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Abstract
This paper introduces the notion of learning from contradictions (a.k.a Universum learn-
ing) for deep one class classification problems. We formalize this notion for the widely
adopted one class large-margin loss (Schölkopf et al. in Neural Comput 13(7):1443–1471),
and propose the deep one class classification using contradictions (DOC3) algorithm. We
show that learning from contradictions incurs lower generalization error by comparing the
empirical Rademacher complexity of DOC3 against its traditional inductive learning coun-
terpart. Further, our proposed ‘learning from contradiction’ is a generic learning setting and
can compliment other advanced learning settings. To illustrate this, we extend the adversarial
learning based DROCC-LF (Goyal et al. in International conference on machine learning,
PMLR, 2020) algorithmunder this new setting.Our empirical results demonstrate the efficacy
of DOC3 and it’s extensions compared to popular baseline algorithms on several benchmark
and real-life data sets.

Keywords Anomaly detection · One class classification · Universum learning

1 Introduction

Anomaly detection (AD) is one of the most widely researched problem in the machine learn-
ing community (Chandola et al., 2009). In its basic form, the task of Anomaly Detection
(AD) involves discerning patterns in data that do not conform to expected ‘normal’ behavior.
These non-conforming patterns are referred to as anomalies or outliers. Anomaly detec-
tion problems manifest in several forms in real-life like, defect detection in manufacturing
lines, intrusion detection for cyber security, or pathology detection for medical diagnosis
etc. There are several mechanisms to handle anomaly detection problems viz., parametric or
non-parametric statistical modeling, spectral based, or classification based modeling (Chan-
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dola et al., 2009). Of these, the classification based approach has been widely adopted in
literature (Scholkopf et al., 2002; Tax & Duin, 2004; Tan et al., 2016; Cherkassky &Mulier,
2007). One specific classification based formulation which has gained huge adoption is one
class classification (Scholkopf et al., 2002; Tax &Duin, 2004), where we design a parametric
model to estimate the support of the ‘normal’ class distribution. The estimated model is then
used to detect ‘unseen’ abnormal samples.

With the recent success of deep learning based approaches for different machine learning
problems, there has been a surge in research adopting deep learning for one class problems
(Ruff et al., 2021; Pang et al., 2020; Chalapathy & Chawla, 2019). However, most of these
works adopt an inductive learning setting. This makes the underlying model estimation data
hungry, and perform poorly for applications with limited training data availability, like med-
ical diagnosis, industrial defect detection, etc. The learning from contradictions paradigm
(popularly known as Universum learning) has shown to be particularly effective for problems
with limited training data availability (Vapnik, 2006; Sinz et al., 2008; Weston et al., 2006;
Chen & Zhang, 2009; Cherkassky et al., 2011; Shen et al., 2012; Dhar & Cherkassky, 2015;
Zhang & LeCun, 2017; Xiao et al., 2021). However, it has been mostly limited to binary
or multi class problems. In this paradigm, along with the labeled training data we are also
given a set of unlabeled contradictory (a.k.a universum) samples. These universum samples
belong to the same application domain as the training data, but are known not to belong to
any of the classes. The rationale behind this setting comes from the fact that even though
obtaining labels is very difficult, obtaining such additional unlabeled samples is relatively
easier. These unlabeled universum samples act as contradictions and should not be explained
by the estimated decision rule. Adopting this to one class problems is not straight forward.
A major conceptual problem is that, one class model estimation represents unsupervised
learning, where the notion of contradiction needs to be redefined properly. In this paper,

1. Definition We introduce the notion of ‘Learning from contradictions’ for one class prob-
lems (Definition 2).

2. Formulation We analyze the popular one class hinge loss (Schölkopf et al., 2001), and
extend it under universum settings to propose the Deep One Class Classification using
Contradictions DOC3 algorithm. Further, our proposed ‘learning from contradiction’ is a
generic learning setting and can compliment other advanced learning settings. To illustrate
this, we extend the adversarial learning based DROCC-LF (Goyal et al., 2020) algorithm
under universum settings and call it DROCC-LF (univ) (see Algo. 1).

3. Generalization errorWeanalyze the generalization performance of one class formulations
under inductive and universum settings using Rademacher complexity based bounds,
and show that learning under the universum setting can provide improved generalization
compared to its inductive counterpart.

4. Empirical results Finally, we provide an exhaustive set of empirical results on several
tabular and image datasets in support of our approach.

2 One class learning under inductive settings

First we introduce the widely adopted inductive learning setting used for one class problems
(Scholkopf et al., 2002; Cherkassky & Mulier, 2007).

Definition 1 (Inductive setting) Given i.i.d training samples from a single class T =
(xi , yi = +1)ni=1 ∼ Dn

X |Y=+1, with x ∈ X ⊆ �d and y ∈ Y = {−1,+1}; estimate a
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hypothesis h∗ : X → Y from an hypothesis class H which minimizes,

inf
h∈H EDT [1y �=h(x)] (1)

DT is the training distribution (consisting of both classes)
DX |Y=+1 is class conditional distribution
1(·) is the indicator function, and
EDT (·) is the expectation under training distribution.

Note that, the underlying data generation process assumes a two class problem; of which
the samples from only one class is available during training. The overall goal is to estimate
a model which minimizes the error on the future test data, containing samples from both
normal (y = +1) and abnormal classes (y = −1). Typical examples include, AI driven visual
inspection of product defects in amanufacturing line;where images or videos of non-defective
products are available in abundance. The goal is to detect ‘defective’ (abnormal/anomalous)
products through visual inspection in manufacturing lines (Bergmann et al., 2019; Weimer
et al., 2016). A popular loss function used in such settings is the ν-SVM loss (Schölkopf et
al., 2001),

min
w,ξ ,ρ

1

2
||w||22 + 1

νn

n∑

i=1

ξi − ρ

s.t. w	φ(xi ) ≥ ρ − ξi , ξi ≥ 0; ∀ i = 1 . . . n (2)

where ν ∈ (0, 1] is a user-defined parameter which controls the margin errors
∑

i ξi and the
size of geometric 1

||w|| and functional ρ margins. φ(·) : X → G is a feature map. Typical
examples include an empirical kernel map (see Definition 2.15 (Scholkopf et al., 2002)) or
a map induced by a deep learning network (Goodfellow et al., 2016). The final decision

function is given as, h(x) =
{+1; if w	φ(xi ) ≥ ρ

−1; else
. Note that, recent works like Ruff et

al. (2018) extend a different loss function which uses a ball to explain the support of the data
distribution following (Tax & Duin, 2004). As discussed in Schölkopf et al. (2001), most of
the time these two formulations yield equivalent decision functions. For example, with kernel
machines K(x, x′) = φ(x)	φ(x′) depending solely on x − x′ (like RBF kernels), these two
formulations are the same. Hence, most of the improvements discussed in this work translates
to such alternate formulations. In this paper however, we solve the following one class Hinge
Loss,

min
w

1

2
||w||22 + C LT (w, {φ(xi )}ni=1)

s.t LT (w, {φ(xi )}ni=1) =
n∑

i=1

[1 − w	φ(xi )]+ ; [x]+ = max(0, x) (3)

to estimate the the decision function f (x) = w	φ(xi ) and use the decision rule, h(x) ={+1; if f (x) ≥ 1
−1; else

. Here, the user-defined parameter C controls the trade-off between

explaining the training samples (through small margin error
∑n

i=1 ξi ), and the margin size
(through ||w||22), which in turn controls the generalization error. For deep learning archi-
tectures we optimize using all the model parameters and equivalently regularize the entire
matrix norm ||W||2F , see Goyal et al. (2020), Ruff et al. (2018). Note that, we solve one class
Hinge loss (3) for the two main reasons,
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Fig. 1 Visual inspection of anomalous screws in a manufacturing line (Bergmann et al., 2019). Images of the
other products act as universum samples. Such images are neither normal-screw nor anomalous-screw images
and act as contradictions

– First, it has the advantage that LT (w, φ({x}ni=1)) = ∑n
i=1[1 − wTφ(xi )]+ exhibits the

same form as the traditional hinge loss used for binary classification problems (Vapnik,
2006) and can be easily solved using existing software packages (Paszke et al., 2019;
Abadi et al., 2016; Pedregosa et al., 2011). Throughout the paper we refer (3) using
underlying deep architectures as Deep One Class DOC (Hinge) formulation.

– Second, solving Eq. (3) also provides the solution for Eq. (2). This connection follows
from Proposition 1.

Proposition 1 Connection between Eq. (2) and Eq. (3)

1. Any solution w of Eq. (3) also solves Eq. (2) with ν = 1
Cnδ

; where δ > 0 is a scalar
that depends on the solution of Eq. (3). Further, this solution (ŵ, ρ) of Eq. (2) is given as
ŵ = wδ, ρ = δ.

2. The decision function obtained through solving Eq. (3) i.e., w	φ(x) − 1 = 0 coincides
with the decision function ŵ	φ(x) − ρ = 0 obtained by solving Eq. (2) i.e. using the
solution discussed above.

All proofs are provided in “Appendix”.

3 One class learning using contradictions a.k.a Universum learning

3.1 Problem formulation

Learning from contradictions or Universum learning was introduced in Vapnik (2006)
for binary classification problems to incorporate a priori knowledge about admissible data
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samples. For example, if the goal of learning is to discriminate between handwritten digits
‘5’ and ‘8’, one can introduce additional knowledge in the form of other handwritten letters
‘a’,‘b’,‘c’,‘d’,. . . ‘z’. These examples from the Universum contain certain information about
the handwritten styles of authors, but they cannot be assigned to any of the two classes (5 or
8). Further, these Universum samples do not have the same distribution as labeled training
samples. In this work we introduce the notion of ‘Learning from Contradictions’ for one
class problems. Similar to inductive setting (Definition 1) the goal here is also to minimize
the generalization error on future test data containing both normal (y = +1) and abnormal
(y = −1) samples. Here however, during training in addition to the samples from the normal
class (xi , yi = +1)ni=1, we are also provided with universum (contradictory) samples, which
are known not to belong to either of the (normal or abnormal) classes of interest. A practical
use-case can be of automated visual inspection based anomaly detection in manufacturing
lines. Here the target is to identify the defects in a specific product type (say ’screws’ in
Fig. 1). For this case, the images from other product types in the manufacturing line act
as universum samples. Note that, such universum samples belong to the same application
domain (i.e. visual inspection data); but do not represent either of the classes normal screws
or anomalous screws. This setting is formalized as,

Definition 2 (Learning from contradictions a.k.a Universum setting) Given i.i.d training
samples T = (xi , yi = +1)ni=1 ∼ Dn

X |Y=+1, with x ∈ X ⊆ �d and y ∈ Y = {−1,+1}
and additional m universum samples U = (x∗

i ′)
m
i ′=1 ∼ DU with x∗ ∈ X ∗

U ⊆ �d , estimate
h∗ : X → Y from hypothesis class H which, in addition to Eq. (1), obtains maximum
contradiction on universum samples i.e. maximizes the following probability for x∗ ∈ X ∗

U ,

sup
h∈H

PDU [h(x∗) /∈ Y] = sup
h∈H

EDU [1{ ⋂
y∈Y

h(x∗)�=y}] (4)

DU is the universum distribution,
PDU (·) is probability under universum distribution,
EDU (·) is the expectation under universum distribution,X ∗

U is the domain of universum data.

