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Abstract
Convolutional neural networks (CNNs) have achieved impressive results on imbalanced 
image data, but they still have difficulty generalizing to minority classes and their decisions 
are difficult to interpret. These problems are related because the method by which CNNs 
generalize to minority classes, which requires improvement, is wrapped in a black-box. To 
demystify CNN decisions on imbalanced data, we focus on their latent features. Although 
CNNs embed the pattern knowledge learned from a training set in model parameters, the 
effect of this knowledge is contained in feature and classification embeddings (FE and CE). 
These embeddings can be extracted from a trained model and their global, class properties 
(e.g., frequency, magnitude and identity) can be analyzed. We find that important informa-
tion regarding the ability of a neural network to generalize to minority classes resides in 
the class top-K CE and FE. We show that a CNN learns a limited number of class top-K 
CE per category, and that their magnitudes vary based on whether the same class is bal-
anced or imbalanced. We hypothesize that latent class diversity is as important as the num-
ber of class examples, which has important implications for re-sampling and cost-sensitive 
methods. These methods generally focus on rebalancing model weights, class numbers and 
margins; instead of diversifying class latent features. We also demonstrate that a CNN has 
difficulty generalizing to test data if the magnitude of its top-K latent features do not match 
the training set. We use three popular image datasets and two cost-sensitive algorithms 
commonly employed in imbalanced learning for our experiments.
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1  Introduction

CNNs are increasingly being applied to imbalanced visual data in high-stakes fields 
such as medicine, business and law (Johnson & Khoshgoftaar, 2019). Yet, they have 
difficulty generalizing to classes with few examples. Imbalanced data helps focus the 
spotlight on generalization because it provides a contrast between majority classes, 
with their rich data profile, and emaciated minority classes, with few examples that 
typically exhibit a more narrow range of variation.

The ability of a neural network to generalize with respect to minority classes can be 
critical to its overall performance. For example, in medicine, physicians may be more 
interested in the accurate recognition of minority instances, such as cancerous lung tis-
sue. Improving model generalization on minority classes is challenging because neural 
networks are opaque (Gunning & Aha, 2019). The black-box nature of CNNs makes it 
difficult to study the very problem that we are interested in: why does a CNN struggle 
to generalize on minority classes? To answer this question, we first have to unravel 
its decision process so that the properties of the features that cause it to misclassify 
minority examples can be identified. Although there are many available eXplainable 
Artificial Intelligence (XAI) methods that examine neural network feature relevance, 
there is a paucity of research that combines and analyzes data imbalance, generaliza-
tion and CNN opacity in a single, unified study. XAI feature relevance methods such as 
LIME (Ribeiro et al., 2016) or Shapley values (Sundararajan & Najmi, 2020; Shapley, 
1953) generally focus on instance, instead of class, features. Similarly, pixel attribu-
tion methods, such as saliency maps (Simonyan et al., 2013; Sundararajan et al., 2017), 
network deconvolution (Zeiler & Fergus, 2014), and activation maps (Selvaraju et al., 
2017) focus on attributing CNN predictions on specific images to input pixels, instead 
of interpreting network decisions rendered on an entire class.

In this work, we strive to better understand the process by which CNNs reach their 
decisions on imbalanced image data. To search for an answer to this problem and to 
make it tractable, we examine the latent representation that CNN’s extract from input 
data and use when making a class prediction. After thresholding, this embedding rep-
resents a vector of low dimensional features that a linear classifier uses to predict a 
label. We investigate the properties of these latent features (i.e., their magnitude, iden-
tity, and frequency), their relationship to class weights, and draw general hypotheses 
about how CNN’s generalize with respect to majority and minority classes. To enable 
our research, we break a CNN into two separate networks, embedding and classifica-
tion layers, so that we can concentrate on the latent features that serve as input to the 
recognition process. We refer to the internal representation learned by the embedding 
layers, after thresholding, as feature embeddings (FE) and the output of the classifi-
cation layer, before summation and Softmax, as classification embeddings (CE). See 
Fig. 1 for an illustration.

We use CE and FE to determine the most important latent features, for an instance 
or a class, and call these the most relevant, or top-K, features. Feature importance is 
based on magnitude because the class with the largest logit determines the class pre-
diction for models trained on cross-entropy loss, or a variant of this method. Logits, in 
turn, are based on a multiplication of FE and class weights, followed by summation.
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1.1 � Main contributions

We make the following research contributions by taking steps to explain the decision pro-
cess of CNNs when operating on imbalanced data:

•	 CNN minority class latent features are less diverse. We measure class feature diversity 
based on the number, and density, of feature and classification embeddings. We use 
mean as a measure of density and show that a CNN’s internal representation of minor-
ity class features is less diverse than the majority.

•	 CNN minority class prediction rests on fewer, higher valued relevant features due to 
low diversity. A CNN’s minority class prediction rests on only a handful of features 
in embedding space (the top-K features), which is of lower size than the embedding 
dimension, but generally of higher mean magnitude than relevant majority class latent 
features. We hypothesize that the decision manifold is narrower for minority classes 
because there is less diversity of examples. The majority class distribution is more 
diverse, hence it requires a larger decision manifold (magnitude of relevant features) in 
latent space to reach a decision (represent a class).

•	 Higher response, lower diversity of minority class features leads to poor gener-
alization. Although a CNN classifier relies on a few relevant features to distin-
guish minority examples, it compensates by increasing the magnitude of the top-K 
minority features. This finding is interesting in light of previous work which 
found that majority classes dominate CNN model gradients (Anand et  al., 1993). 
Because the minority class has fewer examples with less diverse features, the sys-
tem’s response to top-K minority features is elevated to ensure proper classifica-
tion. This may partially explain why CNN’s have difficulty generalizing to minority 
class examples. The system is conditioned to engineer a high response to a limited 
number of minority features, and when those high response features are not present 
in the test set (due to lower minority class FE magnitudes spread over more FE), 

Fig. 1   Illustration of feature embeddings (FE) and classification embeddings (CE), using the Resnet 32 
architecture (He et  al., 2016). The CNN’s embedding layers produce feature maps based on the interac-
tion of convolutional layers and non-linear activations with input pixels. After thresholding, FE represent a 
low-dimensional response to the input. Based on the classification layer’s final prediction, we trace the final 
output (a label) to logits, classification embeddings and feature embeddings that triggered the response. By 
comparing the CE of the predicted class to the next largest class logit, we determine the number of relevant 
FE and CE (the top-K) required to make a prediction
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the classifier mistakes the minority example for an adversary (majority) class with 
lower, and more varied, overall response to the input. In contrast, the classifier has 
been conditioned to expect a wider range of majority class features and hence, each 
individual feature has a lower magnitude and the sum of more, lower magnitude 
features allows the classifier to make the correct majority class prediction.

