
Vol.:(0123456789)

Machine Learning (2024) 113:5087–5108
https://doi.org/10.1007/s10994-023-06354-5

1 3

Fraud detection with natural language processing

Petros Boulieris1 · John Pavlopoulos1,2 · Alexandros Xenos1 · Vasilis Vassalos1

Received: 7 June 2022 / Revised: 30 April 2023 / Accepted: 16 May 2023 /
Published online: 19 July 2023
© The Author(s) 2023

Abstract
Automated fraud detection can assist organisations to safeguard user accounts, a task that
is very challenging due to the great sparsity of known fraud transactions. Many approaches
in the literature focus on credit card fraud and ignore the growing field of online banking.
However, there is a lack of publicly available data for both. The lack of publicly avail-
able data hinders the progress of the field and limits the investigation of potential solu-
tions. With this work, we: (a) introduce FraudNLP, the first anonymised, publicly avail-
able dataset for online fraud detection, (b) benchmark machine and deep learning methods
with multiple evaluation measures, (c) argue that online actions do follow rules similar to
natural language and hence can be approached successfully by natural language processing
methods.

Keywords Fraud detection · Natural language processing · E-banking · Feature
engineering · Varying class imbalance

1 Introduction

Fraud detection systems evaluate each transaction in order to identify fraudulent ones.
A bank employee can then assess the risk in accordance with their safety threshold and
choose a course of action (e.g. block or ask for additional information). With Internet
and mobile banking achieving widespread use and reaching several million transactions

Editors: Nuno Moniz, Nathalie Japkowicz, Michal Wozniak, Shuo Wang.

 * Petros Boulieris
 petrosboulieris@gmail.com

 John Pavlopoulos
 ioannis@dsv.su.se

 Alexandros Xenos
 a.xenos20@aueb.gr

 Vasilis Vassalos
 vassalos@aueb.gr

1 Department of Informatics, Athens University of Economics and Business, Athens, Greece
2 Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden

http://orcid.org/0000-0002-8531-103X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06354-5&domain=pdf

5088 Machine Learning (2024) 113:5087–5108

1 3

per day, it is impossible for a human to monitor and detect all cases. However, pre-
venting and detecting fraud in a timely manner is crucial to build and safeguard cus-
tomer confidence in those platforms, as well as to the bank in order to avoid charge-
backs. Hence, automated fraud detection can detect potentially illegitimate transactions
and become the last line of defense before an employee has to step in and rectify the
situation.

Traditional approaches to fraud detection are mostly rule-based (Panigrahi et al.
2009; Fawcett and Provost 1997) (binary features that immediately flag a transaction
e.g. IP location over X km away from the user’s registered address), which, while sim-
ple to implement, have intrinsic limitations. For instance, they cannot adapt to evolving
fraud patterns without human intervention and require domain experts to engineer and
update features. Fraud detection solutions that are based on machine (Lucas 2019; Patel
et al. 2019; Wang et al. 2017; Mehana 2020) and deep (Carminati et al. 2018; Achituve
et al. 2019) learning do not suffer from these drawbacks, however, they have only been
investigated on top of features that require heavy engineering to be extracted. For exam-
ple, in Baesens et al. (2021), the authors fit a von Mises distribution on the timestamps
of each user’s transactions to construct confidence intervals for the time periods that
transactions generally take place for each user.

In this paper we tackle fraud detection by focusing on online and mobile bank-
ing transactions. Following the mainstream suggested in related work, we initially
approached the task as imbalanced binary classification. Transactions were modelled as
stand-alone events, ignoring any user actions that precede them. Also, we undertook the
time-consuming, sophisticated, feature engineering that is required to extract commonly
adopted user-profiling features (Fawcett and Provost 1997). Compared to this baseline,
we extracted the online API calls (e.g., ‘/login/’, ‘/logout/’) made by each
user and recorded on the Bank’s server. For each user session that involved a transac-
tion, we concatenated all the API calls into one action sequence that ended with the
transaction (i.e., transfer or payment), and we labelled each sequence as fraudulent or
not according to the Bank’s decision regarding the respective ending transaction. Here,
we consider the chain of user actions (e.g., login, logout, balance check, recent his-
tory) that lead to a transaction of some type (e.g., generic transfer, rent or bill payment,
instant payments) and use the entire sequence (alongside other features) to evaluate the
transaction. Extracting sequences in this way allowed us to: (a) cast fraud detection as a
sequence classification problem that required minimum feature engineering, and (b) be
the first to share our dataset for public use.

Fraud detection is applicable in two settings, online and offline. The former regards real-
time detection, which is expected to function proactively, alarming an employee to step
in. This setting is better addressed by high-precision algorithms. The latter concerns the
evaluation of historical data, in order to detect possibly missed frauds. This setting is better
addressed by high-recall methods. In contrast to most published related work that disre-
gards this observation, we evaluate all our methods in both settings. Experimentation on
our dataset demonstrates that online actions present similarities with natural language and
that NLP-based features can leverage the performance of fraud classifiers, outperforming
existing methods while requiring minimal engineering and respecting privacy more.

Overall, our contributions are the following:

• We introduce FraudNLP, the first anonymised publicly available dataset for fraud
detection, which is based on actions of users preceding a transaction, consisting of
105,303 transactions, generated by 2,000 users.

5089Machine Learning (2024) 113:5087–5108

1 3

• We benchmark machine and deep learning algorithms on our dataset, by also assessing
online and offline detection, which are important but have been overlooked by prior
studies.

• We show that the use of privacy-safe NLP-based features leverages the performance of
machine learning and can outperform the state-of-the-art.

• By assessing our best-performing classifier on different class imbalance settings, we
show that the problem is much more challenging for higher imbalance, closer to the
true nature of the task.

The remainder of the article first discusses related work and then presents the new dataset.
Following, an empirical analysis and a discussion section are provided. A summary of our
findings concludes this study.

2 Related work

The vast majority of the fraud detection studies suggested in the literature disregard data
from e-banking and mainly focus on credit card fraud. Below we first present fraud detec-
tion studies with data coming from online actions, which is most related to our work, and
then from other types.

2.1 Online fraud

Michele Carminati et al. (2015) propose BankSealer, a system that uses a semi-supervised
approach to rank user transactions by suspiciousness. They mainly utilize anomaly detec-
tion methods to build user-specific behavioral profiles with respect to their transaction his-
tory, without using any sequential information. In another paper, Michele Carminati et al.
(2018) propose a framework called FraudBuster for detecting financial frauds that involve
stealing small amounts of funds over time. Their framework models the user’s spending
pattern over time and detects frauds as transactions that deviate from the learned model and
change the user’s spending profile.