Learning using contradictions under Universum setting has the dual goal of minimizing the
generalization error in Eq. (1) while maximizing the contradiction on universum samples Eq.
(4). The following proposition provides guidelines on how this can be achieved for the one
class hinge loss in Eq. (3).

Proposition 2 For the one class hinge loss in Eq. (3), maximum contradiction on universum
samples x∗ ∈ X ∗

U can be achieved when,

|w	φ(x∗) − 1| = 0 (5)

That is, we need the universum samples to lie on the decision boundary. This motivates the
following one class loss using contradictions (under Universum settings) where we relax the
constraint in Eq. (5) by introducing a �-insensitive loss similar to Weston et al. (2006), Dhar
et al. (2019) and solve,

min
w

1

2
||w||22 + C LT (w, φ({xi }ni=1)) + CU LU (w, φ({x∗

i ′ }mi ′=1))

s.t. LT (w, φ({x}ni=1)) =
n∑

i=1

[1 − w	φ(xi )]+

LU (w, φ({x∗
i ′ }mi ′=1)) =

m∑

i ′=1

[|1 − w	φ(x∗
i ′)| − �]+ (6)
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Here, [x]+ = max(0, x). Further, the interplay between C,CU− controls the trade-off
between explaining the training samples using LT versus maximizing the contradiction on
Universum samples using LU . For CU = 0 or � → ∞, Eq. (6) transforms to Eq. (3). For
deep learning models, we optimize Eq. (6) over all the model parameters and refer to it as
Deep One Class Classification using Contradictions (DOC3).

3.2 Analysis of generalization error bound

Nextwe provide theoretical justification in support ofUniversum learning.We argue, learning
under universum settings using DOC3 can provide improved generalization error compared
to its inductive counterpart DOC (Hinge). For this, we first derive a generic form of the
generalization error bound for one class learning using the Rademacher complexity capacity
measure in Theorem 1.

Theorem 1 (Generalization error bound) Let F be the class of functions from which the
decision function f (x) in Eq. (3) and (6) are estimated. Let R f ,1 = {x : f (x) ≥ 1} be the
induced decision region. Then, with probability 1 − η with η ∈ [0, 1], over any independent
draw of the random sample T = (xi , yi = +1)ni=1 ∼ Dn

T |Y=+1, for any κ > 0 we have,

PDT |Y=+1(x /∈ R f ,1−κ ) ≤ 1

κn

n∑

i=1

ξi + 2

κ
R̂n(F) + 3

√
ln 2

η

2n
(7)

where ξi = [1 − f (x)]+; R f ,θ = {x : f (x) ≥ θ}
R̂n(F) = Eσ [ sup

f ∈F
| 2n

∑n
i=1 σi f (xi )|

∣∣∣(xi )ni=1]
σ = independent uniform {±1}− valued random variables a.k.a Rademacher variables.

The Theorem 1 is agnostic of model parameterization and holds for any popularly adopted
kernel machine or deep learning architectures. Similar to the Theorem 7 in Schölkopf et
al. (2001), Theorem 1 gives a probabilistic guarantee that new points lie in a larger region
R f ,1−κ . Here, we rather use the Empirical Rademacher Complexity (ERC) R̂n(F) as the
capacity measure of the hypothesis class, instead of the covering number. Additionally, our
bound does not contain a 1

κ2
term as in Schölkopf et al. (2001), and only has the scaling factor

of 1
κ
. As seen from Theorem 1 above, it is preferable to use a hypothesis classF with smaller

ERC R̂n(F). Next we compare the ERC of the hypothesis class induced by the formulations
Eq. (3) versus Eq. (6).

Theorem 2 (Empirical Rademacher complexity). For the hypothesis class induced by the
formulations,

– Equation (3): Find = { f : x → w	φ(x)
∣∣∣||w||22 ≤ �2}

– Equation (6): Funiv = { f : x → w	φ(x)
∣∣∣||w||22 ≤ �2; |w	φ(x∗) − 1| ≤ � , ∀x∗ ∈

X ∗
U }

The following holds,

1. R̂n(Find) ≥ R̂n(Funiv)

2. Further, for any fixed mapping φ(·), ∀γ ≥ 0 we have,

(a) R̂n(Find) ≤ 2�
n

√
n∑

i=1
||zi ||2; where z = φ(x)
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(b) R̂n(Funiv) ≤ 2�
n

√
n∑

i=1
||zi ||2 min

γ≥0
K (γ )

[
1 − �(γ )

] 1
2

where K (γ ) = [
1 + 2γm(�2 + 1)

�2

] 1
2 (8)

�(γ ) = γ
tr(V Z	ZV	)[

tr(Z	Z)
] [

tr(I + γ VV	)
]

Z =
⎡

⎢⎣
(z1)T

...

(zn)T

⎤

⎥⎦ and V =
[
1

−1

]
⊗

⎡

⎢⎣
(u1)T

...

(um)T

⎤

⎥⎦ ; u = φ(x∗); x∗ ∈ X ∗
U (9)

⊗ = Kronecker Product, tr = Matrix Trace

Note that, several recent works (Neyshabur et al., 2015; Sokolic et al., 2016; Cortes et
al., 2017) derive the ERC of the function class induced by an underlying neural architecture.
In this analysis however, we fix the feature map and analyze how the loss function in Eq.
(6) reduces the function class capacity compared to Eq. (3). This simplifies our analysis
and focuses on the effect of the proposed new loss in Eq. (6) under the universum setting.
As seen from Theorem 2 (1), the function class induced under the universum setting (using
contradictions) exhibits lower ERC compared to that under inductive settings. Amore explicit
characterization of the ERC is provided in part (2). Setting γ = 0 in (b), we achieve the same
R.H.S as (a); hence the R.H.S in (b) is always smaller than in (a). Further note that �(γ ) in
Eq. (9) has the form of a correlationmatrix between the training and universum samples in the

feature space. In fact, we have�(∞) = lim
γ→∞�(γ ) = tr(V Z	ZV	)

tr(Z	Z) tr(VV	)
. This shows that, for a

fixed number of universum samplesm and �, the effect of the DOC3 algorithm is influenced
by the correlation between training and universum samples in the feature space. Loosely
speaking, the DOC3 algorithm searches for a solution where in addition to reducing the
margin errors ξi , alsominimizes this correlation; andbydoing sominimizes the generalization
error. Similar conclusions have been empirically derived for binary, multiclass problems in
Weston et al. (2006), Chapelle et al. (2008), Cherkassky et al. (2011) and Dhar et al. (2019).
Here, we provide the theoretical reasoning for one class problems. Further, we confirm these
theoretical findings in our results (Sect. 5.3.3).

3.3 Algorithm implementation

A limitation in solving Eq. (6) is handling the absolute term in LU . In this paper we adopt
a similar approach used in Weston et al. (2006), Dhar et al. (2019) and simplify this by
re-writing LU as a sum of two hinge functions. To do this, for every universum sample x∗

i ′
we create two artificial samples, (x∗

i ′ , y
∗
i ′1 = 1), (x∗

i ′ , y
∗
i ′2 = −1) and re-write,

LU =
m∑

i ′=1

[|1 − w	φ(x∗
i ′)| − �]+

=
m∑

i ′=1

(
[ε1 − y∗

i ′1w
	φ(x∗

i ′)]+ + [ε2 − y∗
i ′2w

	φ(x∗
i ′)]+

)
(10)
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where, ε1 = 1 − � and ε2 = −1 − �. Now, the universum loss is the sum of two hinge
functions with ε1, ε2− margins; and can be solved using standard deep learning libraries
(Paszke et al., 2019; Abadi et al., 2016; Pedregosa et al., 2011).1

4 Existing approaches and related works

Most research inAnomalyDetection (AD) canbe broadly categorized as adopting either tradi-
tional (shallow) or the more modern deep learning based approaches. Traditional approaches
generally adopt parametric or non-parametric statistical modeling, spectral based, or clas-
sification based modeling (Chandola et al., 2009). Typical examples include, PCA based
methods (Jolliffe, 2002; Hoffmann, 2007), proximity based methods (Knorr et al., 2000;
Ramaswamy et al., 2000), tree-based methods like Isolation Forest (IF) (Liu et al., 2008),
or classification based OC-SVM (Schölkopf et al., 2001), Support Vector Data Description
(SVDD) (Tax & Duin, 2004) etc. These techniques provide good performance for optimally
tuned feature map. However, for complex domains like vision or speech, where designing
optimal featuremaps is non trivial; such approaches perform sub-optimally. A detailed survey
on these approaches is available in Chandola et al. (2009).

