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Abstract
Class imbalance poses new challenges when it comes to classifying data streams. Many 
algorithms recently proposed in the literature tackle this problem using a variety of data-
level, algorithm-level, and ensemble approaches. However, there is a lack of standardized 
and agreed-upon procedures and benchmarks on how to evaluate these algorithms. This 
work proposes a standardized, exhaustive, and comprehensive experimental framework 
to evaluate algorithms in a collection of diverse and challenging imbalanced data stream 
scenarios. The experimental study evaluates 24 state-of-the-art data streams algorithms 
on 515 imbalanced data streams that combine static and dynamic class imbalance ratios, 
instance-level difficulties, concept drift, real-world and semi-synthetic datasets in binary 
and multi-class scenarios. This leads to a large-scale experimental study comparing state-
of-the-art classifiers in the data stream mining domain. We discuss the advantages and dis-
advantages of state-of-the-art classifiers in each of these scenarios and we provide gen-
eral recommendations to end-users for selecting the best algorithms for imbalanced data 
streams. Additionally, we formulate open challenges and future directions for this domain. 
Our experimental framework is fully reproducible and easy to extend with new methods. 
This way, we propose a standardized approach to conducting experiments in imbalanced 
data streams that can be used by other researchers to create complete, trustworthy, and fair 
evaluation of newly proposed methods. Our experimental framework can be downloaded 
from https:// github. com/ canoa lberto/ imbal anced- strea ms.
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1 Introduction

Recent advancements in our ability to collect, integrate, store, and analyze big amounts 
of data led to the emergence of new challenges for machine learning methods. Traditional 
algorithms were designed to discover knowledge from static datasets. Contrary, contem-
porary data sources generate information characterized by both volume and velocity. Such 
a scenario is known as data streams (Gama, 2010; Bahri et al., 2021; Read and Žliobaitė, 
2023) and traditional methods lack the speed, adaptability, and robustness to succeed.

One of the biggest challenges, when compared to learning from static data, lies in the 
need of adapting to the evolving nature of data, where concepts are non-stationary and may 
change over time. This phenomenon is called concept drift (Krawczyk et al., 2017; Kha-
massi et al., 2018) and leads to degradation of the classifier, as knowledge learned on previ-
ous concepts may not be useful anymore for the recent instances. Recovering from concept 
drift requires either the presence of explicit detectors or implicit adaptation mechanisms.

Another vital challenge in data stream mining lies in the need for algorithms to dis-
play robustness to class imbalance (Krawczyk, 2016; Fernández et  al., 2018a). Despite 
almost three decades of research, handling skewed class distributions is still a crucial 
domain of machine learning. This becomes even more challenging in the streaming sce-
nario, where imbalance happens simultaneously with concept drift. Not only do the defi-
nitions of classes change but also the imbalance ratio becomes dynamic and class roles 
may switch. Solutions that assume fixed data properties cannot be applied here, as streams 
may oscillate between varying degrees of imbalance and periods of balance among classes. 
Furthermore, imbalanced streams can have other underlying difficulties, such as small sam-
ple size, borderline and rare instances, overlapping among classes, or noisy labels (Santos 
et al., 2022). Imbalanced data streams are usually handled via class resampling (Korycki & 
Krawczyk, 2020; Bernardo et al., 2020b; Bernardo & Della Valle, 2021a), algorithm adap-
tation mechanism (Loezer et  al., 2020; Lu et  al., 2020), or ensembles (Zyblewski et  al., 
2021; Cano & Krawczyk, 2022). This problem is motivated by a plethora of real-world 
problems where data is both streaming and skewed, such as Twitter streams (Shah & Dunn, 
2022), fraud detection (Bourdonnaye & Daniel, 2022), abuse and hate speech detection 
(Marwa et al., 2021), Internet of Things (Sudharsan et al., 2021), or intelligent manufactur-
ing (Lee, 2018). While there are several works on how to handle imbalanced data streams, 
there are no agreed-upon standards, benchmarks, or good practices that are necessary for 
fully reproducible, transparent, and impactful research.

Research goal. To create a standardized, exhaustive, and informative experimental 
framework for binary and multi-class imbalanced data streams, and conduct an extensive 
comparison of state-of-the-art classifiers.

Motivation. While there are many algorithms for drifting and imbalanced data streams 
in the literature, there is a lack of standardized procedures and benchmarks on how to eval-
uate these algorithms holistically. Existing studies are often limited to a selection of algo-
rithms and data difficulties, typically only considering binary class data, and do not provide 
insights into what aspects of imbalanced data streams must be considered and translated 
into meaningful benchmark problems. There is a need for a unified and holistic evaluation 
framework for imbalanced data streams that could be used as a template for researchers 
to evaluate their newly proposed algorithms against the relevant methods in the literature. 
Additionally, in-depth experimental comparison of state-of-the-art methods would allow 
to gain valuable insights into what classifiers and learning mechanisms work under differ-
ent conditions. Therefore, we propose an evaluation framework and perform a large-scale 
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empirical study to obtain insights into the performance of the methods under an extensive 
and varied set of data difficulties.

Overview and contributions. This paper proposes a complete and holistic framework 
for benchmarking and evaluating classifiers for imbalanced data streams. We summarize 
existing works and organize them according to established taxonomies dedicated to skewed 
and streaming problems. We distill the most crucial and insightful problems that appear 
in this domain and use them to design a set of benchmark problems that capture distinc-
tive learning difficulties and challenges. We compile these benchmarks into a framework 
embedding various metrics, statistical tests, and visualization tools. Finally, we showcase 
our framework by comparing 24 state-of-the-art algorithms, which allows us to choose the 
best-performing ones, discover in what specific areas they excel and formulate recommen-
dations for end-users. The main contributions of the paper are summarized as follows:

• Taxonomy of algorithms for imbalanced data streams. We organize the methods in 
the state of the art according to established taxonomies that summarize recent progress 
in learning from imbalanced data streams and provide a survey of the most important 
contributions.

• Holistic and reproducible evaluation framework. We propose a complete and holis-
tic framework for evaluating classifiers for two-class and multi-class imbalanced data 
streams that standardizes metrics, statistical tests, and visualization tools to be used for 
transparent and reproducible research.

• Diverse benchmark problems. We formulate a set of benchmark problems to be used 
within our framework. We capture the most vital and challenging problems that are 
present in imbalance data streams, such as dynamic imbalance ratio, instance-level dif-
ficulties (borderline, rare, and subconcepts), or number of classes. Furthermore, we 
include real-world and semi-synthetic imbalanced problems, leading to a total of 515 
data stream benchmarks.

• Comparison among state-of-the-art classifiers. We conduct an extensive, compre-
hensive, and reproducible comparative study among 24 state-of-the-art stream mining 
algorithms based on the proposed framework and 515 benchmark problems.

• Recommendations and open challenges. Based on the results from the exhaustive 
experimental study, we formulate recommendations for end-users that will allow to 
understand the strengths and weaknesses of the best-performing classifiers. Further-
more, we formulate open challenges in learning from imbalanced data streams that 
should be addressed by researchers in the years to come.

Comparison with most related experimental works. In recent years, several survey 
papers and works with large experimental studies touching on joint areas of class imbal-
ance and data streams were published. Therefore, it is important to understand the key dif-
ferences between them and this work, as well as how our survey provides new insights into 
this topic that were not touched upon in the previous works. Wang et al. (2018) proposed 
an overview of several existing techniques, both drift detectors and adaptive classifiers, 
and experimentally compared their predictive accuracy. While being the first dedicated 
study in this area, it was limited by not evaluating computational complexities of compared 
algorithms, using a very small selection of datasets (7 benchmarks), and investigating only 
limited properties of imbalanced data streams (not touching upon instance-level charac-
teristics or multi-class problems). Brzeziński et al. (2021) proposed a follow-up study that 
focused on data-level properties of imbalanced streams, such as instance difficulties (bor-
derline and rare instances) and the presence of subconcepts. However, the study was done 
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for a limited number of algorithms (5 classifiers) and focused only on two-class problems. 
Bernardo et al. (2021) proposed an experimental comparison of methods for imbalanced 
data streams. They extended Brzeziński et  al. (2021) benchmarks using different levels 
of imbalance ratio and three drift speeds. However, their study analyzed a limited num-
ber of algorithms (11 classifiers) and only three real-world datasets. Cano and Krawczyk 
(2022) presented a large comparison of 30 algorithms focusing on ensemble approaches 
but 21 of them were general-purpose ensembles rather than imbalanced specific classifiers. 
These four works address only binary class imbalanced data streams. This paper extends 
the benchmark evaluation from all previous studies, proposes new benchmark scenarios, 
extends the number of real-world datasets, and evaluates both two-class and multi-class 
imbalanced data streams. We also extend the comparison to 24 classifiers, 19 of them spe-
cifically designed for imbalanced data streams. Table 1 summarizes the main differences 
in the experimental evaluations of these works. This allows us to conclude that while these 
works are an important first step, there is a need for a unified, comprehensive, and holis-
tic study of learning from imbalanced data streams that could be used as a template for 
researchers to evaluate their newly proposed algorithms.

This paper is organized as follows. Section 2 provides a background on data streams. 
Section 3 discusses the main challenges of imbalanced data. Section 4 presents the spe-
cific difficulties of imbalanced streams. Section  5 describes the approaches for tackling 
imbalanced steams with ensembles. Section 6 introduces the experimental setup and meth-
odology. Section 7 presents and analyzes the results of our study. Section 8 summarizes 
the lessons learned. Section 9 formulates recommendations to end-users for selecting the 
best algorithms for imbalanced data streams. Section 10 discusses the open challenges and 
future directions. Finally, Sect. 11 covers the conclusions.

2  Data streams

In this section we present the preliminaries of data stream characteristics, learning 
approaches, and the concept drift properties.

Table 1  Comparison of the number of algorithms and benchmarks evaluated in most related works

Wang et al. 
(2018)

Brzeziński 
et al. (2021)

Bernardo 
et al. (2021)

Cano and Kraw-
czyk (2022)

This paper

Algorithms
 General purpose × 1 2 21 5
 Imbalanced specific 10 4 9 9 19
Benchmarks
 Binary class generators 4 385 232 99 406
 Binary class datasets 3 4 3 16 19
 Multi-class generators × × × × 72
 Multi-class datasets × × × × 18
Total algorithms 10 5 11 30 24
Total benchmarks 7 389 235 115 515
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2.1  Data stream characteristics

The main characteristics of data streams can be summarized as follows (Gama, 2010; 
Krempl et al., 2014; Bahri et al., 2021):

• Volume. Streams are potentially unbounded collections of data that constantly 
flood the system and thus they are impossible to be stored and must be pro-
cessed incrementally. The volume also imposes limitations on the computational 
resources, which are magnitudes smaller than the actual size of data would call for.

• Velocity. Streaming data sources are in constant motion. New data is being gener-
ated continuously and often in rapid bursts, leading to high-speed data streams. 
These force learning systems to work in real-time, must be analyzed and incorpo-
rated into the learning system to model the current state of the stream.

• Non-stationarity. Data streams are subject to change over time, which is known as 
concept drift. This phenomenon may affect feature distributions, class boundaries, 
but also lead to changes in class proportions, or emergence of new classes (or dis-
appearance of old ones).

• Veracity. Data arriving from the stream can be uncertain and affected by various 
problems, such as noise, injection of adversarial patterns, or missing values. Hav-
ing access to fully labeled stream is often impossible due to cost and time require-
ments, leading to need for learning from weakly labeled instances.

We can define a stream S as a sequence < s1, s2, s3,… , s
∞
> . We consider a supervised 

scenario si = (X, y) , where X = [x1, x2,… , xf ] with f as the dimensionality of the fea-
ture space, and y as the target variable, which may or may not be available on arrival. 
Each instance in the stream is independent and randomly drawn from a stationary 
probability distribution. Figure  1 illustrates the workflow to learn from data streams 
and approaches to tackle related challenges (Gama, 2012; Nguyen et al., 2015; Ditzler 
et al., 2015; Wares et al., 2019).

Fig. 1  Streaming learning taxonomy
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2.2  Learning model

Due to both the volume and velocity of data streams, algorithms need to be capable of 
incremental processing of the continuously arriving information. Instances from the data 
stream are provided either online, or in the form of data chunks (portions, blocks).

• Online. Algorithms will process each single instance one by one. The main advantage 
of this approach is a low response time and adaptivity to changes in the stream. The 
main drawback lies in their limited view of the current state of the stream, as a single 
instance can be either a poor representation of a larger concept or may be susceptible to 
noise.

• Chunk. Instances are processed in windows called data chunks or blocks. Chunk-
based approaches offer a better estimation of the current concept due to a larger train-
ing sample size. The main drawback is the delayed response to changes in some set-
tings because the construction, evaluation, or updating of classifiers is done when all 
instances from a new block are available. Additionally, in case of rapid changes chunks 
may consist of instances coming from multiple concepts, further harming the adapta-
tion capabilities.

• Hybrid. Hybrid approaches can combine the previous methodologies to address their 
shortcomings. One of the most popular approaches is to use online learning, while 
maintaining chunks of data to extract statistics and useful knowledge about the stream 
for additional periodical classifier updates.

2.3  Concept drift

Data streams are subject to a phenomenon called concept drift (Krawczyk et  al., 2017; 
Lu et al., 2018). Each instance arrives at a time t and is generated by a probabilistic dis-
tribution Φt

(X, y) where X corresponds to the feature vector and y to the class label. If the 
same probability distribution generates all instances in the stream, data is stationary, i.e., 
originating from the same concept. On the other hand, if two separate instances, arriving 
at times t and t + C , are generated by Φt

(X, y) and Φt+C
(X, y) . If Φt ≠ Φ

t+C , then a con-
cept drift occurred. When analyzing and understanding concept drift, following factors are 
considered:

• Influence of the decision boundaries. Here we distinguish: (i) virtual; and (ii) real 
types of drift. Virtual drift can be defined as a change in the unconditional probabil-
ity distribution P(x), meaning it does not affect the learned decision boundaries. Such 
drift, while not having a deteriorating influence on learning models, must be detected 
as it may trigger false alarms and force unnecessary, yet costly adaptation. Real concept 
drift affects the decision boundaries, making them worthless to the current concept. 
Detecting it and adapting to new distribution is crucial for maintaining predictive per-
formance.

• Speed of change. Here we can distinguish three types of concept drift (Webb et al., 
2016): (i) incremental; (ii) gradual; and (iii) sudden. Incremental drift generates a 
sequence of intermediate states between the old and new concept that are often. This 
requires detection of the stabilization moment when new concept becomes fully formed 
and relevant. Gradual drift oscillates between instances coming from both old and new 
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concepts, with new concept becoming more and more frequent over time. Sudden drift 
instantaneously switches between old and new concept, leading to an instant degrada-
tion of the underlying learning algorithm.

• Recurrence. Changes in the stream can be either unique or recurring. In the latter case 
the previously seen concept may reemerge over time, allowing us to recycle previously 
learned knowledge. This calls for having a repository of models that can be utilized for 
faster adaptation to previously seen changes. With more relaxed assumptions, one can 
extend recurrence to appearance of concepts similar to the ones seen in the past. Here, 
the past knowledge can be used as initialization point for the drift recovery.

There are two strategies to tackle concept drift: explicit and implicit (Lu et al., 2018; Han 
et al., 2022):

• Explicit. Here drift adaptation is managed by an external tool, called drift detector 
(Barros & Santos, 2018). They are used for continuous monitoring of the stream prop-
erties (e.g. statistics) or classifier performance (e.g. error rates). Drift detectors raise 
a warning signal when there are signs of upcoming drift, and alarm signal when the 
concept drift has taken place. When drift is detected, the classifier is replaced with a 
new one trained on recent instances. The pitfall of drift detectors is the need for labeled 
instances (semi-supervised and unsupervised detectors also exist but are less accurate) 
and false alarms that replaces competent classifiers.

• Implicit. Here drift adaptation is managed by learning mechanisms embedded in the 
classifier, assuming that it can adjust itself to new instances from the latest concept and 
gradually forget outdated information (Ditzler et al., 2015; da Costa et al., 2018). This 
requires establishing proper learning and forgetting rates, use of adaptive sliding win-
dows, or continual hyperparameter tuning.

2.4  Access to labels

Obtaining the ground truth (e.g. class labels) in a data stream setting relates to signifi-
cant time and cost requirements. As instances arrive continuously and in large volumes, 
domain experts may not be able to label a significant portion of the data or may not be 
able to provide labels fast enough. In the case of applications where labels can be obtained 
at no cost (e.g. weather prediction), a significant delay between instance and label arrival 
must be considered. Data streams can be divided into three groups concerning ground truth 
availability:

• Fully-labeled. For every instance x in the stream the label y is known and can be used 
for training. This scenario assumes no need for explicit label query and is the most 
common one for evaluating stream learning algorithms. However, the assumption of a 
fully labeled stream may not be feasible for many real-world applications.

• Partially labeled. Only a subset of instances in the stream are labeled on arrival. 
The ratio between labeled and unlabeled instances can change overtime. This sce-
nario requires either active learning for selecting most valuable instances for labelling 
(Žliobaitė et  al., 2013) or semi-supervised mechanisms for extending the knowledge 
from labeled instances unto unlabeled ones (Bhowmick & Narvekar, 2022; Gomes 
et al., 2022).
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• Unlabeled. Every instance arrives without label and one cannot obtain it upon request, 
or it will arrive with a significant delay. This forces approximation mechanisms that can 
either generate pseudo-labels, look for evolving structures in data, or use delayed labels 
to approximate future concepts.

In this work, only fully labeled streams were used, but some of the algorithms evaluated 
possess mechanisms to deal with partially labeled or unlabeled streams.

3  Imbalanced data

In this section we will discuss shortly the main challenges present when learning from 
imbalanced data. Almost three decades of developments in this field allowed us to gain 
deeper insights into what inhibits the performance of classifier training procedures under 
skewed distributions (Fernández et al., 2018a).

• Imbalance ratio. The most obvious and well-studied property of imbalanced datasets 
is their imbalance ratio, i.e., the disproportion between majority and minority classes. 
It is commonly assumed that the higher the imbalance ratio, the more difficulty it poses 
to a classifier. This is justified by the fact that most classifier training procedures are 
driven by 0-1 loss functions that assume uniform importance of every instance. There-
fore, the more predominant the majority class is, the more classifier becomes biased 
towards it. However, many recent studies have pointed out that the imbalance ratio is 
not the sole source of learning difficulties (He & Ma, 2013). As long as classes are 
well-separated and sufficiently represented in the training set, even very high imbalance 
ratio will not significantly impair the classifier. Therefore, we must look into instance-
level properties to find other sources of classifier bias.

• Small sample size. The imbalance ratio is often accompanied by the fact that minority 
class is appearing infrequently and collecting sufficient number of instances may be 
costly, time-consuming, or simply impossible. This leads to an issue of small sample 
size, where minority class does not have big enough training set to allow classifiers to 
correctly capture its characteristics (Wasikowski & Chen, 2010). This, combined with 
high imbalance ratio, can significantly affect the training procedure, leading to poor 
generalization capabilities and classification bias. Furthermore, small sample size can-
not guarantee that the training set is representative of the actual distribution - problem 
known as data shift (Rabanser et al., 2019).

• Class overlapping. Another challenge in imbalanced learning comes from the topol-
ogy of classes, as often minority and majority classes overlap significantly. Class over-
lap poses difficulty for standard machine learning problems (Galar et al., 2014), while 
presence of skewed distribution makes it even more challenging (Vuttipittayamongkol 
et al., 2021). Overlapping regions can be seen as uncertainty regions for classifiers. In 
such case, the majority class will dominate the training procedure, leading to decision 
boundary ignoring the minority class in the overlapping area. This problem becomes 
even more difficult when dealing with multiple classes overlapping with each other.

• Instance-level difficulties. The problem of class overlapping points out to the impor-
tance of analyzing the properties of minority class instances and their individual dif-
ficulties. Minority classes often form small disjuncts, creating subconcepts that further 
reduce the minority class sample size in given area (García et al., 2015). When looking 
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at individual properties of each instance, one can analyze its neighborhood in order 
to determine how challenging it will be for the classifier. A popular taxonomy divides 
minority instances into safe, borderline, rare, and outliers based on how homogeneous 
are the class labels of their nearest neighbors (Napierala & Stefanowski, 2016). This 
information can be utilized to either obtain more effective resampling approaches or 
guide the classifier training procedure.

4  Imbalanced data streams

Class imbalance is one of the most vital problems in contemporary machine learning 
(Fernández et al., 2018a; Wang et al., 2019). It deals with a disproportion among the num-
ber of instances in each class, where some of the classes are significantly underrepresented. 
As most classifiers are driven by 0-1 loss, they get biased towards the easier to model 
majority classes. The underrepresented minority classes are usually the more important 
ones, thus one needs to alter either the dataset or learning procedure to create balanced 
decision boundaries that do not favor any of the classes.

