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Abstract
In a two-class classification task, if the number of examples of one class (majority) is 
much greater than that of another class (minority), then the classification is said to be class 
imbalanced. It can occur among many real-world applications, such as intrusion detection, 
medical diagnosis, etc. The class imbalance issue can make learning difficult since learn-
ing opts to bias towards the majority class. Outliers are cases with anomalous behaviors 
and are extreme cases of class imbalance. Despite late advances in extreme learning ma-
chines (ELMs), there are not many experimental investigations in the field of ELM with 
outlier detection. In this survey, we provide a comprehensive overview of existing ELMs 
to address the problem of outlier detection under a unified perspective. Firstly, we describe 
the background of our work, which includes a brief overview of previous surveys and a 
detailed description of the enhanced ELMs. Next, available studies regarding why ELMs 
are used to tackle the class imbalance problem are reviewed. Furthermore, cutting-edge 
algorithms are surveyed for improved ELMs to detect outliers. We classify these methods 
under three different machine learning perspectives (i.e., supervised, unsupervised, and 
semi-supervised approaches). In addition, we explore the developments of existing solu-
tions based on three standardized quality metrics (i.e., accuracy, robustness, and speed) 
and other performance metrics (e.g., mean absolute percentage error and mean absolute 
error). After that, related datasets are detailed to facilitate future studies in this field. Last 
but the most important, this study concludes with discussions, challenges, and suggestions 
to guide future research.

Keywords  Class imbalance · Outlier detection · Anomaly detection · Extreme learning 
machine
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1  Introduction

The class imbalance occurs in many real-world applications where the class distributions 
of data are significantly imbalanced (Ling & Sheng, 2008). This happens when one class, 
which is a minority group, has significantly fewer samples than the other class, which is a 
majority group (Johnson & Khoshgoftaar, 2019). That is to say, the majority class makes 
up most of the dataset, whereas the minority class is often considered the class of interest 
(Leevy et al., 2018; Bauder & Khoshgoftaar, 2018; Zhang et al., 2014). When the instances 
belonging to the minority group are misclassified more often than those belonging to the 
majority group (Johnson & Khoshgoftaar, 2019), this poses a difficulty for learning algo-
rithms, since they will be biased towards the majority group (Krawczyk, 2016; Li et al., 
2020a, b). Equation (1) shows the imbalance ratio (IR) to describe the imbalance extent of 
a dataset (Johnson & Khoshgoftaar, 2019):

	
ρ =

maxi {|Ci|}
mini {|Ci|}

� (1)

where Ci  is a set of examples in class i, and maxi {|Ci|}  and mini {|Ci|}  return the 
maximum and minimum class size over all i classes, respectively.

Outliers are cases with anomalous behaviors in a domain. They show a higher deviation 
and are not in line with the behavior of general cases, which could cause unexpected results 
in analytics (Albuquerque Filho et al., 2022; Kiani et al., 2020; Aggarwal, 2017). A simple 
illustrative two-dimensional example that depicts an outlier status is shown in Fig. 1. Sup-
pose a dataset contain two large sections, S1 and S2. P1, P3, P4, and a small section with very 
few data points P2, are referred to as outliers since they are far away from the two large 
sections (S1 and S2) (Wang et al., 2019a, b). Outlier detection has been known as an extreme 
case of class imbalance learning. Detecting outliers is a significant problem that has been 
studied in various research and application areas.

By identifying outliers, researchers can obtain vital knowledge which assists in making 
better decisions (Wang et al., 2019a, b). Also, detecting outliers translates to significant 

Fig. 1  An example of outliers 
in a two-dimensional dataset in 
which S1 and S2 show normal 
data, P2 presents outliers (col-
lective anomalies), and P1, P3, 
and P4 indicate outliers (point 
anomalies)
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actionable information in a wide variety of applications such as fraud detection (Anjaneyulu 
& Kishore, 2019; Jiang et al., 2018; Kalid et al., 2020; Sekar, 2022), intrusion detection in 
cyber security (Ariafar and Kiani 2017; Sahu et al. 2021; Zhou et al., 2015; Tama et al., 
2019), and health diagnosis (Devika et al., 2022; Su et al., 2021; Muñoz-Ramírez et al., 
2022; Dashdondov & Kim, 2021). Moreover, outlier detection has been studied in a variety 
of domains with different data modes including high dimensional data (Aggarwal and Yu 
2001), uncertain data (Aggarwal and Yu 2008), streaming data (Aggarwal et al. 2011), net-
work data, and time series data (Gupta et al., 2013).

There are two types of outliers: noises and anomalies. Noises are weak outliers but anom-
alies are strong outliers. Different aspects of outliers are displayed in Fig. 2. The boundary 
between noises and anomalies is not clear but can be determined through different analytical 
methods (Kiani et al., 2020; Aggarwal, 2017; Kiani et al. 2019). Outlier detection problems 
are among other important factors, along with their key detection parameters important 
to data analysts, which challenge supervised, semi-supervised, and unsupervised learning 
methods (Fernández et al., 2022; Adeli et al., 2018; Lee et al., 2021). In supervised learning, 
normal and outlier cases are labeled. In the semi-supervised learning, only few examples of 
normal and outlier cases are labeled. In the unsupervised learning, no cases are labeled at all 
(Chakraborty et al., 2022; Bawono and Bachtiar 2019).

There are three types of anomalies as follows: (a) point anomalies are at a considerable 
distance from others such as points P1, P3, and P4 in Fig. 1; (b) collective anomalies are a 
set of correlated cases with a deviation from others such as small section P2 in Fig. 1; and 
(c) conditional or contextual anomalies that could be considered anomalous in some specific 
condition or context. The point and collective anomalies are subsets of conditional anoma-
lies (Aggarwal, 2017; Kiani et al. 2019).

Recently, Wang et al. (2016a, b) proposed a new definition of outlier called cluster-based 
outlier. Continuously, new types of anomalies called Collective Normal Anomaly (CNA) 
and Collective Point Anomaly (CPA) were defined by Kiani et al. (2020) to improve a much 
better detection of the thin boundary between different types of anomalies.

CPA is a subset of Point Anomaly (PA) and there is a thin boundary between PA and 
CPA. Equation (2) defines CPA that the neighborhood radius of CPA is less than average 
neighborhood radius of PA:

Fig. 2  Different aspect of outliers
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	 CPA =
{
Pi ∈ CPA|Pi ∈ PAandOut_Radpi

< Out_RadPA

}
� (2)

where Out_Radpi  is the neighborhood radius of Pi  as well as its average distance to 
PA  and Out_RadPA  is the neighborhood radius of PA  (See Kiani et al., 2020 for more 
details).

CNA is a cluster whose standard deviation density is greater than or equal to the thresh-
old for standard deviation of all clusters. Equation (3) defines the relationship between CNA 
and Normal Data (ND):

	 CNA =
{
Ci ∈ C|Ci ∈ NDandσ_DenCi

< Th_σDenC

}
� (3)

where Ci  is one of the detected clusters, C  is the set of all clusters, σ_DenCi  is the stan-
dard deviation of the density of cluster Ci , and Th_σDenC  is the threshold of the standard 
deviation of all clusters (See Kiani et al., 2020 for more details).

In recent years, ELM has gained lots of research interest due to its simplified algorithm 
and fast learning speed (Zhang et al., 2020; Lu et al., 2017; Janakiraman and Nielsen 2016). 
An ELM is a single hidden layer feed-forward model whose input layer parameters are 
assigned using random numbers and fixed during training (Huang et al., 2006a, b; Tham-
masakorn et al. 2018). The ELM algorithm can provide a high generalization performance 
in most domains and learn thousands of times faster than conventional popular learning 
algorithms for feed-forward neural networks (Huang et al., 2006a, b; Thammasakorn et al. 
2018). As seen in Fig. 3, an ELM model has an input layer, just one hidden layer, and an out-
put layer. The input weights are initialized randomly, only the output weights update during 
the training phase. While ELM can be implemented to identify different types of anomalies 
in various fields, its performance might be affected by the random initialization of weights 
and biases or by the large generated network which might contain unnecessary number of 
neurons (Eshtay et al., 2020). This challenge may cause unstable classification accuracy, 
which greatly limits the performance of the ELM networks (Chen et al., 2019).

The loss function for ELM can be explained as follows:

	
E =

N∑

j=1

(
L∑

i=1

βig (Wi.Xj + bi) − tj

)2

� (4)

where N  is the number of the input neurons, L  is the number of hidden neurons, βi  is the 
weight vector between hidden layer and output layer, g(x) is the activation function, Wi  
is the weight vector between input layer and hidden layer, Xj  is the input data, bi  is the 
threshold, and tj  is the output data (Mi et al., 2017).

The details of methods developed to tackle the ELM challenges will be reviewed in 
Sect. 3. Moreover, the review of related work shows that the ELM also is not robust to out-
liers and it is widely used in batch learning (Frénay & Verleysen, 2015). To address these 
problems, 20 considerably different optimized ELMs in various outlier detection areas are 
considered and will be explored in Sect. 4. The literature search process was first followed 
through the Google Scholar, Springer, IEEE Xplore, and Elsevier databases. Keyword 
searches were then performed including combinations of query terms such as: “imbalanced 
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data”, “class imbalance”, “outlier detection”, “anomaly detection”, and “extreme learning 
machine”.