In contrast, for the modern deep learning based approaches, extracting the optimal fea-
ture map is imbibed in the learning process. Broadly there are three main sub-categories
for deep learning based AD. First, the Deep Auto Encoder and its variants like DCAE
(Masci et al., 2011; Makhzani Frey, 2014) or ITAE (Huang et al., 2019) etc. Here, the
aim is to build an embedding where the normal samples are correctly reconstructed while the
anomalous samples exhibit high reconstruction error. The second type of approach adoptGen-
erative Adversarial Network (GAN)-based techniques like AnoGAN (Schlegl et al., 2017),
GANomaly (Akcay et al., 2018), EGBAD (Zenati et al., 2018), CBiGAN (Carrara et al.,
2020) etc. These approaches, typically focus on generating additional samples which follow
similar distribution as the training data. This is followed up by designing an anomaly score to
discriminate between normal versus anomalous samples. Finally, the third category consist of
themore recent one class classification based approaches like,Deep SVDD (Ruff et al., 2018),
DROCC (Goyal et al., 2020) etc. These approaches adopt solving a one class loss function
catered for deep architectures. All these above approaches however adopt an unsupervised
inductive learning setting. There is a newer class of classification based paradigm which
adopts semi or self supervised formulations. Typical examples include, GOAD (Bergman
Hoshen, 2020), SSAD (Ruff et al., 2019), ESAD (Huang et al., 2020) etc. However, such
approaches use fundamentally different problem settings (like a multi class problem for
GOAD); or have different assumptions on the additional data available.
Learning with disjoint auxiliary (DA) data: A recently popularized new learning setting
assumes the availability of an additional auxiliary data which is disjoint from the test set.
The underlying assumption is that these auxiliary samples may or may not follow the same
distribution as the test data and are disjoint from test set. This idea was first introduced in
Dhar (2014) (see Sect. 4.3) and misconstrued as Universum learning. Note that, the notion of
universum samples was originally introduced to act as contradictions to the concept classes in
the test set (Vapnik, 2006). The above assumption does not adhere to this notion and violates
the true essence ofUniversum learning. This setting has been recently used to propose ‘outlier
exposure’ in Hendrycks et al. (2018) and variants (Ruff et al., 2021; Goyal et al., 2020). A
more advanced variation of this setup adopts generating the anomalous samples through

1 All codes are available at: https://github.com/sauptikdhar/DOC3
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perturbation (Cai & Fan, 2022) or through distribution-shifting transformations (Tack et al.,
2020) and using contrastive losses. Our learning from contradiction setting is different from
the above methods in the following aspects,

• (Problem setting) is different. While the above setting only assumes disjoint auxiliary
data from test data’s concept classes (‘normal’ and ‘anomalous’ samples), Universum
follows a different assumption that the concept classes of the universum data is different
from both the normal as well as anomalous samples. This assumption is quintessential for
proving Prop. 2, which in turn provides the optimality constraint on the decision function
(in Eq. 5). Prop. 2 is not possible for DA setting.

• (Formulation) The difference in problem setting is also clear from the formulations. For
example, the formulations proposed under the disjoint auxiliary setting like, (Dhar, 2014),
Outlier Exposure (OE) (Hendrycks et al., 2018), DROCC-LF (OE) (Goyal et al., 2020)
etc., only uses the relation between in-lier training data and the additional auxiliary data.
No information on the relation between the auxiliary data and the anomalous samples
in test set is encoded in the loss function. In essence, such approaches controls the
complexity of hypotheses class by constraining the space in which ‘normal’ samples can
lie. In contrast, Universum learning assumes different concept classes for Universum
versus both normal and anomalous (test) samples. This information is encoded through
the proof in Prop. 2. The Universum setting controls the complexity of hypotheses class
by constraining the space in which both ‘normal’ or ‘anomalous’ samples can lie.

In short,Universum learning adopts a different learning paradigm (seeDefinition 2) compared
to the ‘disjoint auxiliary data’ settings. Different from the existing ‘disjoint auxiliary’ based
loss functions in Dhar (2014), OE (Hendrycks et al., 2018), DROCC-LF (OE) (Goyal et al.,
2020) etc., the Universum samples (in Eq. (6)) implicitly contradicts the unseen anomalous
test samples. A more pedagogical explanation of the differences between these settings with
examples is provided in “Appendix C.1”. However similar as DA/OE settings, Universum
learning can compliment other advanced learning settings. To highlight this, we extend the
adversarial basedDROCC-LF algorithm under universum setting in algorithm 1 and compare
it’s performance against its OE based extension DROCC-LF(OE) (introduced in Goyal et al.
(2020)). Here, for DROCC-LF (univ) we replace the binary cross entropy loss used in Goyal
et al. (2020) with the universum loss in Eq. (6) (see step 3 in Algo. 1). We use the same
notations used in Goyal et al. (2020).

5 Empirical results

5.1 Standard benchmark on tabular datasets from Goyal et al. (2020)

First we provide the results on several tabular data used in Goyal et al. (2020). The datasets
used involves standard anomaly detection problems described below,

• Abalone used in Das et al. (2018): Here the task is to predict the age of abalone using
several physical measurements like, rings, sex, length, diameter, height, weight, etc. For
this problem class 3 and 21 are anomalies and class 8, 9 and 10 serve as normal samples.

• Arrhythmia used in Zong et al. (2018). Here the task is to identify the arrhythmic samples
using the ECG features. We follow the same data set preparation as Zong et al. (2018).

• Thyroid used in Zong et al. (2018). The goal is to predict if a patient is hypothyroid based
on his/her medical history.We follow the same data set preparation as Zong et al. (2018).
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Algorithm 1 DROCC-LF (univ)

Input: Training (normal) samples T = (xi , yi = +1)ni=1 and Universum samples U = (x∗
i ′ )

m
i ′=1.

Parameters: Radius r , λ ≥ 0, μ ≥ 0, step-size η, number of gradient steps mg , number of initial
training steps n0.

Initial steps: For B = 1, . . . n0
Batch of training (XT ) and universum (XU ) samples

θ = θ − ∇
( ∑
xi∈XB

LT ( f (xi )) + ∑

x∗
i ′ ∈XU

LU ( f (x∗
i ′ ))

)

DROCC steps: For B = n0, . . . n0 + N
XT : Batch of normal training inputs (y = +1)
∀x ∈ XT : h ∼ N (0, Id )

Adversarial search: For i = 1, . . .mg
1. LT (h) = LT ( f (x + h), −1)

2. h = h + η
∇h LT (h)

‖∇h LT (h)‖
3. h = Projection given by Prop.1 in Goyal et al. (2020)

�i tr = λ‖w‖2 + ∑
xi∈XB

LT ( f (xi )) + ∑

x∗
i ′ ∈XU

LU ( f (x∗
i ′ )) + μLT ( f (x + h), −1)

θ = θ − ∇�i tr

For all the above data we use the data set preparation codes provided in Goyal et al. (2020).
This code provides the data preprocessing and partitioning scheme as used in the previous
works. We follow the same experiment setup and network architecture as in Goyal et al.
(2020). We use the same baseline methods as used in Goyal et al. (2020), and also provide
the results of the recent approach PLAD (Cai & Fan, 2022) proposed to stabilize the DROCC
baseline.

Table 1 provides the results of DOC3 over 10 random partition of the data set. In each
partition, we create training/test data as used in Goyal et al. (2020). Note however, different
from Goyal et al. (2020), we scale the data in the range of [−1,+1]. In addition, here we
generate uniform noise in range [−1,+1] and use that as universum/contradiction samples.
As seen fromTable 1 theDOC3 outperforms all existing approaches (except adversarial based
DROCC (Goyal et al., 2020) and PLAD for the Thyroid data); and significantly improves
(> 5–15 %) upon the state-of-the-art results for the Arrhythmia and Abalone data. The
optimal model parameters used for the results are provided in “Appendix B.1” (Table 7) for
reproducibility. Note that, through out the paper we fix � = 0. For all our experiments we
see minimal improvements through tuning the � parameter. This is also discussed in our
ablation studies in “Appendix C.1.2”.

5.2 Standard image benchmark datasets

5.2.1 CIFAR-10

For our next set of experiments we use the standard image benchmark CIFAR-10 dataset
(Ruff et al., 2018; Goyal et al., 2020). The data consists of 32x32 colour images of 10
classes with 6000 images per class. The classes are mutually exclusive. The underlying task
involves one-vs-rest anomaly detection, where we build a one class classifier for each class
and evaluate it on the test data for all the 10-classes. Note that, this data does not have
any naturally occurring universum (contradiction) samples (following Def. 2). So, we use
synthetic universum samples by randomly generating the pixel values as ∼ N (μ, σ ), with
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Table 1 F1-score± standard deviation for one-vs-all anomaly detection on Thyroid, Arrhythmia, andAbalone
datasets

F1-Score
Method Thyroid Arrhythmia Abalone

OC-SVM (Schölkopf et al., 1999) 0.39 ± 0.01 0.46 ± 0.00 0.48 ± 0.00

DCN (Caron et al., 2018) 0.33 ± 0.03 0.38 ± 0.03 0.40 ± 0.01

E2E-AE (Zong et al., 2018) 0.13 ± 0.04 0.45 ± 0.03 0.33 ± 0.03

LOF (Breunig et al., 2000) 0.54 ± 0.01 0.51 ± 0.01 0.33 ± 0.01

DAGMM (Zong et al., 2018) 0.49 ± 0.04 0.49 ± 0.03 0.20 ± 0.03

DeepSVDD (Ruff et al., 2018) 0.73 ± 0.00 0.54 ± 0.01 0.62 ± 0.01

GOAD (Bergman Hoshen, 2020) 0.72 ± 0.01 0.51 ± 0.02 0.61 ± 0.02

DROCC (Goyal et al., 2020) 0.78 ± 0.03 0.69 ± 0.02 0.68 ± 0.02

PLAD (Cai & Fan, 2022) 0.76 ± 0.06 0.71 ± 0.01 –

DOC3 (ours) 0.74 ± 0.01 0.73 ± 0.01 0.77 ± 0.01

Fig. 2 Random noise Universum
(contradictions)

μ = 0, σ = 1; where N is the normal distribution (see Fig. 2). The idea of generating
synthetic universum (contradiction) samples has been previously studied for binary (Weston
et al., 2006; Cherkassky et al., 2011; Sinz et al., 2008), multiclass (Zhang & LeCun, 2017;
Dhar et al., 2019) and regression (Dhar & Cherkassky, 2017) problems. In this paper we use
such a similar mechanism for one class problems. Note that for the one-vs-rest AD problem,
the generated universum samples do not belong to either ‘+1’ (normal) or ‘-1’ (anomalous)
class used during testing (see Def. 2). The data is scaled in range [−1,+1].

For this set of experiments we adopt a LeNet like architecture used in Ruff et al. (2018),
Goyal et al. (2020). The detailed architecture specifics is provided in “Appendix B.1.1”.
Note that, this paper focuses on the design and analysis of the DOC3 loss (Eq. 6). Here rather
than adopting a state-of-the-art network architecture optimized for the specific dataset; we
adopt a systematic approach to isolate the effectiveness of the proposed loss by using a basic
LeNet architecture similar to Ruff et al. (2018), Goyal et al. (2020). This avoids secondary
generalization effects encoded in most advanced architectures. To that end, the approaches
in Ruff et al. (2018), Goyal et al. (2020) and DOC (Hinge in Eq. (3)) serve as the main
baselines. In addition, for a more thorough comparison we also provide the results for DOC
extended under disjoint auxiliary (DA) a.k.a. Outlier Exposure (OE) settings. For that we use
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the additional universum samples as belonging to the negative class following (Goyal et al.,
2020).