Class imbalance is a common problem in the data stream mining domain (Wu et  al., 
2014; Aminian et  al., 2019). Here streams can have a fixed imbalance ratio, or it may 
evolve over time (Komorniczak et  al., 2021). Furthermore, class imbalance combined 
with concept drift poses novel and unique challenges (Brzeziński & Stefanowski, 2017; 
Sun et al., 2021). Class roles may switch (majority becomes the minority and vice versa), 
several classes may change (new classes appearing or old disappearing), or instance level 
difficulties may emerge (evolving class overlapping or clusters/sub-concepts) (Krawczyk, 
2016). Changes in the imbalance ratio can be independent or connected with concept drift, 
where class definitions ( P(y ∣ x) ) will change over time (Wang & Minku, 2020). Hence-
forth, monitoring each class for changes in its properties is not enough, as one also needs to 
track per-class frequencies of arriving new instances.

In most real-life scenarios streams are not predefined as balanced or imbalanced and 
they may become imbalanced only temporarily (Wang et al., 2018). Users’ interests over 
time (where new topics emerge and old ones lose relevance) (Wang et  al., 2014), social 
media analysis (Liu et al., 2020), or medical data streams (Al-Shammari et al., 2019) are 
examples of such cases. Therefore, a robust data stream mining algorithm should display 
high predictive performance regardless of the underlying class distributions (Fernández 
et  al., 2018a). Most algorithms dedicated to imbalanced data streams do not perform as 
well on balanced problems as their canonical counterparts (Cano & Krawczyk, 2020). On 
the other hand, these canonical algorithms display low robustness to high imbalance ratios. 
There exist but few algorithms that can handle both scenarios with satisfactory perfor-
mance (Cano & Krawczyk, 2020, 2022).

There are two main approaches dedicated to handling imbalanced data:

• Data-level approaches. These methods focus on the alteration of the underlying data-
set to make it balanced (e.g. by oversampling or undersampling), thus being classifier-
agnostic approaches. They focus on resampling or learning more robust representa-
tions.

• Algorithm-level approaches. These methods focus on modifying the training approach 
to make classifiers robust to skewed distributions. They are dedicated to specific learn-
ing models, being often more specialized, but less flexible than their data-level counter-
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parts. Algorithm-level modifications focus on identifying mechanisms that suffer from 
class imbalance, cost-sensitive learning, or one-class classification.

Figure  2 presents a taxonomy (He & Garcia, 2009; Branco et  al., 2016; Krawczyk, 
2016; Fernández et al., 2018a) of approaches for tackling the class imbalance problem. The 
specific details are discussed in the following subsections.

4.1  Data‑level approaches

While resampling techniques are very popular for static imbalanced problems (Fernández 
et al., 2018a; Aminian et al., 2021), they cannot be directly used in the streaming scenario. 
Concept drift may render resampled data obsolete or even harming to the current state of 
the stream (e.g. when classes switch roles and resampling starts to empower further the 
new majority). This calls for dedicated strategies for keeping track of which classes should 
be resampled at a given moment, as well as for mechanisms capable of dealing with drift 
by forgetting outdated artificial instances (Fernández et al., 2018a).

Resampling algorithms can be categorized as either blind or informed (utilizing infor-
mation about minority class properties to at least some degree). While blind approaches 

Fig. 2  Taxonomy of approaches for imbalanced data streams
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can be effectively combined with ensembles due to their low computational cost, they 
do not perform well on their own. Therefore, most resampling methods for data streams 
are informed and based on a very popular SMOTE (Synthetic Minority Over-sampling 
Technique) algorithm (Fernández et al., 2018b). Those versions focus on keeping track of 
changes in the stream by employing either adaptive windows (Korycki & Krawczyk, 2020) 
or data sketches (Bernardo & Della Valle, 2021a; Bernardo & Della Valle, 2021b). This 
allows them to generate relevant artificial instances for the current concept and display 
good reactivity to sudden changes in the stream. It is important to note that the streaming 
version of SMOTE presented in (Korycki & Krawczyk, 2020) can work with any number 
of classes, as well as under extremely limited access to class labels. Incremental Oversam-
pling for Data Streams (IOSDS) (Anupama & Jena, 2019) focuses on replicating instances 
that are not identified as noisy or overlapping. Clustering of data chunks can be used to 
identify the most relevant instances to resample (Czarnowski, 2021). Undersampling via 
Selection-Based Resampling (SRE) (Ren et al., 2019) iteratively removes the safe instances 
from the majority class without introducing reverse bias towards the minority class. Some 
works present the usefulness of combining over and under sampling together to obtain a 
more diverse representation of the minority class (Bobowska et al., 2019). When handling 
multi-class imbalanced data streams, resampling can be either conducted using information 
about all of classes (Korycki & Krawczyk, 2020; Sadeghi & Viktor, 2021) or by applying 
binarization schemes and pairwise resampling (Mohammed et  al., 2020a). Active learn-
ing techniques such as dynamic budgets (Aguiar & Cano, 2023) and Racing Algorithms 
(Nguyen et  al., 2018) are also combined with resampling techniques to overcome class 
imbalance (Mohammed et  al., 2020b). Disadvantages of data-level methods lie in their 
high memory use (when oversampling), or the possibility of under-representation of older 
concepts that are still relevant (when undersampling).

A study by Korycki and Krawczyk (2021b) discusses an alternative data-level approach 
to resampling. They propose to create dynamic and low-dimensional embeddings that use 
information about the class imbalance ratio and separability to find highly discriminative 
projections. A well-defined low-dimensional embedding may offer better class separability 
and thus make resampling obsolete, especially when dealing with high-dimensional and 
difficult imbalanced data streams.

4.2  Algorithm‑level approaches

Among training modifications, the most popular one is the combination of Hoeffding Deci-
sion Trees with Hellinger splitting criteria to make skew-insensitive (Lyon et  al., 2014). 
Ksieniewicz (2021) proposed a method to modify predictions of a base classifier on-the-
fly, aiming at modifying prior probabilities based on the frequency of each class. A new 
loss function was proposed to make neural networks able to handle imbalanced streams in 
an online setting (Ghazikhani et al., 2014). A combination of online active learning, sia-
mese networks, and multi-queue memory was introduced by (Malialis et al., 2022). Vari-
ous modifications of the popular Nearest Neighbors classifier have been adapted to tackling 
imbalanced data streams by using either dedicated memory formation or skew-insensitive 
distance metrics (Vaquet & Hammer, 2020; Roseberry et al., 2019; Abolfazli & Ntoutsi, 
2020). Genetic programming has been successfully used for induction of robust classifiers 
from the stream (Jedrzejowicz & Jedrzejowicz, 2020), as well as increasing skew-insensi-
tive rule interpretability and recovery speed from concept drift (Cano & Krawczyk, 2019).
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Cost-sensitive methods have been applied to streaming decision trees. Krawczyk and Skry-
jomski (2017) proposed replacing leaves with perceptrons that use cost-sensitive threshold 
adjustment of class-based outputs. Their cost matrix is adapted in an online fashion to the 
evolving imbalance ratio, while multiple expositions of difficult instances are used to improve 
adaptation. Alternatively, Gaussian cost-sensitive decision trees combine cost and accuracy 
into a hybrid criterion during their training (Guo et al., 2013). Another approach uses Online 
Multiple Cost-Sensitive Learning (OMCSL) (Yan et  al., 2017) where cost matrices for all 
classes are adjusted incrementally according to a sliding window. The recent framework pro-
posed two-stage cost-sensitive learning, where a cost matrix is used for both online feature 
selection and classification (Sun et  al., 2020). Finally, cost-sensitive approaches have been 
combined with Extreme Learning Machine algorithms via weighting matrices and misclas-
sification costs (Li-wen et al., 1994).

One-class classification is an interesting solution to class imbalance, where one uses these 
class-specific models to either describe minority class or all the classes (achieving a one-class 
decomposition of multi-class problems) (Krawczyk et al., 2018). One-class classifiers can be 
used for data stream mining scenarios and display good reactivity to concept drift (Krawczyk 
& Wozniak, 2015). One can use adaptive online one-class Support Vector Machines to track 
minority classes and their changes over time (Klikowski & Woźniak, 2020). One can combine 
one-class classification with ensembles, over-sampling, and instance selection (Czarnowski, 
2022). One-class classifiers can be combined with active learning to select the most informa-
tive instances from the stream to be used for class modeling (Gao, 2015). Anomaly detection, 
similar in its assumptions to one-class classifiers can also be used to identify minority and 
majority instances in the stream (Liang et al., 2021).

4.3  Similar domains

When talking about learning from imbalanced data streams, it is necessary to mention to sim-
ilar domains in contemporary machine learning, namely continual learning and long-tailed 
recognition.

Similarities to continual learning. It is important to mention that data stream mining can 
often be viewed as task-free continual learning (Krawczyk, 2021). While imbalanced prob-
lems have not been yet discussed widely in this setup, there are some works noticing the 
importance of handling skewed class distributions for continual deep learning (Chrysakis & 
Moens, 2020; Kim et al., 2020; Arya & Hanumat Sastry, 2022; Priya & Uthra, 2021).

Similarities to long-tailed recognition. The extreme case of multi-class imbalance is 
known as long-tailed recognition (Yang et al., 2022). It deals with situations, where we have 
hundreds or thousands of classes, with progressively increasing imbalance ratio and smallest 
classes being extremely imbalanced compared to the majority ones (hence long-tailed class-
based distribution of instances). This problem is mainly discussed in the context of deep learn-
ing, where various decomposition strategies (Zhu et  al., 2022), loss functions (Zhao et  al., 
2022), or cost-sensitive solutions (Peng et al., 2022) are being utilized. Currently, there are but 
few works that discuss the combined challenge of continual learning from long-tailed distribu-
tions (Kim et al., 2020).
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5  Ensembles for imbalanced data streams

Combining multiple classifiers into an ensemble is one of the most powerful approaches 
in modern machine learning, leading to improved predictive performance, generalization 
capabilities, and robustness. Ensembles have proven themselves to be highly effective for 
data streams, as they offer unique ways of managing concept drift and class imbalance 
(Krawczyk et al., 2017). The former can be achieved by adding new classifiers or updating 
the existing ones, while the latter is achieved by combining classifiers with different skew-
insensitive approaches (Brzeziński & Stefanowski, 2018; Grzyb et  al., 2021; Du et  al., 
2021).

Ensembles for data streams can be categorized by the following design choices:

• Classifier pool generation. There are two major approaches for generating a pool of 
classifiers for forming an ensemble: heterogeneous and homogeneous (Bian & Wang, 
2007). Heterogeneous solutions assume that we ensure diversity of the pool by using 
different classifier models, aiming at exploiting their individual strengths at forming 
decision boundaries. Homogeneous solutions assume that we select a specific type of 
classifier (e.g., popular choice are decision trees) and then ensure diversity among them 
by modification of the training set. This is usually achieved by one of two popular solu-
tions: bagging and boosting. Bagging (bootstrap aggregating) trains multiple independ-
ent base learners in parallel and combines their predictions using an aggregation func-
tion (e.g. by simple average or simple majority vote). Boosting trains the base learners 
in a sequential way. Each model in the sequence is fitted giving more importance to 
observations in the dataset that were poorly handled by the previous models. Predic-
tions are combined using a deterministic strategy (e.g. weighted majority voting). It is 
worthwhile noting that while the majority of the methods are based on either heteroge-
neous pool or homogeneous weak learners, there exist alternative approaches, such as 
generating hybrid pools (using multiple types of models, but also generating multiple 
learners for each of them) (Luong et al., 2020) and using projections (Korycki & Kraw-
czyk, 2021b).

• Feature space modification. This defines what feature space input is being used by 
base classifiers. They can either be trained on full feature space (here their diversity 
must be ensured in another way), feature subspaces, or completely new feature embed-
dings (e.g. creating artificial feature spaces).

• Ensemble line-up. This defines how ensembles are managed during the continual 
learning from streams. Voting procedures can be used for dynamical adjustment of base 
learners’ importance. Ensembles can be fixed, meaning that each base learner is contin-
uously updated, but never removed. Alternatively, one can use a dynamic setup, where 
worst classifiers are pruned and replaced by new ones trained on more recent instances. 
Finally, all of these mentioned techniques can be combined to create hybrid architec-
tures, capable of better responsiveness to concept drift.

For imbalanced data streams, ensembles are usually combined with techniques mentioned 
in the previous section. Figure 3 presents a taxonomy (Krawczyk et al., 2017; Gomes et al., 
2017a) based on how ensembles are built for data streams and how this can be connected 
with the previously discussed approaches to handle drifting and imbalanced streams.

The most popular approach lies in combining resampling techniques with Online Bag-
ging (Wang et al., 2015, 2016; Wang & Pineau, 2016). Similar strategies can be applied to 



4178 Machine Learning (2024) 113:4165–4243

1 3

Adaptive Random Forest (Gomes et al., 2017b), Online Boosting (Klikowski & Woźniak, 
2019; Gomes et al., 2019), Dynamic Weighted Majority (Lu et al., 2017), Dynamic Fea-
ture Selection (Wu et al., 2014), Adaptive Random Forest with resampling (Ferreira et al., 
2019), Kappa Updated Ensemble (Cano & Krawczyk, 2020), Robust Online Self-Adjusting 
Ensemble (Cano & Krawczyk, 2022), Deterministic Sampling Classifier with weighted 
Bagging (Klikowski & Wozniak, 2022), Dynamic Ensemble Selection (Jiao et al., 2022; 
Han et al., 2023) or any ensemble that can incrementally update its base learners (Ancy 
& Paulraj, 2020; Li et  al., 2020). It is interesting to note that preprocessing approaches 
enhance diversity among base classifiers (Zyblewski et  al., 2019). Alternatively, cost-
sensitive solutions can be used together with ensembles such as Adaptive Random Forest 
(Loezer et al., 2020).

The effectiveness of ensembles for imbalanced data streams can be further increased by 
using dedicated combination schemes or adaptive chunk-based learning (Lu et al., 2020). 
Weights assigned for each base classifier can be continuously updated to reflect their cur-
rent competencies on minority classes (Ren et al., 2018). A reinforcement learning mecha-
nism can be used to increase the weights of the base classifiers that perform better on the 
minority class (Zhang et al., 2019). One can use a hybrid approach that combines resam-
pling minority instances with dynamic weighting base classifiers based on their predictive 
performance on sliding windows of minority samples (Yan et al., 2022). Dynamic selection 
of classifiers and their related preprocessing techniques can be a very effective tool for han-
dling concept drift, as it offers exploitation of diversity among base classifiers (Zyblewski 
et al., 2021; Zyblewski & Woźniak, 2021). Alternatively, classifier selection balances sub-
sets of the incoming stream. Cost-sensitive neural networks can be initialized using dif-
ferent random weights and then incrementally improved with new instances (Ghazikhani 
et al., 2013). OSELM (Li-wen et al., 1994) classifiers can be combined using diverse ini-
tialization to generate a more robust compound classifier (Wang et al., 2021).

Finally, ensembles found their applications in imbalanced data streams with limited 
access to class labels. CALMID is a robust framework to deal with limited label access, 
concept drift, and class imbalance by dynamically inducing new base classifiers with the 
weighting of the most relevant instances (Liu et  al., 2021). Another approach uses rein-
forcement learning (Zhang et  al., 2022) to select instances for updating the ensemble 

Fig. 3  Taxonomy of ensemble definition for imbalanced data streams
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under labeling constraints. In multi-class imbalance settings, self-training semi-super-
vised (Vafaie et al., 2020) methods were applied to self-labeling driven by a small subset 
of labeled instances. It can be realized by an abstaining mechanism temporarily removing 
uncertain classifiers, with dynamically adjusting the abstaining criterion in favor of minor-
ity classes (Korycki et al., 2019).

While the vast majority of mentioned ensembles use Hoeffding Decision Trees (or their 
variants) as base classifiers, there are several skew-insensitive ensembles dedicated to neu-
ral networks. ESOS-ELM (Mirza et al., 2015) maintains randomized neural networks that 
are trained on balanced subsets of the incoming stream. Cost-sensitive neural networks can 
be initialized using random weights and then incrementally improved with new instances 
(Ghazikhani et al., 2013). OSELM (Li-wen et al., 1994) classifiers can be combined using 
diverse initialization to generate a more robust compound classifier (Wang et al., 2021).

Finally, ensembles found their applications in imbalanced data streams with limited 
access to class labels. CALMID is a robust framework to deal with limited label access, 
concept drift, and class imbalance by dynamically inducing new base classifiers with the 
weighting of the most relevant instances (Liu et  al., 2021). Another approach uses rein-
forcement learning (Zhang et  al., 2022) to select instances for updating the ensemble 
under labeling constraints. In multi-class imbalance settings, self-training semi-supervised 
(Vafaie et  al., 2020) methods were applied to self-labeling driven by a small subset of 
labeled instances.

6  Experimental setup

The experimental study was designed to evaluate the performance of data stream mining 
algorithms under varied imbalanced scenarios and difficulties. We aim at gaining a better 
understanding of the data difficulties and how they impact the classifiers. We address the 
following research questions (RQ):

• RQ1: How do different levels of class imbalance ratio affect the algorithms?
• RQ2: How do static versus dynamic imbalance ratios influence the classifiers?
• RQ3: How do instance-level difficulties impact the classifiers?
• RQ4: How do algorithms adapt to simultaneous concept drift and imbalance ratio 

changes?
• RQ5: Are there differences on the performance between imbalanced generators and 

real-world streams?
• RQ6: Is there trade-off between the accuracy and the computational and memory com-

plexities?
• RQ7: What are the lessons learned? Which algorithm should I use in my dataset?

To answer these questions, we formulate a set of benchmark problems building on experi-
ments proposed in previous studies and new ones to assess additional data difficulties in 
two-class and multi-class imbalanced data streams. One of the major issues in this research 
area is the lack of standardized and agreed-upon procedures and benchmarks on how 
to evaluate these algorithms holistically. Therefore, we evaluate a comprehensive set of 
benchmark problems which includes an exhaustive list of data difficulties in imbalanced 
data streams. The experimental study in Sect. 7 is divided into the following experiments 
whereas Sect. 8 discusses the lessons learned and recommendations.
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6.1  Algorithms

The experiments comprise 24 state-of-the-art algorithms for data streams, including best-
performing general-purpose ensembles and algorithms specifically designed for imbal-
anced streams. Algorithms are presented in Table 2 with their characteristics according to 
the established taxonomies. Specific properties of the ensemble models are presented in 
Table 3. All algorithms are implemented in MOA (Bifet et al., 2010b). The source code of 
the algorithms and the experiments are publicly available on GitHub to facilitate the trans-
parency and reproducibility of this research.1 All results, interactive plots and tables are 
available on the website.2 Algorithms were run on a cluster with 2300 AMD EPYC2 cores, 
12 TB RAM, and Centos 7. No individual hyperparameter optimization was conducted for 
any algorithm. All algorithms use the parameter settings recommended by their authors on 
their respective implementations. All ensembles are evaluated with the same parameter set-
tings of 10 base classifiers using Hoeffding tree as the base learner. We acknowledge that 
algorithms often depend on parameters that may have a significant impact on the results 
obtained. Some methods use random generators which require an initial random seed. Dif-
ferent seeds will produce different results and multiple seeds should be run when the num-
ber of benchmarks is small due to the central limited theorem. Other methods have param-
eters that affect the classifier learning (e.g. the split confidence of the Hoeffding tree) that 
should be more carefully chosen when fitting a particular dataset. Due to the large number 

Table 3  Ensemble algorithms and their taxonomy

Ensemble Meta-algorithm Feature space Line-up

ARF Bagging Feature subsets Fixed
KUE Bagging Feature subsets Dynamic weighting
LB Bagging Full feature space Fixed
OBA Boosting Full feature space Fixed
SRP Bagging Feature subsets Change dynamic
ESOS-ELM Other Full feature space Hybrid
CALMID Other Full feature space Change dynamic
MICFOAL Other Full feature space Change dynamic
ROSE Bagging Feature subsets Dynamic weighting
OADA Boosting Full feature space Fixed
OADAC2 Boosting Full feature space Fixed
ARFR Bagging Feature subsets Fixed
SMOTE-OB Bagging Feature subsets Fixed
OSMOTE Bagging Feature subsets Fixed
OOB Bagging Full feature space Fixed
UOB Bagging Full feature space Fixed
ORUS Boosting Feature subsets Fixed
OUOB Bagging Feature subsets Fixed

1 Source code, experiments, and results are available at https:// github. com/ canoa lberto/ imbal anced- strea ms.
2 Interactive plots and tables for all experiments are available at https:// people. vcu. edu/ ~acano/ imbal anced- 
strea ms.

https://github.com/canoalberto/imbalanced-streams
https://people.vcu.edu/%7eacano/imbalanced-streams
https://people.vcu.edu/%7eacano/imbalanced-streams
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of benchmarks, experiments, and data size, the results reported on the paper are the median 
for 5 runs (5 seeds). Complete results to facilitate future comparisons and detailed informa-
tion about the specific parameter configuration are available on the GitHub repository.

