(

√
T)

CSGOL-III (�B2 +
max2 (1,�)(L+1)2

�
)
√
T O(

√
T)

CSGOL-IV
(�B2 +

exp (−
√
2B)max2 (1,�)(L+1)2

�
)
√
T O(

√
T)

PCSGOL-I �B2
√
T +

1

2�
log T O(

√
T + logT)

PCSGOL-II �B2
√
T +

max2 (1,�)(L+1)2

2�
logT O(

√
T + logT)

PCSGOL-III �B2
√
T +

max2 (1,�)(L+1)2

2�
logT O(

√
T + logT)

PCSGOL-IV
�B2

√
T +

exp (−
√
2B)max2 (1,�)(L+1)2

2�
log T O(

√
T + logT)
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4.3 � Regret bound comparisons

Table 2 compares the regret bounds of CSGOL-I/II/III/IV and PCSGOL-I/II/III/IV with 
those of TG, RDA, CSOGD-I/II, CSTG-I/II, and CSRDA-I/II. The complexity of the 
regret bounds of CSGOL-I/II/III/IV is O(

√
T) , the same as those of TG, RDA, CSOGD-

I/II, CSTG-I/II, and CSRDA-I/II. It is clear that the algorithms with the first type of loss 
have tighter regret bounds than their counterparts with the other three types of loss. The 
difference between these two groups can be large when the data are highly skewed. 
Among these methods, CSGOL, PCSGOL, CSRDA, and CSTG have the loosest regret 
bounds, as both sparsity and loss are considered in the bounds. TG, RDA, and CSOGD, 
on the other hand, only consider sparsity or loss in their bounds. Compared to CSOGD, 
TG and RDA have a looser regret bound. This is because TG and RDA may have higher 
misclassification costs when sparsity is introduced in the high-dimensional feature 
space. Note that since the complexity of the regret bounds of all of the methods is 
O(

√
T) or O(

√
T + log T) , the average regret bounds R̄∗

T
(w) =

1

T
R

∗
T
(w) of the methods 

and their variants converges to O(
1√
T
) → 0 or O(

1√
T
+

logT

T
) → 0 as the number of 

streaming samples T → ∞.

5 � Experiments

5.1 � Datasets and evaluation metrics

Six real-world streaming datasets are utilized in the experiments. These datasets are also 
utilized as real-world streaming benchmarks in many state-of-the-art (online) studies 
(Wang et al., 2013; Zhang et al., 2016; Zhao et al., 2018; Chen et al. 2021) for mining 
data streams. Table 3 summarizes the attributes including the imbalance ratio of each 
binary dataset (last column). These original datasets except “w8a” are also preprocessed 
by the one-side subsampling method (Kubat & Matwin, 1997), which selectively sub-
samples the minority classes such that they are suitable for the severely imbalanced 
online classification tasks. The size of each subsample is approximately 10% of the 

Table 3   Summarization of real-world binary datasets

a http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.​php
b https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsv​mtools/​datas​ets/

Dataset #Sample #Feature #Positive:#Negative #Positive(Sub):#Negative

PCMACa 1943 7, 510 961 ∶ 982 ≈ 1 ∶ 1.0 96 ∶ 982 ≈ 1 ∶ 10.2

spambaseb 4, 601 56 1813 ∶ 2788 ≈ 1 ∶ 1.5 181 ∶ 2788 ≈ 1 ∶ 15.4

MITFaceb 6, 977 361 2429 ∶ 4548 ≈ 1 ∶ 1.9 242 ∶ 4548 ≈ 1 ∶ 18.8

a9aa 48, 842 123 11687 ∶ 37155 ≈ 1 ∶ 3.2 1168 ∶ 37155 ≈ 1 ∶ 31.8

usps1allb 7291 256 1194 ∶ 6097 ≈ 1 ∶ 5.1 119 ∶ 6097 ≈ 1 ∶ 51.2

w8ab 64, 700 300 1933 ∶ 62767 ≈ 1 ∶ 32.5 1933 ∶ 62767 ≈ 1 ∶ 32.5

http://archive.ics.uci.edu/ml/datasets.php
https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/
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positive samples. We use classification cost, sparsity, and running time as the compari-
son metrics. For the sparsity comparison, we utilize the Hoyer measurement (Hurley 
and Rickard, 2009) of the weight vector w ∈ X  as the sparsity measurement: 

S(w) =

√
d−(

‖w‖1
‖w‖2

)
√
d−1

 , where d is the length of w , 0 ≤ S(w) ≤ 1 . The smaller the magnitude, 
the lower the sparsity of the measure.

5.2 � Competing algorithms

In the experiments, we compare CSGOL/PCSGOL-I/II/III/IV with several state-of-the-
art sparse group online learning algorithms and cost-sensitive (sparse) online learning 
algorithms: DAGL (Yang et  al., 2010), DASGL (Yang et  al., 2010), DAESGL (Yang 
et  al., 2010), OGFS (Wang et  al., 2015), CSOGD-I/II (Wang et  al., 2013), CSTG-I/
II (Chen et  al., 2017), and CSRDA-I/II (Chen et  al., 2021). More specifically, DAGL 
(Yang et  al., 2010) is a group online learning method; DASGL (Yang et  al., 2010), 
DAESGL (Yang et  al., 2010), and OGFS (Yang et  al., 2010) are sparse group online 
learning methods; CSOGD-I/II (Wang et  al., 2013) are cost-sensitive online learning 
methods; CSTG-I/II (Chen et  al., 2017) and CSRDA-I/II (Chen et  al., 2021) are cost-
sensitive sparse online learning methods; and our proposed CSGOL-I/II/III/IV and 
PCSGOL-I/II/III/IV are cost-sensitive sparse group online learning methods.