•	 Generalization capacity. A CNN has difficulty generalizing from the training to test 
set if the range of its latent feature magnitudes differ. We demonstrate that a CNN 
is able to generalize from the training to the test set if there is a close match in the 
range of its top-K FE.

2 � Background and related work

2.1 � Background

We assume that CNNs perform visual recognition in a two-step process. First, low 
dimensional embeddings are extracted. Second, based on these low dimensional fea-
tures, object classification occurs (a decision is rendered). This assumption forms 
the basis of our experiments, where we separate a CNN into two basic layer groups, 
embedding and classification, so that we can better understand the CNN decision pro-
cess (classification).

There is some support for this approach. The manifold hypothesis holds that high-
dimensional data can be represented on a less complicated, lower dimensional mani-
fold (Cayton, 2005). In the computer vision field, it has similarly been hypothesized 
that high-dimensional image data can be expressed in a more compact form, based on 
latent features (Brahma et al., 2015; Bellinger et al., 2018).

Many modern CNN architectures, which use a non-linear rectified linear unit 
(ReLU) activation function, can be viewed as approximating high dimensional image 
data in a lower dimensional embedding space (with embedding layers) (Li et al., 2022; 
Chui & Mhaskar, 2018). If complex, high dimensional input can be reduced to a low 
dimensional latent space, then linear models can be more readily applied to reach a 
decision (in the classification layer). Stated differently, CNNs use non-linearity to find 
low dimensional features (with embedding layers) that can be linearly separated (by 
classification layers).

Although CNNs have achieved impressive results, they face key challenges, espe-
cially with regard to their ability to generalize on imbalanced data. First, classifi-
ers tend to obtain their highest accuracy when the density of positive and negative 
examples along a class decision boundary are approximately the same (Kovács, 2019; 
Huang et  al., 2019). However, when there is a wide divergence in the number and 
diversity of class examples, such as with majority and minority classes, the decision 
boundary can become blurred.

Second, the decision process of a CNN is difficult to understand, which further com-
pounds the first problem because the decision boundary is wrapped in a black-box (Karimi 
et al., 2019; Mickisch et al., 2020). The machine learning (ML) sub-fields of imbalanced 
learning and XAI independently address these issues: improving classifier accuracy for 
minority classes (imbalanced learning) and model interpretability (XAI). There has been 
a paucity of research that combines these two approaches into a single, unified discussion.
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2.2 � Related work

XAI. XAI adopts a variety of approaches to explain model decisions, including: explain-
ing more complicated models by reference to simpler ones, feature relevance, various 
post-hoc methods, explanation by example, and mapping predictions to inputs (Gun-
ning & Aha, 2019; Adadi & Berrada, 2018; Linardatos et  al., 2020). Many of these 
approaches are local in nature because they explain a model decision on a single input, 
and do not attempt to explain global properties of features or decision processes (Achti-
bat et  al., 2022). For example, feature relevance techniques, which are related to our 
approach, such as Shapley values or Local Interpretable Model-Agnostic Explanations 
(LIME), show the importance of features to a single instance. Shapley values typically 
involve retraining a model or modifying data on a single instance to understand feature 
relevance (Sundararajan & Najmi, 2020). LIME requires learning another model locally 
around a single prediction (Ribeiro et al., 2016). All of these works focus on individual 
predictions, instead of class feature properties.

Other XAI techniques focus on interpreting a CNN’s internal representations. Olah 
et  al. (2017) visualize the learned latent individual neurons, feature maps or layers of a 
CNN through activation maximization. This method generally requires the generation of 
additional images with a Generative Adversarial Network. Bau et al. (2017) propose net-
work dissection, which evaluates the alignment of individual hidden neurons with semantic 
concepts; however, their method does not prioritize the most relevant features for a class 
and requires a pixel-wise labeled dataset. Kim et al. (2018) propose directional derivatives 
to quantify the degree to which a concept is important; however, their method requires 
the introduction of an additional, labeled dataset, and a binary classifier, such as logistic 
regression. Badola et al. (2021) develop the concept of instance top-K features produced by 
a CNN filter, although they do not apply this to imbalanced data.

CNN fragility. The general notion that neural networks, and CNNs in particular, are 
fragile has been explored in a number of works. Szegedy et al. (2013) were among the 
first to observe that the class decisions of neural networks could be changed by small 
perturbations of pixel inputs in the direction of the gradient. These small perturbations 
are imperceptible to humans and are referred to as adversarial examples. In the context 
of adversarial examples, Ilyas et al. (2019) demonstrate that CNNs learn highly predic-
tive, yet brittle, patterns that are not comprehensible to humans. In the same context, 
Wang et al. (2020) show that CNNs learn high frequency patterns that are incomprehen-
sible to humans and which contribute to adversarial examples (i.e., false positives).

More recently, Geirhos et  al. (2020) hypothesize that deep neural networks learn 
short-cuts, or simple decision rules, that perform well on training data, but fail to trans-
fer to more challenging real-world data. Pezeshki et  al. (2021) theorize that gradient 
starvation occurs when cross-entropy loss is minimized by using only a subset of fea-
tures relevant to the task, despite the presence of other predictive features. Shah et al. 
(2020) show that the simplicity bias of neural networks (i.e., their proclivity to exclu-
sively use simple features) affects their robustness and ability to generalize. Our work 
is inspired by these studies, along with the work of Badola et al. (2021), and focuses on 
a subset of the features learned by a CNN (the top-K feature and classification embed-
dings), and how their diversity affects the ability of a CNN to generalize from the train-
ing to the test data with respect to minority classes.

Imbalanced learning. Imbalanced learning is concerned with designing methods 
that allow classifiers to better generalize from training to test data on minority classes 
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(Fernández et  al., 2018; He & Garcia, 2009; Buda et  al., 2018). It uses a variety of 
approaches: re-sampling minority and majority class data, cost-sensitive methods that 
assign a greater loss to minority class misclassification, separating a ML system into 
embedding and classification phases, ensemble, and hybrid approaches (Johnson & 
Khoshgoftaar, 2019; Krawczyk, 2016; Bellinger et al., 2020).