6.2  Generators

To evaluate the classifiers in specific and controlled scenarios, we prepared data streams 
generators under different imbalanced and drifting settings. Nine generators in MOA (Bifet 
et al., 2010b) plus one generator proposed by Brzeziński et al. (2021) were used. Those gen-
erators are presented in Table 4, with their number of attributes, classes, and whether they 
can generate internal concept drifts. All generators are evaluated on a stream of 200,000 
instances. For generators where it is possible to use a configurable number of attributes, the 
default value on the table was used. The number of classes was adjusted according to the 
experiment (2 for binary class experiments and 5 for multi-class experiments).

6.3  Performance evaluation

The algorithms were evaluated using the test-then-train model, where each instance is first 
used to test then update the classifier in an online manner (instance by instance). We meas-
ured seven performance metrics (Accuracy, Kappa, G-Mean, AUC, PMAUC, WMAUC, 
and EWMAUC). Complete results are available on the website https:// people. vcu. edu/ 
~acano/ imbal anced- strea ms. However, due to the limitations of space in the manuscript, 
we show results for Kappa, G-Mean, and the Area Under the Curve (AUC). They are cal-
culated over a sliding window of 500 instances. We also acknowledge that there are differ-
ent schools of thought regarding the best selection of performance metrics for imbalanced 
data. Our argument is that in order to have a comprehensive evaluation of the classifier 
performance on imbalanced datasets, one should not use only one metric, whichever the 
metric is, since all metrics have biases one way or another, and focus on assessing differ-
ent aspects. Therefore, in our study, we report pairs of metrics that we have observed they 
exhibit complementary behaviors.

Kappa is often used to evaluate classifiers in imbalanced settings (Japkowicz, 2013; 
Brzeziński et  al., 2018, 2019). It evaluates the classifier performance by computing the 
inter-rater agreement between the successful predictions and the statistical distribution of 

Table 4  Specifications of the data stream generators

Generator Attributes Classes Concept drift

Agrawal 10 2 ✓ Functions
Asset 5 2 ✓ Functions
Brzeziński N (5) 2 ✓ Centroids
Hyperplane 12 N (2 binary class, 5 multi-class) ✓ Features
Mixed 4 2 ✓ Function
RandomRBF N (10) N (2 binary class, 5 multi-class) ✓ Centroids
RandomTree N (10) N (2 binary class, 5 multi-class) ✓ Trees
SEA 3 2 ✓ Function
Sine 3 2 ✓ Function
Text 100 2 ×

https://people.vcu.edu/%7eacano/imbalanced-streams
https://people.vcu.edu/%7eacano/imbalanced-streams
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the data classes, correcting agreements that occur by mere statistical chance. Kappa values 
range from −100 (total disagreement) through 0 (default probabilistic classification) to 100 
(total agreement) as Eq. 1.

where xii is the count of cases in the main diagonal of the confusion matrix, n is the num-
ber of examples, c is the number of classes, and x.i , xi. are the column and row total counts, 
respectively. Kappa punishes homogeneous predictions, which is very important to detect 
in imbalanced scenarios but can be too drastic in penalizing misclassifications on difficult 
data. Moreover, Kappa provides better insights in detecting changes in the distribution of 
classes in multi-class imbalanced data. However, some authors recommend to avoid Kappa 
as Kappa’s values vary depending not only on the performance of the model in question, 
but also on the level of class imbalance in the data, which can make the analyses difficult 
(Luque et al., 2019).

To tackle a balance between the performance of classifiers on the majority and minor-
ity classes, many researchers consider null-bias metrics such as sensitivity and specificity 
(Brzeziński & Stefanowski, 2018). These metrics are based on the confusion matrix: true 
positive (TP), true negative (TN), false positive (FP), and false negative (FN). Sensitivity, 
also called recall, is the ratio of correctly classified instances from the minority class (true 
positive rate) defined in Eq. 2. Specificity is the ratio of instances correctly classified from 
the majority class (true negative rate) defined in Eq.  3. The geometric mean (G-Mean) 
is the product of the two metrics as defined in Eq. 4. This measure tries to maximize the 
accuracy of each of the classes while keeping these accuracies balanced. G-Mean is a rec-
ommended null-bias metric for class imbalance (Luque et al., 2019). For multi-class data, 
the geometric mean is the square root of the product of class-wise sensitivity. However, this 
introduces the problem that as soon as the recall for one class is 0 the product of the whole 
geometric mean becomes 0. Therefore, it is much more complicated to use in multi-class 
experiments with a large number of classes and consequently, AUC would be preferred.

The Area Under the Curve (AUC) is invariant to changes in class distribution and provides 
a statistical interpretation for scoring classifiers. However, to measure the ranking ability of 
the classifiers the AUC needs to sort the data and iterate through each example. We employ 
the prequential AUC formulation proposed by Brzeziński and Stefanowski (2017) which 
uses a sorted tree structure with a sliding window. The AUC formulation was extended 
by (Wang & Minku, 2020) for multi-class problems defining the Prequential Multi-Class 
(PMAUC) as Eq. 5.

(1)Kappa =

n

c
∑

i=1

xii −

c
∑

i=1

xi.x.i

n2 −

c
∑

i=1

xi.x.i

⋅ 100

(2)Sensitivity = Recall =
TP

TP + FN

(3)Specificity =
TN

TN + FP

(4)G−Mean =

√

Sensitivity × Specificity
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where A(i ∣ j) is pairwise AUC when treating class i as the positive class and class j as 
negative, and C is the number of classes. Extensions of the PMAUC calculation include 
Weighted Multi-class AUC (WMAUC) and Equal Weighted Multi-class AUC (EWMAUC) 
(Wang & Minku, 2020).

Both AUC and G-Mean are blind regarding the level of the class imbalance, while 
Kappa takes into account the class distribution but makes it more difficult to understand. 
Therefore, in cases of extreme imbalance ratios, the Kappa metric can be very dissimilar to 
the G-Mean and AUC, which means a classifier can have a high value of AUC, but a very 
low Kappa value. This is very useful to understand the behavior of a classifier under high 
imbalance ratios and how different metrics exhibit complementary facets of the classifica-
tion performance. Therefore, it is important to evaluate the algorithms using both metrics 
in other to counterbalance overestimation. Henceforth, in our experiments presented in the 
manuscript, we evaluated the classifiers with G-Mean and Kappa for binary class scenarios 
and PMAUC and Kappa for multi-class scenarios. Metrics were calculated prequentially 
(Gama et al., 2013) using a sliding window of 500 examples. Complete results for all met-
rics (Accuracy, Kappa, G-Mean, AUC, PMAUC, WMAUC, and EWMAUC) are available 
on the website https:// people. vcu. edu/ ~acano/ imbal anced- strea ms for analysis and compar-
ison with future works.

7  Results

This section presents the experimental results from the set of benchmarks proposed to 
answer the research questions. Section 7.1 shows the experiments on binary class imbal-
anced streams. Section  7.2 shows the experiments on multi-class imbalanced streams. 
Finally, Sect. 7.3 shows overall results and an aggregated comparison of all algorithms.

Due to the very large number of experiments conducted in this work, we present in the 
manuscript a selection of the most representative results. The experiments are organized to 
show three levels of detail in the results. First, a more detailed comparison of the top five 
methods. Second, an aggregated comparison of the top ten methods. Third, a summary of 
the comparison among all methods. Complete results for all experiments on all algorithms, 
datasets/generators, and metrics are available on the website.3

7.1  Binary class experiments

The first set of experiments focuses on binary class problems with a positive minority class 
and a negative majority class. These experiments include static imbalance ratio, dynamic 
imbalance ratio, instance-level difficulties, concept drift and static imbalance ratio, concept 
drift and dynamic imbalance ratio, and real-world binary class imbalanced datasets.

(5)PMAUC =
1

C(C − 1)
⋅

∑

i≠j

A(i ∣ j)

3 Complete results for all experiments are available at https:// people. vcu. edu/ ~acano/ imbal anced- strea ms.

https://people.vcu.edu/%7eacano/imbalanced-streams
https://people.vcu.edu/%7eacano/imbalanced-streams
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7.1.1  Static imbalance ratio

Goal of the experiment. This experiment was designed to address RQ1 and evaluate the 
robustness of the classifiers under different levels of static class imbalance without concept 
drift. It is expected that classifiers that were designed to tackle class imbalance will pre-
sent better robustness to different levels of imbalance, i.e., to achieve a stable performance 
regardless of the imbalance ratio. To evaluate this, we prepared the generators presented in 
Table 4 with static imbalance ratios (ratio of the size of the majority class to the minority 

Fig. 4  Robustness to different levels of static class imbalance ratio (G-Mean and Kappa)

Table 5  G-Mean and Kappa averages of all 10 streams on static class imbalance ratio

Bold font highlights the best result

IR CSARF ARF KUE LB CALMID ROSE ARFR SMOTE-OB OOB UOB

G-Mean
 1 94.54 94.54 94.10 95.09 94.68 94.65 94.57 93.30 94.15 93.77
 5 94.12 86.79 90.28 92.10 91.87 92.76 93.68 93.44 93.92 93.07
 10 93.48 72.95 79.20 80.38 83.09 89.87 88.59 90.55 92.98 92.16
 20 92.21 57.21 69.44 70.35 69.05 78.75 79.08 83.64 90.39 91.12
 50 88.95 39.55 49.49 47.50 49.14 63.83 47.55 68.44 73.97 89.22
 100 82.75 30.14 36.55 36.41 35.17 46.82 14.50 45.10 60.99 86.78

Kappa
 1 89.13 89.12 88.76 90.24 89.42 89.36 89.20 86.75 88.36 87.63
 5 82.12 79.38 82.83 84.94 84.18 83.86 84.33 80.84 83.77 78.68
 10 70.92 65.64 72.43 74.63 74.88 78.00 72.95 72.72 77.54 65.44
 20 55.19 52.42 62.79 64.10 61.53 65.95 57.38 62.52 69.64 48.24
 50 31.91 36.15 45.92 44.34 44.34 54.15 27.43 47.90 57.14 26.77

100 17.84 28.39 34.55 34.48 32.84 41.09 5.62 35.18 46.93 13.92
Avg. G-Mean 91.01 63.53 69.85 70.30 70.50 77.78 69.66 79.08 84.40 91.02
Avg. Kappa 57.85 58.52 64.55 65.45 64.53 68.73 56.15 64.32 70.56 53.45
Rank G-Mean 3.08 8.08 7.87 5.69 6.32 5.15 5.93 5.25 3.51 4.12
Rank Kappa 6.40 6.49 6.00 4.11 4.77 4.33 6.32 6.00 3.75 6.83
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class as defined by Zhu et al. (2020)) of {5, 10, 20, 50, 100}. This allows us to assess how 
each classifier performs under specific levels of class imbalance. Figure 4 illustrates the 
performance of five selected algorithms with increasing levels of static imbalance ratio. 
Table 5 presents the average G-Mean and Kappa for the top 10 classifiers for each of the 
evaluated imbalance ratios and the overall rank of the algorithms. Figure 5 provides a com-
parison of all algorithms for each level of imbalance ratio. Axes of the ellipse represent 
G-Mean and Kappa metrics. The bigger the axes the better rank of the algorithm on the 
metrics. The more rounded the ellipse the more agreement between the metrics. Finally, 
the color represents a gradient of the product of the two metrics’ ranks—red (worse) to 
green (better).

Discussion
Impact of approach to class imbalance. First, we will analyze the impact of different 

skew-insensitive mechanisms used by analyzed ensembles on their robustness to various 
levels of static imbalance under stationary assumptions. Looking at resampling-based 
methods we can observe a clear distinction between methods based on blind and informa-
tive approaches. Ensembles utilizing blind approaches usually drop their performance 
with an increasing imbalance ratio. Taking UOB as an example, one can see discrepancies 
between G-mean and Kappa metrics. For G-mean UOB maintains its predictive perfor-
mance, to the point that for very high imbalance ratios it outperforms other approaches. 
However, for the Kappa metric, we can see that performance of UOB deteriorates signifi-
cantly with each increase in class disproportions. This shows that UOB produces a good 
true positive ratio but proportionally a larger number of false positives. We can explain 
that by the limitations of undersampling to extreme class imbalance, as to balance the cur-
rent distribution one must aggressively discard majority instances. In static problems the 
higher the disproportion between classes, the higher chance of discarding relevant major-
ity examples. However, in a streaming setting, we analyze the imbalance ratio in an online 
manner, thus UOB is not able to counter the bias towards the majority class accumulated 
over time by undersampling incoming instances one by one. Its counterpart OOB shows 
the opposite behavior, returning best results for Kappa metric. Additionally, for high imbal-
ance ratios OOB starts displaying balanced performance on both metrics. This shows that 
blind oversampling in online scenarios are capable of better and faster countering of bias 
accumulated over time. From informative resampling methods, we can observe that only 
SMOTE-OB returns satisfactory performance. For the Kappa metric, it can outperform 
UOB but does not fare well against OOB. All other algorithms that use SMOTE-based res-
ampling perform even worse. This allows us to conclude that blind oversampling performs 
best from all data-level mechanisms in terms of robustness to static imbalance.

Fig. 5  Comparison of all 24 algorithms for different levels of static class imbalance ratio. The axes of the 
ellipse represent G-Mean and Kappa metrics. The bigger the axes the better rank of the algorithm on the 
metrics. The more rounded the ellipse the more agreement between the metrics. The color gradient repre-
sents the product of both metrics’ ranks (Color figure online)
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Among the algorithm-level solutions, CSARF displays best results for the G-mean met-
ric, outperforming all reference methods. However, it does not hold its performance when 
evaluated using Kappa. This is another striking example of discrepancies between those 
metrics and how they highlight different aspects of imbalanced classification. Alterna-
tive algorithm-level approaches, such as ROSE and CALMID, while performing worse on 
G-mean, offer a more balanced performance on both metrics at once. Additionally, they 
display good robustness to increasing imbalance ratios. Therefore, algorithm selection for 
data streams with static imbalance is far from trivial, as one must choose between methods 
that perform very well only on one of the metrics, or choose a well-rounded method that, 
while not exceeding on any single metric, offers more even performance.

Finally, out of standard ensembles with no skew-insensitive mechanisms, LB returned 
the best predictive performance, outperforming several methods dedicated to imbalanced 
data streams. This did not hold for other methods, such as SRP or ARF that displayed no 
robustness to increasing imbalance ratios.

Impact of ensemble architecture. When we look at the overall best-performing meth-
ods in every scenario, we can see a dominance of ensembles based on bagging or hybrid 
architectures. Bagging offers an easy and effective way of maintaining instance-based 
diversity among base learners that benefits both data and algorithm-level approaches and 
leads to high robustness under various levels of class imbalance. Within bagging meth-
ods, only OUOB can be seen as an outlier. We can explain this using our observations 
from the previous paragraph—that undersampling and oversampling offer contrary perfor-
mance (one favoring G-mean and the other one Kappa). Therefore, by combining those two 
approaches we obtain an ensemble that is driven by two conflicting mechanisms. Boosting-
based ensembles are usually the worst performing ones. We can explain this by the fact that 
boosting mechanism focuses on correcting the errors of the previous classifier in a chain. 
When dealing with high imbalance ratios the errors are driven by a small number of minor-
ity instances, leading to too small sample sizes to effectively improve the performance. 
As usually minority instances are misclassified, assigning high weights to them will lead 
to high error on the majority class by increasing the number of false positives. In the end, 
boosting-based ensembles will consist of classifiers biased towards one of the classes. 
Without proper selection or weighting mechanisms, it is impossible to maintain robustness 
to high imbalance ratios with such classifiers in the ensemble pool.

7.1.2  Dynamic imbalance ratio

Goal of the experiment. This experiment was designed to address RQ2 and to evaluate 
how classifiers behave under dynamic imbalance ratios. Even though many existing meth-
ods were designed to deal with static imbalance ratio, they lack mechanisms that allow 
adaptation to time-varying changes in the imbalance ratio. To evaluate this, we prepared 
four scenarios: (i) increasing the imbalance ratio {1, 5, 10, 20, 50, 100}, (ii) increasing 
then decreasing the imbalance ratio {1, 5, 10, 20, 50, 100, 50, 20, 10, 5, 1}, (iii) flipping 
the imbalance ratio, in which the majority becomes the minority class and vice versa {100, 
50, 20, 10, 5, 1, 0.2, 0.1, 0.05, 0.02, 0.01}, and (iv) flipping then repflipping the imbalance 
ratio, in which the majority becomes the minority class and then flips back to become the 
majority and vice versa {100, 50, 20, 10, 5, 1, 0.2, 0.1, 0.05, 0.02, 0.01, 0.02, 0.05, 0.1, 0.2, 
1, 5, 10, 20, 50, 100}. In this experiment, we also evaluated two types of drift: gradual and 
sudden. This allows us to analyze how the classifiers can cope with dynamic imbalance 
ratio changes and how they can adapt when majority and minority change roles. Figures 6, 



4188 Machine Learning (2024) 113:4165–4243

1 3

7, 8, 9 present the G-Mean and Kappa over time for the five selected classifiers for the gen-
erators and for both types of drift over (i) increasing imbalance ratio, (ii) increasing then 
decreasing imbalance ratio, (iii) flipping imbalance ratio, and (iv) flipping then reflipping 

Fig. 6  G-Mean and Kappa on increasing class imbalance ratio with gradual and sudden drift

Fig. 7  G-Mean and Kappa on increasing decreasing class imbalance ratio with gradual and sudden drift

Fig. 8  G-Mean and Kappa on flipping class imbalance ratio with gradual and sudden drift



4189Machine Learning (2024) 113:4165–4243 

1 3

Fig. 9  G-Mean and Kappa on flipping and reflipping class imbalance ratio with gradual and sudden drift

Table 6  G-Mean and Kappa averages of all 10 streams on dynamic class imbalance ratio

Bold font highlights the best result

IR CSARF ARF KUE LB CALMID ROSE ARFR SMOTE-OB OOB UOB

G-Mean
Gradual
 Increasing 89.21 80.87 83.60 82.52 82.44 87.83 85.62 88.42 90.88 90.76
 Inc. then dec 89.57 76.18 80.57 82.08 81.49 87.33 83.11 85.61 89.05 90.17
 Flipping 84.59 64.34 71.08 69.73 68.01 78.32 65.67 75.83 80.33 87.78
 Reflipling 84.28 64.72 75.11 72.77 70.23 80.39 64.88 75.23 82.30 87.35

Sudden
 Increasing 89.16 81.35 83.75 83.80 82.36 88.00 84.40 85.61 90.89 90.78
 Inc. then dec 89.88 77.16 81.82 83.10 82.32 87.96 83.41 86.62 89.30 90.47
 Flipping 84.78 65.41 72.15 71.35 69.09 79.61 66.66 77.52 80.40 87.89
 Reflipling 84.69 66.12 76.10 74.09 71.74 81.37 66.23 77.26 82.22 87.41

Kappa
Gradual
 Increasing 54.08 71.49 72.98 72.68 73.38 73.96 73.61 71.47 68.44 58.68
 Inc. then dec 59.21 67.50 71.08 73.14 72.95 74.98 71.47 69.89 69.87 61.81
 Flipping 45.14 56.97 62.00 61.40 60.20 66.97 50.51 61.61 61.73 51.76
 Reflipling 43.43 56.80 61.91 62.61 61.36 67.64 52.78 60.64 60.86 52.43

Sudden
 Increasing 54.48 72.50 73.53 74.45 73.98 74.46 73.87 69.93 68.26 58.46
 Inc. then dec 59.87 68.85 72.47 74.70 74.39 75.82 72.43 71.44 69.51 61.50
 Flipping 45.16 58.50 63.31 63.51 61.54 68.52 51.93 63.23 62.09 51.09
 Reflipling 43.82 58.28 62.91 64.47 62.96 69.19 54.16 62.61 60.66 51.81

Avg. G-Mean 87.02 72.02 78.02 77.43 75.96 83.85 75.00 81.51 85.67 89.08
Avg. Kappa 50.65 63.86 67.53 68.37 67.59 71.44 62.59 66.35 65.18 55.94
Rank G-Mean 3.83 8.62 7.19 5.83 6.85 4.11 6.66 5.11 3.80 3.01
Rank Kappa 8.58 6.31 5.14 4.41 4.68 2.80 6.41 4.93 4.64 7.12
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imbalance ratio. To increase readability, the line plots were smoothed using a moving aver-
age of 20 data points. Table 6 presents the average G-Mean and Kappa for the top 10 clas-
sifiers for each of the evaluated dynamic scenarios and the overall rank of the algorithms. 
Figure 10 provides an overall comparison among all algorithms.