It can be seen that, in recent years, several survey papers such as Wang et al. (2021); 
Huang et al., 2011a, b; Ding et al. (2014) have provided a comprehensive review on the 
development of ELM and imbalanced data, including the theoretical analysis, typical vari-
ants, recent advances, and real applications. However, the first question is to investigate 
the suitability of ELMs for outlier detection. For this reason, EMLs have been developed 
based on different techniques to optimize various metrics such as accuracy, performance, 
robustness, speed, etc. Experimental results of ELM models showed promising results for 
real-world applications in outlier detection.

However, the application of ELM for outlier detection is a relatively new area of research. 
We observed several research gaps during literature review of outlier detection. The first 
gap is lack of investigation of well-known ELM approaches for outlier detection. Although 
isolated studies were available as described in Sect. 4, no comprehensive research work is 
available to fill this gap. The second research gap is why ELMs are used to tackle the imbal-
anced problem. The third gap turns out to be lack of taxonomy of ELMs amongst them-
selves using different machine learning techniques and lack of their developments based 
on standardized quality metrics which is a natural consequence of the previous two gaps. 
The forth research gap is the use of suitable datasets to facilitate future studies in this field.

The primary contribution of this work is filling the above mentioned research gaps based 
on state-of-the-art ELMs. The first gap is filled by exploring outlier detection models using 
ELMs. To the best of our knowledge, the papers investigated in this study have not been 
analyzed for outlier detection. To fill the second research gap, we survey recent ELMs for 

Fig. 3  Structure of the ELM
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class imbalanced data. This investigation can provide a comprehensive survey for research-
ers to follow in this field. To bridge the third research gap, we classify twenty cutting-edge 
ELMs under three different machine learning techniques and explore their developments 
based on popular metrics. To close the forth gap related datasets are detailed in this work.

Therefore, we need a survey with a particular focus on outlier detection, especially in the 
area of outlier detection and ELMs. In summary, the novel and significant contributions of 
the paper are as follows:

	● We investigate recent advances of ELMs in class imbalanced data and introduce cutting-
edge algorithms and discuss them with highlighting more details. To this purpose, 20 
papers issued from 2014 to 2021 will be discussed. It can provide valuable information 
for researchers who are interested in working on class imbalance problems, such as 
increasing the penalty associated with misclassifying the positive class relative to the 
negative class, oversampling the majority class and under-sampling the minority class.

	● We significantly focus on state-of-the-art ELMs which have been applied for outlier 
detection in different issues. In this respect, 20 papers published between 2013 and 2021 
will be explored. Moreover, we classify these methods under three different machine 
learning perspectives (i.e., supervised, unsupervised, and semi-supervised approaches). 
In addition, we explore the developments of existing solutions based on three popu-
lar metrics (i.e., accuracy, robustness, and speed) and other performance metrics (e.g., 
mean absolute percentage error and mean absolute error). This study can be followed 
by researchers who tend to develop ELMs for outlier detection since to the best of our 
knowledge, this is the first work which has focused on ELMs in this field.

	● We discuss different datasets used for the improvement of ELMs in outlier detection to 
facilitate future studies in this field, due to the fact that datasets are the basis for facili-
tating the development in multiple computing domains, robustness, and reliability of 
results.

	● We present some contemporary open challenges to cover significant gaps when ELMs 
are applied for outlier detection.

The remainder of this paper is organized as follows. Section 2 reviews three surveys on 
which focused recent ELMs and are among the most cited articles or have been recently 
published. Twenty most recent published studies that investigate ELMs for addressing the 
class imbalance are surveyed in Sect. 3. In Sect. 4, twenty most recent published papers that 
provide readers with a more complex picture of existing approaches for outlier detection 
using ELMs are discussed. Section  5 provides necessary information on datasets which 
have been used in this field. Finally, discussions are given, and conclusions are drawn.

2  Literature review

The reasons why extensive research on ELM has been carried out are less manual interven-
tion, higher classification accuracy, and less training time (Wang et al., 2021). In this sec-
tion, we describe the background for our work, which includes a brief overview of surveys 
and a detailed description of the enhanced ELMs. In this regard, three surveys which are 
among the most cited articles or have been recently published are summarized as follows. 
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As shown in Table 1, we briefly describe the survey paper published by Huang et al. (2011a, 
b).

ELM and its applications were reviewed by Ding et al. (2014). They first described a 
brief review of ELM and its different methods and provided the variants of ELM. Some 
classical applications of ELM are then introduced, which are summarized in Table  2 as 
follows.

Wang et al. (2021) published a review on ELM. Their paper was focused on theoreti-
cal analysis, various improvements of ELM in terms of stability, efficiency, and accuracy, 
real-time learning tasks, and the applications of ELM in various fields. We summarize ELM 
applications based on the Wang et al. (2021) paper in Table 3 as follows.

3  ELM for class imbalanced data

3.1  Methods addressing accuracy

Li et al. (2020a, b) developed a method based on Multi-Kernel Extreme Learning Machine 
Fusion (MKELMF) in order to solve the problem of low classification accuracy in imbal-
anced data classification. They used the meta-learning algorithm to select a group of Ker-
nel Extreme Learning Machines (KELM) with sufficient classification ability for combined 
decision making. Thammasakorn et al. (2018) developed a GWO-weighted ELM that is 
a combination of the weighted ELM integrated with the Gray wolf optimizer. The GWO-
ELM improved the accuracy of the weighted ELM model in the classification of imbalanced 
data, where the original weighted ELM suffers from the pessimal selected regularization 
parameter. To get fast and efficient classification, a new online sequential extreme learning 
machine algorithm with the sparse-weighting strategy was proposed by Mao et al. (2017) to 
increase the accuracy of minority class while reducing the accuracy loss of majority class as 
much as possible. Experimental results on two kinds of imbalanced datasets, UCI datasets 
and the real-world air pollutant forecasting dataset, showed that the proposed method has 
higher prediction accuracy and better numerical stability compared with ELM, OS-ELM, 
meta-cognitive OS-ELM and weighted OS-ELM.

3.2  Methods addressing robustness

Li et al. (2014) proposed a boosting weighted ELM, which embeds the weighted ELM 
seamlessly into a modified AdaBoost framework. They modified AdaBoost in two aspects 
to be more effective for imbalanced learning: (i) the initial distribution weights are set to be 
asymmetric so that AdaBoost converges at a faster speed; (ii) the distribution weights are 
then updated separately for different classes to avoid destroying the distribution weights 
asymmetry. Cheng et al. (2020) proposed an improved algorithm called Boosting Label 
Weighted-ELM (BLW) which integrates Label Weighted-ELM (LW-ELM) into the boost-
ing ensemble learning framework. They claimed that BLW-ELM is a universal and self-
adapting algorithm that can promote the robustness of classification regardless of the data 
distribution types. Xu et al. (2019) proposed an ensemble classification method called 
AdaWELM, for fault diagnosis in wastewater treatment. The individual classifiers are built 
by using the weighted extreme learning machine (WELM), and then combined them with 
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Table 1  A briefing of survey paper published by Huang et al. (2011a, b)
Method Name More details
ELM
• Basic ELM (Huang et al., 
2006a, b)
• Random hidden layer feature 
mapping based ELM (Huang et 
al., 2011a, b)
• Kernel ELM(Huang et al., 
2011a, b)

The essence of ELM is that the hidden layer of single hidden layer 
feedforward neural networks (SLFNs) need not be tuned. Compared 
with those traditional computational intelligence techniques, ELM pro-
vides better generalization performance at a much faster learning speed 
and with least human intervention.

Fully complex ELM (Huang et 
al., 2008)

The fully complex algorithm can be linearly extended to the complex 
domain and can obtain much lower symbol error rate (SER).

Online sequential ELM (OS-
ELM) (Liang et al., 2006)

In many industrial applications training data may come one by one or 
chunk by chunk. In these cases, online sequential learning algorithms 
are preferred over batch learning algorithms as sequential learning 
algorithms do not require retraining whenever new data are received.

Incremental ELM (I-ELM) 
(Huang et al., 2006a, b)

I-ELM has no parameters for users to specify except the maximum 
network architecture and the expected accuracy. I-ELM can work well 
with a wide range of activation functions no matter whether they are 
sigmoidal or non-sigmoidal, continuous or non-continuous, and dif-
ferentiable or non-differentiable.

ELM ensembles
• Adaptive ensemble models of 
ELM (Heeswijk et al. 2009)
• ELM ensemble for large scale 
regression applications (Van 
Heeswijk et al., 2011)
• Ensemble of Online Sequen-
tial ELM (EOS-ELM) (Lan et 
al., 2009)

Network ensemble consists of a few of single networks that may have 
different adaptabilities to the new data. Some of the networks in the 
ensemble may adapt faster and better to the new data than others, which 
could make the ensemble overcome the problem of networks that could 
not adapt well to the new data.

Pruning ELM (P-ELM) (Rong 
et al., 2008)
• Optimally-pruned ELM 
(OP-ELM)

P-ELM was proposed as a systematic and automated method for the 
ELM classifier network design. It starts with a large network and then 
eliminates the hidden nodes that have low relevance to the class labels 
by using statistical criteria. OP-ELM is applicable for both regression 
and classification applications.

Constructive ELM
• Error minimized ELM (EM–
ELM) (Feng et al., 2009)

EM-ELM is an error minimization based method in which the number 
of hidden nodes can grow one-by-one or group-by-group until optimal. 
The approach can significantly reduce the computational complexity 
and its convergence was proved as well.