Kang et  al. (2019) and Zhou et  al. (2020) develop a novel technique to improve 
CNN classification with respect to minority classes—bifurcate the model into two sep-
arate layer groups: embedding and classification. Their approach is used to improve 
classifier accuracy and not for explanation. Ye et al. (2020) perform an experimental 
assessment of feature deviation on imbalanced image data, and compare training and 
test set feature means, for purposes of improving classifier performance. However, they 
do not analyze top-K features, feature index identity or frequency. Cao et  al. (2019) 
and Kim and Kim (2020) discuss the impact of imbalanced classes on decision bound-
aries, classifier weights and class rebalancing, although they do not tie this analysis 
into latent features.

3 � Methodology

3.1 � Nomenclature

The following nomenclature is used to describe our experimental setup, results and 
conclusions.

An image dataset, D = {X, Y} is comprised of instances, X, and labels, Y. An 
instance, d = {x, y} ∈ {D} , consists of an image, where x ∈ ℝ

c,h,w , such that c, h, 
and w represent a 2 dimensional image consisting of channels (RGB or red, green, 
blue), height and width, respectively. D can be partitioned into training and test sets 
( D = {Train, Test}).

A CNN can be described as a network of weights, W, arranged in layers, L, that 
operate on x to produce an output, y (a label). We partition the layers, L, into two prin-
cipal parts: embedding layers and a classification layer. (See Fig. 1 for an illustration.) 
A CNN can then be expressed as: f�(⋅) = fWC

[(fWE
)Th] , where fWE

(⋅) are the embedding 
layers, Th performs thresholding, fWC

(⋅) is the classification layer, WE are embedding 
layer weights, and WC are classification layer weights. Feature embeddings (FE) are the 
output of the embedding layers after thresholding has been applied, or FE = (fWE

)Th . 
Classification embeddings (CE) are the result of the Hadamard product of FE and the 
transpose of the classification weights, or CE = FE ⋅WC.T  . Logits (LG) represent the 
row-wise summation of CE, or LG = Σ(CE) . The final prediction (y) is the argmax of 
the Softmax of the logits, or y = argmax(�(LG)) , where � is the Softmax function. Fig-
ure 1 illustrates this nomenclature for the Resnet-32 architecture.

To distinguish classes in a dataset, D, we refer to reference and adversary classes. 
A reference class is the predicted label and an adversary class is any other class in C. 
The number of classes in C is referred to as NC , with each class C = {c1, c2,⋯ cn} . 
Each individual FE and CE vector can be described as FE = {fe1, fe2,⋯ feh} and 
CE = {ce1, ce2,⋯ ceh} , respectively. Each fe and ce in a single FE or CE, respectively, 
have a fixed index position in a vector.
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3.2 � Feature properties

Model FE can be extracted for all Train and Test instances, along with WC , to facilitate 
the analysis of class feature properties. Throughout the text, we discuss and quantify 
several properties of a CNN’s internal embeddings, including their identity, magnitude 
and frequency.

The identity of a feh or ceh refers to its index position in a vector. The magnitude of a 
ceh or feh refers to its value. The frequency of a feh or ceh refers to how often it appears 
within a class in Train or Test.

These properties allows us to compare the number, size, range, and frequency of FE 
that the model uses to define a class. By contrasting majority and minority class feature 
properties, we can better understand the CNN’s ability to generalize to the test distribu-
tion based on its learned features and class weights.

3.3 � Feature relevance and diversity: top‑K FE

A CNN classifier’s prediction for a single data instance, x, is based on whether the logit 
of the reference class exceeds the next largest logit of an adversary class. This observa-
tion applies to CNN’s using cross-entropy loss, or a cost-sensitive variant. The label of 
a final class prediction represents an index in a vector of size NC . This index points in a 
“backward” direction to an index c in CE. For a CNN that uses cross-entropy loss, only 
the CE of the reference class (the prediction) and the next largest CE (largest adversary 
class) matter because the prediction is the argmax of the summed CE. We refer to the 
reference class CE as CER and the CE of the largest adversary class as CEA . The respec-
tive logits are LGR and LGA.

The top-K CE of each data instance is then the number of individual CE of the reference 
class required to exceed the next largest logit, LGA . The ability of a given value of K to pre-
dict all instances in Train can be determined experimentally by summing the top-K CE for 
each instance and comparing it to each LGA and quantifying the percentage of times that 
the sum exceeds LGA in Train. We refer to this percentage as the top-K coverage ratio. The 
ratio is bounded by 0 and 1. For a given K, a high top-K coverage ratio means that only K 
number of CE are needed to predict a high percentage of instances in a training set. This 
same procedure can be applied on a class basis or class top-K coverage ratio.

This ratio provides an indication of feature diversity when examining classes that are 
imbalanced. If a minority class can be defined by a small value of K (only a handful of 
features are present in all class instances), then its top-K coverage ratio for the given K 
should be high (near 1). If a majority class has a low class coverage ratio for the same 
value of K, then a larger number of features are required to make accurate predictions.

Top-K FE or top-K CE are instance based measures. In other words, they determine 
the top features per instance; however, the specific identity of the top-K components 
may vary across all instances in a class. Class top-K members are the group of top-K 
features that occur most frequently across all instances in a class.

3.4 � Class feature means

For each class, the mean value of each feature ( {fe1, fe2,⋯ feH} and {ce1, ce2,⋯ ceH} ) 
is instructive because it provides insight into the model’s response to a given feature. 
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For example, if the mean value of fe35 is high for class 0, but low for class 7, then 
this implies that this feature is more important for purposes of distinguishing class 0. 
Because a CNN classifier makes it class selection linearly based on the largest logit, 
high valued features that compose the logit are important to its decision. The mean 
magnitude is also a measure of density. For example, if ce1 has a high mean magnitude 
for a minority class, but it has a low mean magnitude for a majority class, then it implies 
that ce1 frequently clusters around a high value for a minority class.

4 � Experimental study set‑up

4.1 � Data

To conduct our experiments, we examine three popular image datasets: CIFAR-10 
(Krizhevsky et  al., 2009), Street View House Numbers (SVHN) (Netzer et  al., 2011), 
and CelebA (Liu et al., 2015).