Discussion
Impact of approach to class imbalance. In our second experiment, it is interesting to 

note that best-performing classifiers are similar to the ones in the static scenario with their 
difference relying on how quickly they can recover from the imbalance drift. Regarding 
data-level approaches, UOB and OOB achieve good results, even without having explicit 
mechanisms for handling concept drift in imbalance ratio. OUOB once again did not dis-
play satisfactory results, mainly because of its inability to switch between different resa-
mpling approaches that lead to a slower response to changes. SMOTE based methods had 
diverging performances. C-SMOTE and OSMOTE cannot handle increasing imbalance 
ratio, losing their performance over time and not being able to cope with the increasing 
disproportion among classes. This can be explained by the fact that increasing imbalance 
ratio leads to a lower number of minority instances that could be used for the generation of 
relevant and diverse artificial instances. SMOTE-OB was among the best-performing clas-
sifiers. This can be explained by SMOTE-OB undersampling together with oversampling, 
leading to smaller disproportions between classes and more homogeneous k-nearest neigh-
borhoods used for instance generation.

For algorithms modification methods, CSARF is the best performing one according to 
G-Mean but suffers under Kappa metric. When dynamic changes are introduced, ROSE 
presented the most balanced results according to both metrics. In the previous experiments, 
ROSE was also one of the best classifiers, but its underlying change adaptation mecha-
nisms and usage of dynamic sliding windows lead to significant improvements for non-
stationary imbalance, especially when dealing with high imbalance ratios and flipping role 
of classes.

Fig. 10  Comparison of all 24 
algorithms for dynamic class 
imbalance ratio. Color gradient 
represents the product of both 
metrics (Color figure online)
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Impact of ensemble architecture. Experiments with the dynamic imbalance ratio 
confirm our previous observations regarding the most robust architecture choice for 
ensembles. Boosting-based methods return even worse performance when dealing with 
an evolving disproportion between classes. We can explain this by the fact that each 
classifier in boosting change may be built using different class ratios, thus further rein-
forcing the small sample size problem for minority classes observed for static imbal-
ance. This allows us to conclude that boosting-based ensembles are not best suited for 
handling difficult imbalanced streams. Bagging-based and hybrid architectures perform 
significantly better, with bagging being a dominating solution. It is very interesting to 
see that regardless of the used skew-insensitive mechanism bagging-based ensembles 
(or hybrid architectures like ROSE that utilize bagging) deliver superior performance. 
This can be explained by the diversity among base classifiers that allow for anticipat-
ing different local characteristics of decision boundaries. Therefore, with increasing or 
decreasing of the imbalance ratio there is a high chance that some of the base classi-
fiers (and thus a subset of instances that they use) offer better generalization and faster 
adaptation to evolving disproportions between classes.

Impact of drift speed in class imbalance. We can observe that most of the examined 
algorithms offer similar performance on all types of drifts. Some of the methods do not 
have explicit mechanisms for change adaptation and this leads to their slower recovery 
from changes. However, in the long run, there were no significant differences between sud-
den and gradual drift adaptations for all methods on G-Mean or Kappa. However, the third 
analyzed scenario with flipping the majority and minority classes has a major impact on 
analyzed classifiers. ARF significantly suffers on both metrics, showing that its adaptation 
mechanisms are not suitable for settings where classes can change roles over time. The 
same observation holds for CSARF that displays an increasing gap between performances 
on majority and minority classes, as it is not able to effectively adapt its cost matrix to such 
changes and penalizes wrong class over time. Considering only G-Mean, flipping classes 
did not impact much UOB demonstrating that undersampling displays potential robustness 
to switching minority class. However, the same cannot be said for the Kappa metric, lead-
ing us to conclude that UOB tends to prioritize one class even when their roles flip. ROSE 
was the most robust and stable classifier for all possible changes in class distribution, being 
capable of avoiding huge drops of performance for the metrics due to its per-class sliding 
window adaptation.

7.1.3  Instance‑level difficulties

Goal of the experiment. This experiment addresses RQ3 and evaluates the robustness 
of the classifiers to instance-level difficulties (Brzeziński et  al., 2021). We evaluated the 
Brzeziński generator with borderline or rare instances, and combining both at the same 
time. The ratio for difficult instances for scenarios where there are only rare or border-
line instances are {0%, 20%, 40%, 60%, 80%, 100%}. In the combined scenario they rep-
resent {0%, 20%, 40%} of rare and borderline instances, e.g. 20% means there are 20% 
rare instances and 20% borderline instances. Difficult instances were created for the minor-
ity class to present a challenging scenario for the classifier. We evaluated the influence 
on classifiers combined with static and dynamic imbalance ratios. Borderline instances 
pose a challenge to the classifier because they lie in the uncertainty area of the decision 
space and strongly impact the induction of the classification boundaries. Rare instances are 
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overlapping with the majority class. Also, instances of minority classes are distributed in 
clusters. Moving, splitting and merging these clusters leads to new challenges for the clas-
sifiers since the decision boundary moves accordingly.

Fig. 11  Robustness to borderline instances for static imbalance ratio (G-Mean and Kappa)

Fig. 12  Robustness to rare instances for static imbalance ratio (G-Mean and Kappa)

Fig. 13  G-Mean and Kappa on moving minority clusters for static imbalance ratio
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Figures  11 and 12 present the performance of the five selected classifiers with the 
increasing presence of borderline and rare instances respectively under static imbalance 
ratio. Figures 13, 14, 15 illustrate the performance of the same classifiers with changes in 
the spatial distribution of minority class instances under static imbalance. Table 7 presents 
the average G-Mean and Kappa for the top 10 classifiers for each imbalance ratio and a 
given instance-level difficulty, and their average ranking. The overall performance of all 
classifiers regarding each of the instance difficulties is presented in Figs. 16, 17,18, 19, 20, 
in which axes of the ellipse represent G-Mean and Kappa metrics, the more rounded the 
better, and the color represents the product of both metrics.

Considering the instance-level difficulties combined with dynamic imbalance ratio, 
Fig.  21 illustrates the performance of the classifiers with increasing imbalance ratio. 
Table 8 presents the average G-Mean and Kappa for the top 10 classifiers for increasing 
imbalance ratio in the presence of instance-level difficulties, and their overall ranking. To 
summarize, Fig. 22 shows the overall performance of all classifiers for each instance-level 
difficulty.

Discussion
Impact of approach to class imbalance. First, let us look on how different mecha-

nisms for ensuring robustness to class imbalance tend to perform under diverse data-level 

Fig. 14  G-Mean and Kappa on splitting minority clusters for static imbalance ratio

Fig. 15  G-Mean and Kappa on merging minority clusters for static imbalance ratio
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Fig. 16  Comparison of all 24 algorithms for borderline instances on static class imbalance ratio. Axes of 
the ellipse represent G-Mean and Kappa metrics. Color gradient represents the product of both metrics 
(Color figure online)

Fig. 17  Comparison of all 24 algorithms for rare instances on static class imbalance ratio. Axes of the 
ellipse represent G-Mean and Kappa metrics. Color gradient represents the product of both metrics (Color 
figure online)

Fig. 18  Comparison of all 24 algorithms for moving minority clusters on static class imbalance ratio. Axes 
of the ellipse represent G-Mean and Kappa metrics. Color gradient represents the product of both metrics 
(Color figure online)

Fig. 19  Comparison of all 24 algorithms for splitting minority clusters on static class imbalance ratio. Axes 
of the ellipse represent G-Mean and Kappa metrics. Color gradient represents the product of both metrics 
(Color figure online)
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difficulties. While guided resampling solutions usually perform better than their blind 
counterparts, here we can see that most of approaches based on SMOTE tend to fail. 
This can be explained by reliance of SMOTE on the neighborhood. Borderline and rare 
instances create non-homogeneous neighborhoods that are characterized by high overlap-
ping and classification uncertainty. Oversampling such areas will lead to enhancing these 
undesirable qualities, instead of simplifying the classification task. This is especially vis-
ible for rare instances, where SMOTE-based methods deliver the worst performance. Rare 
instances do not form homogeneous neighborhoods and in streaming setup may appear 
infrequently, leading to lack of both spatial and temporal coherencies. This undermines 
the basic assumptions of SMOTE-based algorithms and renders them ineffective. Only 
SMOTE-OB can handle both types of minority instances, as well as various minority clus-
ters. This can be explained by using bags of instances (subsets) for training, which may 
offer better separation of instances and impose partial coherence on artificially generated 
instances. Blind oversampling employed by OOB also performs well under data-level dif-
ficulties, as it does not rely on the neighborhood analysis. However, when dealing with rare 
instances, OOB tends to significantly fail, as it amplifies these often-scattered instances, 
leading to overfitted decision boundaries. Where OOB and UOB excel is for minority class 
clusters, as due to their online nature they can swiftly adapt to changes in cluster structures 
and resample even small drifts to make them viable for their base learners. Algorithms 
based on training modifications, such as HDVFDT, ROSE, or CALMID can handle well all 
types of difficulties. Their robustness lies in their data manipulation and usage of modified 

Fig. 20  Comparison of all 24 algorithms for merging minority clusters on static class imbalance ratio. Axes 
of the ellipse represent G-Mean and Kappa metrics. Color gradient represents the product of both metrics 
(Color figure online)

Fig. 21  G-Mean and Kappa on increasing borderline, rare, moving, splitting, and merging minority clusters 
and increasing imbalance ratio
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mechanisms for training, which can display all-around, yet implicit, robustness to such 
challenges. Especially for Kappa metric, ROSE and CALMID can be seen as good choices 
for these scenarios. Their offshoot, a cost-sensitive approach of CSARF, displays best per-
formance on G-Mean metric, yet suffers under Kappa evaluation. This shows that CSARF 
strongly focuses on the minority class, but this hits back in the form of an increased num-
ber of false positives. So, while it is capable of handling minority difficulties and clusters 
by cost penalty-lead training, it increases the false positives in these overlapping or uncer-
tain regions.

Impact of ensemble architecture. We can observe that all best-performing methods for 
various types of data-level difficulties are based either on bagging or hybrid architectures. 
All boosting methods are among the worst performing ones. This can be explained by the 
nature of boosting, as it focuses on correcting the mistakes of the previous classifier in the 
ensemble. Rare, borderline, or clustered minority instances will always introduce a high 
uncertainty into the training procedure. This may significantly destabilize boosting, as by 
focusing on correcting errors on those uncertain instances it will be continuously intro-
ducing other errors, locking itself in a cycle of never reducing the overall error. Bagging 
methods offer natural partitioning of instances, allowing to break difficult neighborhood 
or clusters and introduce more instance-level diversity into base classifiers. This aids the 
used mechanisms for handling class imbalance, making bagging methods more robust to 
scenarios where learning difficulties lie in spatial characteristics of data.

Comparison with standard ensembles. Interestingly, general-purpose ensembles display 
better robustness to various instance-level difficulties than over half of the classifiers dedi-
cated to imbalanced data streams. LB, ARF, and KUE can relatively effectively handle 
both types of difficult instances, as well as various types of evolving clusters within the 
minority class. They always significantly outperform all methods based on boosting and 

Fig. 22  Comparison of all 24 algorithms on borderline, rare, moving, splitting, merging minority clusters 
and increasing imbalance ratio. Color gradient represents the product of both metrics (Color figure online)
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most of approaches using informative oversampling (except for SMOTE-OB). Of course, 
we can observe a drop in their performance with the increase of imbalance ratios, yet even 
for IR = 100 they can perform better than several dedicated approaches. Their robustness to 
instance types can be explained by the fact that all three mentioned ensembles use instance 
subsets for training their base classifiers. Therefore, such subsampling may implicitly lead 
to more sparse neighborhoods (reducing overlapping and uncertainty) and thus to reduc-
tion of difficulty levels for certain instances. When analyzing the robustness to evolving 
clusters, one can explain this by concept drift adaptation mechanisms employed by LB, 
ARF, and KUE. Changes in minority class clusters can be picked up by their drift detec-
tors, leading to adaptation to the current state of the minority class. Therefore, any splitting 
or merging of clusters will be picked up as changes in data distributions and managed by 
simple online adaptation to the most recent instances. Finding that such general-purpose 
ensembles display significant robustness to data-level difficulties stands as a testament to 
how well designed those methods are. However, to excel when dealing with such challeng-
ing learning scenario, highly specialized ensemble models enhance with skew-insensitive 
mechanisms can deliver much better performance.

Relationships between instance-level difficulties and imbalance ratios. When analyzing 
algorithms for their robustness to data-level difficulties, we must understand the relation-
ship between them and the class imbalance ratio. Ideally, we are looking for a method that 
will be insensitive to changing imbalance ratios and will display stable robustness to data-
level difficulties. Most of the existing algorithms do not possess this quality, displaying 
either drops in the performance with increasing imbalance ratio (e.g. MICFOAL), or lack 
of any stability (e.g. VFC-SMOTE). The most reliable methods are CSARF, SMOTE-OB, 
OOB, and ROSE that offer stable, or improving, robustness with increasing imbalance. It is 
important to note that CSARF performance is skewed towards G-Mean, while the remain-
ing methods tend to perform well on both metrics.

What difficulties are the most challenging. While analyzing the performance of the 
methods, we can see significant drops in the performance in two scenarios: when dealing 
with rare instances and splitting/merging clusters. Rare instances are one of the biggest 
challenges for any imbalanced algorithms, as they combine small sample size, class over-
lapping, and potential presence of noise. With increasing ratio of rare instances, the minor-
ity class in the stream starts losing any coherent structure, converging towards a collection 
of sparsely distributed and spatially uncorrelated instances, more akin to a cloud of points 
than any structure. This makes the formulation of decision boundaries especially difficult 
and requires dedicated mechanisms that can either learn under small sample size or can 
create more coherent representations (either via resampling like OOB, or via instance buff-
ers like ROSE). Minority clusters pose even bigger challenge, as they force classifiers to 
track sub-concepts in minority classes (each cluster should be treated as a sub-concept). 
Both cases require fast adaptation and are strongly aided by a presence of underlying drift 
detector. With splitting clusters, previously learned decision boundaries become to general 
and are not able to capture the emergence of sub-concepts in minority class. With merging 
clusters, we are left with too complex decision boundaries that are not able to generalize 
well over the current state of the stream.

7.1.4  Concept drift and static imbalance ratio

Goal of the experiment. This experiment aims to address RQ4 and to evaluate the robust-
ness of the data stream classifiers to the static imbalance in the presence of concept drift. 
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Even though the classifiers are designed to deal with imbalance ratios, they also have 
mechanisms to deal with concept changes. Concept drift affects decision boundaries, thus 
leading to a more challenging skewed learning scenario with a higher degree of over-
lap between classes. To evaluate this, we prepared the same generators used in experi-
ment Sect. 7.1.1 with two types of concept drift: gradual and sudden. They were combined 
with the static imbalance ratio examined in experiment Sect. 7.1.1. Figure 23 illustrates the 
G-Mean and Kappa over time for the five selected classifiers with static imbalance ratio 
under the presence of concept drift. Table 9 presents the G-Mean and Kappa for the top 10 

Fig. 23  Robustness to concept drift with static class imbalance ratio (G-Mean and Kappa)

Table 9  G-Mean and Kappa averages of all 10 streams for concept drift with static class imbalance ratio

Bold font highlights the best result

IR CSARF ARF KUE LB CALMID ROSE ARFR SMOTE-OB OOB UOB

G-Mean
 1 87.83 87.82 85.44 87.99 86.31 88.70 87.71 83.74 78.80 77.90
 5 86.62 67.56 71.74 75.41 77.08 84.74 83.96 84.60 76.62 76.35
 10 84.64 46.23 52.48 54.02 61.48 75.57 75.44 80.31 71.15 74.96
 20 81.06 31.49 38.67 38.94 41.65 59.10 57.25 70.20 60.33 72.97
 50 73.97 15.43 19.40 20.63 23.71 37.90 28.59 42.82 36.64 68.99
 100 64.86 9.93 12.11 13.16 11.71 21.80 9.53 21.54 24.81 63.78

Kappa
 1 75.76 75.76 71.67 76.10 72.73 77.52 75.59 69.71 57.93 56.23
 5 66.58 56.51 58.24 64.02 64.12 70.99 68.15 62.24 52.71 45.30
 10 53.18 39.00 42.57 45.61 50.06 60.09 54.30 53.17 45.58 33.72
 20 37.11 26.41 30.96 32.65 34.34 45.03 33.83 42.97 36.70 22.06
 50 19.26 12.69 15.89 17.31 19.04 28.36 13.39 26.54 22.33 10.14
 100 10.54 8.65 10.42 11.70 10.15 17.25 2.82 15.11 15.79 4.52

Avg. G-Mean 79.83 43.08 46.64 48.36 50.32 61.30 57.08 63.87 58.06 72.49
Avg. Kappa 43.74 36.50 38.29 41.23 41.74 49.87 41.35 44.96 38.51 28.66
Rank G-Mean 1.83 7.95 7.54 6.69 6.50 4.21 4.93 4.27 5.99 5.08
Rank Kappa 3.95 7.05 6.68 5.50 5.40 2.92 4.88 4.72 5.93 7.97
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classifiers and each imbalanced ratio, and their overall ranking as well. Figure 24 summa-
rizes the overall performance of all classifiers in this scenario.

Discussion
Impact of approach to class imbalance. In this experiment, we extend the problem of 

analyzing the robustness of classifiers to various imbalance ratios by adding concept drift 
affecting the decision boundaries. It is important to notice that the drift did not influence 
the disproportion between classes. OOB and UOB, two methods that offered excellent per-
formance for stationary and imbalanced streams suffer from a significant drop in perfor-
mance when handling non-stationary problems. OOB had the biggest performance drop 
under concept drift for higher imbalance ratios. This is expected since both methods do 
not have mechanisms to deal with changes in feature distribution. While the changes in 
the imbalance ratio could be tackled by resampling approaches, they do not allow for any 
efficient adaptation to evolving decision boundaries. Classifiers based on informed resa-
mpling, such as C-SMOTE, OSMOTE and VFC-SMOTE offered only a slightly better 
performance than the mentioned blind resampling ensembles. This shows that under the 
presence of concept drift, adaptation mechanisms play a more important role than the solu-
tions used to tackle class imbalance. For algorithm-level methods, CSARF demonstrated 
the best results, thanks to its underlying implicit mechanisms for handling non-stationary 
data. While, similarly to previous experiments CSARF suffered under Kappa evaluation, 
this time it was the second-best regarding this metric. ROSE remained as the most bal-
anced classifier displaying robustness to changes since it can adapt both to concept drift 
and imbalance ratio. ARF, ARFR, LB and SRP achieved decent results in a scenario with 
concept drift, however, their performance drops as the imbalance ratio increases.

Impact of ensembles architecture. As observed in the previous experiments, boosting-
based methods deliver the worst performance among all ensemble architectures. This can 
be explained by drift destabilizing boosting classifier chains, as errors made by previous 
classifiers may no longer be meaningful for the updating of their follow-ups. There is a 
need to improve drift adaptation procedures for boosting-based ensembles so they can 
become competitive with their bagging peers. While bagging-based architectures are still 
the core of the best-performing methods, we can see the increasing dominance of hybrid 
architectures for concept drift scenarios. While all of them use bagging, they combine it 
with the dynamic weighting of the base classifier and dynamic line-up, demonstrating that 
a combination of several mechanisms is necessary to tackle class imbalance and concept 
drift at the same time.

Relationship between concept drift and imbalance ratios. In the context of this experi-
ment, it is crucial to analyze and understand the interplay between the concept drift 
impacting the class boundaries and static imbalance ratios affecting the disproportion 

Fig. 24  Comparison of all 24 algorithms for concept drift with static class imbalance ratio. Axes of the 
ellipse represent G-Mean and Kappa metrics. Color gradient represents the product of both metrics (Color 
figure online)
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between them. While focusing on how the classifiers try to tackle concept drift, we do not 
see significant differences between the ones utilizing implicit or explicit drift detection. 
This shows that there is no obvious choice for adaptation mechanisms and that the clas-
sifier performance for drifting and imbalance streams is a product of their learning archi-
tecture, drift adaptation mechanism, and approach to tackling class imbalance. We can see 
that popular classifier for drifting data streams, such as ARF, LB, or SRP cannot handle 
increasing imbalance ratios. At the same time, solutions dedicated to online learning from 
imbalanced data streams, such as UOB or OOB cannot deal with the non-stationary nature 
of data streams. Best performing methods, such as ROSE, CSARF and SMOTE-OB com-
bine adaptation and skew-insensitive mechanisms for all-round robustness.