Kovach and Ruggiero (2011) propose a system that creates a risk score by combin-
ing changes in behavior at the local (user) level and at the global level, among all users
in the bank. They, too, treat transactions as points in time with no action history leading
up to them and introduce contextual information by means of heavily engineered statisti-
cal features (differential analysis to quantify abnormality on the local level, probabilistic
model on the global level, and Dempster-Shafer theory to combine the two). Additionally,
they require users to download separately an application to facilitate device fingerprinting,
which makes this method more difficult to implement, especially if one wants to somewhat
respect privacy.

Deviating from prior work in the field that focuses on transaction sequences (Wang
2021; Forough and Momtazi 2022, 2021), we leverage the sequence of user actions (that
precede a transaction), in order to evaluate the legitimacy of a transaction. This formula-
tion allowed us to cast fraud detection as a sequence classification problem, which required
limited feature engineering. Our results show that the proposed feature engineering leads to
well-performing solutions, and even surpasses the state of the art when it is combined with

5090 Machine Learning (2024) 113:5087–5108

1 3

simple anomaly detection features. Our features are anonymous by nature, hence with this
work we release the first publicly available dataset for online fraud detection.

2.2 Other fraud sources

Related to our work are also other types of fraud, such as credit card fraud. Most of the
available published work regarding its detection uses transaction logs as input (Patel
et al. 2019; Forough and Momtazi 2021; Nguyen et al. 2020; Zhang et al. 2020; Rinku
et al. 2023; Zamini and Montazer 2018), which require heavy data engineering. The ben-
efits of employing data engineering were showcased in Baesens et al. (2021), where the
authors used the Recency, Frequency, Monetary (RFM) principle to extract features and
to effectively capture the spending behavior per customer. Their results showed a signifi-
cant improvement in classification performance, even for simpler classifiers like logistic
regression. The authors also demonstrated that the addition of features based on anomaly
detection techniques yielded improved results. We also employ anomaly features and we
outperform their approach in the same evaluation measure and imbalance settings.

Recently, the task of fraud detection was approached by Recurrent Neural Networks
which could extract information from the history of card transactions for each user (Branco
et al. 2020; Roy et al. 2018). Achituve et al. (2019) treat the history of recent transactions
of each user as a sequence. By using attention-based RNNs they get increased performance
and attention scores, which they use to provide interpretability to the response of their clas-
sifier. They encode the metadata of each transaction (day of week, hour of day, amount,
device identifier, etc.) to several variables and then begin to learn embedding vectors. The
transactions were batched in sequences, enabling historical information of variable width
to be used for each client. The results of Jurgovsky et al. (2018) show that LSTM improves
detection accuracy in offline transactions when compared to their baseline random for-
est classifier and that combining sequential and non-sequential learning methods could
lead to more effective detection of fraud. (Kunlin 2018) proposed a novel fraud detection
algorithm called FraudMemory, which used state-of-art feature representation methods to
better depict users and logs with multiple types in financial systems. The model innova-
tively captures the sequential patterns of each transaction and leverages memory networks
to improve performance. The incorporation of memory components in FraudMemory
enhanced its adaptability to concept drift in evolving environments.

In the field of sequence classification, a credit card fraud detection model was proposed
by Forough and Momtazi (2022) using deep neural networks and probabilistic graphical
models. The study compared their model with the baseline using real-world datasets and
found that considering hidden sequential dependencies among transactions and predicted
labels improved results. A novel undersampling algorithm was also introduced and dem-
onstrated promising results compared to other oversampling and undersampling methods.
Similar to this, and on the topic of behavioral modelling for fraud detection, Wang (2021);
Rodríguez et al. (2022) both come very close to us with respect to their philosophy and
feature set. Their work shows that unauthorized behavior is not always necessary for fraud
detection in online payment services. Their proposed solution is an account risk prediction
scheme that tries to predict fraud before it occurs by analyzing a user’s historical transac-
tion sequence.

In e-commerce fraud detection, although not in a banking context, a similar line of work
has been suggested by effectively treating user actions as events in time (Wang et al. 2017).
We also exploit the temporal nature of user actions, but we approach each transaction as a

5091Machine Learning (2024) 113:5087–5108

1 3

chain of smaller events leading to a payment, as opposed to a monolithic entity that con-
tains some metadata (e.g., RFM information). This approach allowed us to cast the prob-
lem of fraud detection as a sequence classification task.

3 The new dataset

The FraudNLP dataset presented with this study1 regards physical persons who interacted
with a bank in Europe through its internet and mobile banking platforms.2 Below, we dis-
cuss first the dataset development process. Then, we discuss the numerical features that
are often extracted in related work (Baesens et al. 2021; Wedge et al. 2019) and features
related to anomaly detection that have been shown to improve the detection performance
(Baesens et al. 2021). The sequential data introduced with this work are presented last.

3.1 The dataset development process

We examined transactions within the time frame between 1st of February and 31st of Octo-
ber 2020, which includes all recorded cases of fraud, along with many millions of legiti-
mate transactions. Out of all the transactions that were recorded during this period, 101
were certified by a bank employee as fraudulent. First, we selected 10,000 users that had no
fraudulent transactions during these nine months, chosen at random within the bank serv-
ers. Many users had not interacted with the bank services enough to provide us with mean-
ingful information on their spending habits, so their logs had to be removed. A cutoff of
at least 12 transactions was used to filter them, with the final dataset containing logs from
2,000 users. The logs of 97 users were then added, who were users that had at least one
transaction certified as fraudulent by a bank employee within this time frame. We note that
this process leads to an underestimation of the true fraction of the users with fraudulent
transactions because the 2,000 users that we used are only a small sample of the users with
no registered fraudulent activity within that time frame. The same scarcity applies at the
level of fraudulent transactions, where only 101 instances of fraud exist within the 105,303
transactions in total (0.096%). We also note, however, that not all fraudulent transactions
are captured by the bank and, while the confirmed fraud cases that we have can be consid-
ered perfectly accurate, unlabeled and unreported cases may be present in this dataset.

Due to the sensitive nature of the raw dataset, all sensitive information was stripped,
including usernames, IBAN numbers, names, and credit card information, and we had
to work with the fully anonymised version. This constraint was not present in the stud-
ied literature since fully personalized features that depend on the client (e.g. graph-based
approaches, account balance, detailed spending information, credit score) and spatiotempo-
ral information (e.g. timestamps, number of transactions in a given time frame, GPS data
of both transaction parties) as well as device characteristics were used. Comparatively, we
had access to a very limited subset of that information, which significantly increases the
difficulty of capturing illegitimate transactions. To make some use of the personal informa-
tion before deleting it, several features were engineered. These can be considered behav-
ioral features since they provide an approximation of a user’s typical spending habits but

1 Github repository: https:// github. com/ pboul ieris/ Fraud NLP.
2 The name of the bank is kept confidential to avoid compromising the identities of the clients.

https://github.com/pboulieris/FraudNLP

5092 Machine Learning (2024) 113:5087–5108

1 3

do not expose his identity directly, therefore they respect our privacy constraints. As will
be discussed next, the raw usage logs on the bank servers were then processed to form
sequences of actions leading to transactions (see Table 1).