The datasets span three different image data types: objects (CIFAR-10), numbers 
(SVHN) and facial attributes (CelebA). In addition, we compare cross-entropy loss on 
the CIFAR-10 dataset with two cost-sensitive algorithms on the same dataset—LDAM 
(Cao et  al., 2019) and the Focal loss (Lin et  al., 2017). By comparing a single data-
set (CIFAR-10) trained with different loss functions, we are better able to identify the 
effects of cost-sensitive algorithms on features.

In our experiments, CIFAR-10, SVHN and CelebA contain 10, 10 and 2 classes, 
respectively. For CelebA, the two classes are: men and women with black hair.

We use a single hair color because the full CelebA dataset disproportionately con-
tains more women with blond hair then men, and we want to avoid a simple feature (hair 
color) that can easily distinguish classes.

The CIFAR-10 training and test sets are initially balanced. For SVHN, we randomly 
select training and test instances because the dataset contains an uneven number of 
training and test examples by class. See Table 1 for a break-out of the class frequencies 
for CIFAR-10 and SVHN training sets. For CelebA, we randomly select 5000 and 250 
training examples for the majority and minority classes and 1000 test images for each 
class.

Table 1   CIFAR-10 & SVHN 
training class frequencies

Class CIFAR-10 SVHN

0 5000 7325
1 2997 4391
2 1796 2632
3 1077 1578
4 645 946
5 387 567
6 232 340
7 139 203
8 83 122
9 50 73
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For purposes of this study, we introduce exponential imbalance into the training set 
(maximum imbalance ratio of 100:1), similar to Cao et  al. (2019), for CIFAR-10 and 
SVHN. For CelebA, the imbalance ratio is 20:1.

In addition to exponential imbalance, we also consider step imbalance for CIFAR-10. 
We use a 20:1 imbalance level and reverse the order of imbalance (so that the classes with 
the larger number of instances in exponential imbalance become the minority classes 
with step imbalance). Reversing the order of the classes that are imbalanced allows us to 
determine whether imbalance affects generalization compared to the properties of specific 
classes.

We randomly sample 3 imbalanced training sets from the original balanced training data 
for all datasets. Table 2 shows the individual class and balanced accuracies (BAC) - sim-
ple means of individual class accuracies. It also shows the mean of the 3 training splits. 
Because there is a marginal difference in BAC, and the general trend of individual class 
accuracies is consistent, for the single split versus the mean of all of the splits, we select 
a single split for our experiments. In the case of all 4 datasets, the BAC of the selected 
dataset falls within the standard deviation of the 3 training runs. In the case of CIFAR-10 
with exponential imbalance, several individual class accuracies of the selected dataset fall 
outside the standard deviation, however, by an average nominal amount of.48 points. In the 
case of SVHN, only a single class accuracy falls outside the standard deviation by.75 of a 
point and only 2 classes fall outside the standard deviation by.27 of a point on average in 
the case of CIFAR-10 with step imbalance.

This approach allows us to train two models with identical architectures and training 
regimes, but with balanced and imbalanced versions of the same datasets. We can then 
more precisely observe the impact of imbalance on class feature and weight selection.

The use of balanced test sets allows us to examine the effect of different training and 
test distributions for minority classes. More specifically, in the majority class, we would 
expect that the training and test feature distributions are likely more uniform, and hence, 
the model should be able to better generalize from the training to the test set. In con-
trast, for minority classes, which have a limited number of training examples, the model 

Table 2   Dataset training splits

This table compares the individual class accuracy and overall BAC for a single random training split of 
each dataset with the mean and standard deviation of 3 randomly drawn training sets

C-10 (exp) C-10 (step) SVHN CelebA

Class Sing Mu Std Sing Mu Std Sing Mu Std Sing Mu Std

0 94.1 96.2 1.9 66.1 67.8 1.6 96.7 96.1 1.1 99.1 96.1 2.8
1 95.7 97.6 1.6 77.7 77.8 1.8 97.7 95.7 3.1 76.2 82.6 6.7
2 82.3 83.3 1.1 51.7 53.4 1.6 93.4 91.2 2.5
3 62.1 71.3 8.0 27.4 31.2 3.5 94.4 92.7 1.7
4 78.5 80.2 2.3 61.2 59.5 1.4 90.4 87.7 7.0
5 57.0 62.0 4.3 94.4 94.4 0.5 88.1 85.5 2.7
6 71.3 70.5 0.7 97.2 97.2 0.7 83.5 90.0 5.8
7 59.7 58.5 2.3 96.3 96.3 0.1 78.7 80.0 8.6
8 62.6 55.4 6.8 96.9 96.6 0.5 76.7 76.0 0.7
9 62.3 51.5 9.5 96.8 97.1 0.5 81.5 80.6 5.2
BAC 72.6 72.6 0.4 76.6 75.5 2.9 88.1 87.8 0.4 87.7 89.4 2.9
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will likely struggle to generalize to the test set. For example, in the case of CIFAR-10, 
there are 5000 training and 1000 test examples for the majority class, but there are only 
50 training and 1000 test examples for the smallest minority class.

4.2 � Data augmentation

For the CIFAR-10 dataset, our base training regime includes limited augmentations 
for all classes. The basic augmentations are random crop and random horizontal flip, 
which are consistent with Cao et al.’s (2019) training regime for imbalanced data. For 
the SVHN and CelebA datasets, we did not incorporate any data augmentations into the 
training regime because a CNN is able to attain approx. 95% BAC on a balanced dataset 
without any augmentations—see Table 3. In contrast, CIFAR-10 only achieves 87.11% 
BAC without any augmentations on a balanced dataset, which increases to 92.65% with 
limited data augmentations.

4.3 � Model architectures and training regime

For CIFAR-10 and SVHN, a Resnet 32 architecture is used and a Resnet 56 architecture 
is used for CelebA (He et al., 2016). We follow a popular training regime used in cost-
sensitive learning for imbalanced data (Cao et al., 2019). More specifically, we train for 
200 epochs for CIFAR-10 (including cost-sensitive methods) and SVHN with a batch 
size of 128, 0.1 base learning rate (LR), 0.9 momentum, 0.0002 weight decay, and LR 
annealing of 0.001 after 160 epochs and 0.00001 after 180 epochs. For CelebA, we train 
for 50 epochs and use the same hyper-parameters, except that LR annealing occurs after 
epochs 40 and 45.