• Stepwise forward selection 
based constructive ELM for 
regression (Lan et al., 2010a, b)

The fast construction algorithm (FCA) is a constructive hidden node se-
lection method for ELM based on orthogonal least squares (OLS). OLS 
selects a suitable set of variables to form the subset model from a large 
set of candidates. By modifying the classic forward selection algorithm, 
a constructive hidden nodes selection method for ELM (CS-ELM) was 
proposed, which is less greedy and without any matrix decompositions.

• Two-stage ELM for regression 
(TS-ELM) (Lan et al., 2010a, b)

The first stage attempts to select hidden nodes by the forward recursive 
algorithm and the selection is terminated by the final prediction error 
(FPE) criterion; while the second stage is a backward refinement phase 
that removes the insignificant hidden nodes by applying the Leave-
One-Out (LOO) method.
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Application Why ELM
Classification
• Mobile object index (Wang et 
al., 2012)

ELM was used to classify the region dynamically to adapt to changes 
in environment.

• Text categorization (Zheng et 
al., 2013)

RELM was developed, including the uni-label and multi-label 
situations.

• Electrocardiogram signals (Karp-
agachelvi et al., 2012)

ELM was used to classify ECG signals.

• Effective accuracy performance 
(Kim et al., 2009)

ELM was used to propose a robust arrhythmia classification 
algorithm.

• Machine control (Lee et al., 
2009)

ELM was used to classify machine control commands out of time 
series of spike trains of ensembles of CAI hippocampus neurons of 
a rat.

Regression
• Regression The Parallel ELM (PELM) was used to develop a good speedup, 

scale-up, and size-up performance on very large scale datasets (He 
et al., 2013).

• Regression The Ridge Regression ELM (RRELM) was developed to avoid the 
adverse effects caused by the perturbation or the multi-collinearity 
(Li & Niu, 2013).

• e-insensitive regression ELM was formulated in 2-norm as the unconstrained optimization 
problem in primal variables (Balasundaram, 2013).

• Regression A novel ELM and an evolutionary algorithm were introduced to 
ensure that the better hidden nodes to survive in the next generation 
(Feng et al., 2012).

Pattern recognition
• Multi-label face recognition 
(Zong, & Huang, 2011)

The performance of the one against- all (OAA) and one-against-one 
(OAO) ELM was studied.

• Human face recognition (Mo-
hammed et al., 2011)

A bidirectional two-dimensional principal component analysis 
(B2DPCA) and ELM were introduced.

• Human actions recognition 
(Minhas et al., 2010)

ELM was applied for development of a framework based on visual 
vocabularies.

• Handwritten character recogni-
tion (Chacko et al., 2012)

ELM was developed to classify the features of handwritten charac-
ters to accelerate the speed of leaning.

• Speaker recognition (Lan et al., 
2013)

ELM was enhanced to examine the verification task.

• 3D object recognition (Nian et 
al., 2013)

ELM was developed to identify the inherent distribution and the 
dependence structure for each 3D object.

Forecasting and diagnosis
• Retail industry (Chen & Ou, 
2011)

The Gray ELM (GELM) was used to construct a forecasting model.

• Fashion retailing (Sun et al., 
2008)

ELM was introduced to investigate the relationship between the 
sales amount and some significant factors.

• Hydraulic tube tester data (Hu et 
al., 2008)

Multi-stage ELM was used to improve the accuracy of clustering.

• Clinical applications (Daliri, 
2012)

Fuzzy ELM was used to diagnose the lung cancer.

• Electric power systems (Xu et 
al., 2013)

ELM was used to assess real-time frequency stability of predictors.

Image processing
• Surface reconstruction (Zhou et 
al., 2013)

An improved ELM called a polyharmonic extreme learning machine 
(P-ELM) was used to reconstruct a smoother surface.

Table 2  A briefing of classical applications of ELM published by Ding et al. (2014)
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the Adaboost ensemble. The weight matrix in WELM could be updated adaptively along 
with the iteration of Adaboost learning.

3.3  Methods addressing speed

A novel algorithm was proposed by Zhai et al. (2017) for classification of imbalanced large 
datasets. The proposed algorithm included four stages: (1) alternately over-sample p times 
between positive class instances and negative class instances; (2) construct balanced data 
subsets based on the generated positive class instances; (3) train component classifiers with 
the ELM algorithm on the constructed balanced data subsets; (4) integrate the ELM classi-
fiers with the simple voting approach. The experimental results showed that the algorithm 
can obtain promising speed-up and scalability. Yu et al. (2018a, b) presented an alternative 
to Weighted ELM (WELM), which is called label-WELM (LW-ELM). Unlike WELM, LW-
ELM coped with class imbalance learning problems by tuning the training error of each 
class label. Their method provided stronger tolerance to training errors of the minority-class 
instances. They designed two types of weight allocation strategies, both of which are based 
on the class-imbalance ratio (CIR). In contrast with WELM, LW-ELM is fast and flexible.

3.4  Methods addressing other performance metrics

Imbalanced learning problem in big data was addressed by different researchers. Wang et 
al. (2017a, b, c) proposed a Distributed and Weighted ELM (DW-ELM) algorithm, which 
is based on the MapReduce framework. The paper was focused on the feasibility of parallel 
computation. Wang et al. (2020a, b) focused on integrating area under the Receiver Oper-
ating Characteristic (ROC) maximization into the ELM framework to tackle imbalanced 
binary classification tasks. They developed a new AUC-based ELM called AUC-ELM for 
imbalanced binary classification, which essentially is revealed to be equivalent to an ELM 
on another transformed data space. The proposed AUC-ELM has fewer parameters to tune. 
A regularized weighted circular complex-valued extreme learning machine was proposed 
by Shukla and Yadav (2015). In this paper, a regularized weighted circular complex-valued 
ELM called RWCC-ELM was developed, which incorporated the strength of both CC-
ELM and WELM. The method is evaluated using imbalanced datasets taken from the Keel 
repository. Raghuwanshi and Shukla (2021) developed the SMOTE based class-specific 
kernelized extreme learning machine (SMOTE-CSKELM), which uses the Gaussian kernel 
function to map the input data to the feature space. The proposed work has the advantage of 
both the minority oversampling and the class-specific regularization coefficients.

Yu et al. (2018a, b) proposed an efficient ELM classification model, called active online-
weighted ELM (AOW-ELM), to cope with the low performance or high time consumption 
problem. In this regard, the Weighted ELM (WELM) is selected as the basic classifier to 

Application Why ELM
• Image segmentation (Pan et al., 
2012a, b)

ELM classifier was trained online to simulate the visual neuron 
system and then extracted pixels of object from the image.

• Color image segmentation (Pan 
et al., 2012a, b)

ELM was used to train the pixels classifier based on the RGB color 
to extract object regions and provide a reference boundary of objects.

Table 2  (continued) 
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Applications Why ELM
Medical application
• Magnetic 
Resonance Imaging 
(MRI)

ELM was used as an attention-deficit/hyperactivity disorder detection method 
(Peng et al., 2013).
ELM was developed to detect a cocaine dependency scheme (Termenon et al., 
2013).
A hierarchical ELM was used to detect attention deficit/hyperactivity disorder 
(Qureshi et al., 2016).
ELM was enhanced to detect Alzheimer’s disease (Termenon et al., 2016).
ELM was explored as a pathological brain detection system for magnetic resonance 
images (Lu et al., 2018).
Compare three different classification algorithms including, support vector machine 
(SVM), import vector machine (IVM), and ELM, to extract features from brain 
MRIs (Lama et al., 2017).
ELM was employed for classification (Qureshi et al., 2017).
ELM was used to deal with the class imbalanced problem (Zhang et al., 2018a, b).
A utilized multilayer ELM was used as the classifier and trained the network with 
multiclass pathological brain images (Nayak et al., 2020).
ELM was used to identify Alzheimer’s disease (Nguyen et al., 2019).
A regularized ELM was used for brain tumor identification (Gumaei et al., 2019).

• Computerized 
Tomography (CT)

ELM was used to propose a 3D liver CT segmentation method (Huang et al. 2012).
ELM was used as an autoencoder for image feature pre-processing (Huang et al. 
2014).
ELM was applied for lung disease detection (Ramalho et al., 2014).
ELM was used to develop liver tumor detection and segmentation system (Zhu et 
al., 2016).

• Ultrasound ELM was used for thyroid nodules classification (Xia et al., 2017).
ELM was developed for thyroid nodules classification (Cai et al., 2019).

• RNA classification An ELM-based approach was used for classification between cirRNAs and ln-
cRNAs (Chen et al., 2018).
An ELM was proposed for recognition of cirRNAs (Niu et al., 2020).

• Electroencephalo-
gram (EEG)

ELM was proposed as an approach for epileptic EEG classification (Yuan et al., 
2011).
ELM was proposed as an approach for automated detection of seizure (Song et al., 
2019).
ELM was used to construct seizure detection (Song et al., 2016).
ELM was applied for epileptic EEG classification combined with cellular automata 
(Zhou et al., 2018).