3.1.1 Recency, frequency, monetary

The most common features extracted in fraud detection are numerical features, modeling
the user’s behavior based on the Recency, Frequency, Monetary (RFM) principle, as in
Baesens et al. (2021). Following their work, we implement features that adhere to it. Start-
ing from the oldest available transaction per user (i.e., 9 to 11 months in this dataset), an
expanding frequency table was created. This table, after a burn-in period of one month,
captures many of the persons and entities each client interacts with normally, including
one-time and recurring payments like rent, subscriptions, or mortgage payments. Further-
more, the logarithm of each transaction amount (in EUR) was extracted based on the cli-
ent’s request and the respective server response. These were standardised using the mean
and standard deviation of the amounts in the training set. Requests and responses also con-
tained beneficiary information, which was used to create the expanding relative frequency
tables for each beneficiary.

The same methodology was used to process device characteristics and operating sys-
tems, IP address, and application type (iOS or Android).

3.1.2 Unsupervised anomaly detection

Unsupervised anomaly detection features can increase performance in detecting fraudulent
transactions, through distance metrics (e.g. Z-Scores, Mahalanobis distance), statistical
laws, and anomaly scores (e.g., k-NN, LOF) (Baesens et al. 2021). In this work, we opted
for the Isolation Forest algorithm (Liu et al. 2009),3 which works by randomly selecting a
feature, then randomly selecting a split value between the maximum and minimum values
of the selected feature. This recursive partitioning can be represented by a tree structure,
and the number of splittings required to isolate a sample is equivalent to the path length
from the root node to the terminating node. This path length, when averaged over a forest
of trees, can be considered a measure of normality, and is also the output of the algorithm.

Table 1 Artificial examples of user actions, organised as sequences, that have been labelled as fraudulent or
not. The transaction amount (TA) in log(EUR), the elapsed time of the transaction (TT) in ms, and the time
elapsed between the actions (TBA) in ms are also shown

Actions TBA TT TA Fraud

[‘/login’, ..., /
transfer’]

[0, ..., 10] 200 80.0 Yes

[‘/login’, ..., /
loans/pay’]

[0, ..., 140] 202 120.5 No

3 We could not reproduce exactly the same features that were presented in Baesens et al. (2021), due to
issues with accessing sensitive information at a later stage of the project.

5093Machine Learning (2024) 113:5087–5108

1 3

A forest of 100 trees was fitted on the training subset, and its predicted anomaly scores
were extracted for each training observation.

Table 2 Features based on action
sequences (top), RFM (middle)
and anomaly detection

Feature Type Dimensions

User action sequence Integers 256
Time between actions (ms) Integers 256
Log of transaction amount Float 1
Time to execute transaction (ms) Float 1
Device frequency Float 1
IP address frequency Float 1
Application frequency Float 1
Beneficiary frequency Float 1
Isolation forest score Float 1

Fig. 1 Histograms of the mean (X) and st. deviation (Y) of the time of actions (in seconds), for fraudulent
(in orange) and non-fraudulent (in blue) transactions

5094 Machine Learning (2024) 113:5087–5108

1 3

3.1.3 From user actions to action sequences

Each row in the raw log files comprises information regarding the interaction between a
user and the bank servers, for example about one-time and recurring payments (e.g., rent or
mortgage payments). This information regards API calls, timestamps, the application type,
device characteristics, operating system specifications, IP address, client requests, and
server responses, etc. Following the data engineering carried out by Wang (2021), rows
were grouped by user ID, sorted by their timestamp, and segmented based on the transac-
tions; i.e., a sequence of user actions ends with a transaction in EUR. For some classifiers
(e.g. LSTM) each sequence was truncated or padded to a length of 256 actions for training.
If the sequence of actions was considered fraudulent activity by the Bank, we label this
sequence as fraudulent, otherwise is non-fraudulent. This processing essentially allows us
to cast the original fraud detection problem into a sequence classification task. The overall
list of features that were created is summarized in Table 2.4

Fig. 2 The most frequent actions in the dataset

Fig. 3 Histograms of the numerical feature frequency (X-axis) for fraudulent (orange) and non-fraudulent
(blue) transactions (Color figure online)

4 We note that the time between actions, although potentially useful, did not improve performance in pre-
liminary experiments and was not investigated further in this work.

5095Machine Learning (2024) 113:5087–5108

1 3

3.2 Exploratory analysis

As can be seen in Fig. 1, the fraudulent action sequences (in orange) are few and scattered
among the (blue) non-fraudulent ones, with regard to the time elapsed from action to action
within a single sequence. When focusing on the actions inside the sequences, we find that
the five most frequent actions (Fig. 2, lowermost) are also the most frequent per class. One
exception to this observation is ‘/loans/list’, which is the 6th most frequent in fraudulent
sequences while it is the 7th most frequent for the many more non-fraudulent ones. Also,
we note that ‘/card/fetchcards’ is much more frequent in fraudulent transactions (10th),
compared to non-fraudulent ones (21st).

Another interesting statistic is the distribution of each numeric feature by transaction
status (Fig. 3). It becomes evident that our features uncover the different behavior that we
expected fraudulent transactions to express. In the device frequency histogram, we note
two distinct areas where fraud occurs, the very high and very low-frequency zones. The
former can be attributed to device theft where the same device is used to commit fraud,
while the latter can be attributed to account takeover, where a new device is used. On the
other hand, in the IP address frequency histogram, there exists little difference in the dis-
tribution of legitimate and illicit transactions except for the medium and high-frequency
areas. It is likely that this is because both in account takeover and in device theft scenarios,
a new IP address is used, and thus we do not see the two distinct areas we see in the other
features.

Although the statistics of the sequences themselves did not reveal many interesting
patterns, more discrepancies are expected in action sub-sequences, given that fraudsters
may be using the same actions (i.e., not to draw attention), but in a different order (e.g., to
view the available cards). When exploring the frequency of action trigrams (i.e., sequences
of three consecutive actions), we report that the most frequent instance is often different
between the two classes, when we take equally sized non-fraudulent samples. By repeating
this sampling one thousand times, we report that this is a statistically significant finding
(P-value = 0.02).