All models are trained with PyTorch (Paszke et  al., 2017) on a single RTX 3060 
Nvidia GPU. We assess the performance of our trained models with BAC, which treats 
each class equally, regardless of the number of examples. More specifically, BAC for all 
classes in a dataset is calculated as the mean of the true positive rate for each class. The 
epoch with the best performing BAC is then selected.

Table 3   Re-trained classifier 
BAC

The table shows that none of the models trained, or re-trained, with 
imbalanced data are able to replicate the BAC achieved with balanced 
data
*Cross-entropy (c-ent) loss BAC

Description Bal. Train Imb. Train Classifier 
Re-Train

C-ent CIFAR-10 92.65 72.56 78.60
Focal CIFAR-10 92.65* 70.20 80.44
LDAM CIFAR-10 92.65* 77.80 80.30
C-ent SVHN 94.91 83.29 85.60
C-ent CelebA 96.90 87.65 92.70
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4.4 � Research questions

The goal of the research questions (RQ) is to better understand why CNN classifiers are 
less accurate when trained with imbalanced data. We approach this question by examining 
the latent representations (FE and CE) and the class weights that a CNN uses to arrive at its 
class decisions. By better understanding FE and CE properties, we expose the diversity of 
the class latent representations, how this diversity changes with imbalance, and how diver-
sity may affect generalization.

As an initial matter, we first investigate the lower prediction accuracy and lower gener-
alization capacity of CNNs trained on imbalanced data. We then count the number of latent 
features (feature embeddings) that a CNN classifier uses to recognize a class, and whether 
class imbalance affects the diversity of the learned features. We also consider the rela-
tive effect of latent representations versus classifier weights on a CNN’s decision. Finally, 
after establishing the importance of feature embeddings and their diversity, we consider 
the impact of latent features on a CNN’s ability to generalize to examples unseen during 
training.

Our RQs are summarized below:

•	 Can classifier retraining with imbalanced data achieve balanced training accuracy?
•	 What is the effect of imbalance on generalization?
•	 Does a CNN rely on a handful of top-K relevant features when classifying an instance 

and a class?
•	 Does class imbalance affect the diversity of learned latent features?
•	 How significant are classifier weights versus feature embeddings to a CNN’s predic-

tion?
•	 Are majority class feature embeddings more diverse?
•	 Are false positives an indicator of network memorization of training data?

5 � Results

5.1 � Can classifier retraining achieve balanced training accuracy?

For our initial experiment, we train two CNNs: one with balanced data and one with 
exponentially imbalanced data, using cross-entropy loss. We bifurcate the model trained 
on imbalanced data into embedding and classification layers. We re-train the imbalanced-
model classifier with FE from the balanced (full) training set, but that were extracted using 
imbalanced embedding layers. This procedure focuses the spotlight on the benefits of clas-
sifier re-training.

For a combined CNN embedder and classifier trained on balanced CIFAR-10 data, 
the BAC for all classes is 92.65%. For a combined CNN extractor and classifier trained 
on imbalanced data, BAC is 72.56% for a model trained with cross-entropy loss. For a 
CNN extractor separately trained on imbalanced data and a classifier retrained with bal-
anced data extracted by an imbalanced extractor, BAC is approx. 78–80%. This percentage 
is approximately the BAC achieved by several recent cost-sensitive and classifier re-balanc-
ing methods on an exponentially imbalanced CIFAR-10 dataset (Cao et al., 2019; Dablain 
et al., 2022). As noted in Table 3, similar results are produced by the other datasets and 
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cost-sensitive algorithms. In other words, a classifier retrained with features extracted from 
an imbalanced extractor cannot recover the accuracy levels of a full CNN (embedding and 
classification layers) trained on balanced data. This result holds even though the classifier 
is retrained with features drawn from the full dataset (albeit from embedding layers trained 
on imbalanced data).

Thus, a classifier re-trained with the latent embeddings of the full, balanced training set 
is not able to recover the BAC of a combined CNN extractor trained on the same data. This 
implies that the CNN extractor trained on imbalanced data has not learned the same latent 
features as the CNN extractor/classifier trained on balanced data. In the following experi-
ments, we attempt to understand why this is the case.

5.2 � What is the effect of imbalance on generalization?

Here, we investigate a CNN’s ability to generalize on balanced and imbalanced CIFAR-10 
data. Figure 2a shows that a CNN trained with a balanced CIFAR-10 training set is able to 
generalize from the training to the test distribution with relative ease.

However, when the same dataset is imbalanced, the model displays both declining accu-
racy and increasing over-fitting for minority classes. In Fig.  2, the blue and green lines 
show training and test accuracy, respectively. The red line indicates the level of class 
imbalance for the CIFAR-10 dataset. For imbalanced data, the model is able to almost per-
fectly memorize the training data, but it has difficulty generalizing to the minority class 

Fig. 2   a Shows that a CNN can readily generalize from training to test distributions when trained with bal-
anced CIFAR-10 data. b When the same model architecture is trained on CIFAR-10 data with either expo-
nential (exp) or step (c) imbalance, minority classes display much greater difficulty generalizing compared 
to majority classes. In the diagrams, the red dotted line indicates class imbalance levels. c Shows that, when 
a model is trained on an exponentially imbalanced CIFAR-10 dataset, removing simple data augmentations 
increases over-fitting for all classes, although the minority classes, with fewer examples, are more adversely 
affected. In (d), the order of the classes that are imbalanced is reversed, such that classes 0 to 4 have imbal-
ance level 20:1 and classes 5 to 9 have no imbalance

Table 4   Effect of imbalance on generalization

This table shows the effect of imbalance on class accuracy

Description Train Maj. Class Test Maj. Class Diff. Train Min. Class Test Min. Class Diff.

C-ent CIF10 98.22 94.10 4.12 96.00 62.30 33.70
Focal CIF10 99.48 96.00 3.48 98.00 39.30 58.70
LDAM CIF10 98.42 94.10 4.32 100.0 72.90 27.10
C-ent SVHN 99.78 98.13 1.65 100.0 61.47 38.53
C-ent CelebA 99.88 99.10 0.78 94.40 76.20 18.20
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test distribution. The same over-fitting trend for minority classes is repeated for the other 
datasets and cost-sensitive algorithms (see Table 4).