• Mammogram ELM was applied for abnormality detection in Mammograms (Vani et al. 2010).
ELM was developed to analyze microcalcification in digitized mammograms 
(Malar et al., 2012).
ELM was used to detect breast cancer (Wang et al., 2014).
ELM was applied as a feature selection method (Xie et al., 2016).
ELM was introduced as a breast tumor detection method (Wang et al., 2016a, b).
Elm was applied for feature extraction from mammograms (Hu et al., 2017).
ELM was applied for breast cancer detection (Wang et al., 2019a, b).

Chemistry 
application

Table 3  Application fields of ELM (Wang et al., 2021)
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Applications Why ELM
ELM was used to predict variables in chemical processes (Geng et al., 2017a, b).
ELM was used to evaluate the green management in power generation enterprises 
in China (Qin et al., 2019).
Elm was introduced into prediction of the nonlinear optical property (Wang et al., 
2013).
ELM was employed in prediction of protein-protein interactions (PPIs) (You et al., 
2016; Lei et al., 2018; Li et al., 2020a, b).
ELM was used to predict the toxicity of ionic liquids (Cao et al., 2018).
ELM was used to predict the Henry’s law constant (HLC) of CO2 (Kang et al., 
2018).
Elm was used to measure NOx in vehicle exhaust (Ouyang et al., 2020).

Economy 
application

ELM was used to evaluate the internationalization success of companies (Landa-
Torres et al., 2012).
ELM was proposed to predict economic growth (Sokolov-Mladenović et al., 2016; 
Marković et al., 2017)
ELM was used to predict economic growth with data of agriculture, manufacturing 
and industry (Milačić et al., 2017).
ELM was used to forecast economic growth based on information technology 
levels of Nations (Rakic et al., 2019).
ELM was applied into analyzing CO2 emission to predict economic development 
(Marjanović et al., 2016; Shukla et al. 2018; Sun et al., 2017).
ELM was used to forecast economic growth based on demand and price from the 
energy resources market (Cogoljević et al., 2018; Sánchez-Oro et al., 2016; Sun & 
Zhang, 2018).
ELM was applied for credit risk assessment (Shoumo et al. 2019).

Transportation 
application

ELM was used to improve lifetime of transportation system and increased its reli-
ability (Sun et al., 2011).
ELM was applied for building the driver distraction detection system (Liu et al., 
2015).
ELM was used to predict road surface temperature (Liu et al. 2017).
ELM was applied for predicting dynamic delay of large-scale railway network 
(Oneto et al., 2017).
ELM was used to recognize the traffic sign (Zeng et al., 2016).
ELM was used to analyze traffic accidents based on video data (Zhang et al. 2017).
ELM was used to help taxi drivers search best routes (Wang et al., 2017a, b, c).
ELM was used to predict traffic flow for drivers and governments (Liu et al., 2018; 
Xing et al. 2018).

Robotics 
application

ELM was used to perform object grasping detection (Sun et al. 2015).
ELM was applied for robotic arms control (Alcin et al. 2016).
ELM was used to classify electroencephalographic (EEG) signals (She et al., 2018).
ELM was applied for robotic motion control (Duan et al., 2017).

IOT application
• Intrusion Detec-
tion Systems

ELM was applied for detection of cyber-attack (Rathore & Park, 2018).
ELM was used to assign bug fixing jobs to engineers (Yin et al., 2018).
ELM was used to analyze distributed denial-of-service (DDoS) attacks (Li et al. 
2019).

Geography 
application

Table 3  (continued) 
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guarantee the impurity of instance selection in the procedure of active learning, and an 
efficient real-time updated model of WELM was deduced theoretically. In order to improve 
the learning performance of classical ELMs for imbalanced data learning, Ri et al. (2020) 
presented a novel variant of the ELM algorithm based on a hybrid cost function which 
employs the probability of given training samples belonging to each class to calculate the 
G-mean. An enhanced kernel-based multilayer fuzzy weighted extreme learning machine 
(EML-KFWELM) was proposed by Wang et al. (2020a, b) to deal with the disadvantages 
of kernel-based multilayer extreme learning machines (ML-KELM). They embedded the 
weighted strategy into ML-KELM to enhance the classification performance of the minority 
class, and proposed fuzzy membership to eliminate classification error caused by outliers 
and noise samples. Then, an enhanced grey wolf optimization (EGWO) method was devel-
oped to perform the parameters optimization and improve the generalization performance of 
ML-KELM. Zhang et al. (2022) proposed an extreme learning machine algorithm with out-
put weight adjustment called OWA-ELM, which can make the decision boundary of ELM 
move to majority classes, and improve the classification performance of imbalanced data.

4  ELM for outlier detection

4.1  Methods addressing accuracy in outlier detection

Zhan and Luo (2015) addressed the outlier robustness of ELM (ORELM) regression prob-
lems, where a norm loss function is used to enhance the robustness. Zhang et al. (2018a, b) 
established the neural network model for prediction of silicon content in hot metal based on 
ELM algorithm. In this respect, an outlier detection method based on W-ELM was proposed 
from a statistical view and the ordinary ELM and W-ELM algorithms are modified to reduce 
the interference of outliers.

Applications Why ELM
ELM was used to generate the landslide susceptibility indexes (Huang et al., 2017).
ELM was proposed to evaluate the stability of rubble mound breakwaters (Wei et 
al., 2019).
ELM was used to predict the sediment-carrying capacity (Wei et al., 2019).
ELM was applied for deriving the operation rule of hydro power reservoir (Niu et 
al., 2019).
ELM was used to extract local features (Li et al., 2015).

Food industry 
application

ELM was proposed as a food safety monitoring
System (Geng et al., 2017a, b).
ELM was applied as a classifier for detecting amino acid nitrogen content in soy 
sauce (Ouyang et al., 2013).
ELM was applied for classification of different kinds of wines (da Costa et al., 
2018).
ELM was applied for prediction during large-scale food sampling analysis (Liu et 
al. 2017).
ELM was applied for prediction of dairy food safety (Zhang et al., 2018a, b).
ELM was used to differentiate kernel-damaged wheat from kernel-undamaged 
wheat (Guo et al., 2019).

Table 3  (continued) 
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A novel wind speed forecasting based on hybrid decomposition and online sequential 
outlier robust ELM (OSORELM) was proposed by Zhang et al. (2019). During the data pre-
processing phase, the wind speed is decomposed by hybrid mode decomposition (HMD). 
The Crisscross Algorithm (CSO) is applied to optimize OSORELM input weights and hid-
den layer biases that affect predictive performance. A novel optimized predictive model for 
detecting anomalies in aerospace using the Grey Wolf Optimization (GWO) algorithm and 
an ELM, called GWO-ELM was introduced by Abdelghafar et al. (2019). The proposed 
GWO-ELM is used to find anomalous events by comparing the actual observed values with 
the predicted intervals of telemetry data; the GWO is applied to optimize the ELM’s input 
weights and the bias parameters of hidden neurons to improve its prediction accuracy and 
ability to detect anomalies. Oikawa et al. (2020) studied the effectiveness of OS-ELM based 
anomaly driving behavior detector using sensor data of vehicles and compared the perfor-
mance of it with a Hidden Markov Model (HMM) based and traditional Long Short-Term 
Memory (LSTM) based methods. Altunay et al. (2021) studied anomaly-based intrusion 
detection systems consisting of convolutional neural network (CNN), autoencoder (AE), 
deep belief network (DBN), long short-term memory network (LSTM), or various combina-
tions of these methods on the supervisory control and data acquisition networks (SCADA).

4.2  Methods addressing robustness in outlier detection

Horata et al. (2013) proposed the Extended Complete Orthogonal Decomposition (ECOD) 
method to solve the computational problem in ELM weights computing via ECODLS algo-
rithm. They also proposed the other three algorithms, i.e. the iteratively reweighted least 
squares (IRWLS-ELM), ELM based on the multivariate least-trimmed squares (MLTS-
ELM), and ELM based on the one-step reweighted MLTS (RMLTS-ELM) to solve the 
outlier robustness problem. Barreto and Barros (2016) developed a robust ELM (RELM) for 
pattern classification with outliers. The RELM is designed using M-estimators to compute 
the output weights instead of the standard ordinary least square (OLS) method.

Naseer et al. (2018) proposed conventional machine learning-based intrusion detec-
tion models implemented using well-known classification techniques, including extreme 
learning machine, nearest neighbor, decision-tree, random-forest, support vector machine, 
naive-bays, and quadratic discriminant analysis. Zhang et al. (2020) proposed robust ELM 
(RELM) to improve the modeling ability and robustness of Gaussian and non-Gaussian 
noise. RELM uses Gaussian mixing (MoG) to create objective functions modified to fit 
the noise. Furthermore, a solution for new objective function is developed based on the 
Expected Value Maximization Algorithm (EM). A novel anomaly detection framework 
based on one-class extreme learning machine (OC-ELM) for the multimode system was 
presented by Chen et al. (2021).

4.3  Methods addressing speed in outlier detection

Janakiraman and Nielsen (2016) used ELM’s fast training and good generalization proper-
ties to develop a scalable anomaly detection algorithm for very large datasets. They tuned 
unsupervised ELM algorithms such as autoencoders and embedded models to detect anom-
alies. Hashmi and Ahmad (2019) proposed an optimal Replicator Neural Network, called 
Garson-pruned extreme learning machine based replicator neural network (GP-ELM-RRN), 
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which is optimized using ELM learning and Garson algorithm for anomaly detection. 
From the experiments it is evident that Garson-pruned ELM-RNN on TensorFlow is the 
best approach for anomaly detection in terms of accuracy as well as speed. The ELM-AD 
method proposed by Sridhar and Sanagavarapu (2021) is to identify market manipulation in 
the market price and volume data.