4 Empirical analysis

In all our experiments we used a train/development/test stratified split of 60/20/20 percent,
respectively, and performed Monte Carlo 5-fold Cross-Validation. We trained and assessed
four machine learning classifiers on our data, in order to predict if a transaction is fraudu-
lent or not. We used Logistic Regression (LR), Random Forests (RF), k nearest neighbors
(kNN), and Support Vector Machines (SVM).

Table 3 The class balance in
the training, validation and test
subsets of our dataset, presenting
the absolute number (and the
percentage) per class. Fraudulent
instances are less than 0.1% in
all subsets

Transaction label

Normal (%) Fraudulent (%)

Training 63,178 (99.903) 61 (0.097)
Validation 21,060 (99.905) 20 (0.095)
Test 21,059 (99.905) 20 (0.095)

5096 Machine Learning (2024) 113:5087–5108

1 3

4.1 Evaluation measures

The high class-imbalance (Table 3) increases the challenge of the task. For assessment,
we opted for evaluation metrics that are not affected by the skewed nature of the prob-
lem. Namely, we used the F

1
 score and Area Under the Precision-Recall Curve (AUPRC).

We chose the latter over the area under the ROC curves (ROC-AUC) (Saito and Rehms-
meier 2015) due to its relative insensitivity to class balance. A majority classifier in this
task would have a precision of 0.096%, which would accurately be reflected in the AUPRC
(0.096%), as opposed to the ROC-AUC (50%).

Both F
1
 and AUPRC are employed in related studies (Baesens et al. 2021), but they do

not differentiate between the high-Precision and the high-Recall zone. This is problem-
atic because fraud is most often detected either in real-time (online) when Precision mat-
ters most, or offline when it is Recall that matters most. Hence, we suggest that methods
are evaluated with the high-precision F

05
 for the online and with the high-recall F

2
 for the

offline setting. For all three F-scores, and for each fold, we fine-tuned the classification
threshold on the development set.

4.2 Experimental results

First, we experimented with RFM-based features, then with a temporal (NLP-based)
formulation. The suggested temporal data formulation, allowed us to leverage also deep
learning (neural) approaches. In a final experiment, we combined RFM with NLP-based
features.

4.3 Machine learning with RFM‑based features

The results of our experiments using machine learning on top of RFM-based features
(see Sect. 3.1) are shown in Table 4. RF outperforms the other models, achieving 25.1%
AUPRC. LR is the second best model in this setting with 17.2%, while kNN and SVM
perform poorly. RF performs equally well in the online (32.1%) and offline (34.2%) setting,
but lower in F1 (28.5%).

4.4 Machine learning with NLP‑based features

The most frequent user action n-grams differ between legitimate and fraudulent instances,
and the difference is statistically significant (see Sect. 3.2). Hence, we hypothesised that
term frequency-inverse document frequency (TF-IDF) features, based on unigrams,
bigrams, and trigrams, can potentially provide the same four machine learning algorithms
with adequate input information in order to classify a sequence of actions as fraudulent or
not. We generated a vocabulary of 21724 unique n-grams by training on the entire training
set. Table 5 presents the experimental results of this hypothesis.

The F1 score of the best-performing RF improved (+ 0.15) when we switched from
RFM to NLP-based features. Improvement can also be observed in the online evalua-
tion, but not in AUPRC or the offline setting. SVM with the NLP-based TF-IDF features
improved significantly, even outperforming the traditional, RFM-based RF in all measures.
The other two algorithms also registered improvements in all measures. This is particularly

5097Machine Learning (2024) 113:5087–5108

1 3

Ta
bl

e
4

 A
ss

es
sm

en
t m

ac
hi

ne
 le

ar
ni

ng
 fr

au
d

cl
as

si
fie

rs
 w

ith
 st

an
da

rd
 (A

U
PR

C
, F

1
),

on
lin

e
(F

0
5
) a

nd
 o

ffl
in

e
(F

2
) m

ea
su

re
s (

be
st

in
 b

ol
d)

 u
si

ng
 R

FM
-b

as
ed

 fe
at

ur
es

 (F
:R

FM
)

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

hi
gh

es
t v

al
ue

 o
f e

ac
h

co
lu

m
n

F:
R

FM
F:

N
LP

M
et

ho
d

A
U

PR
C

F
0
.5

F
1

F
2

☑
◻

LR

0.
17

2
0.

19
2

0.
22

6
0.

29
1

☑
◻

R

F
0.
25
1

0.
32
1

0.
28
5

0.
34
2

☑
◻

kN

N
0.

04
0

0.
15

5
0.

17
6

0.
20

4
☑

◻

SV
M

0.
00

1
0.

00
1

0.
00

2
0.

00
5

5098 Machine Learning (2024) 113:5087–5108

1 3

Ta
bl

e
5

 A
ss

es
sm

en
t o

f m
ac

hi
ne

 le
ar

ni
ng

 fr
au

d
cl

as
si

fie
rs

 w
ith

 s
ta

nd
ar

d
(A

U
PR

C
, F

1
),

on
lin

e
(F

0
5
) a

nd
 o

ffl
in

e
(F

2
) m

ea
su

re
s

(b
es

t i
n

bo
ld

) u
si

ng
 N

LP
-b

as
ed

 n
-g

ra
m

 fe
at

ur
es

(F

:N
LP

)

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

hi
gh

es
t v

al
ue

 o
f e

ac
h

co
lu

m
n

F:
R

FM
F:

N
LP

M
et

ho
d

A
U

PR
C

F
0
.5

F
1

F
2

◻
TF

-I
D

F
LR

0.
22

2
0.

29
3

0.
30

5
0.

32
6

◻
TF

-I
D

F
R

F
0.

21
1

0.
33

3
0.

30
0

0.
26

9
◻

TF
-I

D
F

kN
N

0.
05

6
0.

14
1

0.
13

8
0.

16
2

◻
TF

-I
D

F
SV

M
0.
33
1

0.
46
7

0.
41
1

0.
43
8

5099Machine Learning (2024) 113:5087–5108

1 3

Ta
bl

e
6

 A
ss

es
sm

en
t o

f m
ac

hi
ne

 le
ar

ni
ng

 fr
au

d
cl

as
si

fie
rs

 w
ith

 st
an

da
rd

 (A
U

PR
C

, F
1
),

on
lin

e
(F

0
5
) a

nd
 o

ffl
in

e
(F

2
) m

ea
su

re
s (

be
st

in
 b

ol
d)

 u
si

ng
 c

en
tro

id
s o

f N
LP

-b
as

ed
 F

as
t-

Te
xt

 a
ct

io
n

em
be

dd
in

gs

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

hi
gh

es
t v

al
ue

 o
f e

ac
h

co
lu

m
n

F:
R

FM
F:

N
LP

M
et

ho
d

A
U

PR
C

F
0
.5

F
1

F
2

◻
Fa

stT
ex

t E
m

b.
 C

en
tro

id
s

LR
0.