Figure 2 also shows the effect of basic data augmentations (c) and step imbalance (d) on 
over-fitting for CIFAR-10. (The models trained on SVHN and CelebA do not contain any 
data augmentations.)

Figure 2c shows that, when a model is trained on an exponentially imbalanced CIFAR-
10 dataset, removing simple data augmentations (random center crop and horizontal rota-
tions) increases over-fitting for all classes, although the minority classes, with fewer exam-
ples, are more adversely affected. In Fig. 2d, the order of the classes that are imbalanced 
is reversed, such that classes 0 to 4 have imbalance level 20:1 and classes 5 to 9 have no 
imbalance. Even when reversing the order of class imbalance and incorporating step ver-
sus exponential imbalance, a CNN trained on CIFAR-10 exhibits greater over-fitting of 
minority than majority classes; although data augmentation does improve generalization 
capacity.

Table  4 shows BAC for the majority and minority classes, where the majority is the 
class with largest number of training examples and the minority is the class with the few-
est. In all cases, the models have almost perfect accuracy on the training data, but have dif-
ficulty generalizing to the minority class test data, when the training sets are imbalanced. 
This is the case, even though the models are all trained with common deep learning regu-
larization techniques, such as weight decay and learning rate annealing.

5.3 � Does a CNN rely on top‑K features?

Figure 3 shows the top-K coverage ratios for two models: one trained with balanced, and 
the other trained with imbalanced, CIFAR-10 data for K ∈ {2, 3, 5, 7} . For K = 2 or K = 3 
(denoted with blue and green lines) in the balanced data, the top-K coverage ratio fluctu-
ates between a low of 40% and a high of 96%. For K = 3 , the model is better able to pre-
dict classes 6 to 9 compared to 0 to 5 on a balanced dataset. However, at K = 5 (red line), 
the ratio stabilizes between 89% and 99%; and at K = 7 (black line), the model is able to 
predict a class label over 97% of the time for all classes and training set examples on a bal-
anced dataset.

Fig. 3   The figure on the left displays the class top-K coverage ratio for a Resnet-32 with balanced CIFAR-
10 data; and the one on the right shows imbalanced data. In both cases, K = 7 accounts for over 94% of 
training set predictions
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With exponentially imbalanced CIFAR-10 data, Fig. 3 shows that for K = 2 , the model 
struggles to predict the majority classes (0 to 3) with only 2 features 60% of the time; how-
ever, there is a clearly sloping upward trend after that, with the model able to predict the 4 
most extreme minority classes (6 to 9), with only 2 features over 90% of the time. Similar 
to the balanced data, at K = 7 , the model is able to predict a class over 94% of the time 
with only 7 features for all classes.

In Table 5, a similar trend can be observed in other cost-sensitive algorithms and data-
sets. In the case of LDAM and the Focal loss, K = 2 and K = 11 constitute the number of 
relevant features necessary to predict 100% and over 90% of the training instances, respec-
tively. For CelebA and SVHN, K = 2 and K = 3 are needed to predict 100% and over 94% 
of training instances, respectively. In all cases, K is far smaller than the dimension of the 
latent space (FE and CE).

Table  5 also shows the number of top-K CE required to discern instances in a step 
imbalanced CIFAR-10 dataset, where the order of class imbalanced is reversed (hence the 
minority classes in the exponential version become the majority in the step version). It 
shows that K = 11 predicts over 94.6% of the logits for a model trained with 20:1 step 
imbalance on CIFAR-10. Thus, even when the order of the imbalanced classes is reversed 
and step versus exponential imbalance is used, the number of latent features needed to dis-
cern a class is far less than the hidden dimension of model latent space (64).

These results confirm that a CNN classifier relies on a limited number of features to 
make its prediction, consistent with Badola et al. (2021), and this number is less than the 
dimension of the classification layer, such that K <<H.

5.4 � Does imbalance affect the diversity of learned features?

To gain a better understanding of why fewer latent features are required to distinguish 
classes, we visualize the mean magnitudes of the top-K CE for all classes.

Figure 4 shows the ten largest mean magnitudes of CE by class for a CNN trained on 
balanced CIFAR-10 data, with cross-entropy loss. The mean magnitudes are sorted by 
class so that we can clearly see the range and scale of the values for the most significant 
features. For balanced data, the CE for all classes reside in a narrow band between 0 and 
3.4. The single largest mean CE in each class spans from 1.5 to 3.4.

Table 5   Top-K coverage ratio

This table summarizes top-K coverage ratio for classification embed-
dings (CE). For all datasets and loss functions, the top-K and coverage 
ratio for the class with the lowest coverage ratio is shown. Therefore, it 
shows the upper number of CE required to achieve a coverage ratio for 
all classes in a dataset. In all cases, the K is much less than the total 
number of hidden features (64)

Dataset Loss funct. Imbal. type Number 
of Top-K

Percent predicted

CIFAR-10 C-ent Exp 7 95.0
CIAFR-10 Focal Exp 11 90.6
CIFAR-10 LDAM Exp 2 100.0
CIFAR-10 C-ent Step 11 94.6
SVHN C-ent Exp 3 94.7
CelebA C-ent Exp 5 96.4
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In contrast, Fig. 5 reveals a wide band between the mean magnitudes of the class CE 
with the ten largest mean magnitudes of 0 to 9.1. For the imbalanced training set, the larg-
est class CE mean magnitude spans from 1.8 to 9.1, which is approx. triple the balanced 
data range.

The CE show a clear trend of large mean magnitudes for classes with few training exam-
ples and much smaller mean magnitudes for classes with many examples.

The single largest CE for the extreme minority classes (6 to 9), with more than 20:1 
imbalance, average 8.3, whereas the classes with more examples (0 to 5) average only 2.6.