5.3 � Experimental settings

We implement CSTG-I/II, CSRDA-I/II, CSGOL-I/II/III/IV, and PCSGOL-I/II/III/IV 
in MATLAB. The MATLAB implementations of DAGL (Yang et  al., 2010), DASGL 
(Yang et  al., 2010), DAESGL (Yang et  al., 2010), OGFS (Wang et  al., 2015), and 
CSOGD-I/II (Wang et al., 2013) are conducted from (Yang et al., 2010), (Wang et al., 
2015), and (Wang et  al., 2013), respectively. For a fair comparison, the same experi-
mental setup is applied to all algorithms. We set �+ = 0.9 and �− = 0.1 for the mis-
classification cost measurement. After the preliminary studies, we set the group size by 
dk = 10 , length of the sliding window by L = 100 , and regularized parameters are tested 
by � = 0.05 , �1 = 0.1 , �2 = 0.05 , and �3 = 0.05 for CSGOL and by � = 0.1 , �1 = 0.01 , 
�2 = 0.05 , and �3 = 0.05 for PCSGOL. All other parameter values are determined based 
upon the recommendations in Yang et al. (2010), Wang et al. (2013), and Wang et al. 
(2015). One hundred independent runs for each dataset are performed, and the average 
result of each method is reported. We perform all experiments on a Windows machine 
with a 3.7-GHz Intel Core processor and 64.0-GB main memory.

5.4 � Overall comparisons

Table 4 presents the overall performance, including misclassification cost ( ± standard 
deviation), Hoyer sparsity measurement (±  standard deviation), and average running 
time of all competing algorithms on these imbalanced streaming datasets. Some obser-
vations can be summarized as follows: (1) In terms of the average misclassification cost, 
CSGOL-IV achieved the lowest cost on the “PCMAC” dataset, followed by PCSGOL-
IV; CSRDA-II achieved the lowest cost on the “MITFace” dataset, followed by CSGOL-
IV; otherwise, PCSGOL-III or PCSGOL-IV exhibits the best performance on the other 
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datasets; (2) In terms of the sparsity measurement, in most cases, CSGOL-III obtains 
the highest sparsity with potential the least activated features for model interpretation 
on all the datasets except “PCMAC”, where DAESGL presents the highest sparsity, fol-
lowed by DASGL; (3) In terms of average running time, PCSGOL-III and PCSGOL-IV 
achieve the highest computational cost almost in all of the datasets since they need more 
time to compute the adjusted weighting factor during the online gradient updating.

Quantitatively, over these six datasets, the average misclassification cost by CSGOL-
I/II/III/IV is reduced by 1.89, 8.44, 21.15, 61.14, and 62.78% compared to the aver-
age misclassification cost by CSRDA-I/II, CSTG-I/II, CSOGD-I/II, OGFS, and DAGL/
DASGL/DAESGL, respectively. Similarly, the average misclassification cost by PCS-
GOL-I/II/III/IV is reduced by 2.35, 8.87, 21.52, 61.33, and 62.95% compared to the 
average misclassification cost by CSRDA-I/II, CSTG-I/II, CSOGD-I/II, OGFS, and 
DAGL/DASGL/DAESGL, respectively. There is no significant difference in the average 
misclassification cost by CSGOL-I/II/III/IV and PCSGOL-I/II/III/IV.

At the same time, over these six datasets, the average sparsity by CSGOL-I/II/III/IV 
is improved by 79.28, 46.80, 83.10, 81.11, 49.26, and 22.84% compared to the average 
sparsity by PCSGOL-I/II/III/IV, CSRDA-I/II, CSTG-I/II, CSOGD-I/II, OGFS, and DAGL/
DASGL/DAESGL, respectively. This indicates that CSGOL-I/II/III/IV achieved the larg-
est sparsity on average, followed by DAGL/DASGL/DAESGL, and CSRDA-I/II. Overall, 
the proposed CSGOL and PCSGOL methods achieved state-of-the-art performance by 
optimizing the online misclassification cost by averaging gradients of loss functions at the 
group level. However, the proposed CSGOL methods have better sparsity or potentially 
better model interpretation than the PCSGOL methods. The sparsity measurement compar-
isons validate the interpretation ability of CSGOL for handling high-dimensional stream-
ing data.

Finally, over these six datasets, the average running time of CSGOL-I/II/III/IV is 
almost 2.62, 1.74, 2.85, 2.92, and 2.71 times that of CSRDA-I/II, CSTG-I/II, CSOGD-I/
II, OGFS, and DAGL/DASGL/DAESGL, respectively. Similarly, the average running time 
by PCSGOL-I/II/III/IV is almost 1.88, 1.25, 2.04, 2.10, and 1.94 times that by CSRDA-I/
II, CSTG-I/II, CSOGD-I/II, OGFS, and DAGL/DASGL/DAESGL, respectively. This indi-
cates that OGFS is the most efficient online algorithm. However, the average time con-
sumptions of CSGOL and PCSGOL are very competitive with OGFS, making the pro-
posed methods relatively fast to process high-throughput data streams.