06
8

0.
13
2

0.
13
3

0.
16
3

◻
Fa

stT
ex

t E
m

b.
 C

en
tro

id
s

R
F

0.
03

9
0.

09
7

0.
08

4
0.

14
9

◻
Fa

stT
ex

t E
m

b.
 C

en
tro

id
s

K
N

N
0.

01
3

0.
08

3
0.

09
6

0.
11

3
◻

Fa
stT

ex
t E

m
b.

 C
en

tro
id

s
SV

M
0.
11
9

0.
09

3
0.

07
8

0.
06

8

5100 Machine Learning (2024) 113:5087–5108

1 3

interesting in the light that the employed features in this case only encode the communica-
tion between the (user’s) front and (Bank’s) back end, without any information regarding
the user’s ID and historical records.

Replacing the TF-IDF representation with other popular NLP techniques, such as (sub)
word embeddings, did not yield any improvements. In specific, we trained a FastText
model (Bojanowski et al. 2017) on our transactional “corpus”, assuming that each action
sequence is the corresponding of a tokenised text. Each action was then mapped to a dense
embedding and for each sequence, we could compute the centroid as a representation of
the respective instance. Table 6 shows the results. Note that the NN architectures that will
be presented later trained their own dense representations using a Keras Embedding layer.

A comparison of Tables 5 and 6 reveals that the results of machine learning algorithms
that operate on top of centroids of action dense embeddings are not promising. However,
neural algorithms are often employed in NLP tasks, outperforming their machine-learning
counterparts when operating on top of dense representations. To investigate this assump-
tion, we experimented first with a stacked Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) with a feed-forward neural network (FFNN) on top.5 Secondly, we
used a Convolutional Neural Network (CNN) (LeCun and Bengio 1995), which applies a
1D convolution on the input sequence. We used 16 filters and a 3-wide kernel, motivated
by the different n-gram frequencies between legitimate and illicit transactions.6

The third model is a CNN-variant called Temporal Convolution Network (TCN), which
is more suited for sequential data (Yan et al. 2020). Here, the TCN receives a sequence
of action (trainable) embeddings and applies 1D causal convolutions by convolving the
output at time t only with outputs at time t and earlier. The output of the convolution is flat-
tened and passed to a sigmoid activation. Table 7 presents the results of these three neural
approaches. CNN is the best of the three in all metrics, yet worse than the best-performing
SVM on top of TF-IDF features.

4.5 Machine learning with features based on RFM and NLP

We showed previously that an action sequence contains important and useful information,
and that an SVM algorithm can capture and achieve promising performance. Although this
approach works surprisingly well, outperforming the traditional RFM-based features which
model user behavior and are frequently employed in literature, a question remains: what
are the benefits of combining the two engineering approaches? To address this question,
we trained and assessed our four machine-learning algorithms, by combining the two sets
of features through concatenation. Table 8 presents the results.

Adding RFM-based features harmed the NLP-based SVM but benefited the NLP-based
LR, RF, and kNN.7 The performance improvement of the former was significant (more
than fifteen units) and led to a score that was better than all other models in terms of
AUPRC and F

05
 . From the results, we can see that the LSTM model achieves the highest

F
2
 score of 0.522, followed by the TCN model with a score of 0.483. The LR model has

an F2 score of 0.496, showing that our models are generally performing well. The RF and

5 We used one hidden layer with 64 hidden units, ReLU activations, and a classification layer with sigmoid
activation.
6 The encoded representation is flattened and passed through a FFNN using one hidden layer of 32 neurons
and ReLu activation, and a classification layer with a sigmoid activation on top.
7 The AUPRC score of the latter two was slightly reduced.

5101Machine Learning (2024) 113:5087–5108

1 3

Ta
bl

e
7

 A
ss

es
sm

en
t o

f d
ee

p
le

ar
ni

ng
 fr

au
d

cl
as

si
fie

rs
 w

ith
 st

an
da

rd
 (A

U
PR

C
, F

1
),

on
lin

e
(F

0
5
) a

nd
 o

ffl
in

e
(F

2
) m

ea
su

re
s (

be
st

in
 b

ol
d)

 u
si

ng
 a

ct
io

n
em

be
dd

in
gs

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

hi
gh

es
t v

al
ue

 o
f e

ac
h

co
lu

m
n

F:
R

FM
F:

N
LP

M
et

ho
d

AU
PR

C
F
0
.5

F
1

F
2

◻
Em

be
dd

in
gs

LS
TM

0.
17

6
0.

24
1

0.
17

7
0.

23
1

◻
Em

be
dd

in
gs

C
N

N
0.
21
0†

0.
34
8†

0.
27
3†

0.
29
0†

◻
Em

be
dd

in
gs

TC
N

0.
20

4
0.

29
2

0.
25

5
0.

27
6

5102 Machine Learning (2024) 113:5087–5108

1 3

kNN models achieve considerably lower scores of 0.299 and 0.231, respectively, indicating
that they may not be suitable for this particular task.

4.6 Can anomaly detection help?

Combining traditional, commonly-employed features to our TF-IDF representation yielded
the best performance in all evaluation settings, standard, online, and offline. However,
could we potentially further leverage this engineering approach by experimenting with fea-
tures derived from unsupervised anomaly detection? This is a common approach in fraud
detection applications because such features can help identify data points that deviate from
normality. To address this question, we added the anomaly score output of an Isolation
Forest to our combined (TF-IDF and RFM) feature set, and re-trained our machine learning
and neural models.