Table 2 provides the average ± standard deviation of the AUC under the ROC curve
over 10 runs of the experiment. Here, we report the results of the best performing DOC
(Hinge in (3)) model selected over the range of parameters λ = 1/2C = [1.0, 0.5] and
that for DOC3 over the range of parameters λ = 1/2C = [0.1, 0.05],CU/C = [1.0, 0.5].
We fix � = 0. A more detailed discussion on model selection and the selected model
parameters is provided in “Appendix B.3” for reproducibility. Note however, our results for
the DROCC algorithm is different from that reported in Goyal et al. (2020). Re-running the
codes provided in Goyal et al. (2020) did not yield similar results as reported in the paper
(especially for ‘Ship’). Moreover, their current implementation normalizes the data using
mean, μ = (0.4914, 0.4822, 0.4465) and standard deviation, σ = (0.247, 0.243, 0.261).
These values are calculated using the data from all the classes; which is not available during
training of a single class. To avoid such inconsistencies we rather normalize using mean,
μ = (0.5, 0.5, 0.5) and standard deviation, σ = (0.5, 0.5, 0.5). Such a scale does not need
apriori information of the other class’s pixel values and scales the data in a range of [−1,+1].
Detailed discussions on reproducing the results of the deep learning algorithms Deep-SVDD
(Ruff et al., 2018) and DROCC (Goyal et al., 2020) is provided in “Appendix C.2” (see
Tables 18, 19 and 20). As seen from Table 2, DOC3 (using the noise universum), provides
significant improvement ∼ 5–15% (and upto 30% for ‘Bird’), over its inductive counterpart
(DOC). In addition, the DOC3 in most cases outperforms the DOC (DA/OE). This illustrates
the advantage of extending Anomaly Detection problems following Def. 2 in accordance
with the Prop. 2.

Next, we show the effectiveness of extending the advanced adversarial based DROCC-LF
method under universum settings over the OE based setting used in Goyal et al. (2020). The
major difference is now the auxilliary data serves as universum samples and the loss function
follows. (6) (see Algo. 1). For the DROCC-LF (OE) we use the same implementation as in
Goyal et al. (2020). Additionally, we replace the relu operator [x]+ with the softplus operator
for the loss functions.

For our experiments, we adopt the same LeNet architecture used in Ruff et al. (2018),
Goyal et al. (2020) (see “Appendix B.1.1”, Fig. 4). Finally, we run the experiments over 10
runs and report the best AUC over the range of parameters recommended in Goyal et al.
(2020) (Sect. 5). That is learning rate = 10−4, radius (r ) in range of

√
d = {8.0, 16.0, 32.0}.

Here, for both the methods we use Adam and fix the number of ascent steps = 10 and batch
size = 256 and total epochs = 350. The remaining parameters are set to default values.

Table 2 provides the average ± standard deviation of the AUC under the ROC curve over
10 runs of the experiment. We also provide the results for the standard DROCC (without
any auxiliary data) (Goyal et al., 2020) and the more recent PLAD (an adversarial approach
introduced to improve DROCC) (Cai & Fan, 2022) as baselines. As seen from Table 2 the
DROCC-LF (univ) significantly outperforms the DROCC-LF (OE) method to upto - 30%
(‘dog’) for some cases. Further, DROCC-LF (univ) outperforms the baseline algorithms
for all cases except ‘Cat’. The final optimal parameters selected for the different classes is
provided in “Appendix B.3”.

5.2.2 Fashion-MNIST (F-MNIST)

For our next set of experiments we use another standard image benchmark dataset F-MNIST
(Xiao et al., 2017). The data consists of 28 × 28 gray images of Zalando’s fashion product
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database and consists of 10 classes (product lines) with 60,000 training and 10,000 test sam-
ples. The classes are mutually exclusive. The underlying task involves one-vs-rest anomaly
detection, where we build a one class classifier for each class and evaluate it on the test data
for all the 10-classes. As before, this data does not have any naturally occurring universum
(contradiction) samples (following Def. 2). So, we use synthetically generated universum
samples from∼ N (μ, σ ), with μ = 0, σ = 1; whereN is the normal distribution. The data
is scaled in range [−1,+1].

We adopt the same network and experiment set-up used in Cai and Fan (2022) (see Fig. 5
in “Appendix B.1.2”). As before, we provide the results for DOC and its extension under
disjoint auxiliary (DA)/Outlier Exposure (OE) settings. We also provide the baseline results
from Cai and Fan (2022). Table 3 provides the average ± standard deviation of the AUC
under the ROC curve over 10 runs of the experiment. A more detailed discussion on model
selection and the selected model parameters is provided in “Appendix B.4” (see Tables 12,
13 and 14) for reproducibility.

As seen from Table 3, DOC3 (using the noise universum), provides significant improve-
ment ∼ 5–20% over its inductive counterpart (DOC). In addition, the DOC3 in most
cases outperforms the DOC (DA/OE). This further consolidates the advantage of extend-
ing Anomaly Detection problems under universum settings.

We also illustrate the effectiveness of extending the advanced adversarial based DROCC-
LF method under universum settings over the OE based setting used in Goyal et al. (2020).
We provide the results for the DROCC algorithm as baseline. In addition, we also provide the
results of the recent PLAD (Cai&Fan, 2022) algorithmwhich adopts a generative adversarial
learning approach proposed to stabilize DROCC. Note however, the results reported are from
our re-run of the PLAD algorithm. We found several caveats with the code implementation
and report these discrepancies in “Appendix C.3”.

As seen from Table 3 the DROCC-LF (univ) outperforms the DROCC-LF (OE) method
and beats the baseline algorithms for all the classes. The final optimal parameters selected
for the different classes is provided in “Appendix B.4” (see Table 15).

5.3 Visual inspection using real-life MV-Tec AD data

For our final set of experiments we tackle the more realistic visual inspection based anomaly
detection problem in manufacturing lines. Lately with the recent advancements in deep
learning technologies, there has been an increased interest towards automatingmanufacturing
lines and adopting AI driven solutions providing automated visual inspection of product
defects (Bergmann et al., 2019; Huang & Pan, 2015). One popular benchmark data set used
for such problems is the MV-Tec AD data set (Bergmann et al., 2019).

5.3.1 Data set and experiment setup

The MV-Tec AD data set contains 5354 high-resolution color images of different industrial
object and texture categories. For each categories it contains normal (no defect) images used
for training. The test data contains both normal as well as anomalous (defective) product
images. The anomalies manifest themselves in the form of over 70 different types of defects
such as scratches, dents, contamination, and various other structural changes. The goal in
this paper is to build one class image-level classifiers for the texture categories (see Table
4). We use the original data scale of [0,1]. Further, to simplify the problem we resize all the
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Table 4 MVTec-AD dataset Textures Train Test
Normal Anomaly

Carpet 280 28 89

Leather 245 32 92

Tile 230 33 84

Wood 247 19 60

images to 64 × 64 pixel. Note that, for the current analysis we only use the texture classes
containing RGB images.

For this problem we have naturally occurring universum (contradiction) samples in the
form of the objects’ images or other texture types. That is, for the goal of building a one class
classifier for ‘carpet’, all the ‘other textures’ (leather, tile, wood) or the ‘objects’ (bottle, cable,
capsule, hazelnut, metal nut, pill, transistor) available in the dataset, can serve as universum
(contradiction) samples. This is inline with the problem setting in Def. 2, where such samples
are neither ‘normal’ nor ‘anomalous’ (defective) carpet samples. For our experiments, we
use three types of universum,

• Noise: Similar to previous experiments we generate random noise as universum samples.
Here, since the data is already scaled in the range of [0,1], we generate 64×64 dimension
images where the pixel values are obtained from a uniform distribution ∼ U(0, 1).

• Objects: This type of universum contains all the images in the object categories with
RGB pixels viz. bottle, cable, capsule, hazelnut, metal nut, pill, transistor. Note that, we
include both the normal as well as the defective samples for these objects.

• Other Textures: Here we use the remaining texture images as universum. That is, if the
goal is building a one class classifier for ‘carpet’ we use the images from the other
‘textures’ (leather, tile, wood) as universum. We include both the normal as well as the
defective samples in the universum set.

As before, we adopt a LeNet like architecture (schematic representation in Fig. 3, details in
“Appendix B.1.3”, Fig. 6). Note that, there have been a few recent works proposing advanced
architectures to achieve state-of-the-art performance on this data (Carrara et al., 2020; Huang
et al., 2019). However, the main focus here is to isolate the effectiveness of DOC3, and hence
we mainly compare against DOC and DOC(OE) baselines using a simple LeNet network.
Since our baselines DOC, DOC(OE) using LeNet have not been previously reported on this
data; as sanity check we also add the results in Massoli et al. (2020) for a good comparison
with different classes of algorithms. Also, we adopt a slight modification to our loss function.
Rather than using relu function [x]+ in Eq. (3), and (6) for the training samples; we use a
softplus operator. We see improved results using this modification. Note that, softplus is a
dominating surrogate loss over relu, and hence Theorem 1 still holds.

5.3.2 Performance comparison results

Table 5 provides the results over 10 runs of our experiments. We provide the the average
± standard deviation of the AUC values for DOC, DOC (DA/OE) and DOC3 algorithm. In
addition we also provide the best AUC obtained for each algorithm over these 10 runs. Addi-
tional details on model selection and the optimal hyperparameters is provided in “Appendix
B.5”. As seen in Table 5, the DOC3 algorithm provides significant improvement over DOC.