This section is briefly summarized as Table 4, which shows ELM for outlier detection 
including its applications, metrics, and techniques. It can be seen that ELMs have been 
employed in considerably different areas of outlier detection, including intrusion detection 
systems, health monitoring in space, wind speed forecasting, stock markets, etc. Moreover, 
researchers have applied various metrics to evaluate the proposed ELMs, where the area 
under the curve (AUC), which provides a good reference to quantify the model, receiver 
operating characteristics (ROC) curve, which measures the detection performance of mod-
els, and root-mean-square error (RMSE) were among the most popular metrics.

4.4  Methods addressing other performance metrics in outlier detection

Yan (2016) adopted ELMs to a new application domain - industrial machine condition mon-
itoring. More specifically, one-class ELMs are applied for more accurate anomaly detection 
of gas turbine combustors. The overall combustor anomaly detection system includes two 
primary functions, deep feature learning and one-class classification. A new definition of 
outlier, called cluster based outlier was proposed by Wang et al. (2016a, b). The method is 
more suitable for the complicated datasets that consist of many clusters with different densi-
ties. Their method was implemented using unsupervised ELMs.

A probabilistic regularized ELM (RELM) was proposed by Lu et al. (2017) to improve 
modeling performance with data containing non-Gaussian noise and/or outliers. Wang et al. 
(2017a, b, c) proposed a new distributed algorithm for the cluster based outlier detection 
(DACB). On the master node, they collected a small number of points from the slave nodes 
to obtain a threshold. On each slave node, they designed a new filtering method which uses 
the threshold to efficiently speed up the computation. They also proposed a ranking method 
to optimize the order of cluster scanning. Hybrid architecture was proposed by Mi et al. 
(2017) to forecast wind speed. Regarding the architecture, the wavelet domain denoising is 
adopted to reduce the noise of the original wind speed series, and a secondary decomposing 
algorithm is used to reduce the intermittency of the original wind speed series. Furthermore, 
the auto regressive moving average and ELM models are employed to complete the multi-
step forecasting computation for the decomposed stationary sub-layers and intrinsic mode 
functions, respectively. In addition, the new outlier correction method is developed to guar-
antee the robustness of the built auto regressive moving average and ELM models during 
their forecasting computation.

Siqi et al. (2019) proposed a novel Recurrent Adaptive Reconstruction ELM (RAR-ELM) 
to eliminate outliers from noisy data in a fast and unsupervised manner. The RAR-ELM 
includes three components: reconstruction ELM, adaptive labeling and recurrent training. 
They also proposed an Online Sequential RAR-ELM (OS-RAR-ELM) which implements 
with an online or sequential mode and makes RAR-ELM easily applicable to massive noisy 
data or online sequential data.

Table 5 shows the taxonomy of cutting-edge ELMs to detect outliers. These methods are 
classified under three different machine learning perspectives which are supervised, unsu-
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Application Metric Technique
Intrusion detection 
systems (IDS)
(Naseer et al., 2018)

AUC, Precision-
Recall Curve, 
mean average 
precision and 
accuracy of 
classification

Conventional machine learning intrusion detection system 
models were implemented with different well-known clas-
sification techniques, including ELM, k-NN, Decision-Tree, 
Random- Forest, Support Vector Machine, Naive-Bays, and 
QDA.

Unknown and complex 
systems
(Lu et al., 2017)

RMSE The method constructed a new objective function to mini-
mize both mean and variance of the modeling error.

Multimode system 
(Chen et al., 2021)

ROC, AUC In the training phase, the multimode dataset was divided into 
several subsets according to the identified operation modes. 
Then the corresponding detection models were established 
respectively under different operation modes by OC-ELM.

Industrial machine 
condition monitor-
ing (gas turbine 
combustor)
(Yan 2016)

ROC, AUC Deep learning technology was applied to learn features out 
of the raw sensor measurements. Specifically stacked de-
noising autoencoder was used. Additionally, for the gas tur-
bine combustor anomaly detection application concerned in 
the paper, two different one-class ELMs namely, non-kernel 
one-class ELM and kernel one-class ELM, were evaluated.

Cluster based outliers 
(Wang et al., 2016a, b)

Runtime, disk IO 
cost

To detect cluster-based outliers, an unsupervised extreme 
learning machine was used to cluster the data in the given 
set. Then, a pruning method to reduce the k-nearest neigh-
bors algorithm (k-NN) searching space was designed.

Silicon content in hot 
metal
(Zhang et al., 2018a, b)

Accuracy, delay 
time under the 
condition of max-
imum correlation, 
and mean square 
error (MSE)

Two schemes were presented to deal with outliers. One was 
focused on the outlier detection from a statistical point, and 
the other was proposed to reduce the interference of outliers.

Unsupervised
outlier removal in 
practical applications 
(Siqi et al., 2019)

Precision, recall, 
and f1-mean

RAR-ELM recurrently learned to reconstruct data and 
automatically excluded those data with high reconstruction 
errors as outliers by a novel adaptive labeling mechanism.

Distributed 
environments
(Wang et al., 2017a, 
b, c)

Time cost, and 
the network trans-
mission quantity 
(NTQ)

The algorithm adopted master slave architecture. The master 
node can monitor the points with large weights on each 
slave node and computed a threshold. An optimization meth-
od was used to improve the performance of the threshold.

Supervised pattern 
classification
(Barreto & Barros, 
2016)

Batch and 
recursive learning 
rules

A model selection strategy based on PSO was introduced to 
find an optimal architecture for datasets contaminated with 
non-Gaussian noise and outliers.

Anomaly detection in 
large datasets
(Hashmi & Ahmad, 
2019)

Accuracy, 
specificity, and 
execution speed

ELM-based RNN solved the problem of determining the 
number of hidden layers in RNN, and the problem to de-
termine the number of hidden layer neurons was solved by 
Garson’s algorithm.

Health monitoring in 
space
(Abdelghafar et al., 
2019)

RMSE, mean 
absolute error 
(MAE),
confusion matrix,
the CPU time, 
and mean 
and standard 
deviation

To obtain the optimized predictive model GWO was applied 
to find the optimal ELM parameters. GWO can find the best 
set of input weights and biases over a set of iterations. Then, 
the best prediction performance was achieved by finding 
the optimal output weights and hidden layer output matrix 
values to obtain the optimal target output.

Table 4  A brief description of ELM for outlier detection
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pervised, and semi-supervised approaches. It can be observed that a significant majority 
of methods are focused on supervised learning, while small minorities of approaches use 
unsupervised and semi-supervised techniques.

Table 6 depicts the developments of ELMs to detect outliers based on the most popular 
standardized quality metrics. It can be seen that performance, accuracy, robustness, and 
speed were among the most popular metrics, respectively.

Application Metric Technique
Wind speed forecasting
(Mi et al., 2017)

MAE, RMSE, 
and Mean Abso-
lute Percentage 
Error (MAPE)

A new hybrid method was proposed for the wind speed 
multi-step forecasting. The wavelet decomposition was 
adopted to reduce the noise of the original data. The differ-
ent decomposing algorithms were used to decompose the 
original data. The different forecasting models were built 
to predict the pre-processed data. The outlier correction 
method was proposed to correct the wrong predictions.

Safety driving (anom-
aly behavior of drivers 
or vehicles) (Oikawa et 
al. 2020)

Accuracy, se-
quential learning 
speed, anomaly 
score

An anomaly driving behavior detection technique using 
OS-ELM was proposed and the anomaly detection accuracy 
of the method was compared with an ordinary Incremental 
HMM (IncHMM) and LSTM based method.

Outlier robustness 
problem
(Horata et al., 2013)

The mini-max 
probability 
machine regres-
sion (MPMR), 
accuracy, and 
training time

The outlier robustness problem was enhanced using three 
algorithms: IRWLS-ELM, MLTS-ELM, and RMLTS-ELM.

Outlier robustness of 
ELM in regression 
problems
(Zhan and Luo 2015)

Outlier robust-
ness, computa-
tional efficiency, 
and RMSE

An augmented Lagrange multiplier based ELM algorithm, 
namely ORELM was proposed for solving the outlier robust 
regression problems. The ORELM method not only keeps 
the advantage of fast training speed but also shows notable 
performance in dealing with outliers.

Unknown noise in gas 
utilization and iron 
making process (Zhang 
et al., 2020)

RMSE Robust objective functions were developed based on MoG 
to improve modeling capabilities with complex and un-
known noise. The ELM algorithm was implemented to help 
get the optimal parameters.

Wind speed forecasting
(Zhang et al., 2019)

MAE, RMSE, 
and MAPE

The HMD an effective method was used to deeply decom-
pose the original wind speed. Then, an online robust model 
OSORELM was developed to forecast the multi-step wind 
speed with better performance, and the parameters of OS-
ORELM were adapted by CSO.

Aviation safety 
problem
(Janakiraman and 
Nielsen 2016)

AUC and training 
speed

ELM based anomaly detection was considered and three 
extensions were developed.

supervisory control 
and data acquisition 
(Altunay et al. 2021)

Accuracy Architectures use softmax function, extreme learning ma-
chine, deep belief networks, and multilayer detectors in the 
classification process.