5.5 � Dynamic performance comparisons

In this section, we dynamically show the real-time classification performance of all com-
peting algorithms as data streams sequentially come.

5.5.1 � Dynamic cost comparisons

As shown in Fig.  2, we investigate the dynamic misclassification cost of all algorithms 
with the progression of a data stream. For these six data streams, the online average cost 
curves of CSGOL-III and PCSGOL-III/IV consistently dominate the corresponding curves 
of other algorithms without much variation. The superiority of CSGOL-III and PCSGOL-
IV over others is evident on the “PCMAC” and “a9a” data streams, where the severe 
imbalance ratios of positives and negatives are present. This indicates that CSGOL-III and 
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PCSGOL-IV are able to capture the underlying structure of the minority classes associated 
with the ever-evolving distributions of imbalanced streaming data.

Fig. 2   Dynamic learning curves in terms of online average misclassification cost of all competing algo-
rithms as data streams progress. Legends for all methods also apply to Figs. 3, 5, 8, 9, and 10
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5.5.2 � Dynamic sparsity comparisons and interpretation

Figure 3 presents the online average sparsity measurement of all algorithms with the pro-
gression of a data stream. CSGOL-III significantly achieves much higher sparsity than 
other methods on all datasets except the “PCMAC” dataset with extremely high feature 
dimensions, where DAESGL and DASGL dominate the curves of other methods. The 
Hoyer sparsity measurement achieved by CSGOL-III is approximately 0.90 and 0.70 on 
the “MITFace” and “w8a” datasets with over 300 features, respectively. This indicates that 
our proposed methods not only achieve lower misclassification cost for imbalanced data 

Fig. 3   Dynamic learning curves in terms of online average sparsity of all competing algorithms as data 
streams progress
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streams but also obtain a better sparsity level for model interpretation in handling high-
dimensional streaming data.

For the model interpretation comparisons, Fig. 4 presents the heatmaps on the weight 
matrix of the compared methods on the “a9a” dataset. The online prediction task is to 
determine whether a person makes over 50K in salary over a year. The x-axis represents 
the top 10 selected features determined by absolute values of the weight vectors, and the 

Fig. 4   Dynamic heatmaps on weight matrix are compared for model interpretation on the “a9a” dataset
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y-axis represents the last 100 streaming samples via convergence. We found that the 9-, 
28-, 67-, 73-, 83-, 93-, and 118-th features [i.e., age (42-44), work class (never-worked), 
occupation (armed-forces), relationship (unmarried), hours-per-week, and native country 
(South Korean, Yugoslavia)] are selected multiple times among the four cost-insensitive 
sparse group online learning methods, i.e., DAGL, DASGL, DAESGL, and OGFS. The 
27-, 30-, 32-, 34-, 54-, 60-, 84-, 108-, 111-, and 121-th [i.e., work class (without-pay), edu-
cation (bachelors, 11-th grade, prof-school), occupation (tech-support, handlers-cleaners), 
and native country (United States, Laos, Haiti, Peru)] features are selected multiple times 
among the CSGOL-I/II/III/IV methods. The 48-, 60-, 84-, 89-, 92-, 97-, 113-, and 118-th 
features [i.e., marital status (divorced), occupation (handlers-cleaners), and native country 
(United States, Outlying US, Greece, Honduras, Hungary, Yugoslavia)] are selected mul-
tiple times among the PCSGOL-I/II/III/IV methods. This indicates that CSGOL achieves 
better interpretable features at the group level (i.e., work class, education, occupation, and 
native country) and features within groups than the DAGL, DASGL, DAESGL, OGFS, 
and PCSGOL methods.

5.5.3 � Dynamic running time comparisons

Figure 5 presents the online average running time of one hundred independent runs for all 
methods on those six datasets. The average time consumptions of CSGOL and PCSGOL 
are approximately three and two times that of the most efficient online algorithm OGFS, 
making the proposed methods relatively fast to process high-throughput data streams. In 
addition, the average time consumed by CSGOL and PCSGOL is still competitive com-
pared with the cost-sensitive sparse online learning methods such as CSRDA-I/II and 
CSTG-I/II. These results validate the efficiency of CSGOL and PCSGOL compared with 
state-of-the-art methods.