7.1.5  Concept drift and dynamic imbalance ratio

Goal of the experiment. This experiment was designed to complement the previous 
experiment, and completely address RQ2 and RQ4, examining the classifiers in the 
presence of concept drift combined with dynamic imbalance ratio. Combining concept 

Fig. 25  G-Mean and Kappa on concept drift with increasing imbalance ratio

Table 10  G-Mean and Kappa averages of all 10 streams for concept drift with increasing class imbalance 
ratio

Bold font highlights the best result

Drift CSARF ARF KUE LB CALMID ROSE ARFR SMOTE-OB OOB UOB

G-Mean
 Sudden 85.96 55.56 62.45 62.61 64.19 74.05 60.64 75.79 72.91 71.00
 Gradual 77.90 45.73 53.47 48.12 53.78 64.60 50.70 70.29 66.23 70.32

Kappa
 Sudden 55.13 48.88 52.29 55.39 55.50 63.23 52.70 57.48 48.48 33.09
 Gradual 41.57 36.44 40.59 39.22 42.33 48.45 39.77 45.67 39.12 29.69

Avg. G-Mean 81.93 50.64 57.96 55.36 58.98 69.33 55.67 73.04 69.57 70.66
Avg. Kappa 48.35 42.66 46.44 47.31 48.91 55.84 46.23 51.57 43.80 31.39
Rank G-Mean 1.10 9.30 7.20 7.70 6.45 4.10 7.35 3.30 4.35 4.15
Rank Kappa 4.75 8.00 6.35 5.90 4.70 1.75 5.65 3.10 5.60 9.20
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drift at the same time with changes in the class imbalance poses a complex challenge to 
classifiers. To evaluate this, we prepared the same generators in experiment Sect. 7.1.4 
with gradual and sudden concept drift, and combined them with the dynamic increas-
ing imbalance ratio proposed in experiment  Sect.  7.1.2. Figure  25 illustrates the per-
formance of the selected classifiers with dynamic increasing imbalance ratio under the 
presence of concept drift. Table 10 presents the G-Mean and Kappa for the top 10 clas-
sifiers for each type of concept drift and the average ranking for each evaluated metric. 
Figure 26 provides an overall comparison of all classifiers in the proposed scenario.

Discussion
Impact of approach to class imbalance. Let us focus on changes in the behavior 

of classifier as compared with the previous case of evolving class imbalance without 
explicit concept drift. All methods based on blind resampling display drops in perfor-
mance, as usually they lack explicit mechanisms for handling concept drift, leading to 
their deterioration over time. SMOTE based methods followed the behavior experienced 
in previous experiments, mainly because concept drift and increasing imbalance ratio 
may lead to temporal incoherence which can enhance problems of oversampling. Only 
SMOTE-OB displayed satisfactory robustness to simultaneously evolving imbalance 
ratio and concept drift, while additionally achieving good balance between Kappa and 
G-Mean metrics.

Classifiers based on training modifications, such as ROSE and CALMID displayed 
robustness to concept drift and dynamic imbalance ratio, especially for the G-mean metric. 
Their training procedures provide reliability in a scenario where multiple changes happen 
simultaneously. The cost-sensitive approach of CSARF presents outstanding results regard-
ing the G-Mean metric, with almost 1 as the average rank. Nevertheless, when analyz-
ing the Kappa metric, we can see shortcomings of CSARF, where it ranks the third. This 
shows that the CSARF adaptation to evolving data characteristics is not balanced over both 
classes. ROSE displays balanced performance on both metrics, which can be explained by 

Fig. 26  Comparison of all 24 
algorithms for concept drift with 
increasing class imbalance ratio. 
Color gradient represents the 
product of both metrics (Color 
figure online)
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the combination of concept drift detector with balanced buffers for each of classes, allow-
ing for equalized performance on the majority and minority classes.

Impact of ensemble architecture. This highly difficult scenario further shows that bag-
ging-based and hybrid architectures are the only ones capable of handling drifting and 
evolving class imbalance. Their superiority over boosting methods becomes even more 
evident in these experiments. However, another interesting observation is the increasing 
gap between dynamic and static ensemble line-ups. Here we can see that most of the best 
performing methods use dynamic replacement of the ensemble members. This can be 
explained by the fact that when concept drift is combined with evolving class imbalance, 
especially under rapid changes, it is more efficient to train a new classifier from scratch and 
replace the weakest one, instead of trying to adapt the existing members to a vastly differ-
ent new concept.

Impact of concept drift speed. As mentioned in the previous observation, the speed of 
changes (velocity of concept drift) significantly impacts the classifiers. We observed that 
all of the classifiers tend to react worse to gradual drift, while displaying better robustness 
on sudden drift. While this observation can be surprising, we can explain it by taking a 
deeper look on how the adaptation mechanisms work in these ensembles. Under sudden 
concept drift, we cn observe a rapid deterioration of the ensemble performance. However, 
new instances coming from a stable concept are readily available, allowing for a recov-
ery and adaptation with sufficient sample size. When dealing with gradual drift, classi-
fiers do not see the new, fully formed concept so quickly. Therefore, the adaptation process 
becomes more tedious, as the sample size from the new concept may not be big enough. 
This may mislead some pruning or weighting mechanisms, forcing costly false adaptations. 
While in case of gradual drift we do not observe one single drop of performance, the nega-
tive impact of change is prolonged over time and thus may sum up to a bigger challenge for 
the classifier in the long run.

Relationship between concept drift and increasing class imbalance. In this scenario 
each classifier must be able to simultaneously handle concept drift (impacting the decision 
boundaries) and evolving class imbalance ratio (impacting both skew-insensitive mecha-
nisms and decision boundaries). This creates a trade-off, with classifiers displaying dif-
ferent behavior patterns. Some methods, like LB or KUE display high adaptability to con-
cept drift. Others, like OOB focus on robustness to evolving class imbalance. The most 
balanced method, offering best trade-off between those two factors is ROSE, followed by 
SMOTE-OB and CSARF.

7.1.6  Real‑world binary class imbalanced datasets

Goal of the experiment. This experiment was designed to address RQ5 and to evaluate 
the performance of the classifiers on 19 real-world imbalanced data streams. The previous 
experiments focused on analyzing how the classifiers cope with various learning difficul-
ties present in imbalanced data streams using synthetic generators, allowing us to inspect 
how the classifiers behave in specific and controlled scenarios. Meanwhile, real-world 
datasets pose specific challenges to classifiers, as they are not generated in a controlled 
environment. They are characterized by a combination of various learning difficulties that 
appear with varying intensity or frequency. Their imbalance ratio changes over time, while 
concept drift may oscillate among different types with varying speed. Therefore, assess-
ing the performance of all classifiers on real-world data is a major step towards evalua-
tion. The real-world data streams employed in the experiments are popular benchmarks 
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for imbalanced data streams classifiers, and their specifications are presented at Table 11. 
Figure 27 illustrates the performance of the five selected classifiers in the real-world data-
sets. Table 12 presents the performance for the top 10 classifier on each dataset. Figure 28 
summarizes the overall performance of all classifiers in the real-world datasets scenario.

Characteristics of real-world imbalanced data streams. Before analyzing the classi-
fiers’ performance in real-world datasets, it is important to point up the difference between 
artificial and real-world imbalanced data streams. Generators are probabilistic and base 
the generation of instances on prior probability taken from the parametric imbalance ratio. 
Their appearance in the stream is dictated strictly by these priors, leading to bounded 

Table 11  Real-world binary 
datasets specifications

Dataset Instances Features

adult 45,222 14
amazon 8000 30
amazon-emp 32,769 9
census 299,284 41
coil2000 9,822 85
covtype 267,001 54
creditcard 284,807 30
electricity 45,312 8
gmsc 150,000 10
hepatitis 1,000,000 19
internet-ads 3,279 1,558
kddcup 494,021 41
nomao 34,465 118
pakdd 50,000 27
poker 359,999 10
spam 9,324 499
tripadvisor 18,569 30
twitter 9,090 30
weather 18,159 8

Fig. 27  G-Mean and Kappa on binary class imbalanced datasets
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Table 12  G-Mean and Kappa on binary class imbalanced datasets

Bold font highlights the best result

Dataset CSARF ARF KUE LB CALMID ROSE ARFR SMOTE-OB OOB UOB

G-Mean
adult 80.09 72.58 69.56 72.65 72.15 79.20 80.61 80.40 79.28 77.81
amazon 67.19 52.05 32.57 25.17 24.35 62.38 50.54 67.18 58.15 68.11
amazon-emp 23.15 6.63 0.00 4.08 5.40 20.77 18.42 23.04 11.00 18.78
census 48.67 27.79 22.97 29.11 32.45 39.29 41.84 44.01 36.57 45.59
coil2000 56.59 4.74 4.51 6.77 2.86 18.58 17.94 50.89 19.60 61.83
covtype 97.22 94.35 90.39 93.98 93.73 95.39 93.40 96.99 94.08 84.57
creditcard 32.47 27.37 16.02 25.07 26.46 28.34 27.54 28.25 29.99 32.17
electricity 89.79 89.42 70.49 88.71 83.11 89.14 89.45 86.67 81.67 79.67
gmsc 76.58 30.55 32.02 30.31 43.89 58.33 65.77 71.65 71.35 70.65
hepatitis 90.56 85.66 85.37 86.36 87.45 88.33 90.39 90.75 89.71 89.25
internet-ads 13.90 13.54 0.00 12.98 12.98 13.36 0.00 13.90 13.36 13.36
kddcup 7.71 7.26 4.19 7.44 7.61 7.83 7.27 7.52 7.65 7.86
nomao 42.91 37.38 30.35 34.89 34.24 40.09 35.68 42.13 40.04 43.73
pakdd 59.48 2.09 12.82 4.37 15.66 39.71 57.06 54.60 54.66 55.06
poker 79.61 45.27 53.38 57.52 76.98 72.81 49.88 62.31 73.39 72.45
spam 80.63 74.24 67.13 73.13 72.15 77.44 79.37 80.31 75.80 72.86
tripadvisor 64.11 18.66 14.21 22.54 21.83 45.74 57.10 64.06 60.92 64.55
twitter 79.61 78.53 58.03 76.34 55.57 77.14 77.77 78.95 71.39 70.39
weather 76.45 68.02 59.75 67.38 67.86 74.28 74.19 73.53 69.68 67.19
Kappa
adult 53.17 53.80 52.31 54.05 52.80 55.68 53.60 53.68 52.72 47.99
amazon 29.30 31.99 12.99 7.78 5.38 33.07 17.84 26.25 25.85 13.00
amazon-emp 1.91 0.35 0.00 0.13 0.19 2.42 0.88 1.21 0.59 1.15
census 20.87 19.72 14.66 20.47 22.13 25.95 23.46 26.78 24.20 22.75
coil2000 12.53 1.24 0.74 2.23 0.41 6.22 2.65 13.20 5.82 9.49
covtype 85.26 91.22 83.43 89.94 88.60 90.13 83.64 89.51 83.21 49.74
creditcard 17.96 26.43 15.45 24.30 25.56 27.30 22.61 27.33 28.44 6.71
electricity 79.89 79.95 50.14 78.44 68.81 78.64 79.70 73.91 65.57 62.13
gmsc 29.09 15.98 17.02 15.74 26.26 35.23 31.53 35.75 35.22 23.95
hepatitis 72.92 76.83 75.32 76.62 77.30 74.26 74.73 75.33 74.17 69.47
internet-ads 13.53 13.12 0.00 12.48 12.48 12.91 0.00 13.53 12.91 12.91
kddcup 7.04 7.14 3.56 7.31 7.45 7.49 6.99 7.25 7.27 6.26
nomao 32.56 32.70 18.71 29.71 28.11 33.24 29.11 36.02 26.73 21.56
pakdd 17.32 0.29 1.29 0.52 2.77 11.06 15.88 16.52 15.08 10.38
poker 36.84 37.95 43.85 50.82 72.67 63.49 30.14 50.72 54.39 17.05
spam 58.74 58.33 49.72 54.56 51.84 56.45 58.50 56.68 49.81 45.43
tripadvisor 24.97 6.15 2.55 7.51 6.51 18.12 23.67 24.12 23.53 22.25
twitter 73.73 75.21 50.07 70.89 50.43 72.39 71.53 75.24 60.97 58.81
weather 49.81 46.77 34.79 44.00 41.19 48.32 45.29 43.08 40.32 36.19
Avg. G-Mean 61.41 44.01 38.09 43.10 44.04 54.11 53.38 58.80 54.65 57.68
Avg. Kappa 37.76 35.53 27.72 34.08 33.73 39.60 35.36 39.27 36.15 28.27
Rank G-Mean 1.50 6.95 9.39 7.61 7.61 4.37 5.13 3.24 4.74 4.47
Rank Kappa 4.08 4.84 8.87 6.03 6.34 3.11 5.39 3.03 5.63 7.68
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windows in which minority and majority instances appear. In real-world datasets, this does 
not happen, since they were collected to model specific phenomenon observations and 
does not respect such clear probabilistic mechanisms. All of this poses unique challenges 
to classifiers, such as the latency with which instances from a specific class arrive, or long 
periods when instances from only one class appear. This configuration of data streams pre-
sents many more challenges for streaming classifiers. Such benchmarks allow us to gain 
insights about the classifiers examining them under unique and challenging conditions.

Discussion.
Impact of approach to class imbalance. First, it is interesting to note than on aver-

age all examined methods displayed much better Kappa than G-mean performance. We 
can observe that ensembles utilizing blind resampling, such as OOB and UOB, returned 
poor performance over real-world data streams. We can explain this by their purely online 
nature paired up with catastrophic forgetting, as these ensembles adapt their resampling 
strategy to the newest arriving instances, and thus are not being able to retain any memory 
of previously seen concepts. As in real-world scenarios instances do not arrive in strati-
fied windows, one of classes may disappear for a while. This confuses such ensembles and 
leads to high skewness towards one class that is very difficult to overcome via online blind 
resampling. The methods based on informed resampling, such as C-SMOTE and SMOTE-
OB displayed satisfactory results, showing that their learning mechanisms are robust to 
various characteristics of real-world streams. Also, SMOTE-OB achieved balanced results 
regarding both metrics, demonstrating a high stability and reliability in real-world cases. 
Interestingly, C-SMOTE was underperforming in previous synthetic cases, showing dis-
crepancies between artificial and real-world domains. This allows us to conclude that there 
is a need for further research in real-world imbalanced streams and capturing more realistic 
benchmarks that reflect various learning difficulties.

When analyzing algorithm-level modification classifiers, ROSE displayed the 
best results, especially for the Kappa metric. While for synthetic datasets ROSE was 

Fig. 28  Comparison of all 24 
algorithms for binary class 
imbalanced datasets. Color gradi-
ent represents the product of both 
metrics (Color figure online)



4208 Machine Learning (2024) 113:4165–4243

1 3

consistently among the best methods, for real-world cases we can see that its robustness to 
a variety of learning difficulties allowed it to demonstrate its potential. ROSE stores buff-
ers for each class independently contributing to scenarios with high latency of instances. 
CSARF remained as one of the best-performing classifier, displaying the best results on 
G-Mean, and being among the best regarding Kappa.

The worst-performing algorithms in the real-world scenario differ from what we saw in 
previous scenarios (with exception of OADA still being the weakest classifier). Algorithms 
that achieved average to good performance in other experiments such as KUE, HDVFDT 
and OBA did not maintain their performance over real-world datasets.

It is interesting to see that ARF which was not among the best-performing classifiers 
in the experiment with synthetic data, was the third-best classifier regarding Kappa. This 
shows that in the used real-world datasets the impact of concept drift was much more sig-
nificant than the impact of class imbalance, allowing for a method focusing purely on adap-
tation to changes to rank so high.

Impact of ensemble architecture. Real-world datasets allow us to evaluate how each type 
of ensemble architecture deals with streams under multiple difficulties appearing at the 
same time. We can see that all ensemble-based methods display much better performance 
on average than in the previous experiments. This is especially true of boosting-based 
methods that reduced the gap in their performance when compared to top-performing algo-
rithms. However, bagging-based and hybrid ensembles still are the superior choices. This 
shows how these architectures offer better robustness in scenarios where data does not fol-
low uniform characteristics over extended periods.

7.2  Multi‑class experiments

The second set of experiments focuses on multi-class problems where the relationships 
among the many classes may vary over time (Lango & Stefanowski, 2022). Multi-class 
imbalanced data is more difficult and less frequently studied than its binary counterpart. 
There are relative imbalance ratios among classes and overlapping of the minority and 
majority classes becomes a greater issue (Santos et al., 2023; Stefanowski, 2021; Lipska & 
Stefanowski, 2022). These experiments include static imbalance ratio, dynamic imbalance 
ratio, concept drift and static imbalance ratio, concept drift and dynamic imbalance ratio, 
analysis on the impact of the number of classes, real-world multi-class datasets, and semi-
synthetic multi-class imbalanced datasets. The number of examined algorithms in this set 
of experiments is reduced to 15 following their multi-class capabilities shown in Table 2.

7.2.1  Static imbalance ratio

Goal of the experiment. This experiment was designed to address RQ1 and to evaluate 
the performance and robustness of the classifiers to the static class imbalance in a scenario 

Fig. 29  PMAUC and Kappa on multi-class static imbalance ratio
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with multiple classes. In multi-class settings, the class imbalance can be even more chal-
lenging than in binary settings, since now multiple classes can be underrepresented. Also, 
relations among the classes are no longer obvious, since one class may be a majority when 
compared to some other classes, but a minority for the rest of them. This allows us to ana-
lyze how each classifier behaves under specific class distributions. To evaluate this, we 
prepared three multi-class generators {Hyperplane, RandomRBF, and RandomTree}, all 
of them with 5 classes using the class distribution {50, 20, 10, 5, 1}. Figure 29 illustrates 
the performance of the five selected algorithms classifiers for each multi-class stream. 

Table 13  PMAUC and Kappa on multi-class static imbalance ratio

Bold font highlights the best result

Generator CSARF ARF KUE LB SRP CALMID MICFOAL ROSE ARFR OOB

PMAUC 
 Hyperplane 87.48 77.30 82.75 76.81 76.24 81.53 75.59 85.21 84.91 87.83
 RandomRBF 97.97 97.32 95.48 96.36 97.43 95.17 96.59 96.96 97.81 95.28
 RandomTree 97.11 96.57 93.31 84.52 94.99 85.69 91.07 92.57 96.65 92.14

Kappa
 Hyperplane 7.63 6.13 21.63 7.10 2.06 20.15 6.37 15.69 13.86 21.39
 RandomRBF 82.59 88.27 82.82 86.04 87.63 85.57 87.73 86.97 88.11 79.89
 RandomTree 76.98 88.55 74.99 57.06 71.89 65.27 80.32 75.26 88.43 68.63

Avg. PMAUC 94.19 90.40 90.51 85.89 89.55 87.46 87.75 91.58 93.13 91.75
Avg. Kappa 55.73 60.98 59.81 50.06 53.86 57.00 58.14 59.30 63.47 56.64
Rank PMAUC 1.33 4.67 6.00 8.33 5.33 8.33 8.00 4.67 2.67 5.67
Rank Kappa 6.33 3.67 5.00 7.67 7.00 6.33 4.67 4.67 3.00 6.67

Fig. 30  Comparison of all 15 
algorithms for multi-class static 
class imbalance ratio. Color 
gradient represents the product 
of both metrics (Color figure 
online)
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Table 13 summarizes the performance of the top 10 classifiers for each generator and their 
average ranking regarding each metric. For overall comparison, Fig. 30 presents the overall 
aggregated performance of all classifiers. Axes of the ellipse represent PMAUC and Kappa 
metrics, the more rounded the better, and the color represents the product of both metrics.

Discussion
Impact of class imbalance approach. First, we need to observe that the performance of 

the algorithms in multi-class problems significantly differs from the binary problems. This 
shows that multi-class imbalance data streams pose a series of unique challenges and thus 
this requires developing specific mechanisms dedicated to tackling more than two classes. 
Simple adaptation of binary mechanisms tends to fail and underperform, especially when 
dealing with a large number of classes.

For blind resampling methods, we can see a drop in their performance. OOB returns 
mediocre results, much below the ranks observed in binary scenarios. UOB becomes 
completely unusable in multi-class problems, failing to achieve any acceptable predictive 
power. This shows that when dealing with multiple distributions, blind resampling methods 
cannot capture complex relationships among classes and tend to further increase the dif-
ficulty factors (such as class overlapping or noise). This happens because blind resampling 
approaches consider only a single class, thus discarding valuable information about other 
classes. There is a need to develop novel resampling algorithms dedicated specifically to 
multi-class data streams.

ARFR was the best algorithm regarding the Kappa metric and the second-best regarding 
PMAUC. Its weighing mechanism led to good robustness to multi-class imbalance ratio, 
as it assigns importance to every tree in the ensemble based on the class distribution (inde-
pendently of the number of classes. The cost-sensitive CSARF displays the best perfor-
mance on the G-Mean metric, yet suffers under Kappa evaluation. This shows that CSARF 
focuses on the minority classes but at the cost of suffering a larger number of false posi-
tives. The best three classifiers are based on ARF, showing that it is very reliable in multi-
class scenarios. Among classifiers based on training modifications, only ROSE achieved 
good results, demonstrating that keeping buffers for each class is a good choice for this 
scenario. On the other hand, HDVFDT and GHVFDT were among the worst. It is worth 
mentioning that CALMID and MICFOAL were not able to outperform the mentioned clas-
sifiers, despite being specifically designed for multi-class imbalanced data streams.