123



Machine Learning (2024) 113:5109–5150 5125

Ta
bl
e
5

A
U
C
fo
r
M
V
Te
c-
A
D
(T
ex
tu
re
)
da
ta

T
ex

tu
re

s
A
E
† L
2

G
eo

T
ra
ns

†
G
A
N
om

al
y

†
IT
A
E
†

E
G
B
A
D
†

C
B
iG
A
N
†

D
O
C

D
O
C

(O
E
)

D
O
C

(O
E
)

D
O
C

(O
E
)

D
O
C
3

D
O
C
3

D
O
C
3

E
q.
(3
)

(n
oi
se
)

(o
bj
ec
ts
)

(t
ex
tu
re
s)

(n
oi
se
)

(o
bj
ec
ts
)

(t
ex
tu
re
s)

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

A
vg
.±

st
d

A
vg
.±

st
d

A
vg
.±

st
d

A
vg
.±

st
d

A
vg
.±

st
d

A
vg
.±

st
d

A
vg
.±

st
d

C
ar
pe
t

64
44

70
71

52
55

81
.1

81
.1

±
0.
0

76
.2

56
.5

±
10

.1
89

.6
82

.1
±
4.
2

54
.9

49
.2

±
4.
9

95
.7

80
.4

±
8.
4

93
.8

87
.5

±
3.
8

81
.1

81
.1

±
0.
0

L
ea
th
er

80
84

84
86

55
83

63
.1

62
.7

±
0.
3

65
.7

64
.8

±
0.
8

95
.5

89
.6

±5
.1

40
.1

39
.8

±
0.
2

88
.1

82
.9

±
4.
5

93
.5

83
.1

±
7.
5

63
.1

62
.4

±
0.
5

T
ile

74
42

79
74

79
91

62
.8

62
.3

±
0.
7

65
.9

64
.9

±
0.
7

75
.7

74
.0

±
1.
4

67
.7

65
.3

±
0.
9

66
.3

64
.7

±
0.
6

77
.0

76
.5

±0
.5

65
.1

64
.4

±
0.
5

W
oo
d

97
61

83
92

91
95

41
.1

40
.6

±
0.
1

90
.2

82
.8

±
5.
6

77
.2

70
.9

±
6.
7

52
.6

50
.5

±
1.
5

93
.1

83
.4

±
7.
0

75
.3

69
.0

±
5.
8

49
.4

49
±

0.
4

†
R
es
ul
ts
ta
ke
n
fr
om

M
as
so
li
et
al
.(
20
20

).
B
ol
d
=
be
st
ov
er
al
lm

od
el
.U

nd
er
lin

e
=
be
st
un
iv
er
su
m

or
O
E
m
od
el

123



5126 Machine Learning (2024) 113:5109–5150

Fig. 3 Schematic representation of the Network used for MVTec-AD results in Table 5

Depending on the type of universum typical improvements range upto > 50%. In addition,
DOC3 provides consistent improvements over the DOC (DA/OE) algorithm. In all, these
results further consolidate the utility of DOC3 under the universum setting (Def 2). Sepa-
rately, Table 5 also provides the baseline results available in Massoli et al. (2020). Note that,
these results are obtained using advanced network architectures adopted for the MVTec data,
and are not averaged over multiple runs. Hence, we compare these results with the best AUC
obtained for DOC, DOC (DA/OE) and DOC3 over 10 runs. As seen from Table 5, DOC3

improves upon the ‘carpet’ and ‘leather’ results using the ‘objects’ universum. Further, it
achieves comparable performance for the ‘Wood’ and ‘Tile’ texture using ‘Noise’ and ‘Obj.’
universum respectively. Achieving improved performance over the baseline algorithms, even
using a basic LeNet architecture sheds a very positive note for the proposed DOC3 algorithm.

5.3.3 Understanding DOC3 performance using Theorem (2)

For our final set of experiments we try to understand the working of the DOC3 algorithm in
connection with the correlation �(∞) (in Theorem 2). Table 6 reports the correlation values
for the training and universum samples using ‘RAW’ pixel, ‘DOC’ and DOC3 solution’s
feature maps. For the feature map we use the CNN features shown in Fig. 3. Also, the
DOC3 solutions represent the estimated model using the training data (in column 1) and the
respective universum data (in column 2). As seen from the results, the DOC solution provides
high correlation �(∞) between the training and universum samples. In essence, the DOC
solution sees the training and universum samples similarly. This is not desirable, as the
universum samples follow a different distribution than training samples. On the contrary, the
DOC3 provides a solution where the correlation between the training and universum samples
are significantly reduced. This is inline with the Theorem 2’s analysis (Sect. 3.2), where
we argued that the DOC3 searches for a solution with low �(∞) between the training and
universum samples (in feature space). And by doing so ensures lower ERC and improved
generalization compared to DOC (confirmed empirically in Table 5). Another interesting
point seen for the ‘other texture’ universum type, with originally high raw pixel correlation
values (∼ 0.9) is that; using DOC3 provides limited improvement. Such universum types are
too similar to the training data, and act as ‘bad’ contradictions.

6 Future research

Broadly there are two major future research directions,
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Table 6 Average ± standard deviation of correlation �(∞) between training and universum over 10 runs

Train Data Univ. Data Raw DOC Feat. map DOC3 Feat. map

Carpet Noise 73.8 99.9 ± 0.0 17.5 ± 3.8

Obj 73.8 97.1 ± 0.1 28.8 ± 3.4

Text 92.4 99.9 ± 0.0 68.7 ± 0.0

Leather Noise 70.1 99.3 ± 0.1 42.1 ± 1.9

Obj 70.7 91.9 ± 0.3 23.5 ± 4.3

Text 93.6 99.3 ± 0.1 97.0 ± 1.7

Tile Noise 71.2 99.8 ± 0.0 54.2 ± 1.0

Obj 71.5 92.8 ± 0.8 31.3 ± 8.8

Text 89.9 99.6 ± 0.0 89.3 ± 2.2

Wood Noise 69.5 99.8 ± 0.0 39.8 ± 5.8

Obj 69.8 93.5 ± 0.2 41.9 ± 7.1

Text 91.7 99.7 ± 0.0 64.4 ± 2.1

Values scaled ×102

Model selection This is a generic issue for any (unsupervised) one class based anomaly
detection formulation, and is further complicated by the non-convex loss landscape for deep
learning problems. For DOC3 we simplify model selection by fixing � = 0, and optimally
tuning CU . However, the success of DOC3 heavily depends on carefully tuning of its hyper-
parameters. In the absence of any validation set containing both ‘normal’ and ‘anomalous’
samples, we follow the current norm of reporting the best model’s results over a small subset
of hyperparameters. But this is far from practical. We believe, our Theorem 1 provides a good
framework for bound based model selection. This in conjunction with Theorem 2 and the
recent works on ERC for deep architectures (Neyshabur et al., 2015; Sokolic et al., 2016),
may provide better mechanisms for model selection and yield optimal models.
Selecting ‘good’ universum samples The effectiveness of DOC3 also depends on the type of
universum used. Our analysis in Sect. 5.3.3 provides some initial insights into the workings of
DOC3, and how to loosely identify ‘bad’ contradictions. Additional analysis, possibly inline
with the Histogram of Projections (HOP) technique introduced in Cherkassky et al. (2011),
Dhar et al. (2019), is needed to improve our understanding of ‘good’ universum samples.
This is an open research problem.

7 Conclusions

This paper introduces the notion of learning from contradictions for deep one class classifica-
tion and introduces the DOC3 algorithm. DOC3 is shown to provide improved generalization
over DOC, its inductive counterpart, by deriving the Empirical Rademacher Complexity
(ERC). We empirically show the effectiveness of the proposed formulation, and connect
the results to our theoretical analysis. Finally, we also discuss the limitations and the future
research directions.
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Appendix A Proofs

A.1 Proof of Proposition 1

Part 1 A slightly different version of this proposition is analyzed in Proposition 8.2 of
Scholkopf et al. (2002) and Chang and Lin (2001). Here, we provide a different version
of the connection between the solutions of (3) and (2). This is achieved through analyzing
the KKT systems of the formulations. We start with the formulation (3). Note that, (3) is the
same as solving,

min
w

1

2
||w||2 + C

n∑

i=1

ξi

s.t. w	φ(xi ) ≥ 1 − ξi ; ξi ≥ 0 (A1)

The Lagrangian is given as,
L(w, ξ, α, β) = 1

2 ||w||2 + C
∑n

i=1 ξi − ∑n
i=1 βiξi − ∑n

i=1 αi [w	φ(xi ) − 1 + ξi ]
KKT System

∇wL = 0 ⇒ w =
n∑

i=1

αiφ(xi ) (A2)

∇ξL = 0 ⇒ C = αi + βi (A3)

Complimentary Slackness,

αi [w	φ(xi ) − 1 + ξi ] = 0 (A4)

βiξi = 0 (A5)

Constraints,

w	φ(xi ) ≥ 1 − ξi (A6)
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ξi ≥ 0 (A7)

Define δ = 1∑
i αi

and re-write the equations (A2)–(A7) by scaling with δ > 0 as, ŵ =
wδ; α̂i = αiδ; β̂i = βiδ; ξ̂i = ξiδ. (δ > 0;∵ ∃i s.t.αi > 0 and ∀i, αi ≥ 0)
This gives, Transformed KKT System

ŵ =
n∑

i=1

α̂iφ(xi ) (A8)

Cδ = α̂i + β̂i (A9)

Complimentary Slackness,

α̂i [ŵ	φ(xi ) − δ + ξ̂i ] = 0 (A10)

β̂i ξ̂i = 0 (A11)

Constraints,

ŵ	φ(xi ) ≥ δ − ξ̂i ; ξ̂i ≥ 0 (A12)

Note that, the transformedKKTsystem (A8)–(A12) solves (2)with ν = 1
Cnδ

; ρ = δ (compare
with the KKT of (2)).
Part 2 For the solution to (2) obtained from Proposition 1 (i) the decision rule can be given
as,

ŵ	φ(x) − ρ = 0 ⇒ (wδ)	φ(x) − δ = 0

⇒ w	φ(x) − 1 = 0 (∵ δ > 0)

��

A.2 Proof of Proposition 2

Note that for this proof we need to accommodate a case where a sample may not belong to
either of the two classes {−1,+1}. For this we rather analyze a different decision rule than
(3).
Define,

g(x) =
{+1; if w	φ(xi ) > 1

−1; if w	φ(xi ) < 1

This gives,

g(x) = +1 ⇒ h(x) = +1 and g(x) = −1 ⇒ h(x) = −1

⇒ PDU (h(x∗) = y) ≥ PDU (g(x∗) = y) ∀y = {−1,+1}
Since the events are mutually exclusive we have,

EDU

⎛

⎝
⋃

y∈{−1,+1}
1[h(x∗) = y]

⎞

⎠ ≥ EDU

⎛

⎝
⋃

y∈{−1,+1}
1[g(x∗) = y]

⎞

⎠

⇒ inf
h

EDU

⎛

⎝
⋃

y∈{−1,+1}
1[h(x∗) = y]

⎞

⎠ ≥ inf
g

EDU

⎛

⎝
⋃

y∈{−1,+1}
1[g(x∗) = y]

⎞

⎠
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⇒ 1 − inf
h

EDU

⎛

⎝
⋃

y∈{−1,+1}
1[h(x∗) = y]

⎞

⎠ ≤ 1 − inf
g

EDU

⎛

⎝
⋃

y∈{−1,+1}
1[g(x∗) = y]

⎞

⎠

⇒ sup
h

EDU

⎛

⎝
⋂

y∈{−1,+1}
1[h(x∗) �= y]

⎞

⎠ (De-Morgan’s law)

≤ sup
g

EDU

⎛

⎝
⋂

y∈{−1,+1}
1[g(x∗) �= y]

⎞

⎠

= sup
g

EDU
(
1[g(x∗) �= +1] ∧ 1[g(x∗) �= −1])

= sup
g

EDU

(
1[w	φ(x) − 1 ≯ 0] ∧ 1[w	φ(x) − 1 ≮ 0]

)

The maximum can be achieved when w	φ(x) − 1 = 0 ��

A.3 Proof of Theorem 1

Define, R f ,θ = {x : f (x) ≥ θ}. This gives,

PDT |Y=+1{x /∈ R f ,1−κ } = EDT |Y=+1 [H( f (x), 1 − κ)] (A13)

where, H(x, θ) =
{
0; if x ≥ θ

1; else
. For the rest of the proof we drop the subscripts as it is

clear from context. To bound the R.H.S of (A13) we follow a similar approach of bounding
a dominating function see Theorem 4.17 in Shawe-Taylor et al. (2004). Here we define,

A(x) =
⎧
⎨

⎩

0; if x > 1
1−x
κ

; if 1 − κ ≤ x ≤ 1
1; if x < 1 − κ

Note that, A(x) is 1
κ
− Lipchitz. Further, H( f (x), 1 − κ) ≤ A( f (x)). This gives,

E[H( f (x), 1 − κ) − 1] ≤ E[A( f (x)) − 1]. Hence with probability 1 − η,∀ f ∈ F the
following holds (see Theorem 4.9 in Shawe-Taylor et al. (2004)); where Ê = the empirical
estimate for the expectation operator.