5.6 � Parameter sensitivity analysis

To run CSGOL and PCSGOL, one needs to specify several parameters, especially 
the regularization parameters �1 , �2 , and �3 . Since the sum of �2 and �3 determines the 
sparsity level of both CSGOL and PCSGOL, we investigate how the alterations of �1 
and (�2 + �3) affect the performance of by grid search when � and � are fixed, respec-
tively. Taking the severely imbalanced dataset “a9a” as an example, we summarize the 
performance of CSGOL and PCSGOL when �1 and (�2 + �3) are both selected from 
[5 × 10−3, 1 × 10−2, 5 × 10−2, 1 × 10−1] . In Fig.  6, we compare the dynamic misclassi-
fication cost when varying these parameters. It is evident that CSGOL-III/IV achieves a 
much lower cost than CSGOL-I/II in Fig. 6a. The performances of CSGOL-II/III/IV are 
relatively stable without much variation when �1 ∈ [5 × 10−3, 1 × 10−2, 5 × 10−2, 1 × 10−1] 
and �2 + �3 ∈ [5 × 10−3, 1 × 10−2, 5 × 10−2, 1 × 10−1] ; however, the misclassification cost 
of CSGOL-I fluctuates as proper �1 and (�2 + �3) are vital to smooth the model. When �1 
is fixed, the misclassification cost of CSGOL-I is significantly decreased when the values 
of (�2 + �3) are decreased from 1 × 10−1 to 5 × 10−3 . The reason is that a relatively large 
(�2 + �3) will promote the sparsity level; however, it deteriorates the misclassification cost 
of CSGOL. Overall, CSGOL-II/III/IV are relatively robust to these parameters. Similar 
results are observed for PCSGOL in Fig. 6b.
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We also investigate how the size of sliding windows L affects the performance of 
CSGOL and PCSGOL. Figure 7 presents the online average accumulated cost of CSGOL 
and PCSGOL when L is selected from [10, 20, 50, 100, 200, 500, 1000] on the “w8a” data-
set. Overall, CSGOL-I/IV and PCSGOL-III/IV are relatively robust to the size of sliding 
windows L since their online average accumulated cost is stable without much variation. 
The reason could be the dynamical design of �t = �

∑t

r=max{1,t−L+1}
�(yr=−1)

+1
∑t

r=max{1,t−L+1}
�(yr=+1)

+1
 , which is relatively 

robust to L since it is embedded with the initiation of the imbalance parameter � for imbal-
ance online learning. Moreover, the misclassification cost of both CSGOL and PCSGOL is 
almost minimized when L = 100 . The reason is probably that a small L leads to an 

Fig. 5   Dynamic learning curves in terms of online average running time (seconds) of all competing algo-
rithms as data streams progress
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Fig. 6   Sensitivity analysis of regularization parameters of CSGOL (left panel) and PCSGOL (right panel) 
on the “a9a” dataset

Fig. 7   Sensitivity analysis of 
length of sliding windows L on 
the “w8a” dataset

Table 5   Summarization of real 
world (binary) datasets for online 
anomaly detection in experiments

c https://​www.​kdd.​org/​kdd-​cup/​view/​kdd-​cup-​2008/​Data
d http://​odds.​cs.​stony​brook.​edu/​speech-​datas​et/
e http://​odds.​cs.​stony​brook.​edu/​musk-​datas​et/
f https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​cover​type
g https://​www.​kaggle.​com/​datas​ets/​mlg-​ulb/​credi​tcard​fraud

Dataset #Sample #Feature #Positive:#Negative

KDDCUP’08c 102, 294 117 623 ∶ 101, 671 ≈ 1 ∶ 163.2

Speechd 3686 400 61 ∶ 3, 625 ≈ 1 ∶ 59.4

Muske 3062 166 97 ∶ 2, 965 ≈ 1 ∶ 30.6

Covtype (class 
4 vs. class 2)f

286, 048 54 2, 747 ∶ 283, 301 ≈ 1 ∶ 103.1

Credit Cardg 284, 807 29 492 ∶ 284, 315 ≈ 1 ∶ 578

https://www.kdd.org/kdd-cup/view/kdd-cup-2008/Data
http://odds.cs.stonybrook.edu/speech-dataset/
http://odds.cs.stonybrook.edu/musk-dataset/
https://archive.ics.uci.edu/ml/datasets/covertype
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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underestimation of the true imbalance ratio; however, a large L leads to an overestimation 
of the true imbalance ratio, which can increase the misclassification cost. Therefore, we set 
L = 100 in the experiments to balance these two unexpected cases.

5.7 � Online anomaly detection

The proposed cost-sensitive sparse group online classification algorithms (i.e., CSGOL-I/
II/III/IV and PCSGOL-I/II/III/IV) can potentially be applied to solve a wide range of real-
world applications in streaming data mining. To verify their practical application value, we 
apply them to tackle the five online anomaly detection tasks (Table 5) below:

•	 Medical imaging (KDDCUP’08): The KDDCUP’08 breast cancer dataset belongs to 
the medical image anomaly detection problem. The main goal is to detect breast cancer 
from X-ray images, where “benign” is assigned as normal and “malignant” is abnor-
mal.

•	 Speech accents recognition (Speech): The real-world speech dataset consists of 3,686 
segments of English speech spoken with different accents. This dataset is provided by 
the Speech processing group at Brno University of Technology, Czech Republic. The 
majority data corresponds to the American accent, and only 1.65% corresponds to one 
of seven other accents (these are referred to as anomalies).

•	 Musk classification (Musk): This dataset describes a set of 102 molecules, of which 39 
are judged by human experts to be musks and the remaining 63 molecules are judged to 
be nonmusks. The goal is to learn to predict whether new molecules will be musks or 
nonmusks.