Impact of ensemble architecture. Ensembles once again are predominant among the best 
performing methods for multi-class imbalanced streams. Within bagging-based methods, 
only LB underperformed. However, LB is a general-purpose ensemble, therefore it was 
expected not to display robustness on pair with dedicated skew-insensitive solutions. KUE 
and SRP could satisfactory handle static multi-class imbalance. Also, it is interesting to 
note that most bagging methods displayed balanced performance considering Kappa and 
PMAUC, demonstrating that their natural partitioning of instances contributes to a bal-
anced performance among all classes. We have much less information on boosting-based 
ensembles, as only one of the examined classifiers were suitable for multi-class problems. 
However, this single case performed poorly, allowing us to assume that the performance of 
boosting-based methods will follow trends from binary scenarios.

7.2.2  Dynamic imbalance ratio

Goal of the experiment. This experiment was designed to complement the previous 
experiment and address RQ2 to evaluate the robustness of the classifiers to dynamic 
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Fig. 31  PMAUC and Kappa on multi-class shifting imbalance ratio

Table 14  PMAUC and Kappa on multi-class shifting imbalance ratio

Bold font highlights the best result

Drift CSARF ARF KUE LB SRP CALMID MICFOAL ROSE ARFR OOB

PMAUC 
 Sudden 92.32 90.95 92.58 92.29 90.44 91.38 89.93 91.65 91.35 92.49
 Gradual 93.85 92.87 93.04 92.79 91.88 91.86 90.94 93.56 93.26 93.04

Kappa
 Sudden 63.49 70.99 72.60 73.04 65.73 76.87 70.13 72.24 71.91 68.33
 Gradual 63.81 73.42 72.42 71.55 68.26 74.36 70.61 75.11 74.97 70.47

Avg. PMAUC 93.09 91.91 92.81 92.54 91.16 91.62 90.43 92.61 92.31 92.76
Avg. Kappa 63.65 72.20 72.51 72.29 66.99 75.62 70.37 73.68 73.44 69.40
Rank PMAUC 2.58 5.58 4.42 4.50 7.42 7.50 7.92 4.83 4.92 5.33
Rank Kappa 9.50 4.50 5.00 4.67 8.00 3.08 5.58 4.00 3.92 6.75

Fig. 32  Comparison of all 15 
algorithms for multi-class shift-
ing class imbalance ratio. Color 
gradient represents the product 
of both metrics (Color figure 
online)
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changes in imbalance ratio with multiple classes. To evaluate this, we prepared three 
multi-class generators {Hyperplane, RandomRBF and RandomTree}, all of them with 
5 classes shifting imbalance ratio through the following distributions: {{50, 20, 10, 5, 
1}, {20, 10, 5, 1, 50}, {10, 5, 1, 50, 20}, {5, 1, 50, 20, 10}, {1, 50, 20, 10, 5}}. The 
speed of the changes was evaluated both sudden and gradual. This allows us to ana-
lyze how classifiers are able to cope with dynamic imbalance ratio changes and how 
they are able to adapt. Figure  31 illustrates the prequential PMAUC and Kappa for 
each generator over time for the selected classifiers. Table 14 presents the performance 
for the top 10 classifiers, and their average ranking. To summarize, Fig. 32 shows the 
overall performance of all classifiers

Discussion
Impact of class imbalance approach. Interestingly, the average performance of all 

evaluated classifiers is higher under the dynamic imbalance than under the static skew-
ness ratio. We can explain that by the fact that evolving imbalance and class roles lead 
to each of the classes being the majority class for a given period of time, thus allowing 
for a better exposure of it to the classier, as well as countering the small sample size 
problem (which is a big challenge for multi-class imbalance data).

Blind resampling methods repeated the trends observed in the previous experiment, 
with OOB returning acceptable performance and UOB failing to deliver predictive 
power. Undersampling, by reducing the size of majority class, can be enhancing the 
small sample size difficulty, instead of temporarily alleviating it. This prevents UOB 
from capitalizing on stats of the stream when a minority class transforms to majority 
one.

Ensembles based on ARF maintain their very good performance and robustness to 
evolving imbalance ratio. ARFR displayed one of the best performances, showing that 
adding a level of resampling really enhanced the robustness to drifting class imbal-
ance. CSARF exhibited great performance on the PMAUC metric, but again failed to 
return satisfactory Kappa. Algorithms based on training modifications like ROSE and 
CALMID showed better robustness and ability to handle drifting imbalance ratios. 
CALMID exceeds on Kappa metric, but drops several ranks under PMAUC. ROSE 
presented the most balanced results in this scenario regarding both metrics, therefore 
it can be seen as the most reliable and trustworthy choice for a multi-class imbalanced 
data stream.

Impact of ensemble architecture. As we saw in previous experiments, bagging 
methods are among the best-performing, and it can be seen easily on the overall figure 
(Fig.  32), where 7 classifiers form a cluster in the bottom-left side of the distribu-
tion, all of them being bagging-based ensembles. Hybrid architectures presented by 
CALMID and MICFOAL that were designed specifically for multi-class imbalanced 
streams significantly improve their performance when dealing with evolving imbalance 
ratios.

Impact of drift speed in class imbalance. Considering the speed of changes in class 
imbalance ratios, we can notice that the impact of speed is marginal on most of the clas-
sifiers. Some methods, mainly the ones without any drift handling mechanisms, have 
slower responses, but it did not translate to significant changes over predictive perfor-
mance. PMAUC metric seems to be more sensitive to differentiation between gradual 
and sudden changes, while Kappa values are similar for both speeds. We can explain 
that by the fact that PMAUC does not consider the class imbalance ratios, thus respond-
ing differently to varying speed of changes. Kappa offers a more stable monitoring of 
the stream changes, not affected by the velocity of imbalance ratio evolution.
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7.2.3  Concept drift and static imbalance ratio

Goal of the experiment. This experiment was designed to complement previous experi-
ments and address RQ2 and RQ4 and to evaluate the behavior of the classifiers in a sce-
nario with multiple classes in the presence of concept drift and static imbalance ratio. 
Concept drift leads to changes in decision boundaries, creating a challenge for classifi-
ers to cope with and react to change. To evaluate this, we prepared three streams genera-
tors similarly to experiment Sect. 7.2.1, plus a concatenation of all three streams, and 
introduced concept drifts along the stream gradually or suddenly. Figure 33 presents the 
performance of the five selected classifiers for each evaluated drifting stream. Table 15 
provides the PMAUC and Kappa for the top 10 classifiers for both types of drift and 
their average value and ranking. Figure  34 illustrates the overall performance for all 
classifiers.

Discussion

Fig. 33  PMAUC and Kappa on concept drift and multi-class static imbalance ratio

Table 15  PMAUC and Kappa on concept drift and multi-class static imbalance ratio

Bold font highlights the best result

Drift CSARF ARF KUE LB SRP CALMID MICFOAL ROSE ARFR OOB

PMAUC 
 Sudden 87.02 86.26 77.49 83.35 84.82 80.19 81.02 85.37 86.94 77.42
 Gradual 84.02 83.29 76.84 81.12 82.42 78.06 79.00 83.41 84.22 77.01

Kappa
 Sudden 56.12 54.82 46.27 52.28 49.92 52.30 49.49 59.32 58.12 41.93
 Gradual 49.05 46.12 42.37 47.00 42.97 46.65 43.16 55.05 50.32 39.94

Avg. PMAUC 85.52 84.77 77.16 82.24 83.62 79.12 80.01 84.39 85.58 77.22
Avg. Kappa 52.58 50.47 44.32 49.64 46.45 49.48 46.32 57.18 54.22 40.93
Rank PMAUC 1.75 3.25 8.75 6.00 4.25 8.75 7.50 3.88 2.00 8.88
Rank Kappa 4.75 5.00 7.75 5.38 7.25 5.25 7.00 2.13 2.25 8.25
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Impact of class imbalance approach. Concept drift poses an increased difficulty in 
multi-class scenarios, as it changes complex relationships among classes. Multi-class prob-
lems tend to have much more complex decision boundaries than their binary counterparts 
and thus adaptation to drift requires more training instances or increased amount of time.

When analyzing resampling-based approaches, we can observe a significant drop in 
predictive power for both OOB and UOB. We already established that UOB is incapa-
ble of handling multi-class problems, but the additional presence of concept drift positions 
it among the worst performing classifiers. This follows our observations from the binary 
experiments, where we showed that lack of explicit or implicit drift adaptation mechanisms 
in OOB and UOB inhibits their learning capabilities from non-stationary data. ARFR 
returned best results among resampling-based algorithms, being at the same time competi-
tive with other top performing classifiers.

The basic version of ARF displayed a loss of performance, showing that this algorithm 
cannot handle well changes appearing in multiple classes at once, especially when these 
classes are skewed. Its cost-sensitive modification maintained the very good performance 
observed in previous experiments, additionally improving under Kappa metric. This shows 
that CSARF is capable of an efficient adaptation to concept drift. CALMID and MICFOAL 
displayed good results, being methods natively designed for multi-class scenarios. ROSE 
was among the best performing algorithms, without relying on resampling or cost-sensi-
tive modifications. This shows that ROSE mechanisms, mainly effective classifier replace-
ment and class-based buffers, allow for an improved robustness in drifting and imbalanced 
multi-class scenarios.

Impact of ensemble architecture. Once again bagging-based and hybrid architectures 
tend to dominate the experimental study. Even methods such as LB and SRP returned 
decent results, despite their lack of skew-insensitive mechanisms. This shows that well-
designed drift adaptation goes a long way in every streaming scenario and that bagging-
based architectures can utilize their diversity to better anticipate the drift occurrence. Two 

Fig. 34  Comparison of all 15 
algorithms on concept drift and 
multi-class static class imbalance 
ratio. Color gradient represents 
the product of both metrics
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exceptions to this rule are KUE, which as we observed in binary class cannot perform 
well with concept drift and imbalance, and UOB that does not adapt well to multi-class 
imbalance.

Impact of concept drift speed. We can see that the speed of concept drift does not sig-
nificantly affect the results of individual classifiers. However, we can see different behavior 
of the metrics as compared to the previous experiment. Here Kappa reacts differently to 
gradual and sudden drifts, showing that the speed of evolution of class boundaries can be 
picked up by Kappa analysis. This allows us to conclude that when concept drift is com-
bined with imbalance, both PMAUC and Kappa become sensitive to speed of changes.

7.2.4  Concept drift and dynamic imbalance ratio

Goal of the experiment. This experiment was designed to complement previous experi-
ments and address RQ4 to evaluate the behavior of the classifiers in a scenario with 

Fig. 35  PMAUC and Kappa on concept drift and multi-class shifting imbalance ratio

Table 16  PMAUC and Kappa on concept drift and multi-class shifting imbalance ratio

Bold font highlights the best result

Drift CSARF ARF KUE LB SRP CALMID MICFOAL ROSE ARFR OOB

PMAUC 
 Sudden 82.02 81.97 77.82 78.66 82.40 77.60 78.75 81.80 81.80 74.14
 Gradual 80.83 81.54 80.04 79.14 82.05 78.25 79.37 81.93 81.43 76.56

Kappa
 Sudden 48.85 54.31 48.93 50.05 51.95 50.46 51.54 55.57 52.81 37.27
 Gradual 43.35 49.18 46.40 46.91 49.01 45.83 47.19 51.68 48.26 37.07

Avg. PMAUC 81.43 81.75 78.93 78.90 82.23 77.92 79.06 81.87 81.61 75.35
Avg. Kappa 46.10 51.75 47.66 48.48 50.48 48.15 49.37 53.62 50.54 37.17
Rank PMAUC 3.55 3.40 7.13 6.28 2.93 7.75 6.93 3.90 3.88 9.28
Rank Kappa 7.30 3.70 6.45 5.18 4.15 5.30 5.70 2.93 4.88 9.43
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multiple classes in the presence of concept drift and dynamic imbalance ratio. Besides 
concept drift, changes in the imbalance ratio poses obstacles for classifiers that have 
to deal with multiple changes in data distribution. To evaluate this, we prepared three 
streams generators similarly to experiment  Sect.  7.2.2, but introducing concept drifts 
along the stream gradually and suddenly. Figure 35 illustrates the PMAUC and Kappa 
metrics of the selected classifiers for each evaluated drifting stream. Table 16 presents 
the PMAUC and Kappa for the top 10 classifiers for both types of drift and their average 
value and ranking. Figure 36 provides the overall performance for all classifiers.

Discussion
Impact of class imbalance approach. Regarding blind resampling methods, we can 

see that the combination of concept drift and evolving imbalance ratios led to significant 
deterioration of OOB results, showing that the blind oversampling cannot adapt well to 
changes happening in both feature space and class characteristics. UOB was impacted 
even more significantly, making it the worst classifier in this scenario. ARFR is still 
among the best performing methods, however we can see small drop in the performance 
compared to the previous experiment. This shows that informed resampling techniques 
still require more work regarding the adaptation to both drifting and evolving imbalance 
ratios, as especially class role switching became challenging for ARFR.

When analyzing algorithm-level solutions we can see that CSARF, while still per-
forming well on PMAUC, displayed reduced performance on Kappa. This shows that it 
cannot handle evolving imbalance ratios and class roles well, having high bias towards 
the initial role of classes. CALMID and MICFOAL improved their relative ranking 
regarding previous experiments, showing that they are resilient enough to handle both 
challenges at the same time.

ROSE is a clear winner in this scenario, showing the best robustness to mul-
tiple types of changes affecting the data stream. Its adaptation and skew-insensitive 

Fig. 36  Comparison of all 15 
algorithms on concept drift 
and multi-class shifting class 
imbalance ratio. Color gradient 
represents the product of both 
metrics (Color figure online)
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mechanisms allow it to efficiently handle the combination of concept drift and dynamic 
class imbalance, easily adapting to the new incoming concepts, even with changed 
class roles.

Impact of ensemble architecture. Once again we can see a clear dominance of bag-
ging-based and hybrid architectures. However, this difficult learning scenario gives 
us a very unexpected insight. We can see that SRP and LB are able to outperform 
CALMID and MICFOAL. This is highly surprising, as the former methods are gen-
eral-purpose classifiers, while the latter ones were specifically designed to handle 
imbalanced multi-class streams. Additionally, KUE achieved similar performance to 
dedicated skew-insensitive ensembles. This allows us to conclude that combination of 
bagging-based or hybrid architecture with an effective drift adaptation mechanism is a 
leading factor in the performance of ensemble classifiers for drifting and dynamically 
imbalanced streams. Therefore, it is crucial for future researchers not to focus solely 
on how to handle class imbalance, but firstly how to handle non-stationary characteris-
tics, and then make this adaptation mechanism skew-insensitive.

Impact of concept drift speed. Once again, we are unable to see a clear relation-
ship between the speed of concept drift and classifier performance. Even under sud-
den drifts, most of the examined methods were able to quickly recover and return to 
their performance before the change. Therefore, end results are similar for any speed of 
change. The differences can be observed very locally during the drift occurrence, but 
they did not have a long-lasting effect on any classifier.

Relationship between concept drift and shifting imbalance ratio. This scenario com-
bines two types of changes, creating a more realistic and challenging scenario. There-
fore, we need to understand the impact of each of these types of changes on the under-
lying classifier. Analyzing the results, we can see that most of existing algorithms are 
characterized by a trade-off: either focusing on adaptation to changes or on robustness 
to class imbalance. Only ROSE and SRP displayed a balanced performance on both 
tasks. This supports our previous conclusion that there is a need to design novel meth-
ods where both adaptation and skew-insensitiveness will be solved as a joint problem.

Fig. 37  Impact of the number of classes on PMAUC and Kappa under concept drift and multi-class shifting 
imbalance ratio
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7.2.5  Impact of the number of classes

Goal of the experiment. This experiment was designed to evaluate the robustness of 
the classifiers to different number of classes under the presence of concept drift and 
dynamic imbalance ratio. Combining those learning difficulties with different number 
of classes allow us to evaluate how classifiers deal with higher number of classes and 
examine if does affect their learning mechanisms or not. To evaluate this, we used the 
generators in experiment Sect. 7.2.2. All these generators were evaluated with the fol-
lowing number of classes {3, 5, 10, 20, 30}. Figure 37 illustrates the performance of 

Table 17  PMAUC and Kappa averages on the number of classes under concept drift and multi-class shift-
ing imbalance ratio

Bold font highlights the best result

Classes CSARF ARF KUE LB SRP CALMID MICFOAL ROSE ARFR OOB

PMAUC 
 3 85.81 84.88 80.07 83.19 84.06 81.26 81.62 83.99 84.30 78.45
 5 86.65 86.10 81.27 84.52 86.08 81.89 82.68 85.74 85.86 78.57
 10 84.49 84.69 80.84 83.10 84.98 80.74 81.18 84.37 84.68 77.33
 20 81.48 81.95 80.27 79.91 82.92 78.89 79.11 82.32 81.99 75.96
 30 68.71 71.13 72.19 63.77 73.09 66.84 70.71 72.93 71.23 66.45

Kappa
 3 48.01 55.72 54.00 60.04 44.70 60.92 54.10 62.20 52.48 43.66
 5 55.22 58.39 53.72 58.47 54.46 58.83 54.81 63.08 56.11 44.43
 10 53.11 56.71 49.11 53.30 57.07 50.48 51.77 55.88 56.36 38.51
 20 49.52 53.83 47.57 48.28 56.11 46.62 49.06 51.76 53.66 36.79
 30 24.65 34.08 33.92 22.33 40.06 23.88 37.08 35.19 34.06 22.43

Avg. PMAUC 81.43 81.75 78.93 78.90 82.23 77.92 79.06 81.87 81.61 75.35
Avg. Kappa 46.10 51.75 47.66 48.48 50.48 48.15 49.37 53.62 50.54 37.17
Rank PMAUC 3.55 3.40 7.13 6.28 2.93 7.75 6.93 3.90 3.88 9.28
Rank Kappa 7.30 3.70 6.45 5.18 4.15 5.30 5.70 2.93 4.88 9.43

Fig. 38  Comparison of all 15 algorithms on the number of classes under concept drift and multi-class shift-
ing imbalance ratio. Axes of the ellipse represent PMAUC and Kappa metrics. Color gradient represents the 
product of both metrics (Color figure online)
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five selected algorithms classifier for each number of classes. Table  17 summarizes 
the performance of the top 10 classifiers for each number of classes and their average 
ranking regarding each metric. For overall comparison, Fig.  38 presents the overall 
aggregated performance of all classifiers. Axes of the ellipse represent PMAUC and 
Kappa metrics, the more rounded the better, and the color represents the product of 
both metrics.

Discussion
Impact of class imbalance approach. We can see that high number of classes pose 

a significant challenge for most of the examined methods. For resampling-based 
approaches, we observe that OOB and UOB cannot handle any higher number of 
classes, returning the worst performance of the same rank as single tree classifiers 
(GHVFDT and HDVFDT). ARFR maintains its performance with the increase in the 
number of classes, showing that the combination of informed resampling with ARF-
based architecture allows for the memorization of more complex decision boundaries, 
while combating bias using well-placed artificial instances.

When looking at the algorithm-level modifications we can see that CSARF, pre-
viously one of the best algorithms, displays no robustness to increasing number of 
classes. This shows the limitations of cost-sensitive approaches, as with the increased 
number of classes the cost matrix needs to grow. Large cost matrices lead to loss of 
meaning behind the penalties and their reduced influence on learning process and no 
effect on bias towards majority classes. We can conclude that existing cost-sensitive 
methods are not suitable for handling multi-class imbalanced streams with a high num-
ber of classes. CALMID, despite being designed for multi-class problems, cannot han-
dle increasing number of classes and returns performance similar to ensembles based 
on blind resampling. ROSE and MICFOAL displayed the best robustness to high num-
ber of classes. ROSE, especially for the Kappa metric, is a safe choice for scenarios 
with elevated number of classes.

Impact of ensemble architecture. Our analysis of the ensembles under increasing 
number of classes showed once again the dominance of bagging-based and hybrid 
architectures. In this scenario, hybrid approaches became dominant, with ROSE dis-
playing best results due to its combination of working on both instance and feature 
subspaces, combined with per-class memory buffers for balanced class representations.