E[H( f (x), 1 − κ) − 1] ≤ Ê[A( f (x)) − 1] + R̂n((A − 1) ◦ F) + 3

√
ln 2

η

2n

From Th. 4.15 (Shawe-Taylor et al., 2004)

⇒ E[H( f (x), 1 − κ)] ≤

n∑
i=1

ξi

κn
+ 2

κ
R̂n(F) + 3

√
ln 2

η

2n

where, ξi = [1 − f (xi )]+. Using (A13), we get the final form of Theorem (1). ��
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A.4 Proof of Theorem 2

Part 1: It is clear thatFuniv ⊆ Find. This ensures R̂n(Funiv) ≤ R̂n(Find) (following Theorem
4.15 (i) in Shawe-Taylor et al. (2004). ��
Part 2(a): This follows from standard analysis (see Theorem 4.12 (Shawe-Taylor et al., 2004)
or Lemma 22 in Bartlett and Mendelson (2002)).

R̂n(Find) = Eσ [ sup
f ∈F

|2
n

n∑

i=1

σi f (xi )|
∣∣∣(xi )ni=1]

= Eσ [ sup
||w||2≤�2

|2
n

n∑

i=1

σi f (xi )|
∣∣∣(xi )ni=1]

= Eσ

[
sup

||w||2≤�2
|2
n
w	(

n∑

i=1

σiφ(xi )
)|
∣∣∣(xi )ni=1

]

≤ Eσ

[
sup

||w||2≤�2

2||w||
n

||(
n∑

i=1

σiφ(xi )
)||

∣∣∣(xi )ni=1

]

≤ 2�

n
Eσ

[||
n∑

i=1

σiφ(xi )||
∣∣∣(xi )ni=1

]

≤ 2�

n
Eσ

[||
n∑

i=1

σiφ(xi )||2
∣∣∣(xi )ni=1

] 1
2 (Jensen’s inequality)

≤ 2�

n
Eσ

[ n∑

i, j=1

σiσ jφ(xi )φ(x j )
∣∣(xi )ni=1

] 1
2

= 2�

n

[ n∑

i=1

||φ(xi )||2
] 1
2

��
Part 2(b): Define

Wuniv = {w∣∣||w||2 ≤ �2; |w	φ(x∗) − 1| ≤ �; ∀x∗ ∈ X ∗
U }

⊆ {w∣∣ ||w||2 ≤ �2; |w	u j − 1| ≤ �;
∀u j = φ(x∗

j ) ; ∀ x∗
j ∈ X ∗

U ; j = 1 . . .m} (A14)

∵ the constraint on all x∗ ∈ X ∗
U ⇒ constraint on m− samples. Now, let’s analyze the

constraint |w	u j − 1| ≤ �. This implies, w	u j − 1 ≤ �; 1 − w	u j ≤ � (simultane-
ously). However, only one of the constraint is active. Hence, we re-write the constraint as,

∀ j ;
[

w	u j

w	(−u j )

]
≤

[
� + 1
� − 1

]
.
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Next define a mapping where we concatenate the reflected space. i.e. ψ : φ(x∗) →

[
φ(x∗)	

−φ(x∗)	
]
and rewrite V = ψ

(
[φ(x∗

j )]mj=1

)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(x∗
1)

	
φ(x∗

2)
	

...

φ(x∗
m)	

−φ(x∗
1)

	
−φ(x∗

2)
	

...

−φ(x∗
m)	

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. This can be compactly

re-written as, V =
[
1

−1

]
⊗

⎡

⎢⎣
(u1)T

...

(um)T

⎤

⎥⎦. This results to the overall constraint in (A14) to be,

Wuniv ⊆ {w∣∣||w||2 ≤ �2 ; [Vw] j ≤ ε j ; j = 1 . . . 2m}

where, ε =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� + 1

...

� + 1

⎫
⎪⎪⎬

⎪⎪⎭ m
-t
im

es

� − 1

...

� − 1

⎫
⎪⎪⎬

⎪⎪⎭ m
-t
im

es

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In essence for each constraint in (A14) we create 2× the constraints for both the original and
reflected space to take care of the absolute value.
Now,

Wuniv ⊆ {w∣∣||w||2 ≤ �2; [Vw] j ≤ ε j ∀ j = 1 . . . 2m}
⊆ {w∣∣||w||2 ≤ �2; (w	V	Vw) ≤ 2m[�2 + 1]} (A15)

The last line follows as the element-wise constraint is relaxed by || · ||22 constraint.
Next, from (A15) and assuming a fixed mapping φ(·), for the given training data Z =⎡

⎢⎣
(z1)	

...

(zn)	

⎤

⎥⎦ =
⎡

⎢⎣
φ(x1)	

...

φ(xn)	

⎤

⎥⎦ we have,

R̂(Funiv)

(a)= 2

n
Eσ

[
sup

w∈Wuniv

σ	(Zw)
]

≤ 2

n
Eσ

[
sup

||w||2 ≤ �2

(w	V	Vw) ≤ 2m[�2 + 1]

σ	(Zw)
]

(from (A15))

Hence ∀γ ≥ 0 and � = �2 + 2γm(�2 + 1) we have,

(b)≤ 2

n
Eσ

[
sup

||w||2+γ (w	V	Vw)≤�

σ	(Zw)
]
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= 2

n
Eσ

[
sup

w	
(
I+γ V	V

�

)
w≤1

σ	(Zw)
]

(c)= 2

n
Eσ

[
||( I + γ V	V

�

)− 1
2 Z	σ ||

]

≤ 2

n

[
Eσ

[||( I + γ V	V
�

)− 1
2 Z	σ ||]2

] 1
2
(Jensen’s inequality) (A16)

(d)= 2

n

[
tr
[
Z
( I + γ V	V

�

)−1
Z	]]

1
2

(tr := Trace)

= 2

n

[
�2 + 2γm(�2 + 1)

] 1
2
[
tr
[
Z
(
I + γ V	V

)−1
Z	]]

1
2

(e)= (2
n

)
(�2 + 2γm(�2 + 1))

1
2

[
tr(Z	Z)

− γ tr [ZV	(I + γ VV	)−1V Z	]
] 1
2

(∀γ ≥ 0)

= 2�

n

√√√√||
n∑

i=1

φ(xi )||2
[(
1 + 2γm(�2 + 1)

�2

)

[
1 − γ tr [(I + γ VV	)−1(V Z	ZV	)]

tr(Z	Z)

]] 1
2

⇒ R̂(Funiv)
( f )≤ 2�

n

√√√√||
n∑

i=1

φ(xi )||2
[(
1 + 2γm(�2 + 1)

�2

)

[
1 − γ tr(V Z	ZV	)

tr(I + γ VV	) tr(Z	Z)

]] 1
2

The (in)-equalities follow,

a. from symmetry w ∈ WUSV M ⇒ −w ∈ WUSV M . Hence we drop the absolute term from
definition. Also for simplicity we drop the conditional term. This is clear from context.

b. since the conditions
||w||2 ≤ �2

(w	V	Vw) ≤ 2m[�2 + 1] ⇒ ||w||2+γ (w	V	Vw) ≤ � ∀γ ≥
0.

c. stationary point of the constraint. A similar approach was previously used in Rosenberg
and Bartlett (2007).

d. since (Rademacher variables) are drawn uniformly over σ ∼ {−1,+1}; we cancel the
cross-terms σiσ j under expectation Eσ .

e. using Sherman-Morrison-Woodbury formula.
f. from the matrix inequality II in Patel and Toda (1979).

��
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Fig. 4 Network used for CIFAR10 results in Table 2

Fig. 5 Network used for FMNIST results in Table 2

Appendix B Reproducibility

B.1 Network architectures

B.1.1 LeNet architecture for CIFAR-10 experiments

For CIFAR-10 we use the same architecture (Fig. 4) as used in Goyal et al. (2020).

B.1.2 LeNet architecture for FMNIST experiments

For FMNIST we use the same architecture as described in Cai and Fan (2022), see Fig.
5. Note however, there are discrepancies between the official code https://openreview.net/
forum?id=-Xdts90bWZ3 and the description in the paper. We adopt the description in paper;
as the implementation is inconsistent with general deep learning theory. For additional details
on these issues please see “Appendix C.3”.

B.1.3 LeNet architecture for MVTec experiments

For MVTec-AD there have been a few recent works proposing advanced architectures to
achieve state-of-the-art performance on this data (Carrara et al., 2020; Huang et al., 2019).
However, the main goal of our experiment is to illustrate the effectiveness of universum over
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Fig. 6 Network used for MVTec-AD results in Table 5

inductive learning for one class problems. Hence, we stick to a simple LeNet architecture
shown in Fig. 6.

Finally, for both the above architectures we use bias = False for convolution operations and
set ε = 10−4, Affine = False for BatchNorm. Additionally, we use a leaky ReLU activation
after every max-pool operation.

B.2 Model parameters for Table 1

The optimal model parameters for the tabular datasets is provided in Table 7.

Table 7 Optimal model parameters for the tabular data sets

Class λ Learning rate CU /C Epoch Batch size

Thyroid 10−6 10−3 5.0 500 100

Arrhythmia 0.01 10−3 0.001 300 100

Abalone 0.1 10−3 0.01 300 100

B.3 Model parameters for Table 2 (CIFAR-10)

B.3.1 DOC and DOC3 model parameters used in Table 2

There are several hyper-parameters to be tuned for DOC and DOC3. To simplify our
analysis we fix a few of these parameters following prior research.