Table 9 presents the results, where we see that the best performing LR improved in
AUPRC, F1

 and F
2
 , but not in F

0.5
 , where the performance deteriorated. This shows the

significance of the two additional evaluation measures we suggested, vis. F
0.5

 and F
2
 ,

which can complement the fraud detection studies and allow model selection that fits the
standards of the end user. Not surprisingly, all neural methods improved in all metrics,
with CNN being the best neural method and close to the best-performing LR. It is typically
expected to achieve better results with LSTMs in sequence modelling tasks, so this result
is somewhat interesting. We believe the reason for this performance difference lies in the
kernel size the CNN uses (three), which captures local patterns in a similar way to how

Table 8 Assessment of
machine and deep learning
fraud classifiers with standard
(AUPRC, F

1
), online (F

05
) and

offline (F
2
) measures (best in

bold) using RFM-based and NLP
(TF-IDF or Embeddings) features

Bold values indicate the highest value of each column

F:RFM F:NLP Method AUPRC F
0.5

F
1

F
2

☑ TF-IDF LR 0.404† 0.535† 0.467 0.496
☑ TF-IDF RF 0.240 0.398 0.316 0.299
☑ TF-IDF kNN 0.054 0.176 0.200 0.231
☑ TF-IDF SVM 0.252 0.314 0.291 0.301
☑ Embeddings LSTM 0.397 0.511 0.498† 0.522†
☑ Embeddings CNN 0.375 0.428 0.439 0.452
☑ Embeddings TCN 0.387 0.471 0.477 0.483

Table 9 Assessment of all
models in all metrics using
traditional RFM, NLP, and
anomaly detection-based
features. In bold are the best
results per column. A dagger
indicates that the best overall is
achieved in that column

Bold values indicate the highest value of each column

AUPRC F
0.5

F
1

F
2

LR 0.433† 0.501† 0.487† 0.520†
RF 0.240 0.397 0.314 0.312
kNN 0.054 0.176 0.199 0.231
SVM 0.002 0.001 0.002 0.005
LSTM 0.427 0.443 0.469 0.474
CNN 0.43 0.48 0.485 0.490
TCN 0.429 0.469 0.473 0.482

5103Machine Learning (2024) 113:5087–5108

1 3

n-grams would. This shows that methods based on deep learning are promising, but more
work is needed to allow their improvement. One such direction is transfer learning, which
can be applied by using a much larger corpus to pre-train the action embeddings or the net-
work weights (e.g., with self-supervision).

5 Discussion

Our results showed that an alternative, temporal, data engineering can leverage machine
learning algorithms to outperform traditional feature engineering approaches. Verifying the
intuition of Baesens et al. (2021), more complex approaches, such as dense representations
and deeper neural networks, do not necessarily outperform their machine learning coun-
terparts. When we use only TF-IDF features extracted from our transactional corpus (thus
ablating RFM), or only traditional RFM-based features (ablating TF-IDF), the performance
is considerably lower when using standard classification metrics. We argued also that eval-
uation should regard two specific scenarios in this task: the online, where fast alarming is
required; and the offline, where Recall is at stake (i.e., detecting possibly missed cases). We
suggested F

0.5
 and F

2
 and we used these to benchmark our models.

5.1 Studying the effect of a varying imbalance

As already stated, fraud detection is characterised by a large imbalance, with fraudulent
transactions occurring in less than 0.1% of the data (see Sect. 3). Similarly to our work,
other studies in literature make their own assumptions regarding the class balance, dis-
regarding the realistic nature of the data and hence the problem. More importantly, the
imbalance of the evaluation dataset affects the reported numbers, obfuscating the true
performance of algorithms and making the potential of a fair comparison impossible to
establish.

Fig. 4 Varying imbalance curve (VIC) of our LR on TF-IDF features (w/TF-IDF), with RFM-based fea-
tures (+RFM) and with anomaly detection features added (+AD/RFM). The AUPRC is shown (Y-axis) by
varying the percentage of fraudulent instances in the dataset (X-axis). From an extreme imbalance on the
left to a more balanced fraction to the right

5104 Machine Learning (2024) 113:5087–5108

1 3

In an attempt to adjust the class imbalance, we examined three data augmentation sce-
narios: (1) oversampling the fraudulent examples, (2) undersampling the legitimate exam-
ples and (3) doing both (1) and (2). Undersampling of the legitimate transactions was car-
ried out in a simple manner, and a more detailed explanation of our oversampling approach
follows.

For the classifiers that used TF-IDF features with RFM features, SMOTE (Chawla et al.
2002) was used to directly generate synthetic samples. However, for the classifiers that uti-
lized user actions, we were able to use SMOTE only for the RFM features and had to use a
different strategy to handle the sequential nature of the data. More specifically, we sampled,
with replacement, pairs of fraudulent examples and cut each action sequence at a random
point. We then concatenated the first part of one sequence with the second part of its pair to
create a new one. We oversampled until we hit target class balances of 2%, 5%, 10%, 20%,
and 50%, and trained on those additional fraudulent examples. Note that with our original
class balance of 0.1%, these augmentation scenarios translated to 20, 50, 100, 200, and
500 times more fraudulent examples. None of those scenarios yielded better performance,
which we attribute to oversampling from such a tiny number of examples. Furthermore,
in the case where oversampled TF-IDF vectors were used, performance was significantly
hindered by augmentation, which we believe happened due to the sparseness of the vectors.

Therefore, in order to study the performance of a fraud classifier across various possible
imbalance settings, we suggest the use of a varying imbalance curve, or VIC in short. Such
a curve can be made by training an algorithm on variants of the dataset whose class bal-
ance varies, ranging from an extreme imbalance to a more balanced setting. In our case, we
yielded the latter by combining 100 legitimate and 66 fraudulent cases. Then, we started
increasing the size of the legitimate transactions, until an imbalance of 1-to-1000 was hit.
Figure 4 depicts the VIC of an LR algorithm trained on TF-IDF (green), with RFM-based
features added (orange), and anomaly detection features added as well (blue). The score
varies from the extreme imbalance (leftmost) to more balance settings on the right.

Inspection of the curves shows the problem is more challenging (lower AUPRC) at the
leftmost side, where the extreme imbalance is assumed. On the other hand, more balanced

Fig. 5 The VICs of our vanilla LR w/TF-IDF (green) and our LR w/TF-IDF+AD/RFM (blue), as shown
in Fig. 4 but zooming in on the extreme imbalance zone. In dashed lines the published performance of an
LR with several RFM features (Baesens et al. 2021), w/o (green) and w/anomaly detection features added
(blue). Our TF-IDF-based LR is on top at the 1.6% fraction (Color figure online)

5105Machine Learning (2024) 113:5087–5108

1 3

settings on the right lead to much higher AUPRC scores. Figure 5 shows the same curves
for LR with TF-IDF features, with (blue) and without (green) added features, when we
zoom in on the extreme imbalance zone (i.e., zooming in on the left of Fig. 4). The dashed
lines correspond respectively to the performance reported in Baesens et al. (2021) for a
1.6% fraction of fraudulent instances, using an LR with several RFM features,8 with (blue)
and without (green) anomaly detection and other features. Their AUPRC was 46.80% with-
out and 69.75% with the added features. For the same fraction (between 1.5 and 2), our TF-
IDF-based LR is better and the same applies when we use the TF-IDF features with limited
RFM and anomaly detection ones.