•	 Forest covertype (Covtype): This dataset contains information about the forest cover 
type of 30 × 30-meter cells obtained from the US Forest Service Region 2 Resource 
Information System. It contains 581,012 instances, 54 attributes, and 7 class labels 
(i.e., class 1: Spruce/Fir, class 2: Lodgepole Pine, class 3: Ponderosa Pine, class 4: 
Cottonwood/Willow, class 5: Aspen, class 6: Douglas-fir, and class 7: Krummholz) 
related to different forest cover types. However, the original dataset is unsuitable for 
the imbalance classification task. Thus, we conduct the experiments by considering 
two extreme classes, where class 4 (Cottonwood/Willow) is the most minority class 
and class 2 (Lodgepole Pine) is the most majority class, i.e., their imbalance ratio is 
2, 747 ∶ 283, 301 ≈ 1 ∶ 103.1 with a total 286,048 instances.

•	 Credit card fraud detection (creditcard): The dataset contains transactions made by 
credit cards in September 2013 by European cardholders. This dataset presents transac-
tions that occurred in two days, where we have 492 frauds out of 284,807 transactions. 
The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all 
transactions.

Figure  8 exhibits the experimental results on these four datasets. We make several 
observations: (1) CSGOL-III/IV achieve the lowest misclassification cost on the “KDD-
CUP’08,” “Speech,” and “covtype” datasets, while CSOGD-II and PCSGOL-III achieve 
the lowest misclassification cost on the “Musk” dataset. This confirms the superiority of 
cost-sensitive online learning for imbalanced data streams. (2) CSGOL-III/IV achieves 
the highest sparsity measurement among all four tasks in different domains. Overall, 
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CSGOL-III/IV achieves a better balance between low cost and high sparsity than the other 
methods on these four datasets. This indicates that the online cost-sensitive and group spar-
sity optimizations for CSGOL are effective in handling high-dimensional and imbalanced 
data streams using regularized dual averaging over time. (3) Although the running speed 
of CSGOL is the slowest among all of the algorithms, its cost and sparsity performance is 
relatively competitive with those of the other methods among these datasets. (4) For the 
credit card dataset with the severe imbalanced ratio, we observe that PCSGOL-III achieved 
the lowest misclassification cost and highest classification F1-score and G-mean of all the 
competing algorithms, with a competitive sparsity metric as well. CSGOL-IV achieved 
highest sparsity with relative low misclassification cost and high classification F1-score 
and G-mean. In conclusion, all promising results confirm the superiority of our proposed 
CSGOL algorithms for real-world online anomaly detection problems, where the datasets 
are embedded with high-dimensional and highly class-imbalanced properties.

Fig. 8   Dynamic learning curves in terms of online metrics (i.e., cost, sparsity, F-score, G-mean, and run-
ning time) of all competing algorithms for online anomaly detection
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5.8 � Results on real‑world data streams

To test our methods on real-world data streams, we tried our best to located a pub-
lic dataset - Gas sensor array under dynamic gas mixtures at1 (Fonollosa et al., 2015). 
Using this real-world sensory data, we added additional experiments to compare our 
proposed methods with all baselines in terms of the misclassification cost, sparsity, and 
running time.

This labeled real-world sensory data contains the acquired time series from 16 chemical 
sensors exposed to gas mixtures at varying concentration levels. In particular, Fonollosa 
et al. (2015) generated two gas mixtures: Ethylene and Methane in air, and Ethylene and 
CO in air. Each measurement was constructed by the continuous acquisition of the 16-sen-
sor array signals for a duration of about 12 h without interruption. The data is presented in 
two different files and each file contains the data from one mixture. The file “ethylene_CO.
txt” contains the recordings from the sensors when exposed to mixtures of Ethylene and 
CO in air. The file “ethylene_methane.txt” contains the acquired time series induced by the 
mixture of Methane and Ethylene in air.

Using those two files, we generated two datasets of real-world gas sensor data streams: 
“Ethylene_CO” and “Ethylene_Methane”. For each dataset, we considered the air quality 
was abnormal if and only if Methane (or CO) concentration > 0 ppm and Ethylene concen-
tration > 0 ppm. Otherwise, the air quality was normal. Table 6 summarizes the character-
istics of “Ethylene_CO” and “Ethylene_Methane” datasets. It is apparent that both datasets 
have imbalanced class distributions, which are suitable cases for the anomaly detection 
task.

As shown in Figs. 9 and 10, we found that the overtime cost curves of PCSGOL-III/IV 
or CSGOL-IV consistently dominate the corresponding curves of other algorithms with-
out much variation. Moreover, the average running time of CSGOL and PCSGOL is much 
less than the baseline algorithms. Since the dimension of each dataset is relatively low, in 
most cases, the sparsity performances of CSGOL and PCSGOL are lower than CSRDA, 
CSOGD, and CSTG, but are very competitive with them in terms of interpretations. In 
summary, the proposed CSGOL/PCSGOL methods achieved better performances than the 
existing methods on real-world sensory data streams.