The pattern of larger top-K CE mean magnitudes where K = 1 is present in other data-
sets and cost-sensitive algorithms. Table 6 shows the mean magnitude of the largest single 
CE for the majority class and the average for all other classes. In all cases, the major-
ity class CE magnitude is at least 2 × smaller than the minority classes. This relationship 

Fig. 4   This figure shows the 10 largest mean magnitudes of CE for CIFAR-10 classes extracted from a 
CNN trained on balanced data. The CE are sorted, with the CE identity varying on the x-axis by class. The 
shape of the histograms and the magnitude of the mean value ranges appear relatively similar for all classes

Fig. 5   This figure shows the mean magnitudes of CE for CIFAR-10 classes for a CNN trained on imbal-
anced data. The CE are sorted, with the CE identity varying on the x-axis by class. The extreme minority 
classes (6–9) exhibit a more narrow band of high valued mean features with higher overall magnitude
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applies to models trained on cross-entropy loss for the CelebA and SVHN datasets, as well 
as models trained on cost-sensitive algorithms (LDAM and Focal loss) for CIFAR-10. In 
order for the model to correctly predict the majority class, it must have more CE that col-
lectively sum to a larger logit than the minority classes with fewer, but larger, relevant CE.

There is also a greater and faster drop off in the mean magnitudes of CE for minority 
classes, after the single largest class CE. As class imbalance increases, the mean magni-
tudes of the single largest CE increase and there is greater concentration of large responses 
in only a handful of CE. This drop off is clearly shown in Fig. 5 for CIFAR-10. As imbal-
ance grows, fewer features with higher mean magnitudes contribute to the classifier’s 
prediction.

Figure  6 shows the percentage that the top-7 CE, by class, contribute to each logit 
instance for a balanced and imbalanced CIFAR-10 dataset. Each CE percentage is based 
on averaging all class instances. For the imbalanced data, fewer CE contribute to a greater 
percentage of the prediction logit. For balanced data, in the left diagram, no single CE 
contributes more than 26% of the predicted logit. However, in the right diagram, which 

Fig. 6   This figure shows the percentage that the top 7 CE, by class, contribute to each logit instance for a 
balanced and imbalanced CIFAR-10 dataset. The percentage is based on averaging all class instances. For 
the imbalanced data, fewer CE contribute a greater percentage to the prediction logit. For the imbalanced 
data, the maximum y-axis value (.8) is triple the maximum balanced value (.25)

Table 6   Mean magnitude of 
class CE

This table shows that the feature with the largest mean magnitude for 
majority classes is 2.3 to 4 times smaller than the average of the larg-
est mean magnitude for all other classes

Description CelebA SVHN LDAM Focal

Majority Cls 0.5897 1.4899 4.3578 0.8553
Avg. Other Cls 1.4945 3.4955 12.5248 3.4335
Ratio 2.53 2.35 2.87 4.01

Table 7   Top CE contribution to 
class logit

This table shows the mean magnitude of the largest latent feature (CE) 
as a percentage of the predicted logit

Description CelebA SVHN LDAM Focal

Majority Cls .1191 .1191 .7249 .1267
Avg. Other Cls .5220 .2774 1.032 .3844
Ratio 4.38 2.33 1.42 3.03
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depicts imbalanced data, there are 5 classes that have CE that contribute more than 35% to 
the predicted logit.

This trend is repeated for other datasets and cost-sensitive algorithms. Table 7 shows 
the contribution of the single largest CE to the class logit for the majority class and all 
other classes. In the case of the majority class, it’s largest logit contributes between 1.4 
and 4 times less to the overall class logit, which indicates that the majority class relies on 
a wider diversity of features to arrive at its class decision. Thus, the majority class needs 
higher magnitudes from it’s other latent features (a more diverse set of features) to be the 
predicted class (the class with the largest logit).

Collectively, these results indicate that a CNN classifier forms its decisions on a small 
portion of the dimension of its feature inputs. In the case of minority classes, the number of 
relevant features is even smaller (2 or 3 in some cases).

We hypothesize that the number of relevant features is wider for majority classes 
because their examples are more diverse (i.e., there are a larger number of relevant features 
per class that each individually contribute smaller size magnitudes to the logit). Because 
the majority distribution is more diverse, the model requires a larger decision manifold 
(more relevant features) to distinguish the class instances, which cumulatively add up to 
the logit. In contrast, due to modest minority class diversity, the model generates only a 
few, high valued response CE to distinguish these classes.

In the next two subsections, we will consider whether the model weights WC or the 
learned feature embeddings FE are responsible for the narrow, high-valued CE responses 
of minority classes.

5.5 � How significant are classifier weights versus features to the network’s 
prediction?

Figure 7 shows the ten largest weight mean magnitudes, Wc , by class, for imbalanced 
CIFAR-10 data. The majority classes have a wider cross-section of larger weights, 
whereas the minority class has a narrower concentration. The larger majority class 

Fig. 7   This figure shows the magnitudes of the ten largest weights, W
c
 , by class, for imbalanced CIFAR-10 

data. The majority classes have a wider cross-section of larger weights, whereas the minority class large 
magnitudes are concentrated in fewer weights
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weight mean magnitudes can be seen by comparing the sum of the class top-10 weight 
mean magnitudes for the majority and minority classes.

Table 8 shows that for all datasets and algorithms, the sum of the majority class top-
10 WC mean magnitudes are larger than the sum of the minority class top-10 WC mean 
magnitudes.

The weight sums are significant because the classifier arrives at its decision by sum-
ming the element-wise multiplication of weights and FE.

We hypothesize that there is a wider cross-section of larger weights in majority 
classes because the class top-K FE are more diverse than in the case of the majority.

The model has learned more diverse features for the majority due to more varied 
examples and it must weight these more frequently occurring features to distinguish 
majority instances.

Although the weights are clearly biased toward the majority, the magnitude of the 
weights does not account for the large magnitudes of the class top-10 CE members. 
For example, in the case of the extreme minority classes (8 and 9) for CIFAR-10, their 
top CE have mean magnitudes greater than 8.0, yet the corresponding weights are only 
approx. 1.2 (see Figs. 4, 7).

A similar trend is evident in other datasets and cost-sensitive algorithms. See Table 9.
Therefore, FE must be contributing more to the class decision (CE) than the clas-

sification weights ( WC ), since the magnitude of the CE is much larger than the WC 
magnitudes.

This implies that weight ( WC ) re-balancing strategies employed by some cost-sensi-
tive, over-sampling, or classifier re-training methods may not be sufficient to redress the 
class imbalance problem. Although weight re-balancing may be helpful, there may be 
limits to the amount of class bias that it can address due to the scale difference between 
the weights ( WC ) and CE values.

Because WC appear to only have a minor impact on minority class CE, we next exam-
ine its other component, FE.