Impact of the high number of classes. With the increasing number of classes, we 
can see a clear break point when the number of classes is > 20 . This shows that all 
classifiers could handle the increasing number of classes up to a certain point, after 
which their capabilities for memorizing new concepts and generalizing over all classes 
begin to rapidly deteriorate. We can see that for scenarios with 30 classes most of the 
methods start returning highly unsatisfactory results. Interestingly, for these cases we 
can observe a very good performance of standard classifiers, such as SRP. When ana-
lyzing ranks, we can see that SRP and ROSE are two best performing ensembles when 
handling high number of classes. While we provided the explanation for the better per-
formance of ROSE, it is very surprising to see that SRP performs on par with it. We 
can explain it by the fact that both ROSE and SRP use feature subspaces, which can 
be seen as lower dimensional projections of a difficult learning task. In such a lower 
dimensional subspaces the decision boundaries among classes may be simplified, lead-
ing to better generalization capabilities. This follows observation made in Korycki and 
Krawczyk (2021b), where it was postulated that low-dimensional representations can 
overcome class imbalance without any dedicated skew-insensitive mechanisms.
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7.2.6  Real‑world multi‑class imbalanced datasets

Goal of the experiment. This experiment was designed to address RQ5 and to evaluate 
the performance of the classifiers on 18 multi-class real-world imbalanced and drifting 
data streams. The previous experiments focused on analyzing how the classifiers can deal 
with multiple learning difficulties in multi-class data streams. This allowed us to exam-
ine their behavior in very specific and controlled scenarios. Furthermore, with data stream 
generators we have full control over the created data, but we cannot generate specific sce-
narios that are present in real-world scenarios, because they are characterized by merging 
various learning difficulties at varying frequency and intensity. The real-world data streams 

Table 18  Real-world multi-class 
datasets specifications

Dataset Instances Features Classes

activity 5418 45 6
connect-4 67,557 42 3
cov-pok-elec 1,455,525 72 10
covtype 581,012 54 7
crimes 878,049 3 39
fars 100,968 29 8
gas 13,910 128 6
hypothyroid 1,000,000 29 4
kddcup 4,898,431 41 23
kr-vs-k 28,056 6 18
lymph 1,000,000 18 4
olympic 271,116 7 4
poker 829,201 10 10
sensor 2,219,803 5 57
shuttle 57,999 9 7
tags 164,860 4 11
thyroid 7200 21 3
zoo 1,000,000 17 7

Fig. 39  PMAUC and Kappa on multi-class imbalanced datasets
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Table 19  PMAUC and Kappa on multi-class imbalanced datasets

Bold font highlights the best result

Dataset CSARF ARF KUE LB SRP CALMID MICFOAL ROSE ARFR OOB

PMAUC 
activity 71.85 72.06 58.74 71.33 71.42 61.05 60.31 68.04 71.98 73.01
connect-4 77.71 78.10 70.72 76.26 80.01 72.79 74.17 77.32 76.60 76.06
cov-pok-elec 6.91 6.91 7.12 6.91 6.91 9.16 6.93 7.27 6.91 7.28
covtype 29.92 29.82 28.11 29.13 29.75 31.04 29.97 28.84 29.80 27.00
crimes 48.10 48.37 47.07 47.69 48.61 47.29 47.56 46.18 48.47 44.60
fars 45.66 35.95 44.59 36.31 37.15 42.39 41.07 38.99 41.10 45.45
gas 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
hypothyroid 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.13
kddcup 98.12 96.77 96.58 95.91 97.47 95.75 96.92 94.28 97.06 97.39
kr-vs-k 6.41 6.40 6.66 6.47 6.38 9.90 6.41 7.07 6.41 6.79
lymph 24.29 23.50 26.66 20.97 27.13 31.11 24.01 22.22 27.34 28.13
olympic 98.64 98.36 92.39 97.38 98.74 95.80 97.82 97.75 98.23 97.53
poker 98.28 98.21 98.32 95.06 99.12 94.87 97.58 94.30 98.15 97.95
sensor 23.64 23.62 24.42 24.81 25.87 23.31 23.68 24.57 23.63 26.42
shuttle 39.36 39.39 32.10 41.88 41.37 39.57 40.28 36.67 38.69 36.45
tags 78.27 76.70 71.59 74.49 73.54 64.39 67.68 74.28 75.75 66.15
thyroid 34.04 34.04 33.97 34.04 35.25 34.03 34.03 33.99 34.04 33.64
zoo 4.40 4.39 5.90 5.48 4.67 6.53 6.14 4.82 4.39 6.29
Kappa
activity 59.43 59.62 29.23 51.77 57.96 36.30 34.36 43.21 61.37 53.05
connect-4 36.88 32.23 23.75 33.63 33.53 34.79 30.81 41.70 35.53 37.42
cov-pok-elec 0.19 0.32 1.38 0.34 0.17 34.38 0.32 4.95 0.33 3.99
covtype 47.91 52.00 38.73 43.89 52.46 78.25 60.98 41.61 52.25 34.60
crimes 50.40 66.25 62.21 65.73 68.38 66.51 62.09 47.53 70.31 50.91
fars 11.53 10.59 8.24 10.26 7.61 13.98 13.80 14.78 0.84 21.59
gas 0.01 0.02 0.02 0.05 0.05 0.13 0.03 0.14 0.05 0.03
hypothyroid 1.42 1.24 −0.04 1.45 1.34 1.29 1.14 1.43 1.21 −0.49
kddcup 70.18 76.88 77.14 69.06 82.22 71.68 80.04 55.16 76.80 80.75
kr-vs-k 0.46 0.67 3.28 0.87 0.20 51.27 0.25 9.36 0.60 4.41
lymph −4.15 1.63 22.86 0.33 34.71 66.38 17.65 0.96 13.83 18.56
olympic 73.92 87.08 75.49 88.07 87.81 76.72 72.91 86.93 78.47 83.83
poker 88.86 90.81 90.77 84.98 93.65 85.41 89.35 68.97 90.59 89.63
sensor 0.14 0.36 1.37 2.37 4.40 1.18 0.01 2.01 0.37 4.35
shuttle 72.19 71.84 30.42 68.24 82.98 54.16 79.39 47.16 64.71 39.02
tags 26.20 32.25 24.80 34.93 8.80 29.74 30.71 37.29 35.57 26.97
thyroid 3.08 3.21 2.05 3.47 0.00 3.38 3.21 2.84 3.20 0.37
zoo 1.79 1.94 24.51 18.20 7.27 50.95 38.25 10.03 1.89 28.44
Avg. PMAUC 43.65 42.93 41.39 42.46 43.53 42.17 41.93 42.04 43.26 42.79
Avg. Kappa 30.02 32.72 28.68 32.09 34.64 42.03 34.18 28.67 32.66 32.08
Rank PMAUC 4.06 5.22 6.89 6.11 4.17 5.56 6.11 6.17 5.11 5.61
Rank Kappa 7.00 5.39 6.83 5.06 4.94 4.11 6.00 5.17 5.22 5.28
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employed in the experiment are popular benchmarks for data streams classifiers, and their 
specifications are presented in Table 18. The PMAUC and Kappa for the five selected clas-
sifiers are presented in Fig. 39. Table 19 provides the average PMAUC and Kappa for the 
selected top 10 classifiers for each dataset. Figure 40 illustrates the overall performance of 
all classifiers for all real-world datasets.

Characteristics of real-world data streams. By analyzing the performance of classi-
fiers in real-world datasets it is worth to bring up the difference between artificial streams 
and real-world imbalance data streams. In real-world datasets data was collected in 
order to model a specific phenomenon observations and does not hold clear probabilistic 
mechanisms such as stream generators. Also, in a multi-class real world scenario, rela-
tions between features and classes are not so clearly defined as it is on artificial generators. 
This benchmark allows us to gain insights about the classifiers examining them under real 
unique and challenging conditions.

Discussion
Impact of class imbalance approach. Similar to the previously analyzed binary case, 

real-world datasets bring a combination of various challenges in addition to the multi-class 
nature of analyzed streams. However, contrary to our observations from binary experi-
ments, we cannot determine for any of the evaluated classifiers to be better than its peers. 
Also, it is possible to notice that on average PMAUC was very similar for all classifiers, 
while Kappa values tend to highlight more differences among algorithms. This shows that 
Kappa is an effective metric for multi-class imbalanced data streams, allowing us to gain 
more insight into how each of the algorithms is performing.

Analyzing the resampling-based approaches, we can see UOB returned unsatisfactory 
results, confirming our observations regarding its inability to cope with multiple classes. 
OOB returned much better predictive power, however only for datasets with relatively 
small number of classes. This confirms our previous observations that blind resampling 
methods are not suitable for problem characterized by a high number of classes to be 

Fig. 40  Comparison of all 15 
algorithms for multi-class imbal-
anced datasets. Color gradient 
represents the product of both 
metrics (Color figure online)
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learned from. Interestingly, ARFR returned much better results, but on a similar level than 
standard ARF. This shows that major reason behind the success of ARFR lies not in the 
chosen informative resampling, but in a good selection of the ensemble architecture.

For algorithm-level approaches CSARF remained among the best-performing classifi-
ers, displaying excellent PMAUC metric, but falling behind when it comes to Kappa evalu-
ation. ROSE, CALMID and MICFOAL presented highly satisfactory results. It is worth to 
note that ROSE did not perform as well as it in previous scenarios, which can be explained 
by lack of specific learning difficulties in analyzed real world data streams (as ROSE excels 
in very difficult problems). CALMID and MICFOAL demonstrated better performance 
than on artificial domains, showing that their mechanisms lead to good performance over 
real-world problems.

Impact of ensemble architecture. While this experiment follows all our previous obser-
vations, we should focus on a comparison between general-purpose and skew-insensitive 
ensembles. Similarly to experiment with high number of classes, we can observe very good 
performance of general-purpose ensembles on real-world imbalanced benchmarks. CSARF 
displayed the best results in real-world datasets regarding PMAUC but the worst regarding 
Kappa. This shows that in the analyzed benchmarks adaptation to change and ability to bet-
ter separate classes in lower-dimensional subspaces can return at least as good performance 
as dedicated mechanisms for tackling class imbalance.

7.2.7  Semi‑synthetic multi‑class imbalanced datasets

Goal of the experiment. This experiment was designed to address more in-depth RQ5 
and to evaluate the robustness of the classifiers to semi-synthetic data streams (Korycki 
& Krawczyk, 2020). We used all 9 multi-class semi-synthetic data streams proposed in.4 
These benchmarks simulate critical class ratio changes and concept drifts. This allows 
us to analyze how the classifiers are able to cope with dynamic changes and concept 
drifts with real-world data streams, how they are able to adapt to those changes. Fig-
ure 41 illustrates the performance of five selected algorithms in the semi-synthetic data 
streams. Table 20 presents the average PMAUC and Kappa for the top 10 classifiers for 

Fig. 41  PMAUC and Kappa on semi-synthetic multi-class imbalanced datasets

4 https:// github. com/ mlrep/ imb- drift- 20.

https://github.com/mlrep/imb-drift-20
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each of the evaluated streams and the overall rank of the algorithms. Figure 42 provides 
a comparison of all algorithms.

Discussion
Impact of class imbalance approach. Semi-synthetic benchmarks allowed us to use 

real-world data to create much more challenging scenarios with rapidly evolving imbal-
ance ratios. Thus, we preserved the desirable characteristics of real-world problems 
(such as mixed types of drift) but enhanced them with much more challenging problem 
from the imbalance standpoint. When analyzing the results, we can see that all classi-
fiers formed two clusters when looking at their predictive performance.

For resampling-based methods, we can see that UOB and OOB returned opposite 
performance, despite them sharing similar core. Here, we can see the superiority of 
oversampling, which confirms observations found in (Korycki & Krawczyk, 2020), 
where authors of these semi-synthetic benchmarks postulated that smart oversampling 
is the best solution. ARFR again returned very similar performance to standard ARFR, 
highlighting that its predictive power can mainly be attributed to its robust core design.

For algorithm-level methods CSARF achieved the best-performing classifier regard-
ing PMAUC, while surprisingly displaying good results on Kappa. ROSE, CALMID 
and MICFOAL displayed great performance, showing that their hybrid mechanisms 

Table 20  PMAUC and Kappa on semi-synthetic multi-class imbalanced datasets

Bold font highlights the best result

Dataset CSARF ARF KUE LB SRP CALMID MICFOAL ROSE ARFR OOB

PMAUC 
activity 71.68 71.47 55.74 70.73 71.78 63.13 62.28 70.63 70.69 69.48
connect-4 77.56 77.95 66.96 76.00 79.92 72.19 72.84 77.22 76.25 72.89
covtype 46.79 46.65 45.64 46.14 46.99 48.93 46.86 46.53 46.51 48.70
crimes 60.08 59.70 55.82 55.83 61.68 54.37 56.79 58.54 59.25 54.96
gas 44.62 45.47 33.15 42.60 44.97 42.31 43.06 43.73 44.16 36.55
olympic 80.05 78.74 71.48 76.39 75.54 67.43 70.23 76.98 78.62 65.77
poker 28.53 27.69 28.85 27.65 28.51 29.55 28.90 26.74 26.13 29.64
sensor 43.81 43.68 42.03 43.64 41.72 43.38 43.63 43.11 43.69 43.50
tags 26.91 26.54 21.56 27.74 27.55 25.98 28.29 25.79 26.70 23.58
Kappa
activity 64.64 63.53 19.13 55.72 67.82 41.22 45.33 57.74 60.99 45.24
connect-4 37.68 31.92 19.68 33.64 33.49 32.97 29.85 41.45 30.75 31.56
covtype 44.59 54.99 49.18 52.09 59.29 73.40 61.28 55.20 54.09 56.45
crimes 11.61 2.13 4.20 0.59 14.33 1.96 5.16 11.49 2.48 4.48
gas 68.84 71.70 24.94 53.97 70.92 49.34 60.89 59.49 58.22 29.68
olympic 25.24 29.52 22.16 28.15 10.04 26.33 29.49 34.48 27.28 14.25
poker 15.00 18.81 33.40 24.83 24.88 48.52 46.49 33.99 13.31 39.19
sensor 52.27 56.73 45.84 55.17 55.87 59.55 60.62 50.13 56.88 56.46
tags 39.63 40.73 9.18 38.09 45.27 41.28 55.60 33.52 40.63 11.03
Avg. PMAUC 53.34 53.10 46.80 51.86 53.18 49.70 50.32 52.14 52.44 49.45
Avg. Kappa 39.94 41.12 25.30 38.03 42.44 41.62 43.86 41.94 38.29 32.04
Rank PMAUC 2.89 3.67 8.67 5.78 3.67 6.78 5.56 6.22 5.11 6.67
Rank Kappa 5.44 4.67 8.67 6.56 3.89 4.89 3.67 4.56 6.11 6.56
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are capable of efficient handling of rapid changes in imbalance ratios within real-world 
datasets.

Impact of ensemble architecture. By adding sudden and extreme changes in real-
world benchmarks datasets, we could see an increase in the gap between best and worst 
performing methods. Similarly, to the previous experiments we can observe an excellent 
performance returned by SRP, showing a significant potential in using low-dimensional 
representations for imbalanced data streams, direction so far only explored in (Korycki & 
Krawczyk, 2021b).

7.3  Overall comparison

Goal of the experiment. The previous experiments discussed how different individual 
underlying data properties affected the performance of the classifiers. The goal of this 
experiment is to perform a joint comparison of the algorithms, identify performance trends 
and divergences, that will allow us to make recommendations to end-users. Moreover, we 
analyze the computational and memory complexity of the algorithms to address RQ6. The 
goal of any algorithm for data streams is to simultaneously maximize the classification 
metrics while minimizing the runtime and memory consumption (Krempl et  al., 2014). 
However, these are often conflicting objectives and highly accurate methods often require 
long runtimes, which is not acceptable for real-time high-speed data streams. Table  21 
shows the runtime and memory consumption of the 24 algorithms both for binary and 
multi-class imbalanced streams. Figures  43 and  44 present a pairwise joint comparison 
of the algorithm’s ranks on G-Mean, PMAUC, Kappa, runtime and memory consumption 
across all experiments. Figure 45 shows a circular stacked barplot with the ranks for the 
four metrics. The bigger the stack the better aggregated performance. The circular barplot 
displays the algorithms sorted clockwise based on the stack size.

Fig. 42  Comparison of all 15 
algorithms for semi-synthetic 
multi-class imbalanced datasets. 
Color gradient represents the 
product of both metrics (Color 
figure online)
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Discussion
Classification metrics. All the above experiments showcased the importance of using 

not only more than a single metric for evaluating classifiers for imbalanced data streams, 
but also the importance of using diverse and complimentary metrics. G-mean and PMAUC 
are strongly correlated with each other and follow the same trends, thus making using both 
redundant. However, by adding Kappa metric we gained an additional insight into specific 
characteristics of evaluated classifiers, thus allowing us to better understand which of the 
classifiers favor only minority classes and which return balanced performance over all ana-
lyzed classes.

Two best performing classifiers across all of experiments were ROSE and CSARF. 
ROSE returned single best performance regarding Kappa metric and one of the best for 
the other metrics. This allows us to conclude that ROSE is a well-rounded classifier that 
demonstrates robustness to various learning difficulties embedded in imbalanced and 
drifting data streams, both binary and multi-class. CSARF returned excellent results in 

Table 21  Comparison of runtime (seconds per 1,000 instances) and memory consumption (RAM-Hours)

Bold font highlights the best result

Algorithm Binary class experiments Multi-class experiments

Runtime Memory Runtime Memory Runtime Memory Runtime Memory

(seconds) (RAM-
Hours)

(Rank) (Rank) (seconds) (RAM-
Hours)

(Rank) (Rank)

IRL 0.15 3.93E-05 5.34 8.13 – – – –
C-SMOTE 18.01 2.39E-02 18.98 20.75 – – – –
VFC-

SMOTE
2.51 2.52E-03 14.48 18.97 – – – –

CSARF 3.97 1.12E-02 14.56 18.83 3.35 5.94E-06 12.53 13.70
GHVFDT 0.01 1.16E-08 1.14 1.78 0.09 9.92E-11 2.00 1.35
HDVFDT 0.01 2.85E-08 2.14 3.21 0.08 2.14E-10 1.70 1.75
ARF 3.65 8.42E-03 14.43 18.65 3.14 1.31E-06 11.93 12.78
KUE 0.11 4.93E-06 7.34 7.79 0.28 1.64E-08 6.30 5.13
LB 0.13 7.30E-06 8.17 9.16 0.33 1.21E-08 7.53 7.45
OBA 0.05 2.60E-07 5.03 5.91 0.25 2.25E-08 5.65 6.95
SRP 3.51 6.27E-03 15.03 18.54 5.34 8.56E-06 13.98 14.55
ESOS-ELM 2.61 1.11E-06 15.29 9.41 – – – –
CALMID 0.09 2.80E-06 7.13 8.21 0.25 2.25E-08 5.65 6.95
MICFOAL 1.91 3.37E-03 12.72 16.98 1.95 3.72E-06 10.23 11.20
ROSE 0.13 6.45E-06 8.70 10.03 0.49 2.82E-08 8.90 8.70
OADA 24.48 2.10E-02 20.45 15.23 97.24 1.54E-04 15.00 10.08
OADAC2 31.61 2.11E-02 21.57 15.81 – – – –
ARFR 1.25 8.73E-04 11.86 16.71 2.94 1.13E-06 11.35 12.38
SMOTE-OB 46.71 2.78E-01 21.10 21.08 – – – –
OSMOTE 113.38 3.66E-01 23.29 15.70 – – – –
OOB 0.07 1.94E-06 6.07 6.69 0.25 6.05E-08 5.28 4.90
UOB 0.03 3.55E-07 3.99 4.70 0.08 1.08E-09 2.33 3.25
ORUB 14.18 4.20E-03 18.57 12.32 – – – –
OUOB 52.58 3.18E-01 22.60 15.41 – – – –
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both types of experiments for G-Mean (for binary tasks) and PMAUC (for multi-class 
tasks) metrics. However, its rank dropped significantly under Kappa evaluation, show-
ing that CSARF is driven by its performance on minority classes, not balanced perfor-
mance on all of them. Furthermore, CSARF becomes unsuitable for scenarios with very 
high number of classes.

Other highly ranked classifiers included SMOTE-OB and OOB for binary scenarios 
and ARFR for multi-class ones. SMOTE-OB was the only classifier based on SMOTE that 
ranked among top performers, showing that SMOTE-based resampling for drifting streams 
needs to be further developed to achieve success, especially under instance-level difficul-
ties. OOB did not get good results on multi-class scenarios, with close to average perfor-
mance. Since SMOTE-OB does not support multi-class problems we could not evaluate it 
in this scenario. For multi-class imbalanced data streams, ARFR returned excellent results. 
This can be explained by the ability of its architecture to deal with multi-class scenarios 
and adapt to changes on multiple classes. This combined with a informed resampling 

Fig. 43  Overall comparison of algorithms’ ranks for G-Mean/PMAUC versus Kappa and Memory Con-
sumption versus Runtime on binary and multi-class imbalanced benchmarks. Color gradient represents the 
product of each pair of metrics (Color figure online)
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approach lead to an effective classifier capable of handling multiple skewed classes in the 
stream.

OADA can be pointed out as the worst classifiers regarding classification metrics for 
both settings. This gives us insights about limitations of boosting-based ensembles for 
imbalanced data streams, where various learning difficulties destabilize the Boosting pro-
cedure and lead to low predictive power.

Computational and memory complexity. When evaluating a classifier for data stream 
mining, we have to take into account how much resources are needed to run it. In the 
streaming setting we often deal with a situation where memory or computational power 
is limited, thus we may not choose the best classifier, but the one that fits our scenario. 
HDVFDT and GHVFDT are characterized by a very small memory usage, and fast runt-
ime. This happens because they are tree-based classifiers which are naturally lightweight, 
with simple structure and low-cost prediction mechanisms. UOB can also be seen as a rela-
tively low-cost classifier, which is justified by its nature of removing samples from the data 

Fig. 44  Overall comparison of algorithms’ ranks for G-Mean/PMAUC/Kappa versus Runtime/Memory 
Consumption on binary and multi-class imbalanced benchmarks. Color gradient represents the product of 
each pair of metrics (Color figure online)
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streams in order to balance it. Therefore, we reduce the size of each batch and obtain more 
compact base classifiers.