Table 6   Summarization of real-world gas sensor data streams

Dataset/File Ethylene_CO Ethylene_Methane

# Samples 4, 208, 261 4, 178, 504
# Features 16 16
#Abnormal samples: #Nor-

mal samples
966, 564 ∶ 3, 241, 697 ≈ 1 ∶ 3.4 848, 598 ∶ 3, 329, 906 ≈ 1 ∶ 3.9

1  https://​goo.​gl/​zcAijP.

https://goo.gl/zcAijP
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Fig. 9   Dynamic learning curves in terms of online metrics (i.e., cost, F-score, G-mean, sparsity, and run-
ning time) of all competing algorithms
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Fig. 10   Dynamic learning curves in terms of online metrics (i.e., cost, F-score, G-mean, sparsity, and run-
ning time) of all competing algorithms
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6 � Conclusion

In this paper, we propose a novel framework CSGOL and its proximal version PCSGOL for 
cost-sensitive sparse group online learning. CSGOL and PCSGOL meet the key expecta-
tions set by ever-evolving skewed data streams with high dimensionality: (1) They have at 
most O(d) space complexity and O(

√
T) or O(

√
T + log T) complexity for regret bounds, 

(2) CSGOL can automatically seek a favorable trade-off between low classification cost 
and high sparsity among and within groups, and (3) They have a relatively fast response 
time and are robust to different parameter settings. Experimental evaluations on multiple 
benchmark datasets verify the effectiveness of the proposed methods in the cost-sparsity 
tradeoff for the minority class of the data streams.

As part of future work, we plan to improve the stability of CSGOL and PCSGOL by 
incorporating ensemble learning strategies. Additionally, we may introduce a general and 
adaptive robust loss function (Barron, 2019) in the proposed methods to address the chal-
lenges in noisy data streams and improve their noise tolerance properties. Another poten-
tial direction is to design effective local adaptive strategies in both CSGOL and PCSGOL 
for imbalanced streaming data with abrupt and gradual concept drifts (Brzezinski et  al., 
2021), which may achieve good performance but are least affected by the changing statisti-
cal properties of data streams. Last, by following the structural risk minimization principle, 
we may adopt the passive-aggressive update rule in Zhang et al. (2016) to extend and apply 
CSGOL and PCSGOL for feature-evolving data streams with old features that may vanish 
and new features that may appear over time.

Appendix A Proof of closed‑form solution of CSGOL

Proof  To prove the closed-form solution of CSGOL, we introduce two lemmas below. 	
� ◻

Lemma 1  (Solution of �1 Proximity Operator) The soft-thresholding func-
tion, w∗ = argmin w∈ℝd{

1

2
‖w − x‖2

2
+ �‖w‖1} , has the closed-form solution: 

w∗ = sign(x)
⨀

max (∣ x ∣ −�1, 0) , where 
⨀

 is the elementwise multiplication, 
1 = [1, 1,… , 1]T ∈ ℝ

d , and 0 = [0, 0,… , 0]T ∈ ℝ
d.

Lemma 2  (Closed-Form Solution of DAGL Yang et al., 2010) For the timestamp t, based 
on the current model wt ∈ ℝ

d , we use the following optimization solution to update the 
next-round model wt+1 ∈ ℝ

d:

where 𝛾 > 0 and 𝜆 > 0 are the regularization parameters, dk is the size of group k 
( k = 1, 2,… ,K ), 

∑K

k=1
dk = d , w = [(w(1))T , (w(2))T ,… , (w(K))T ]T ∈ ℝ

d , and w(k) ∈ ℝ
dk is 

the k-th group vector of w . Then, given ḡt in each iteration, for the k-th group 
( k = 1, 2,… ,K ), the optimal closed-form solution is updated correspondingly as follows: 
w

(k)

t+1
= −

√
t

𝛾
max (1 −

𝜆
√
dk

‖ḡ(k)t ‖2
, 0)ḡ

(k)
t .

(A1)wt+1 = argmin w∈ℝd{ḡTt w +
𝛾

2
√
t
‖w‖2

2
+ 𝜆

K�

k=1

√
dk‖w(k)‖2}
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Proof of Lemma 2  Since the objective of the target function is componentwise, we can 
focus on the solution in a specific group such as the k-th group. Thus, we have 
w
(k)

t+1
= argmin

w(k)∈ℝdk
{(ḡ

(k)
t
)Tw(k) +

𝛾

2
√
t
‖w(k)‖2

2
+ 𝜆

√
d
k
‖w(k)‖2} = argmin

w∈ℝdk
{(ḡ

(k)
t
)Tw

+
�

2

√
t
‖w‖2

2
+ �

√
d
k
‖w‖

2
}.

The optimal w(k)

t+1
 should be w(k)

t+1
= 𝜏kḡ

(k)
t  with �k ≤ 0 . Otherwise, we can assume for the 

sake of contradiction that w(k)

t+1
= 𝜏kḡ

(k)
t + �

(k) , where �k ∈ ℝ and �(k) ∈ ℝ
dk is the null space 

of ḡ(k)t  . It is easy to verify that �(k) = 0 . Otherwise, the objection function is not minimized.
On the other hand, if 𝜏k > 0 , then −𝜏kḡ

(k)
t  will continue to decrease the objective func-

tion. Thus, �k ≤ 0 . Since we have w(k)

t+1
= 𝜏kḡ

(k)
t  with �k ≤ 0 , the objective function becomes 

w
(k)

t+1
= argmin

w∈ℝdk
{(ḡ

(k)
t
)Tw +

𝛾

2
√
t
‖w‖2

2
+ 𝜆

√
d
k
‖w‖2} = argmin 𝜏k≤0

{𝜏
k
‖ḡ(k)

t
‖2
2
+

𝛾𝜏2
k

2
√
t
‖ḡ(k)
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‖2
2

−𝜏
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𝜆
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d
k
‖ḡ(k)

t
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2
}.