Stock markets
(Sridhar and Sanaga-
varapu 2021)

Accuracy, Preci-
sion, Recall, F1-
measure, ROC, 
and AUC

ELM-AD was proposed for detection of anomaly real-time 
anomalies in stock market manipulations field. To this 
purpose, the feature selection method was proposed for price 
and volume manipulation.

Table 4  (continued) 
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5  Datasets for outlier detection using ELMs

Datasets have laid the foundation for training, scoring, and benchmarking machine learning 
models and have played a fundamental role in progress in this area (Paullada et al., 2021) 
since they are the basis for facilitating the development of multiple computing domains and 
providing range, robustness, and reliability of results (Dekker, 2006). In this section, we 
survey recent issues pertaining to datasets in imbalanced data research, focusing primarily 
on work in ELM and outlier detection. The selected datasets are conducted by researchers 
whose papers are discussed in the previous section.

5.1  Datasets for improving accuracy in outlier detection

The ORELM method proposed by Zhan and Luo (2015) is conducted on Abalone and Hous-
ing for two regression tasks as well as breast cancer diagnosis for one binary classification 
task. The Abalone dataset is used for predicting the age of abalone from eight physical 
measurements. The housing dataset concerned the relationship between housing values and 
some attributes such as average of rooms per dwelling and per capita crime rate by town.

Table 5  Taxonomy of cutting-edge ELMs to detect outliers based on machine learning techniques
Ref Method Name Supervised Unsupervised Semi-supervised
Naseer et al. (2018) Anomaly detection 

based on different deep 
learning NNs

✓

Lu et al. (2017) RELM ✓
Chen et al. (2021) OC-ELM ✓
Yan (2016) One-Class ELM ✓
Wang et al. (2016a, b) Cluster based outliers ✓
Zhang et al. (2018a, b) E-ELM & EW-ELM ✓
Siqi et al. (2019) RAR-ELM ✓
Wang et al. (2017a, b, c) DACB ✓
Barreto and Barros (2016) RELM/PSO ✓
Hashmi and Ahmad (2019) GP-ELM-RNN ✓ ✓
Abdelghafar et al. (2019) GWO-ELM ✓
Mi et al. (2017) WDD-WPD-

ARMA(SS) EMDELM 
(NS)-OCM

✓

Oikawa et al. (2020) OS-ELM ✓
Horata et al. (2013) ECOD ✓
Zhan and Luo (2015) Outlier-robust ELM ✓
Zhang et al. (2020) R-ELM ✓
Zhang et al. (2019) HMD-OSORELM-C ✓
Janakiraman and Nielsen 
(2016)

L-ELMAD ✓

Altunay et al. (2021) Deep learning methods 
in
SCADA systems

✓

Sridhar and Sanagavarapu 
(2021)

ELM-AD ✓
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Naseer et al. (2018) trained deep models on NSLKDD training datasets (NSLKD-
DTrain20p and NSLKDDTrain+) and tested on NSLKDD test datasets (NSLKDDTest + and 
NSLKDDTest21). The NSLKDD Dataset is available in four partitions. Two partitions 
namely NSLKDDTrain20p and NSLKDDtrain + serve as training data for model learn-
ing and provide 25,192 and 125,973 training records respectively. Remaining two parti-
tions called NSLKDDTest + and NSLKDDTest21 are available for performance evaluation 
of trained models and provide 22,543 and 11,850 instances respectively. Additionally, 
NSLKDDTest21 contains records for attack types not available in other NSLKDD train and 
test datasets. These attack types include processtable, mscan, snmpguess, snmpgetattack, 

Ref Accuracy Robustness Speed Other per-
formance 
metrics

Naseer et al. 
(2018)

✓

Lu et al. (2017) ✓ ✓
Chen et al. 
(2021)

✓

Yan (2016) ✓
Wang et al. 
(2016a, b)

✓

Zhang et al. 
(2018a, b)

✓ ✓

Siqi et al. 
(2019)

✓

Wang et al. 
(2017a, b, c)

✓

Barreto and 
Barros (2016)

✓

Hashmi and 
Ahmad (2019)

✓ ✓

Abdelghafar et 
al. (2019)

✓ ✓

Mi et al. (2017) ✓
Oikawa et al. 
(2020)

✓ ✓ ✓

Horata et al. 
(2013)

✓

Zhan and Luo 
(2015)

✓ ✓

Zhang et al. 
(2020)

✓ ✓

Zhang et al. 
(2019)

✓ ✓ ✓

Janakiraman 
and Nielsen 
(2016)

✓ ✓

Altunay et al. 
(2021)

✓

Sridhar and 
Sanagavarapu 
(2021)

✓ ✓

Table 6  Taxonomy of cutting-
edge ELMs to detect outliers 
based on quality metrics
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saint, apache2, httptunnel, back and mailbomb. Zhang et al. (2018a, b) presented the simula-
tion results based on the real iron-making data. The real production data collected in a blast 
furnace with 2500 m3 are employed in the experiment. They chose 1205 sets of silicon con-
tent data. Additionally, they employed the proposed frameworks into two real-world appli-
cations: one regression application for the Abalone dataset and one classification dataset for 
the breast cancer dataset. Both datasets are available via UCI machine learning repository.

The GWO-ELM method proposed by Abdelghafar et al. (2019) is conducted on the 
NASA shuttle valve dataset to evaluate the efficiency of the proposed model for anomaly 
detection from space application telemetry data. The shuttle valve dataset is compiled from 
health monitoring measurements for electromagnetic valves in the space shuttle under vari-
ous conditions; voltage, temperature, and impedance. The dataset is divided into training 
and test sets, where the training set includes the normal samples that had been recorded 
at the normal range of voltage, temperature, and poppet impedance, then tested on some 
normal samples merged with abnormal samples which are recorded at outlier voltage, high 
temperature (69–71 ∘C) or poppet impedance values at 9 or 45 mils. The normal range of 
voltage is 18, 20, 22, 24, 26, 28 or 30 V, while the outlier is considered at 14, 16 and 32 V. 
The OSORELM method proposed by Zhang et al. (2019) was conducted on a real-world 
dataset. Simulations using raw wind speed data (latitude: 31.19 N, longitude: 102.24 W) 
from a wind farm in Texas, USA, collected at 10-minute intervals to validate the perfor-
mance of the proposed hybrid model and use for testing. Since wind speed data varies 
greatly from season to season, the months of January, April, July, and October are randomly 
selected for each of the 2004 seasons.

Oikawa et al. (2020) created a new dataset, called the Wheel-DriveSet with a powered 
wheelchair for anomaly behavior detection experiments. This dataset provides wheelchair 
driving data obtained from three different drivers with three different routes. All drivers are 
male and 22–24 years old. They used an electric wheelchair of WHILL Model CR which is 
controlled by a joystick equipped on the front of the right arm support. The driving courses 
are flat pedestrian paths on a university campus. The drivers made six laps per course; 
abnormal driving behaviors are defined as zigzag driving and intense joystick operations. 
Altunay et al. (2021) studied two different datasets including NSL-KDD and The Secure 
Water Treatment tested (SWaT).

5.2  Datasets for improving robustness in outlier detection

The experiments of proposed method by Horata et al. (2013) are conducted on both toy and 
real-world datasets. The experiments are divided into two categories. The first category is 
conducted on a generated dataset and an example of a real-world dataset, Abalone. Further-
more, the problems in the second are divided into two types, toy and the real-world regres-
sion problems in which Abalone, Boston, and Protein datasets are used.

The proposed method by Barreto and Barros (2016) is simulated on synthetic and real-
world datasets. They considered a synthetic two-dimensional dataset generated according 
to a pattern of two intertwining moons. Pattern vectors from Class 1 receives “+1” labels, 
while the ones from Class 2 are tagged with “−1” labels. The first time they were trained 
with the outlier-free dataset with N = 1000 samples. The second time, they were trained with 
Nout = 20 outliers added to the original dataset. It should be noted that all data samples are 
used for training the classifiers. Next, the robustness of the RELM-B classifier is evalu-
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ated on two real-world benchmarking datasets, Ionosphere and the Wisconsin Diagnostic 
Breast Cancer (WDBC), which are publicly available for download from the UCI Machine 
Learning Repository website. The Ionosphere dataset describes a classification task where 
radar signals target two types of electrons in the ionosphere. The WDBC dataset describes 
patients diagnosed with breast cancer or not. Additionally, they changed the type of data 
to evaluate the method. In this respect, the Yale-A and Sussex face image databases are 
chosen. The Yale-A face image database includes 165 grayscale images in GIF format of 
15 individuals. There are 11 images per subject, one per different facial expression or con-
figuration: center-light, with glasses, happy, left-light, without glasses, normal, right light, 
sad, sleepy, surprised, and wink. The Sussex face image database includes 100 images of 
384 × 287 pixels. These images are in grayscale in the Sun Standard Rasterfile format. This 
database includes 10 subjects and each subject is seen under 10 different poses.