When analyzing the classifiers that require the highest computational resources, we can 
see that they are dominated by oversampling-based approaches. This comes as an obvi-
ous observation, as oversampling increases the size of the already big data stream by gen-
erating a high number of artificial instances. Additionally, the increase in computational 
cost lies in the oversampling method itself. All SMOTE-based approaches rely on nearest 
neighbor computation to generate artificial instances, which leads to significant increases 
in their complexity. Out of approaches relying on blind oversampling (and thus free of 
nearest neighbor computations), OUOB and OSMOTE consumed the highest amount of 
resources. This can be explained by it employing resampling mechanisms combined with 
dynamic switching between them and drift detectors. Out of the classifiers that do not rely 
on resampling, OADA was the most computational heavy one. Although its memory con-
sumption is similar to other ensemble approaches, the runtime was bigger that its peers. 
This is another motivation against using current boosting-based algorithms for imbalanced 
data streams.

Relationship between predictive power and computational and memory complexity. Is 
there a trade-off?. We can see that both analyzed criteria are often in a direct opposition 
to each other, the most lightweight classifiers are also among the worst performing ones. 
Therefore, how one can strike a balance between predictive power and computational com-
plexity? How to select the best trade-off for imbalanced data streams? To select the most 
suitable classifier for a given data stream we cannot always get the best-performing regard-
ing classification metrics, due to resources restrictions. For example, SMOTE-OB got 
excellent results regarding classification metrics, but often required more than 256GB of 
RAM per run, a prohibitive number for many real-world scenarios. On the other hand, we 
cannot also choose the lightweight classifier if it does not present good predictive power for 
the problem (e.g. single tree-based classifiers are non-competitive to most of ensembles for 
imbalanced data streams).

Fig. 45  Overall comparison of stacked algorithms’ ranks for G-Mean/PMAUC, Kappa, runtime, and mem-
ory on binary and multi-class imbalanced benchmarks. Algorithms are sorted clockwise by the stacked 
ranks best to worst. Equal weight for the four metrics
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Analyzing all our experiments, we aim to select such classifiers that balance both sides. 
We can clearly see that OOB, UOB, ROSE and CALMID presented the best trade-off 
between their predictive performance and computational complexity for binary and multi-
class experiments. ROSE presented the best overall performance when using equal weights 
for the predictive performance and complexity metrics. While second, the oversampling 
method in OOB demanded more memory and runtime when building the classifier. UOB 
undersamples the majority class which reduces the runtime complexity of the classifier 
learning. However, UOB has shown that undersampling in multi-class imbalanced data did 
not perform as in the binary scenario. ROSE and CALMID rely on highly efficient hybrid 
architectures and do not employ any costly mechanisms such as oversampling or adaptive 
cost-sensitive matrix. When focusing on the predictive metrics only, ROSE, SMOTE-OB, 
and CSARF perform the best on binary class while ARFR, ROSE and CSARF perform the 
best on multi-class.

8  Lessons learned

In order to address RQ7 and summarize the knowledge we extracted through the extensive 
experimental evaluation, this section presents the lessons learned and recommendations for 
future researchers.

Design of the experimental study. To gain insights into the performance of classifiers 
and fairly evaluate them for imbalanced data streams, a properly designed experimental 
testbed is crucial. The experimental evaluation must be done in a holistic and comprehen-
sive manner that will assess the robustness of the classifiers to the most important chal-
lenges embedded in imbalanced data streams. These must include: (i) static and dynamic 
imbalance ratios with switching class roles; (ii) instance-level difficulties; (iii) various 
types and speeds of concept drift; (iv) binary and multi-class scenarios; (v) increasing 
number of classes; and (vi) real-world datasets. Only such a comprehensive evaluation will 
allow for comparing new classifiers to existing state-of-the-art. For the sake of reproduc-
ible research, this paper offers a ready to use testbed available on GitHub that allows for 
easy and reproducible evaluation of new classifiers designed for imbalanced data streams.

Class imbalance approach. Our experiments showed that among the top performing 
methods we had two approaches based on training modifications (ROSE and CALMID), 
two approaches based on resampling (ARFR and SMOTE-OB), and one cost-sensitive 
method (CSARF). This is a very interesting outcome, as it shows that any of existing 
approaches to class imbalance can achieve excellent robustness and thus confirms the no-
free-lunch theory - there is no single best way of tackling class imbalance in drifting data 
streams. Each of these solutions has their merits and works best in slightly different set-
tings. In the next section we will formulate recommendations on what algorithms should 
be used in which scenarios. For future research it is important to understand what charac-
teristics of each successful algorithm led to its superior performance, as those characteris-
tics should be preserved and further developed when designing new classifiers.

Desirable properties of data-level solutions. When analyzing the resampling-based 
algorithms, we can see the dominance of oversampling approaches, both in their blind 
and informative versions. Blind oversampling has much lower computational cost and 
good reactivity to concept drift. However, it fails in multi-class scenarios, especially with 
high number of classes. Informative oversampling based on SMOTE, when combined 
with ensembles, offer a very high predictive power, being able to handle instance-level 
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difficulties and adapt to various types of non-stationary stream characteristics. This came at 
the price of extremely high computational complexity (mainly due to the distance calcula-
tions), as well as being currently designed only for binary problems.

Desirable properties of algorithm-level solutions. When analyzing the algorithm-level 
solutions, we can see that two main dominant approaches were based either on modifying 
training method or using cost-sensitive classification. ROSE stands as a primary example 
of effective training modification, as it offers top performance over a plethora of analyzed 
scenarios and the best robustness to various learning difficulties. This can be contributed to 
combination of diversity assurance for base classifiers (on both instance and feature levels), 
effective classifier replacement scheme (where pruning can replace multiple classifiers at 
once), and not relying on any resampling scheme (instead using class-specific buffers that 
allow for handling high number of classes). Those modifications allowed ROSE to strike 
a balance between predictive power (across all metrics) and its computational complexity. 
Cost-sensitive solution realized within CSARF showed that the combination of efficient 
design with cost matrix leads to a highly competitive classifier that offers great adapta-
tion to concept drift and do not rely on any resampling. However, current limitations of 
cost-sensitive approaches include bias towards G-mean/PMAUC (while underperforming 
on Kappa) and inability to effectively handle higher number of classes.

Ensemble architectures. All experiments pointed out to the dominance of bagging-
based and hybrid ensemble architectures (please note that most successful hybrid architec-
tures were also rooted in bagging). Both static and dynamic ensemble setups worked well 
with bagging initialization, showing that this leads to creation of diverse base learners that 
can perform well under concept drift and various learning challenges. Furthermore, ensem-
bles that added a feature space diversification on top of bagging, such as ROSE or ARFR 
were among the top performers. This shows that the feature space manipulation is a highly 
promising direction. Boosting proved to be the least efficient, not being able to cope with 
high imbalance ratios or data-level difficulties.

Adaptation to concept drift versus robustness to class imbalance. We can see that 
the most challenging scenarios where when dynamic class imbalance was combined with 
concept drift. Here we could observe that the classifiers either focused on drift adaptation, 
or handling bias towards majority classes. Interestingly, classifiers with very good adapta-
tion mechanisms tend to perform slightly better in these complex scenarios than their coun-
terparts that focus mainly on robustness to imbalance.

Data-level difficulties. Instance-level characteristics can be very disruptive to existing 
algorithms for imbalanced data streams. They should be analyzed not only as individual 
instances, but also as subconcepts within minority class that can evolve over time (e.g. 
merge or split). We can see that resampling-based solutions tend to perform well under 
these difficulties, mirroring observations for static data. However, none of the algorithms 
could explicitly use the instance-level characteristics to their advantage, as suggested by 
(Krawczyk & Skryjomski, 2017).

Handling high number of classes. When analyzing the robustness of classifiers to 
very high number of classes, we observed that SRP, a general-purpose ensemble with no 
skew-insensitive mechanisms, returns one of the best performances. This, combined with 
very good performance of ROSE, allows us to conclude that for multi-class imbalanced 
problems with very high number of classes using lower dimensional representations may 
lead to simplification of learning tasks. Using feature subspaces may lead to more diverse 
capturing of relationships among classes. This confirms observations made by (Korycki & 
Krawczyk, 2021b) that discussed the merit of low-dimensional embeddings for extremely 
imbalanced and difficult data streams.
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Classifier evaluation. To evaluate a classifier in imbalanced data streams, we require 
the use of multiple diverse and complimentary metrics. In our testbed we argue for the 
use of Kappa and G-Mean/PMAUC. These metrics assess different and complementary 
perspectives, thus if only one is provided the evaluation of a classifier is biased towards 
measuring how it performs on minority class under highly imbalance ratio (Kappa) or on 
how it balances majority and minority class performance (PMAUC/G-mean). We showed 
how under high imbalance ratios, Kappa significantly penalizes the false positives whereas 
G-Mean tolerates a larger proportion of false positives.

Computational and memory complexity. One must take into an account the trade-
off between predictive power and computational complexity. Algorithms requiring lowest 
resource consumption are among the weakest ones (such as skew-insensitive versions of 
Adaptive Very Fast Decision Trees). On the other hand, some of the best performing classi-
fiers are characterized by almost prohibitive computational complexity (e.g. SMOTE-OB). 
ROSE, CALMID and OOB presented the best trade-off between computational resources 
consumption and predictive power.

9  Recommendations

After analyzing all the scenarios and evaluating different approaches to class imbalance, 
we could summarize some recommendations to help future researchers when designing 
their own algorithms to tackle imbalanced data streams and other learning difficulties:

Choose the best off-the-shelf algorithms. If you are looking for efficient classifiers 
for solving your real-world imbalanced data streams, or you are looking for effective refer-
ence methods for your experiments, it is important to be aware of the most efficient off-the 
shelf solutions. Based on our exhaustive experimental study, we can recommend ROSE, 
CSARF, OOB, ARFR, and CALMID as the ready to use and effective classifiers. We espe-
cially recommend using ROSE due to its balanced performance, great trade-off between 
predictive power and computational cost, excellent robustness in all analyzed scenarios, as 
well as ease of use due to its autonomously self-adaptive parameters.

Analyze the dynamics of imbalance ratio. In data streams where imbalance ratio is 
static, oversampling and training modification methods return excellent performance. 
Ensembles based on bagging and hybrid architecture are a good choice. When it comes to 
evolving imbalance ratios, we need a more sophisticated mechanism adapting to the chang-
ing imbalance ratio. Here we can see a dominance of algorithm-level solutions that offer 
dynamic ensemble line-up with effective pruning, such as ROSE.

Consider the presence of concept drift. Our experiments showed that many skew-
insensitive classifiers suffer due to their lackluster adaptation mechanisms. On the other 
hand, general-purpose classifiers can display surprisingly good performance in specific 
cases, showing the impact of recovery from concept drift. This allows us to recommend 
paying close attention to embedding an efficient concept drift adaptation mechanism into 
your method. Regardless of how robust your skew-insensitive mechanism will be, it will 
not be sufficient to cope with the drifting nature of imbalanced data streams.

Check for instance-level difficulties. Instance-level difficulties in data streams pose 
significant difficulties to most of the classifiers (Brzeziński et al., 2021). It is crucial to 
analyze your stream to understand if such factors are present. We noticed that meth-
ods based on oversampling tend to handle instance-level difficulties particularly well. 
However, none of them can directly take an advantage of such challenging instances to 
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improve adaptation and robustness. Existing research suggest that incorporating such 
information during learning from imbalanced streams may be highly beneficial (Kraw-
czyk & Skryjomski, 2017). Therefore, we recommend to truly understand the nature of 
streams you are working with and focusing on how you can leverage this information to 
make your classifiers more robust.

Consider the number of classes. There is a significant difference in developing 
methods for binary and multi-class imbalanced data streams. While some of algorithms 
work well regardless of the number of classes (e.g. ROSE), other are very sensitive to it 
and their performance deteriorates significantly with increase in the number of classes 
(e.g. CSARF). Multi-class data streams will require the development of dedicated resa-
mpling algorithms, just like in the static scenarios (Krawczyk et  al., 2020). Existing 
resampling methods work well mainly in binary cases and do not translate well to a 
higher number of classes. Finally, most of the existing classifiers work under fixed num-
ber of classes. This should be considered when dealing with emerging and disappearing 
classes, as existing classifiers need to be extended with dedicated mechanisms to handle 
this phenomenon (Masud et al., 2009, 2010a, b).

Think outside of the box. While data-level and algorithm-level solutions are the 
most popular approaches to handling class imbalance, there are other promising direc-
tions to explore. Instead of focusing on another online resampling method or cost-
sensitive modification, explore alternative solutions. Our experiments showed the high 
promise behind low-dimensional representations for imbalanced data streams, as firstly 
explored by (Korycki & Krawczyk, 2021b). This is just the tip of an iceberg in develop-
ing novel techniques tailored to imbalanced data streams that do not follow these two 
most popular directions.

Use fair and holistic evaluation. New classifiers for imbalanced data streams should 
always be compared with both the popular methods (e.g. OOB or UOB), as well as with 
the most recently published and top performing ones (as of the time of this study these will 
include ROSE, CSARF, or OOB). It is important to use an established experimental setup 
and follow the best practices in this field. This paper provides reproducible code for the 
entire testbed, along with all examined classifiers and datasets. This is the first standard-
ized approach for evaluating classifiers for imbalanced data streams. We recommend for 
future researchers to simply plug-in their new methods into our framework to ensure fair 
and holistic evaluation of newly proposed methods.

Do not neglect using general-purpose ensembles as reference. Our experiments 
showed that general-purpose ensembles can return surprisingly good performance for non-
stationary imbalanced data streams, due to their well-designed drift adaptation mecha-
nisms. Therefore, it is important to use them as a point of reference to see if the proposed 
skew-insensitive mechanism actually contributes significantly to the performance of a new 
classifier.

Use multiple performance metrics. There are many performance metrics for evaluat-
ing imbalanced data streams including Kappa, G-Mean, PMAUC, WMAUC, EWMAUC. 
Section 6.3 presented the different aspects these performance metrics assess, and acknowl-
edged the different biases in individual metrics. We recommend using multiple metrics 
exhibiting complementary behavior rather than picking a single metric.

Ensure reproducible research. Reproducible research is the key towards the advance-
ment of the machine learning community. If you want your method to have an impact, 
always provide the source code on GitHub and use popular frameworks such as MOA (Bifet 
et al., 2010b), River (Montiel et al., 2020), Stream-learn (Ksieniewicz & Zyblewski, 2022), 
and Scikit-multiflow (Montiel et al., 2018). This will make sure that other researchers can 
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use your classifier, as well as that it can be easily embedded in existing frameworks, for 
comparison with other methods.

One size does not fit all. This survey paper presents a very large experimental evalua-
tion of as many imbalanced data scenarios as possible in order to compare existing meth-
ods in the state of the art. It is not our intention nor realistic that every study from now on 
is required to always use the full set of benchmarks. Our goal is that future works can build 
on our recommendations to include some of the benchmarks proposed as appropriate in 
each work, acknowledging that not all of them are necessary nor suitable for all studies.

10  Open challenges and future directions

After formulating recommendations regarding the currently available algorithms, we will 
now present and discuss open challenges and future directions for learning from imbal-
anced data streams.

Informative and fast resampling. Our experimental study showed that current under-
sampling-based methods underperform for imbalanced data streams, especially when faced 
with multiple classes. There is a need to develop novel and informative undersampling 
approaches that can adapt to concept drift and allow to efficiently tackle dynamic class 
imbalance, while preserving the desirable low computational complexity. Current informa-
tive oversampling methods are rooted in SMOTE, offering good improvements in predic-
tive power at the high computational cost. We should develop novel oversampling methods 
that do not rely on a nearest neighbor approach, thus reducing the computational complex-
ity and alleviating SMOTE limitations (Krawczyk et al., 2020).

Proactive instead of reactive tackling of dynamic class imbalance. Existing methods 
focus on adaptation to both concept drift and dynamic class imbalance after the change 
has taken place. But is there a possibility to anticipate the change? Can we predict how 
the class imbalance will evolve over time and offer proactive approach? This would sig-
nificantly reduce the recovery time after changes in data streams and lead to more robust 
classifiers.

Improving boosting-based ensembles. We have discussed how existing boosting-
based ensembles perform poorly for imbalanced data streams. Yet boosting is one of the 
most successful ensemble architectures and deserves a second chance. We hope that the 
weaknesses of boosting identified in this paper will help other researchers develop more 
suitable classifiers based on this architecture, capable of fast adaptation to changes and 
overcoming small sample size in minority classes.

Handling evolving number of classes. While we investigated the impact of the number 
of classes on imbalanced problems, we have not touched upon dynamic changes in class 
numbers (Masud et al., 2009, 2010a, b). In data stream scenarios classes may emerge, dis-
appear, and recur over time. An evolving number of classes combined with dynamic imbal-
ance ratio creates an extremely challenging scenario that requires new and flexible models 
capable of detecting and incorporating new classes into their structures, as well as forget-
ting the outdated classes and remembering recurring classes (Masud et  al., 2011, 2012; 
Al-Khateeb et al., 2012; Sun et al., 2016). We envision strong parallels with continual and 
lifelong learning approaches (Korycki & Krawczyk, 2021a).

Fairness in imbalanced data streams. Algorithmic fairness is a subject of intense 
research (Iosifidis et al., 2021), aiming at creating non-biased classifiers that do not rely on 
protected attributes. Recent works by suggest that algorithmic fairness and class imbalance 
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are the two sides of the same coin, as protected information is often displayed by under-
represented, minority groups. Fairness in data stream mining could benefit from enhancing 
existing methods with skew-insensitive approaches, as both domains aim at countering bias 
in data.

Online skew-insensitive feature selection. We have noticed a superior performance 
of ensembles based on reduced feature subspaces, especially for difficult multi-class prob-
lems. While existing methods are based on randomized approaches, there is a need to 
develop efficient online feature selection methods insensitive to class imbalance. This will 
allow not only to create more compact classifier, filter irrelevant features, but also eliminate 
features that increase bias towards the majority class. This could further be expanded into 
scenarios where the feature space size evolves over time.

Beyond binary and multi-class imbalanced data streams. Most of the existing 
research in imbalanced data streams focuses on binary and multi-class classification. How-
ever, multiple other tasks in data streams may be subject to data imbalance. Multi-label 
data is inherently imbalanced and calls for dedicated methods capable of handling multi-
target outputs (Alberghini et al., 2022). Regression from streams is also frequently subject 
to imbalance in the form of rare values, as frequencies of specific ground truths may evolve 
over time (Branco et al., 2017; Aminian et al., 2021). Finally, streaming times series also 
require dedicated resampling and skew-insensitive methods to facilitate robust predictions.

11  Conclusions

Summary. In this paper, we offered an exhaustive and informative experimental review 
of classification methods for imbalanced data streams. We designed a robust experimental 
framework, publicly available for reproducibility, to evaluate state-of-the-art classifiers in 
varied scenarios and understand how each aspect of imbalanced data streams affects the 
performance of classifiers, and provide a template for future researchers to evaluate their 
newly classifiers with the state of the art. With this experimental framework, we performed 
an experimental comparison with 24 algorithms in multiple scenarios to analyze their 
behavior and discuss their performance trends and divergences. The classifiers were evalu-
ated on 515 benchmarks with different difficulties such as dynamic and static imbalance 
ratio, with and without concept drift, the presence of data-level difficulty factors, and real-
world problems. All these settings were evaluated isolated and combined, in a binary and 
multi-class scenario, to gain insights and understand how they would affect the underlying 
learning mechanisms of data-streams classifiers. Throughout the experiments, we could 
demonstrate which approaches work or do not work for each scenario, such as undersam-
pling techniques were undermined in multi-class scenarios, and dynamic ensemble meth-
ods such as ROSE could do better in many different settings, demonstrating robustness. 
Our proposed experimental framework allowed us to get insights into all the classifiers and 
how would they perform in different scenarios, therefore future researchers can follow the 
same standard of evaluation when proposing their classifier for imbalanced data streams, in 
order to achieve the most transparent and complete results possible.

Towards the future of reproducible research in data stream mining. We proposed a 
standardized and holistic framework for evaluating imbalanced data streams. We strongly 
believe that this is a crucial step towards unifying the community working in this domain, 
offering a flexible tool for long-time practitioners, and an easy way to get started for new-
comers. Guidelines and recommendations formulated in this paper should allow more 
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streamlined and effective improvement of existing algorithms and development of new 
solutions. Only as a community working together, we can truly advance our understanding 
of data streams and design truly impactful, well-rounded, and thoroughly evaluated algo-
rithms that will be used in both academia and industry.

We hope that our framework will begin to grow over time with new algorithms, prob-
lems, and benchmarks being added by the community. There are still many questions unan-
swered in this domain and many open challenges for the future. We look forward to discov-
ering new knowledge together.
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