By constructing the Lagrangian function, L(𝜏
k
, 𝜖) = 𝜏

k
‖ḡ(k)

t
‖2
2
+

𝛾𝜏2
k

2

√
t
‖ḡ(k)

t
‖2
2
− 𝜏

k
𝜆
√
d
k
‖ḡ(k)

t
‖
2
+ 𝜏

k
𝜖 , 

we have � ≥ 0.
The Karush-Kuhn-Tucker (KKT) condition indicates that the optimal solution must 

satisfy

That is,

(1) If ‖ḡ(k)t ‖2 − 𝜆
√
dk < 0 , then 𝜖 > 0 ; hence, �k = 0 ; (2) If ‖ḡ(k)t ‖2 − 𝜆

√
dk ≥ 0 , then � ≤ 0 . 

Since � ≥ 0 , � = 0 . In this case, we have 𝜏k =
(‖ḡ(k)t ‖2−𝜆

√
dk)‖ḡ

(k)
t ‖2

−
𝛾√
t
‖ḡ(k)t ‖2

2

= −
√
t

𝛾
(1 −

𝜆
√
dk

‖ḡ(k)t ‖2
).

In summary, we have

Therefore, 𝜏k = −
√
t

𝛾
max (1 −

𝜆
√
dk

‖ḡ(k)t ‖2
, 0) and w(k)

t+1
= −

√
t

𝛾
max (1 −

𝜆
√
dk

‖ḡ(k)t ‖2
, 0)ḡ

(k)
t  . This proves 

Lemma 2.
Using these two lemmas, we provide the following proof details for solving CSGOL.
Since the objective of the target function of CSGOL is componentwise, we can focus  

on the solution in a specific group such as the k-th group. Thus, we have 
w
(k)

t+1
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w(k)∈ℝdk
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(k)
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𝛾

2
√
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‖ḡ(k)t ‖2

2
− 𝜆

√
dk‖ḡ

(k)
t ‖2 + 𝜖 = 0

𝜏k𝜖 = 0

𝜖 ≥ 0

(A3)

⎧
⎪
⎨
⎪
⎩

(‖ḡ(k)t ‖2 − 𝜆
√
dk)‖ḡ

(k)
t ‖2 + 𝜖 = −(

𝛾√
t
‖ḡ(k)t ‖2

2
)𝜏k

𝜏k𝜖 = 0

𝜖 ≥ 0

(A4)𝜏k =

�
0 if ‖ḡ(k)t ‖2 − 𝜆

√
dk < 0

−
√
t

𝛾
(1 −

𝜆
√
dk

‖ḡ(k)t ‖2
) if ‖ḡ(k)t ‖2 − 𝜆

√
dk ≥ 0
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Define the function L(w) = �

2
√
t
‖w‖2

2
+ �1‖w‖2 , which is a nonnegative function. Since 

the objective function is elementwise, we can consider one entry i, that is 
w
(k)

t+1,i
= argmin w∈ℝ{ḡ

(k)

t,i
w + L(w2) + (𝜆2 + 𝜆3) ∣ w ∣} , where L(w2) is also a nonnegative 

function on w2 , and L(w2) = 0 only if w = 0 for all i in the k-th group. 

(1)	 If ḡ(k)
t,i

= 0 , then w(k)

t+1,i
= 0;

(2)	 If 0 < ḡ
(k)

t,i
≤ (𝜆2 + 𝜆3) , then w(k)

t+1,i
≤ 0 . Thus, [ḡ(k)

t,i
− (𝜆

2
+ 𝜆

3
)]w + L(w2) ≤ ḡ

(k)

t,i
w+

L(w2) + (�
2
+ �

3
) ∣ w ∣ to minimize the value w(k)

t+1,i
= 0;

(3)	 If (𝜆2 + 𝜆3) < ḡ
(k)

t,i
 , then w(k)

t+1,i
≤ 0 . Thus, the objective function becomes 

w
(k)

t+1,i
= argmin w∈ℝ{[ḡ

(k)

t,i
− (𝜆2 + 𝜆3)]w + L(w2)} = argmin w∈ℝ{[ḡ

(k)

t,i
− (𝜆2 + 𝜆3)]w +

𝛾

2
√
t
‖w‖2

2
+ 𝜆1‖w‖2}   ,  

w h i c h  h a s  t h e  s a m e  fo r m  a s  DAG L .  T h u s ,  w e  h av e 
w
(k)

t+1,i
= −

√
t

𝛾
max (1 −

𝜆1

‖ḡ(k)
t,i
−(𝜆2+𝜆3)‖2

, 0)[ḡ
(k)

t,i
− (𝜆2 + 𝜆3)];

(4)	 I f  −(𝜆2 + 𝜆3) ≤ ḡ
(k)

t,i
< 0   ,  t h e n ,  w

(k)

t+1,i
≥ 0   .  T h u s , 

[ḡ
(k)

t,i
+ (𝜆2 + 𝜆3)]w + L(w2) ≤ ḡ

(k)

t,i
w + L(w2) + (𝜆2 + 𝜆3) ∣ w ∣ , to minimize the value, 

w
(k)

t+1,i
= 0;