• Unlike previous works like (Ruff et al., 2018; Goyal et al., 2020), we uniformly use
an SGD optimizer with batch_size = 256. Although, training for each class represent a
completely different problem, we adopt this to maintain consistency and isolate out the
effect of optimizers for DOC versus DOC3 performances.
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Table 8 Optimal model
parameters for CIFAR-10 results
for DOC

Class λ SGD (Learning rate)

Airplane 0.5 0.005

Automobile 1.0 0.001

Bird 0.5 0.005

Cat 1.0 0.001

Deer 1.0 0.001

Dog 0.5 0.001

Frog 0.5 0.001

Horse 1.0 0.001

Ship 0.5 0.001

Truck 0.001 0.001

Table 9 Optimal model
parameters for CIFAR-10 results
for DOC3

Class λ SGD (Learning rate) CU /C

Airplane 0.1 0.005 0.5

Automobile 0.05 0.0005 0.1

Bird 0.05 0.005 0.5

Cat 0.1 0.005 1.0

Deer 0.1 0.001 1.0

Dog 0.05 0.001 1.0

Frog 0.1 0.005 0.5

Horse 0.05 0.0005 1.0

Ship 0.05 0.005 0.1

Truck 0.05 0.0001 0.05

• For DOC we fix the total number of iterations for gradient updates to 300. Except for
class ‘DOG’ and ‘Truck’ we use 400 and 50 respectively. For DOC3 we fix it to 350.
This is in the same range as Ruff et al. (2018), and hence incurs similar computation
complexity as the baseline DOCC and DROCC algorithms.

• Finally for DOC3 we fix � = 0.

With the above hyper parameters fixed our best selected remaining hyper parameters for
DOC and DOC3 are provided in Tables 8 and 9 respectively.

B.3.2 DOC (DA/OE) model parameters in Table 2

Next, we provide the optimal model parameters for the DOC (DA/OE) setting in Table 10.
For the DOC (DA/OE) following Goyal et al. (2020) we introduce the universum samples as
negative class in a standard binary hinge loss. The explicit form of this loss is also discussed
in “Appendix C.1.1” in Eq. (C1). Here we set C+ = C− = 1.

B.3.3 Model parameters for DROCC-LF under OE versus Universum setting

For the DROCC-LF (OE) we use the same implementation as in Goyal et al. (2020). For the
DROCC-LF under universum setting we replace the binary cross entropy loss used in Goyal
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Table 10 DOC (DA/OE)
parameters CIFAR-10 CIFAR-10 (Class) λ = 1

2C SGD learning rate

Airplane 1.0 5 × 10−3

Automobile 0.01 5 × 10−4

Bird 0.5 5 × 10−4

Cat 1.0 10−4

Deer 1.0 10−4

Dog 0.5 10−3

Frog 0.5 5 × 10−3

Horse 0.01 10−3

Ship 1.0 10−3

Truck 0.01 10−4

Table 11 DROCC (OE) and
DROCC (Univ) optimal (radius)
parameters used in Table 2

CIFAR-10 (Class) DROCC-LF (OE) DROCC-LF (Univ)

Airplane 8 8

Automobile 32 8

Bird 16 8

Cat 16 16

Deer 16 16

Dog 16 8

Frog 32 32

Horse 16 32

Ship 8 8

Truck 8 8

et al. (2020) with the universum loss in (6) (see Algo. 1). Here we use the same notations as
also used in Goyal et al. (2020). Further, as in Sect. 5.3.1 we replace the relu operator [x]+
with the softplus operator for the loss functions.

We adopt the same LeNet architecture used in Ruff et al. (2018), Goyal et al. (2020) (see
Fig. 4). Finally, we run the experiments over 10 runs and report the best AUC over the range
of parameters recommended in Goyal et al. (2020) (Sect. 5). That is learning rate = 10−4,
radius (r ) in range of

√
d = {8.0, 16.0, 32.0}. Here, for both the methods we use Adam and fix

the number of ascent steps = 10 and batch size = 256 and total epochs = 350. The remaining
parameters are set to default values. The final optimal parameters selected for the different
classes is provided in Table 11.
Caveat(s): We found a few caveats while running the DROCC-LF experiments. One major
caveat is that the gradient ascent steps are prone to instabilities. Note that the DROCC-LF
algorithm (Algo. 2 in Goyal et al. (2020)) scales the perturbation direction (h) by the norm
of the gradient vector. This results to severe gradient explosion. Appropriate measures to
alleviate this issue has to be taken. Another major caveat is that the additional gradient ascent
updates results to high computation complexity. For example, for the experiments presented
in this paper a typical DROCC-LF run (350 epoch) takes ∼ 104 secs compared to ∼ 103 sec
without the adversarial updates. The system configuration used here is,
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Table 12 Optimal model
parameters for F-MNIST results
for DOC

Class λ SGD (learning rate)

T-shirt 1 × 10−5 1 × 10−4

Trouser 2.0 1 × 10−4

Pullover 2.0 1 × 10−4

Dress 1.0 1 × 10−4

Coat 0.1 1 × 10−4

Sandal 0.1 0.001

Shirt 1.0 1 × 10−4

Sneaker 1 × 10−5 0.001

Bag 2.0 2.5 × 10−4

Ankle boot 0.001 1 × 10−4

Table 13 Optimal model
parameters for F-MNIST results
for DOC3

Class λ SGD (learning rate) CU /C

T-shirt 1 × 10−4 0.005 2.0

Trouser 1 × 10−5 0.005 2.0

Pullover 1 × 10−8 0.005 1.0

Dress 0.01 0.005 2.0

Coat 0.01 0.005 2.0

Sandal 1 × 10−4 0.001 1.0

Shirt 1 × 10−8 0.005 2.0

Sneaker 1 × 10−4 0.009 2.0

Bag 0.0 0.001 5.0

Ankle boot 0.01 0.005 2.0

• CPU = AMD Ryzen 9 5950X 16 Core.
• RAM = 32 GB.
• GPU = NVIDIA GeForce RTX 3080
• CUDA = 11.4

B.4 Model parameters for Table 3 (FMNIST)

B.4.1 DOC and DOC3 model parameters used in Table 3

The optimal model parameters for DOC, DOC3 and DOC(DA/OE) are provided in Tables
12, 13, 14 respectively.

B.4.2 Model parameters for DROCC-LF under OE versus Universum setting for F-MNIST
data

The optimal model parameters are provided in Table 15.

B.5 Model parameters for Table 5 (MVTec-AD)
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Table 14 DOC (DA/OE)
parameters F-MNIST F-MNIST (Class) λ = 1

2C SGD learning rate

T-shirt 0.001 1 × 10−4

Trouser 0.001 1 × 10−4

Pullover 1 × 10−5 0.001

Dress 0.1 1 × 10−4

Coat 1 × 10−9 0.001

Sandal 0.1 0.001

Shirt 1 × 10−9 1 × 10−4

Sneaker 0.001 1 × 10−4

Bag 0.1 1 × 10−4

Ankle boot 0.001 0.005

Table 15 DROCC-LF (OE) and DROCC-LF (Univ) optimal (radius) parameters used in Table 3

F-MNIST Radius λ CU
(Class) DROCC-LF

(OE)
DROCC-LF
(Univ)

DROCC-LF
(OE)

DROCC-LF
(Univ)

DROCC-LF
(Univ)

T-shirt 8 8 0.1 0.1 2.0

Trouser 2 24 1.0 0.1 1.0

Pullover 8 16 0.1 0.1 0.1

Dress 8 8 0.1 0.1 1.0

Coat 16 8 1.0 0.01 2.0

Sandal 2 8 1.0 1.0 0.1

Shirt 2 16 0.1 1.0 2.0

Sneaker 16 16 0.1 1.0 0.1

Bag 2 8 1.0 0.01 0.1

Ankle boot 2 24 0.1 0.1 2.0

Hereweprovide the optimalmodel parameters selected andused to reproduce theDOCand
DOC3 results in Tables 5 and 6. For this set of experiments we use the Adam optimizer with
batch_size = 100. Further, to simplify model selection we fix the total number of iterations
to 1000, and � = 0. The optimal model parameters for DOC and DOC3 is provided in Table
16. Finally we also provide the optimal hyperparameters for the DOC (DA/OE) algorithm in
Table 17.

Appendix C Additional experiments and results

C.1 Comparisons of disjoint auxiliary (or outlier exposure) versus Universum
settings

In this section we highlight the differences between the universum versus the ‘Disjoint Aux-
iliary data’ setting used in Dhar (2014) (see Sect. 4.3) and Hendrycks et al. (2018), Goyal
et al. (2020) etc. As discussed in the Sect. 4 a major difference is the assumption that the
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Table 16 Optimal model
parameters for MVTEC-AD
results

Method λ Adam (learning rate) CU /C

Leather

DOC 0.01 10−5 –

DOC3 Noise 0.01 10−5 0.01

Obj 0.01 10−5 0.1

Text 0.01 10−6 0.01

Wood

DOC 0.005 10−4 –

DOC3 Noise 0.005 5 × 10−6 1.0

Obj 0.005 10−5 1.0

Text 0.05 10−5 0.1

Tile

DOC 0.01 10−5 –

DOC3 Noise 0.1 5 × 10−6 0.1

Obj 0.005 10−4 2.0

Text 0.1 5 × 10−6 0.1

Carpet

DOC 1.0 5 × 10−4 –

DOC3 Noise 0.001 10−5 0.01

Obj 0.005 5 × 10−5 2.0

Text 1.0 10−3 10−5

Table 17 DOC (DA/OE) model
parameters for MVTEC results Normal Univ. Anomaly λ = 1

2C Learning rate

Leather Noise 0.001 10−6

Obj 0.01 10−5

Text 0.0001 10−5

Wood Noise 0.01 10−5

Obj 0.01 10−6

Text 0.01 10−6

Tile Noise 0.005 10−6

Obj 0.001 10−4

Text 0.1 10−6

Carpet Noise 0.001 10−6

Obj 0.01 10−5

Text 0.005 10−5
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Fig. 7 Decision boundaries for
one class SVM versus one class
U-SVM versus binary SVM.
Typical parameters, one class
SVM (C = 5), one class U-SVM
(CU = 10−3, � = 0), binary
SVM (C = 10). TP = True
Positive, TN = True Negatives

universum samples act as contradictions to the unseen anomalous class (see Definition (2)).
Methods using the ‘Disjoint Auxiliary’ setting do not use this assumption and formulate a
loss function which only contradicts the ‘normal’ class. Such approaches have also been
called ‘Supervised OE’ in Ruff et al. (2021) or ‘Limited Negatives’ in Goyal et al. (2020).
In this section we take a more pedagogical approach to highlight the differences between
Universum versus ‘Disjoint Auxiliary’ setting. For simplicity we use a binary classifier as
an exemplar of this ‘Disjoint Auxiliary’ setting. That is, we build a binary classifier with
‘+1’ (normal samples) and ‘−1’ (contradiction a.k.a universum) samples. Note that, such an
approach is philosophically inconsistent following Def. 2; where the universum samples are
assumed to not follow the same distribution as both the normal (‘+1’) and anomalous (‘-1’)
class. Using the universum samples as (‘-1’) class violates the assumption that universum
follows a different distribution than the anomalous class. To further confirm our theoretical
analysis we provide a simple synthetic example in example in C.1.1.