One hypothesis regarding why there are not any publicly available dataset for fraud
detection on online actions, is that the available datasets comprise sensitive information,
which is required by their systems in order to achieve satisfying performance. We question
this hypothesis with this work, by releasing our data and code for public use.

6 Conclusions

Our work introduces an anonymised and publicly available dataset for online fraud detec-
tion, we demonstrate the potential of NLP methods for modeling online actions and achiev-
ing state-of-the-art results while preserving user privacy.

In order to assess model performance closer to a real-world business setting, we argued
that standard evaluation metrics often employed in literature should be complemented with
two more settings, one for online and one for offline evaluation. Online assessment regards
the ability to early detect a suspicious transaction and can be measured with F

0.5
 . Offline

assessment concerns the detection of all fraudulent instances and can be measured with the
high-recall F

2
 . Investigating the results by using all our measures revealed that the addition

of anomaly detection features improves all metrics except for the online scenario. This is
an important observation for applications where online detection is at stake, indicating the
significance of looking at both online and offline evaluation, along with standard metrics.

Finally, we observed that reporting of results in the literature is often based on dif-
ferent assumed imbalance settings. This harms comparability and hinders the progress
of the field. To address this, we opted for a varying imbalance curve, which not only
allowed us to investigate the task difficulty for various imbalance settings, showing that
higher imbalance increases the challenge, but also to compare with the results reported
in other published studies. While using the same machine learning algorithm, and with
fewer traditional features compared to Baesens et al. (2021), the addition of NLP-based
features led to a significant performance improvement. This improvement came not with
the cost but with the benefit of privacy, given that we release our data for public use.

8 We only used six RFM-based features and one based on anomaly detection (see Table 2), which is less
than less than two times the features used in Baesens et al. (2021).

5106 Machine Learning (2024) 113:5087–5108

1 3

A Model parameter setting

A.1 Machine learning models

For the logistic regression model, we used L2 regularization with a penalty parameter of
1.0, and the lbfgs solver with a maximum of 100 iterations. For our k-Nearest Neighbors
(k-NN) classifier, we used the k=2 and the KDTree algorithm from the scikit-learn library,
while our random forest classifier was trained using 200 trees, a maximum depth of 50,
and a minimum of 5 samples required to split an internal node. Finally, our support vec-
tor machine (SVM) model was trained using the radial basis function (RBF) kernel with a
regularization parameter (C) of 1.0 and a polynomial kernel of degree 3.

A.2 Deep learning models

We built an LSTM model with 1 layer and 128 neurons. The model takes in a text input of
maximum sequence length 256, as well as 6 additional numerical features. The text input is
passed through an embedding layer before being fed into the LSTM layer. The last hidden
state of the LSTM is concatenated with the additional numerical features, before passing
through a dense layer with 64 units and a sigmoid activation function. The model is opti-
mized using the Adam optimizer, with a learning rate of 0.001, and binary cross-entropy
loss. We use accuracy, precision, recall, and AUC-PR as our evaluation metrics.

For our CNN we used an embedding layer with an output dimension of 32, and an input
length of 150. This layer was followed by two 1D convolutional layers with 128 filters each
and a kernel size of 2. We then applied batch normalization to the output of the convolu-
tional layers and added a max pooling layer with a pool size of 4. The resulting output was
flattened and concatenated with the other inputs. The concatenated output was then passed
through four dense layers with 128, 96, 64, and 16 neurons, respectively. Finally, we used
a sigmoid activation function in the output layer. The model was compiled with the Adam
optimizer, binary cross-entropy loss, and Accuracy, Precision, Recall, and AUC as metrics.

The TCN model, similarly to the LSTM and CNN, takes two inputs, one for the action
sequences and one for other variables. The action sequences are first processed through
an embedding layer with an output dimension of 32, followed by a Temporal Convolu-
tional Network (TCN) layer with 32 filters, 2 stacks, and skip connections. The other vari-
ables are passed through a separate branch in the model. The outputs of both branches are
concatenated and passed through several fully connected layers with ReLU activations and
dropout layers with a rate of 0.1. The final output layer uses a sigmoid activation function.
The model uses a batch size of 128 and an Adam optimizer with a learning rate of 1e-4,
and is compiled with binary cross-entropy loss and accuracy, precision, recall, and AUC as
performance metrics.

Author contributions The first author undertook the engineering of the features, most of the experiments,
and he contributed to authoring. The second author supervised the experiments, contributed to authoring
and presentation. Also, he suggested the use of Natural Language Processing, the varying imbalance curves,
and the evaluation measures. The third author assisted with the experiments and provided feedback. The
fourth author provided feedback throughout the progress of this work.

Funding Open access funding provided by HEAL-Link Greece. Not applicable.

5107Machine Learning (2024) 113:5087–5108

1 3

Data availability Our dataset will be released for public use upon acceptance.

Code availability Our code will be released.

Declarations

Conflict of interest Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Achituve, I., Kraus, S., & Goldberger, J. (2019) Interpretable online banking fraud detection based on hier-
archical attention mechanism. In 2019 IEEE 29th International Workshop on Machine Learning for
Signal Processing (MLSP) (pp. 1–6). IEEE.

Baesens, B., Höppner, S., & Verdonck, T. (2021). Data engineering for fraud detection. Decision Support
Systems. https:// doi. org/ 10. 1016/j. dss. 2021. 113492

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational Linguistics, 5, 135–146.

Branco, B., Abreu, P., Gomes, A. S., Almeida, M. S. C., Ascensão, J. T., & Bizarro, P. (2020). Interleaved
sequence RNNS for fraud detection. In: Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. https:// doi. org/ 10. 1145/ 33944 86. 34033 61

Carminati, M., Baggio, A., Maggi, F., Spagnolini, U., & Zanero, S (2018) FraudBuster: Temporal Analysis
and Detection of Advanced Financial Frauds, pp. 211–233. https:// doi. org/ 10. 1007/ 978-3- 319- 93411-
2_ 10

Carminati, M., Caron, R., Maggi, F., Epifani, I., & Zanero, S. (2015). Banksealer: A decision support sys-
tem for online banking fraud analysis and investigation. Computers & Security, 53, 175–186.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Data Mining and Knowledge Discovery, 1,
291–316. https:// doi. org/ 10. 1023/A: 10097 00419 189

Forough, J., & Momtazi, S. (2021). Ensemble of deep sequential models for credit card fraud detection.
Applied Soft Computing, 99, 106883. https:// doi. org/ 10. 1016/j. asoc. 2020. 106883

Forough, J., & Momtazi, S. (2022). Sequential credit card fraud detection: A joint deep neural network
and probabilistic graphical model approach. Expert Systems, 39(1), 12795. https:// doi. org/ 10. 1111/
exsy. 12795

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780.