(5)	 If ḡ(k)
t,i

< −(𝜆2 + 𝜆3) , then, w(k)

t+1,i
≥ 0 . Thus, the objective function becomes 

w
(k)

t+1,i
= argmin w∈ℝ{[ḡ

(k)

t,i
+ (𝜆2 + 𝜆3)]w + L(w2)} = argmin w∈ℝ{[ḡ

(k)

t,i
+ (𝜆2 + 𝜆3)]w +

𝛾

2
√
t
‖w‖2

2
+ 𝜆1‖w‖2}   ,  

w h i c h  h a s  t h e  s a m e  f o r m  a s  DA G L .  T h u s ,  w e  h a v e 
w
(k)

t+1,i
= −

√
t

𝛾
max (1 −

𝜆1

‖ḡ(k)
t,i
+(𝜆2+𝜆3)‖2

, 0)[ḡ
(k)

t,i
+ (𝜆2 + 𝜆3)].

In summary, we have

That is

Hence, w(k)

t+1
= −

√
t

𝛾
max (1 −

𝜆1

‖∣ḡ(k)t ∣−(𝜆2+𝜆3)1‖2
, 0)sign(ḡ

(k)
t )

⨀
max (∣ ḡ

(k)
t ∣ −(𝜆2 + 𝜆3)1, 0)

= −
√
t

𝛾
max (1 −

𝜆1

‖∣ḡ(k)t ∣−(𝜆2+𝜆3)1‖2
, 0)p

(k)
t = −

√
t

𝛾
max (1 −

𝜆1

‖p(k)t ‖2
, 0)p

(k)
t  , where 

p
(k)
t = sign(ḡ

(k)
t )

⨀
max (∣ ḡ

(k)
t ∣ −(𝜆2 + 𝜆3)1, 0) . This concludes the proof. 	�  ◻

(A5)w
(k)

t+1,i
=

⎧
⎪
⎨
⎪
⎩

0 if ∣ ḡ
(k)

t,i
∣≤ (𝜆2 + 𝜆3)

−
√
t

𝛾
max (1 −

𝜆1

‖∣ḡ(k)
t,i
∣−(𝜆2+𝜆3)‖2

, 0)sign(ḡ
(k)

t,i
) ⋅ [∣ ḡ

(k)

t,i
∣ −(𝜆2 + 𝜆3)] if ∣ ḡ

(k)

t,i
∣> (𝜆2 + 𝜆3)

(A6)

w
(k)

t+1
=

�
0 if ∣ ḡ

(k)
t ∣≤ (𝜆2 + 𝜆3)

−
√
t

𝛾
max (1 −

𝜆1

‖∣ḡ(k)t ∣−(𝜆2+𝜆3)1‖2
, 0)sign(ḡ

(k)
t )

⨀
[∣ ḡ

(k)
t ∣ −(𝜆2 + 𝜆3)1] if ∣ ḡ

(k)
t ∣> (𝜆2 + 𝜆3)
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Appendix B Proof of closed‑form solution of PCSGOL

Proof  The objective optimization function of PCSGOL is equivalent to 

w
t+1 = argmin

w∈ℝd{ḡT
t
w +

1

2t

∑t

s=1
𝜎‖w − w

s
‖2
2
+
∑K

k=1
(𝜆1‖w(k)‖2 + 𝜆2‖w(k)‖1) + 𝜆3‖w‖1}

.

By defining w̄t =
1

t

∑t

s=1
ws , we have

wt+1 = argmin
w∈ℝd{(ḡt − 𝜎w̄t)

T
w +

𝜎

2
‖w‖2

2
+
∑K

k=1
(𝜆1‖w(k)‖2 + 𝜆2‖w(k)‖1) + 𝜆3‖w‖1} . 

Since the objective of the target function is componentwise, we can focus on the solution in 
a specific group such as the k-th group. Thus, we have

w
(k)

t+1
= argmin

w(k)∈ℝdk
{(ḡ

(k)
t

− 𝜎w̄
(k)
t
)Tw(k) +

𝜎

2
‖w(k)‖2

2
+ 𝜆1‖w(k)‖2 + 𝜆2‖w(k)‖1 + 𝜆3‖w(k)‖1}

= argmin
w∈ℝdk

{(ḡ
(k)
t

− 𝜎w̄
(k)
t
)Tw +

𝜎

2
‖w‖2

2
+ 𝜆1‖w‖2 + (𝜆2 + 𝜆3)‖w‖1}

= argmin
w∈ℝdk

{(
ḡ
(k)
t

𝜎
− w̄

(k)
t
)Tw +

1

2
‖w‖2

2
+

𝜆1

𝜎
‖w‖2 +

𝜆2+𝜆3

𝜎
‖w‖1} , which is similar to 

CSGOL; thus, we have the following closed-form solution:

⨀
max (∣ ḡ

(k)
t − 𝜎w̄

(k)
t ∣ −(𝜆2 + 𝜆3)1, 0) = −

1

𝜎
max (1 −

𝜆1

‖q(k)t ‖2
, 0)q

(k)
t  , where 

q
(k)
t = sign(ḡ

(k)
t − 𝜎w̄

(k)
t )

⨀
max (∣ ḡ

(k)
t − 𝜎w̄

(k)
t ∣ −(𝜆2 + 𝜆3)1, 0) . This concludes the proof. 	
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