C.1.1 Synthetic experiment

For our synthetic example, we use synthetic data generated using normal distribution
N (μ, σ ). For illustration we use,

• Normal Class (+1): μ = (1.0, 1.0), σ = (0.25, 1.0).
• Anomaly Class (-1): μ = (0.25, 1.0), σ = (0.25, 1.0).
• Contradictions: μ = (0.75, 6.0), σ = (0.25, 1.0).

Additionally we use,
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• No. of Training samples (+1 class) = 10
• No. of Test samples (+1, -1) class = 1000 per class.
• No. of Universum samples = 1000.

Note, that in the above synthetic example the discriminative power is mostly contained in
the 1st dimension. Having ‘good’ universum samples can incorporate this additional infor-
mation by contradicting the 2nd dimension while estimating the decision rule. This is also
seen from Fig. 7. Figure7 provides the decision boundaries obtained under inductive (3) ver-
sus universum settings (6) using only linear parameterization. Under linear parameterization
the formulations reduces to standard SVM formulations so we refer them as one class SVM
and one class U-SVM respectively. Finally, we also provide the decision boundary using a
binary SVM, which serves as a representative for DA/OE-extension (Cherkassky & Mulier,
2007).

min
w

1

2
||w||22 + C

n∑

i=1

[
C+[1 − w	φ(xi )]+ + C−[1 + w	φ(xi )]+

]
(C1)

where, [x]+ = max(0, x). For the binary SVM we use the universum as (-1) class, and
adopt cost-sensitive formulation with a cost ratio C+

C− = #univ
#train = 1000

10 , to handle the class
imbalance.

As seen from Fig. 7, using binary formulation in this universum setting does not correctly
capture information available through the contradiction samples. That is, discriminating
between normal and contradiction samples does not provide a good classifier for normal
versus anomaly classification. The one class SVM although correctly classifies the positive
samples (TP = 100%); does not perform good on future test samples. Using the universum
samples, we can incorporate the additional information that the decision boundary should
align along the vertical axis to have maximal contradiction (following Prop. 2). And by doing
so, it improves the test performance over the one class SVM solution.

C.1.2 Ablation study hyperparameters

TheDOC3 algorithmmainly introduces two additional hyper-parametersCU and� compared
to its inductive counterpart. The success of such an advanced technique depends on careful
tuning of the hyperparameters. In this section we perform an ablation study of the CU

C and
the � hyperparameters. To simplify we present the results for the CIFAR-10 data. Analysis
using F-MNIST and MVTec-AD data provides similar conclusions.

Figures8 and 9 provides the average± std. deviation of theAUCvalues over 10 experiment
runs for varying CU

C —ratios and � values respectively. The experiment follows the same
setting as in Sect. 5.3.1. Further all the other model parameters are set to their optimal values
reported in Table 16. As seen from the figures, the model performance significantly varies
for different CU

C -values (specifically for automobile, deer, dog, frog etc.). On the contrary,
the DOC3 model performance seems relatively stable for varying � values (see Fig. 9). Such
behavior is also seen for the other datasets. In line with this analysis throughout the paper we
fix� = 0 and follow the current norm of reporting the bestmodel’s results over a small subset
of hyperparameters. But this is far from practical. This motivates advanced mechanisms for
optimal selection of this hyper parameter, which is still an open research topic. From our prior
experiments, we found CU/C in the range of [0.01, 2.0] provides reasonable performance
in practice.
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Fig. 8 Ablation study—AUC values for varying CU /C values

C.2 Re-run of deep-SVDD (Ruff et al., 2018) and DROCC (Goyal et al., 2020) CIFAR-10
Results

C.2.1 Deep one class classification deep-SVDD results

For the Deep-SVDD results we see very similar results for our run except the ‘Frog’ and
‘Dog’ classes (see Table 18 and 19); where the difference are not too significant. Hence, we
report the results as presented in the paper.
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Fig. 9 Ablation study—AUC values for varying � values

C.2.2 Deep robust one class classification (DROCC) results

In Table 20, we report the results of our run with two different scaling. For the ‘all-class’
scale we use the scale used in the original DROCC paper (Goyal et al., 2020) i.e. μ =
(0.4914, 0.4822, 0.4465) and standard deviation, σ = (0.247, 0.243, 0.261). Note that, this
scale is computed using the pixel values for all the classes. This in general is not available
during training a one class classifier. Alternatively, ‘no-prior’ scale also reports the results
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Table 18 Reproducing
Deep-SVDD results in Ruff et al.
(2018)

Deep-SVDD (our Run)
Class Ruff et al. (2018) ν = 0.1 ν = 0.01

Airplane 61.7 ± 4.1 61.0 ± 1.6 61.1 ± 1.4

Automobile 65.9 ± 2.1 60.4 ± 1.7 60.4 ± 1.7

Bird 50.8 ± 0.8 48.6 ± 0.6 48.6 ± 0.6

Cat 59.1 ± 1.4 57.7 ± 0.9 57.8 ± 1.0

Deer 60.9 ± 1.1 56.2 ± 0.7 56.3 ± 0.8

Dog 65.7 ± 2.5 63.4 ± 1.1 63.5 ± 1.3

Frog 67.7 ± 2.6 56.8 ± 1.8 56.9 ± 2.0

Horse 67.3 ± 0.9 59.9 ± 1.9 59.8 ± 1.9

Ship 75.9 ± 1.2 77.1 ± 1.0 76.9 ± 1.0

Truck 73.1 ± 1.2 66.9 ± 0.6 66.9 ± 0.7

Table 19 Reproducing Deep-SVDD (soft-boundary) results in Ruff et al. (2018)

Deep-SVDD soft-boundary (Our Run)
Class Ruff et al. (2018) ν = 0.1 ν = 0.01

Airplane 61.7 ± 4.1 61.9 ± 1.6 62.5 ± 1.9

Automobile 65.9 ± 2.1 61.6 ± 1.7 62.6 ± 2.0

Bird 50.8 ± 0.8 48.0 ± 0.9 45.9 ± 1.6

Cat 59.1 ± 1.4 56.6 ± 1.3 56.0 ± 1.8

Deer 60.9 ± 1.1 56.2 ± 0.8 56.1 ± 1.2

Dog 65.7 ± 2.5 61.9 ± 0.9 60.7 ± 1.7

Frog 67.7 ± 2.6 59.8 ± 1.8 61.0 ± 1.5

Horse 67.3 ± 0.9 61.5 ± 1.6 61.3 ± 1.5

Ship 75.9 ± 1.2 77.7 ± 0.9 76.7 ± 0.8

Truck 73.1 ± 1.2 67.5 ± 0.9 68.7 ± 1.4

using a scale using μ = (0.5, 0.5, 0.5) and standard deviation, σ = (0.5, 0.5, 0.5). This
scale does not need additional information from the other class’s pixel values. We do not see
a significant difference using these different scales. Although our re-runs show a significant
difference for the ‘ship’ class between our results and the paper. We report the results of our
re-run using the ‘no-prior’ scale in Table 2.

C.3 Re-run of PLAD (Cai & Fan, 2022) results on F-MNIST data

This section provides a detailed discussion of our re-run of the PLAD experiments on
FMNIST data. PLAD (Cai & Fan, 2022) is a recent adversarial based work which improves
upon DROCC (Goyal et al., 2020). We found several caveats and discrepancies in the PLAD
implementation https://openreview.net/forum?id=-Xdts90bWZ3. This is highlighted below,

1. The network architecture discussed in paper and the implementation are different. The
implementation does not use any non linearity (relu) operators for the final linear layers.
Without the non-linear operators a cascade of affine operations can simply be replaced

123

https://openreview.net/forum?id=-Xdts90bWZ3


5146 Machine Learning (2024) 113:5109–5150

Table 20 Reproducing DROCC results in Goyal et al. (2020)

Class Goyal et al. (2020) DROCC (all-class scale) DROCC (no-prior scale)

Airplane 81.66 ± 0.22 79.99 ± 1.65 79.24 ± 1.95

Automobile 76.73 ± 0.99 74.61 ± 2.57 74.92 ± 2.66

Bird 66.66 ± 0.96 69.56 ± 0.94 68.29 ± 1.53

Cat 67.13 ± 1.51 54.54 ± 3.71 62.25 ± 2.67

Deer 73.62 ± 2.00 65.85 ± 2.94 70.34 ± 2.68

Dog 74.43 ± 1.95 66.47 ± 3.16 66.18 ± 2.09

Frog 74.42 ± 0.92 70.64 ± 2.40 68.16 ± 2.12

Horse 71.39 ± 0.22 70.18 ± 2.42 71.33 ± 4.57

Ship 80.01 ± 1.69 63.58 ± 7.88 62.39 ± 10.33

Truck 76.21 ± 0.67 75.12 ± 1.92 76.58 ± 1.94

by a single affine operation. For our implementation we correct it and use non-linear relu
operators in-between the linear operations.

2. The classes are differently scaled. Class ‘T-shirt’ and ‘Trouser’ uses a generic mean =
[0.5], std = [0.5] scale, while the other classes are scaled to their respective mean and
std. Further, as previously discussed for DROCC re-runs a class specific normalization is
not practical for one-class problems as we cannot expect the knowledge of class labels
apriori during training or testing. Throughout our paper we use a generic mean = [0.5],
std = [0.5] scale.

3. Finally the results provided in Cai and Fan (2022) is the best AUC obtained during the
entire training process (and not at the final stopping criteria). While such an approach
may still be practical for supervised learning, where intermediate validation AUCs may
provide guidance to select the optimal model. It is impossible to select an intermediate
best model during the training process for one-class (unsupervised) learning problems.
For this work Table 3 provides the avg ± std. of the test AUCs obtained at the final step
of training. For interested readers Table 21 also provides the avg ± std. of the best test
AUCs obtained during the training process as used in Cai and Fan (2022).
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