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-Guelton, L., & Caelen, O.
(2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications,
100, 234–245. https:// doi. org/ 10. 1016/j. eswa. 2018. 01. 037

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dss.2021.113492
https://doi.org/10.1145/3394486.3403361
https://doi.org/10.1007/978-3-319-93411-2_10
https://doi.org/10.1007/978-3-319-93411-2_10
https://doi.org/10.1023/A:1009700419189
https://doi.org/10.1016/j.asoc.2020.106883
https://doi.org/10.1111/exsy.12795
https://doi.org/10.1111/exsy.12795
https://doi.org/10.1016/j.eswa.2018.01.037

5108 Machine Learning (2024) 113:5087–5108

1 3

Kovach, S., & Ruggiero, W. V. (2011). Online banking fraud detection based on local and global behav-
ior. In Proc. of the Fifth International Conference on Digital Society, Guadeloupe, France (pp.
166–171).

Kunlin, Y. (2018). A memory-enhanced framework for financial fraud detection. In 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA) (pp. 871–874). https://
doi. org/ 10. 1109/ ICMLA. 2018. 00140

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. In The
Handbook of Brain Theory and Neural Networks, (Vol. 3361(10)).

Liu, F. T., Ting, K., & Zhou, Z.-H. (2009). Isolation forest. In 2008 8th IEEE International Conference
on Data Mining (pp. 413–422). https:// doi. org/ 10. 1109/ ICDM. 2008. 17.

Lucas, Y. (2019) Credit card fraud detection using machine learning with integration of contextual
knowledge. Theses, Université de Lyon, Deutscheland, Universität Passau. https:// tel. archi ves-
ouver tes. fr/ tel- 02951 477.

Mehana, A., & Nuci, K. P. (2020) Fraud Detection using Data-Driven Approach.
Nguyen, T.T., Tahir, H., Abdelrazek, M., & Babar, A. (2020). Deep Learning Methods for Credit Card

Fraud Detection.
Panigrahi, S., Kundu, A., Sural, S., Majumdar, A.K., et al. (2009). Credit card fraud detection: A fusion

approach using dempster-Shafer theory and Bayesian learning. Information Fusion, 10(4), 354–363
. https:// doi. org/ 10. 1016/j. inffus. 2008. 04. 001. Special Issue on Information Fusion in Computer
Security.

Patel, Y., Ouazzane, K., Vassilev, V., & Li, J. (2019). Remote banking fraud detection framework using
sequence learners. Journal of Internet Banking and Commerce, 24(1), 1–31.

Rinku, Narang, S. K., & Kishore, N. (2023). Issues in Credit Card Transactional Data Stream: A Rational
Review. Lecture Notes in Networks and Systems (Vol. 421, pp. 775–789). www. scopus. com

Rodríguez, J. F., Papale, M., Carminati, M., & Zanero, S. (2022). A natural language processing
approach for financial fraud detection. In Proceedings of the Italian Conference on Cybersecurity
ITASEC 2022, Rome, Italy, June 20–23, 2022 (Vol. 3260, pp. 135–149). CEUR-WS.org.

Roy, A., Sun, J., Mahoney, R., Alonzi, L. P., Adams, S., & Beling, P. A. (2018). Deep learning detecting
fraud in credit card transactions. In 2018 Systems and Information Engineering Design Symposium
(SIEDS) (pp. 129–134).

Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the roc plot
when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3), 0118432–0118432.
https:// doi. org/ 10. 1371/ journ al. pone. 01184 32

Wang, C. (2021). The behavioral sign of account theft: Realizing online payment fraud alert. In Pro-
ceedings of the Twenty-Ninth International Conference on International Joint Conferences on Arti-
ficial Intelligence (pp. 4511–4618).

Wang, S., Liu, C., Gao, X., Qu, H., & Xu, W. (2017). Session-based fraud detection in online e-com-
merce transactions using recurrent neural networks. In Y. Altun, K. Das, T. Mielikäinen, D.
Malerba, J. Stefanowski, J. Read, M. Žitnik, M. Ceci, & S. Džeroski (Eds.), Machine Learning and
Knowledge Discovery in Databases (pp. 241–252). Cham: Springer.

Wedge, R., Kanter, J., Veeramachaneni, K., Moral, S., & Iglesias Pérez, S. (2019). Solving the false
positives problem in fraud prediction using automated feature Engineering: European Conference,
ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018. Proceedings, Part III, 372–388.
https:// doi. org/ 10. 1007/ 978-3- 030- 10997-4_ 23

Yan, J., Mu, L., Wang, L., Ranjan, R., & Zomaya, A. Y. (2020). Temporal convolutional networks for the
advance prediction of ENSO. Scientific Reports, 10(1), 1–15.

Zamini, M., & Montazer, G. (2018). Credit card fraud detection using autoencoder based clustering. In 2018
9th International Symposium on Telecommunications (IST), pp. 486–491. https:// doi. org/ 10. 1109/
ISTEL. 2018. 86611 29

Zhang, Z., Chen, L., Liu, Q., & Wang, P. (2020). A fraud detection method for low-frequency transaction.
IEEE Access, 8, 25210–25220. (Cited By :10).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/ICMLA.2018.00140
https://doi.org/10.1109/ICMLA.2018.00140
https://doi.org/10.1109/ICDM.2008.17
https://tel.archives-ouvertes.fr/tel-02951477
https://tel.archives-ouvertes.fr/tel-02951477
https://doi.org/10.1016/j.inffus.2008.04.001
http://www.scopus.com
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1007/978-3-030-10997-4_23
https://doi.org/10.1109/ISTEL.2018.8661129
https://doi.org/10.1109/ISTEL.2018.8661129

	Fraud detection with natural language processing
	Abstract
	1 Introduction
	2 Related work
	2.1 Online fraud
	2.2 Other fraud sources

	3 The new dataset
	3.1 The dataset development process
	3.1.1 Recency, frequency, monetary
	3.1.2 Unsupervised anomaly detection
	3.1.3 From user actions to action sequences

	3.2 Exploratory analysis

	4 Empirical analysis
	4.1 Evaluation measures
	4.2 Experimental results
	4.3 Machine learning with RFM-based features
	4.4 Machine learning with NLP-based features
	4.5 Machine learning with features based on RFM and NLP
	4.6 Can anomaly detection help?

	5 Discussion
	5.1 Studying the effect of a varying imbalance

	6 Conclusions
	A Model parameter setting
	A.1 Machine learning models
	A.2 Deep learning models

	References