Zhang et al. (2020) used several selected benchmark datasets to validate the proposed 
RELM. The selected three regression datasets, including Auto-MPG, Abalone, Califor-
nia Housing, and a time series prediction, i.e., Mackey–Glass, are available via the UCI 
Machine Learning Repository. Next, they evaluated the effectiveness of RELM using two 
real-world applications, including gas utilization (GUR) prediction and hot metal silicon 
content (HMSC) prediction in the blast furnace iron making process. The method proposed 
by Chen et al. (2021) is verified on a public dataset of aircraft engines. The effectiveness 
of the proposed method is verified on the Commercial Modular Aero-Propulsion System 
Simulation (C-MAPSS) dataset. This dataset consists of 260 multivariate time series. It 
contains four subsets, and the subset involving a single failure mode and 6 operating condi-
tions (FD002) is adopted here. This subset consists of a training set (train_FD002) and a 
testing set (test_FD002).

5.3  Datasets for improving speed in outlier detection

The proposed methods by Janakiraman and Nielsen (2016) were conducted on a real avia-
tion safety benchmark problem. The aviation data including radar measurements which 
are recorded at Denver Terminal Radar Approach Control Facility (TRACON) were stored 
by the Performance Data Analysis and Reporting System (PDARS) program. PDARS 
also provides additional features to enhance the study, including: runway detection and 
flight separation function calculation. The GP-ELM-RNN method proposed by Hashmi 
and Ahmad (2019) are conducted on openly available UCI/ODDS datasets: lymphography 
(outliers ratio: 6/142), wisconsin breast cancer (outlier ratio: 39/444), post-operative (outli-
ers ratio: 26/64), pageblocks (outliers ratio: 140/4913), credit card fraud detection (outliers 
ratio: 492/284,315), forest cover (outliers ratio: 2747/283,301) and kddcup99 (outliers ratio: 
(2211/567,497). Sridhar and Sanagavarapu (2021) conducted the ELM-AD method on a 
daily trading data which were extracted from the Bombay Stock Exchange (BSE) based 
on the affidavit information provided by the Security and Exchange Board of India (SEBI) 
for companies that involves in stock market manipulations. Stock market manipulations 
include court orders, show cause notices, release orders, adjudication orders, etc.

To facilitate the future studies in this quite promising field, we will list the related infor-
mation about datasets detailed in this section. For convenience, Table 7 summarizes com-
monly used datasets and provides the brief information for each dataset (such as source, 
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availability, and URL). It shows that proposed methods were employed in forty different 
datasets for evaluation.

Turning to Fig. 4, the pie chart details the availability of datasets for outlier detection 
using ELMs. Overall, approximately three-quarters of them are widely available while 
almost one-quarter of the pie chart is accounted for Unavailable datasets. Moreover, a tiny 
fraction of data is generated synthetically, and their details are accessible.

5.4  Datasets for improving other performance metrics in outlier detection

Yan (2016) used a database which includes several years of thermal couples (TC) measure-
ments sampled at once-per-minute for a fleet of gas turbines. For demonstration purpose 
approximately a year’s worth of data collected for one specific turbine that has 27 combus-
tor chambers is used. In the study, 13,791 normal samples for unsupervised feature learning 
are used, and the rest of data (300 abnormal and 47,575 normal samples) for training and 
testing the one-class classifiers considered are used.

Five regression datasets from UCI, including Servo, Stock, California Housing, Airfoil 
Self-Noise, and Energy Efficiency, were used by Lu et al. (2017) to evaluate the probabi-
listic RELM method. The Servo dataset concerns a robot control problem. Data are from a 
simulation of a servo system involving a servo amplifier, a motor, a lead screw/nut, and a 
type of sliding carriage. The Stock dataset is the daily stock prices for ten aerospace com-
panies from January 1988 through October 1991. The California Housing dataset contains 
details regarding households in California, including median house value, median income, 
household median age, total rooms, total bedrooms, population, households, latitude, and 
longitude. The Airfoil Self-Noise dataset comprises different size airfoils at various wind 
tunnel speeds and angles of attack. The Energy Efficiency provides 12 different building 
shapes simulated in Ecotect.

Wang et al. (2016a, b, 2017a, b, c) used a synthetic dataset for the experiments. In detail, 
given the data size 𝑁, 𝑁/1000 − 1 clusters are generated and randomly assigned each of 
them a center point and a radius. In average, each cluster includes 1000 points following 
Gaussian distribution. At last, the remaining 1000 points are scattered into the space. The 
architecture proposed by Mi et al. (2017) is conducted on five groups of actual wind speed 
time series including 700 samples. The 1st-600th samples of these groups of wind speed 
time series data are utilized to build the various forecasting models, while the leaving 601st–
700th samples in each group are used to evaluate the performance of the built models. Siqi et 
al. (2019) demonstrated the effectiveness of RAR-ELM to the task of outlier image removal 
on five frequently-used data collections: the Caltech101 dataset, the cifar-10 dataset, The 
Street View House Numbers (SVHN) dataset, the MNIST dataset, and the Fashion dataset.

6  Discussion

We depicted the state-of-the-art ELM algorithms for class imbalance. However, these algo-
rithms involve tuning the training error, mapping features, adapting distribution weights and 
bias, promoting classification robustness, the feasibility of parallel computing, performance 
and accuracy improvement, stability, and scalability.
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Dataset Source Available URL
NSL-KDD Naseer et al. (2018)

Altunay et al. (2021)
✓ http://www.di.uniba.

it/~andresini/datasets.html
Servo Lu et al. (2017) ✓ https://archive.ics.uci.edu/ml/

datasets/Servo
Stock Lu et al. (2017) ✓ https://archive.ics.uci.edu/ml/

datasets/Stock+portfolio+pe
rformance

California Housing Lu et al. (2017)
Zhang et al. (2020)

✓ https://scikit-learn.org/stable/
modules/generated/sklearn.
datasets.fetch_california_
housing.html

Airfoil Self-Noise Lu et al. (2017) ✓ https://archive.ics.uci.edu/ml/
datasets/airfoil+self-noise

Energy Efficiency Lu et al. (2017) ✓ https://archive.ics.uci.edu/ml/
datasets/energy+efficiency

C-MAPSS Chen et al. (2021) Currently Unavailable https://data.nasa.gov/
widgets/xaut-bemq

Turbine Yan (2016) Unavailable
Synthetic Wang et al. (2016a, 

b)
Wang et al. (2017a, 
b, c)

Details are available

Iron-making Zhang et al. (2018a, 
b)

Unavailable

Caltech101 Siqi et al. (2019) ✓ https://www.tensorflow.org/
datasets/catalog/caltech101

Cifar-10 Siqi et al. (2019) ✓ https://www.cs.toronto.
edu/~kriz/cifar.html

Street View House 
Numbers (SVHN)

Siqi et al. (2019) ✓ http://ufldl.stanford.edu/
housenumbers/

MNIST Siqi et al. (2019) ✓ http://yann.lecun.com/exdb/
mnist/

Fashion Siqi et al. (2019) ✓ https://github.com/
zalandoresearch/
fashion-mnist

Synthetic Barreto and Barros 
(2016)

Details are available

Ionosphere Barreto and Barros 
(2016)

✓ https://archive.ics.uci.edu/ml/
datasets/ionosphere

WDBC Barreto and Barros 
(2016)

✓ https://archive.ics.uci.edu/ml/
datasets/breast+cancer+wisc
onsin+(diagnostic)

Yale-A Barreto and Barros 
(2016)

✓ http://vision.ucsd.edu/
content/yale-face-database

Sussex face Barreto and Barros 
(2016)

✓ https://link.springer.com/
article/10.1007/BF02311576

Lymphography Hashmi and Ahmad 
(2019)

✓ https://archive.ics.uci.edu/ml/
datasets/Lymphography

Post-Operative Hashmi and Ahmad 
(2019)

✓ https://archive.ics.
uci.edu/ml/datasets/
Post-Operative+Patient

Table 7  Related information about datasets
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The “ELMs for outlier detection” are based on several criteria, such as performance, 
reducing the interference of outliers, robustness, accuracy, training speed, input weights, 
bias parameters, computational problems, and scalability. It is challenging to optimize them. 
More researchers preferred robustness and parameters optimization over other criteria as the 
main issues. Since the performance of robust methods relies on the accuracy of weight esti-
mation. The proposed methods also impose a high computational cost, which often reduces 
the effectiveness of ELMs. However, we contend that there are significant gaps, and they 
could be addressed to effectively cope with major challenges which have affected ELMs. 
These matters are listed as follows:

Dataset Source Available URL
Wisconsin Hashmi and Ahmad 

(2019)
✓ https://archive.ics.uci.edu/ml/

datasets/breast+cancer+wisc
onsin+(diagnostic)

Page-blocks Hashmi and Ahmad 
(2019)

✓ https://archive.ics.uci.edu/
ml/datasets/Page+Blocks+Cl
assification

Credit Card Hashmi and Ahmad 
(2019)

✓ https://archive.ics.uci.edu/ml/
datasets/default+of+credit+c
ard+clients

Forest Cover Hashmi and Ahmad 
(2019)

✓ https://archive.ics.uci.edu/ml/
datasets/covertype

Kddcup99 Hashmi and Ahmad, 
2019)

✓ http://kdd.ics.uci.edu/data-
bases/kddcup99/kddcup99.
html

NASA shuttle valve Abdelghafar et al. 
(2019)

✓ https://cs.fit.edu/~pkc/nasa/
data/

Wind speed time series Mi et al. (2017) Unavailable
Wheel-DriveSet Oikawa et al. (2020) Unavailable
Abalone Horata et al. (2013)

Zhang et al. (2020)
✓ https://archive.ics.uci.edu/ml/

datasets/abalone
Boston Horata et al. (2013) ✓ https://archive.ics.uci.edu/ml/

machine-learning-databases/
housing/

Protein Horata et al. (2013) ✓ https://archive.ics.uci.edu/ml/
datasets/Protein+Data

Auto-MPG Zhang et al. (2020) ✓ https://archive.ics.uci.edu/ml/
datasets/auto+mpg

Mackey–Glass Zhang et al. (2020) ✓ https://archive.ics.uci.edu/ml/
datasets/glass+identification

Raw wind speed data Zhang et al. (2019) Unavailable
Aviation data (radar 
measurements)

Janakiraman and 
Nielsen (2016)

Unavailable

SWaT Altunay et al. (2021) Unavailable
BSE Sridhar and Sanaga-

varapu (2021)
✓ https://www.kaggle.com/

ravisane1/5-year-bse-sensex-
dataset

Table 7  (continued) 
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1.	 Limitations that may deteriorate the ELM performance metric should be addressed, e.g., 
the unbalanced distribution of training and testing datasets. This aspect requires further 
research on flexible approaches when the learning model deals with large datasets.

2.	 Although ELM is originally proposed for two or more-class classifications and regres-
sion, One-class ELMs have emerged recently. Researchers can introduce one-class 
ELMs to new application domains, particularly industrial fields. Raw data with imbal-
anced class distribution can be found almost everywhere, especially in industrial 
applications.

3.	 ELM has superior results in terms of robustness and generalization performance than 
state-of-the-art machine learning approaches, including SVM, k-NN, Naïve Bayes, and 
Artificial neural Network (ANN). Moreover, it is efficient and effective for both clas-
sification and regression. However, it is interesting to study what strategies can be taken 
to improve the generalization and reliability of the ELM for outlier detection.

4.	 The ELM avoids many challenges that affect other gradient-based learning methods, 
such as learning rate, local minima and epoch selection, and termination criteria. What 
criteria should be considered to select a suitable evolutionary algorithm for optimizing 
the ELM? It seems that evolutionary algorithms which are used to optimize ELMs can 
be evaluated based on time complexity and stability. These metrics can be assessed 
using the CPU time required for training and the mean and the standard deviation of the 
fitness evaluation, respectively.

5.	 More attention should be given to improve the performance of ELMs without parameter 
optimization because parameter optimization can negatively impact model sensitivity.

6.	 The algorithm for anomaly detection on large datasets should be fast, accurate, and 
scalable. Whether the accuracy of the learning model is more important than the calcu-
lation time or not should be answered. Since in some cases such as intrusion detection, 
calculation time is as important as the model accuracy.

Fig. 4  Availability of datasets for outlier detection using ELMs

 

1 3

5519



Machine Learning (2024) 113:5495–5531

7.	 Model error is one of the main obstacles to improved accuracy and reliability. To 
enhance the robustness of ELMs, the distribution of modeling errors can be evaluated 
to ensure consistency between the modeling errors and the outlier distribution.

8.	 Which batch and sequential learning methods can be introduced to build a robust ELM 
for semi-supervised and unsupervised pattern classification when outliers are present in 
the data?

9.	 Deep learning algorithms can be developed for feature extraction between anomalies 
but there is very limited research on jointly exploiting the challenges of semi-super-
vised and unsupervised learning approaches regarding deep learning. To resolve this 
issue, studies may need to extend both semi-supervised and unsupervised cases.

10.	 Further attention needs to be paid to the development of multimode anomaly detection 
for industrial processes. To this purpose, reducing time cost, achieving stronger distin-
guishing performance and greater stability may lead to desired results.

11.	 In a distributed environment with an increase in the data size, more points need to be 
scanned to find the outliers, and it may lead to increasing the network transmission 
quantity. Therefore, the ELM model should be stable after a certain number of calcula-
tions and should not be affected by the data size.

12.	 In a recurrent training process, when the reconstruction error distribution (RED) of 
normal data and outliers overlap with each other, it may lead to misclassification. Thus, 
which strategy can be taken to make the RED more separable.

Contributions to outlier detection using ELMs can be categorized based on three main areas: 
theoretical foundations, knowledge discovery, and imbalanced domains. Table 8 shows the 
proposed methods make a major contribution to imbalanced domains. In this area, environ-
mental applications and anomaly detection are the most popular topics among researchers, 
while fraud detection and health applications have been less studied. Alternatively, other 
imbalanced domains, such as social media applications and deep fake classification, have 
not yet been explored. Theoretical foundations are the second most popular topic. We real-
ize that pre-processing, deep learning, big data, and one-class learning have been studied 
in this field. Future work can consider post-processing approaches, feature selection, and 
transformation methods for outlier detection using ELMs. Knowledge discovery has been 
less investigated. Imbalanced regression and automated machine learning have been studied 
while researchers can conduct more thorough studies on improving the remaining topics in 
this area, such as lifelong machine learning, graph classification, imbalanced time series, 
and learning with imbalanced data streams.

We illustrate that a few of papers have explored cutting-edge ELMs to detect outliers 
based on semi-supervised learning. Researchers can explore supervised and un-supervised 
approaches for outlier detection using ELMs. Moreover, the improvement of ELMs based 
on supervised and semi-supervised learning can be investigated simultaneously. In addition, 
we present that there are significant developments of cutting-edge ELMs to detect outliers 
in terms of accuracy and robustness. Oikawa et al. (2020) have simultaneously developed 
accuracy, speed, and other performance metrics (e.g., AUC). Moreover, Zhang et al. (2019) 
have simultaneously developed accuracy, robustness, and other performance metrics (e.g., 
mean absolute percentage error and mean absolute error). However, there is still no work to 
simultaneously enhance robustness and speed metrics.
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7  Conclusion

Recently, ELM techniques have received considerable attention in computational intelli-
gence and machine learning communities, in both theoretical study and applications due to 
their fast speed, easy implementation, and great potential to resolve regression and classifi-
cation problems. Despite recent advances in ELM and its growing popularity, there are few 
empirical studies in the field of ELM with outlier detection.

We investigated the suitability of ELMs-based approaches for outlier detection and the 
reasons why extensive research on ELMs has been carried out. Continuously, we filled sev-
eral research gaps during the literature review of the outlier detection problem, which are: 
(1) lack of investigation of well-known ELM approaches for outlier detection, (2) lack of 
analysis of why ELMs can be potentially used to tackle the imbalanced data problem, (3) 
lack of taxonomy of ELMs amongst themselves using different machine learning techniques 
and lack of their developments based on standardized quality metrics, and (4) lack of point-
ing out suitable datasets to facilitate future studies in the outlier detection field.

To the best of our knowledge, this survey provides a comprehensive analysis of ELM and 
its applications for addressing the above-mentioned gaps. In this matter, twenty studies pub-
lished between 2014 and 2021 are summarized and discussed, exploring several advanced 
techniques for learning from imbalanced data with ELMs. It has been demonstrated that 

Ref Theoretical 
foundations

Knowledge 
discovery

Imbal-
anced 
domains

Naseer et al. (2018) ✓
Lu et al. (2017) ✓
Chen et al. (2021) ✓
Yan (2016) ✓ ✓
Wang et al. (2016a, b) ✓
Zhang et al. (2018a, b) ✓
Siqi et al. (2019) ✓
Wang et al. (2017a, b, c) ✓
Barreto and Barros 
(2016)

✓

Hashmi and Ahmad 
(2019)

✓

Abdelghafar et al. (2019) ✓
Mi et al. (2017) ✓
Oikawa et al. (2020) ✓
Horata et al. (2013) ✓
Zhan and Luo (2015) ✓
Zhang et al. (2020) ✓
Zhang et al. (2019) ✓
Janakiraman and Nielsen 
(2016)

✓

Altunay et al. (2021) ✓
Sridhar and Sanagavar-
apu (2021)

✓

Table 8  Topics of interest for 
outlier detection using ELMs
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ELMs for handling imbalanced data can be successfully extended although the adaptation 
of distribution weights and biases remains a significant challenge.

The survey also explores twenty papers published between 2013 and 2021 to address 
state-of-the-art ELMs which have been applied for outlier detection on different issues. 
Moreover, it classifies these methods under three different machine learning perspectives 
(i.e., supervised, unsupervised, and semi-supervised approaches). AUC, ROC, and RMSE 
are among the foremost well-known measurements for assessing the performance of the 
proposed ELMs.

Continuously, the survey covers studies that critically use datasets, with a focus on ELM 
as the limiting factor for outlier detection. ELMs have been employed in considerably dif-
ferent areas of outlier detection, including intrusion detection systems, health monitoring in 
space, wind speed forecasting stock markets, etc.

To conclude, this study can be followed by researchers who tend to develop ELMs for 
outlier detection since to the best of our knowledge, this is the first work that has focused on 
ELMs in this field. Alternatively, we assert that several challenges remain open and may be 
worth absorbing the attention of researchers.

In future work, outlier injection methods will be reviewed. Then a flexible outlier injec-
tion process will be proposed to inject various types of anomalies and will tackle the class 
imbalanced data issue regarding outlier detection using ELM. This may result in a high-
quality division of data into training, evaluation, and testing data, thus improving accuracy. 
Moreover, we presented some contemporary open challenges to cover significant gaps when 
ELMs are applied for outlier detection. In this context, we will focus on what strategies can 
be taken to improve the generalization and reliability of the ELM for outlier detection.
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