Table 8   Top 10 weight 
magnitudes

This table shows that the sum of the top-10 weights are larger for the 
majority versus the minority class

Description C-ent CelebA SVHN LDAM Focal

Majority Cls 7.54 4.89 11.68 7.12 5.51
Minority Cls 4.50 3.48 5.80 3.94 4.38

Table 9   Largest weight mean 
versus largest CE mean

This table compares the size, or magnitude, of the largest weight mean 
to the largest CE. A CE is the row-wise multiplication of weights and 
FE. Since the CE is much larger than the weights, it implies that the 
FE contribution to CE (and the logit or class decision) is larger than 
the classification weights

Description Focal LDAM SVHN CelebA

Largest weight mean 1.29 2.36 1.25 1.04
Largest CE mean 8.77 13.32 6.50 1.49
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5.6 � Are majority class features more diverse?

In this section, we take a closer look at FE, which is the other component of CE, and inves-
tigate why there is a greater concentration of high valued feature responses for minority 
class CE compared to majority class CE.

Figure 8 shows the class top-K FE coverage ratios for the ten most frequently occur-
ring features per class. The FE were extracted from a CNN trained on an exponentially 
imbalanced CIFAR-10 data. Low values indicate that a larger number of varied features are 
needed to distinguish a class. In the figure, the extreme majority class (0) shows no class 
top-K FE coverage ratio greater than 67%, whereas the extreme minority classes (8 & 9) 
have 4 and 5 FE, respectively, that are present in over 90% of class instances.

Figure 9 shows the number of top-K class FE that are required to fully describe all class 
instances for majority and minority classes. For cost-sensitive algorithms and all three 
datasets, fewer top-K are required for minority classes.

Fig. 8   This figure shows the class top-K FE ratio for imbalanced CIFAR-10 data. It conveys the diversity of 
the most frequently occurring top-K FE in each class. The extreme majority class (0) shows no top-K class 
ratios greater than 67%, whereas the extreme minority classes (8 & 9) have 4 and 5 features (FE), respec-
tively, that are present in over 90% of class instances

Fig. 9   This figure shows the 
number of class top K FE that 
are necessary to describe all 
instances in the majority and 
minority classes for the CIFAR-
10 dataset with the cross-entropy, 
focal and LDAM loss functions, 
and the SVHN and CelebA 
datasets using cross-entropy loss. 
In all cases, it requires signifi-
cantly more class top-K FE to 
describe the majority class than 
the minority class
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Together, Figs. 8 and 9 demonstrate that it takes fewer features to describe minority than 
majority classes. Due to the greater diversity of majority instances, a greater number of 
features are needed to predict the full class.

Figure  10a shows the ten largest FE mean magnitudes, by class, for an imbalanced 
CIFAR-10 training set. The scale of these magnitudes more closely aligns with the ten 
largest mean magnitudes of imbalanced CE shown in Fig.  4 than the WC in Fig.  7, and 
demonstrates that FE have a relatively larger impact on CE (i.e., the model’s decision) than 
WC . This observation implies that, in order to influence CE, a method must modify the FE 
extracted by a CNN and somehow augment the diversity of the initial, more static minority 
classes. However, such a task is not easy, since the test distribution or its diversity cannot 
be known in advance.

5.7 � Are false positives an indicator of network memorization of training data?

Here, we examine how the latent features (FE) that a CNN has learned affects its ability to 
generalize to the minority class test distribution. We compare the model’s internal embed-
dings (FE) in the train, test true positive (TP) and test false positive (FP) sets so that we 
can identify differences in its internal embeddings when it makes correct versus incorrect 
predictions.

For a CNN trained on an exponentially imbalanced CFAR-10 dataset with cross-
entropy, in the case of true positives, there is a close correlation between the mean magni-
tudes of the features learned in training and the features in the test set. For both CE and FE, 
there is 95% and 96% intersection between the top 10 most frequently occurring features 
in the train and test TP sets. In the case of false positives, there is still relatively high cor-
respondence between the identity of FE or 70% alignment; however, in the case of CE, the 
correspondence drops to only 39%. In other words, whether the model makes correct or 
incorrect predictions, it basically relies on the same group of input features (FE) by class as 
it identified during training; however, there is a wide divergence between the final CE used 
to make correct and incorrect predictions when compared to training.

In order to gain insight into why this might occur, we look at the mean magnitude of the 
FE in the training and test sets for a model trained on CIFAR-10 and cross-entropy. Fig-
ure 10 shows a relatively close alignment between the top FE mean magnitudes of training 
and true positives. In contrast, the same figure shows a clear divergence between the mean 
magnitudes of the class top-10 FE in the training set and the test false positive set, where 
many of the mean magnitudes for minority class top FE are approx. half of their training 

(a) Train: Means Top 10-FE (b) Test TP: Means Top-10 FE (c) Test FP: Means Top-10 FE

Fig. 10   These figures show a clear divergence between the mean magnitudes of the class top-10 FE mem-
bers in the training and the test false positive set; however, many of the mean magnitudes for minority class 
top FE are approx. half of their training set values. In contrast, there is relatively close alignment between 
the training and test true positives
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set values. This visual observation is confirmed by the Frobenius norm (FB) of the mean 
magnitudes of fe ( FB[�(TrainFE) − �(TestTP−FE)] and FB[�(TrainFE) − �(TestFP−FE)] ). The 
Frobenius norm is 2.36 for training and test TPs and 12.42 for training and test FPs. The 
larger FB for training and test FPs show that the mean magnitude of the FPs are not well 
aligned with the training set, which affects the ability of the model to generalize.

We repeated this exercise for the other datasets and cost-sensitive loss functions, with 
similar results. See Table 10. The table shows that the FB norms are much higher for the 
training and test set FPs.

The minority class true positive decision is based on a narrower group of class top-K 
FE that have high mean magnitudes and lower WC (hence, the logit is based on the sum of 
a few high magnitude FE and weights). We hypothesize that if a model is biased to iden-
tify minority instances only when a narrow set of high valued features are present that it 
may harm its ability to generalize to minority class test examples that do not exhibit these 
characteristics.

Collectively, these results show that the model is able to generalize from the training to 
test distributions when there is very close correspondence between the identity of the most 
relevant features and the range of their values (training and test TPs). However, the model 
has difficulty generalizing when the range of FE differs between the training and test sets 
(FPs), even when there is large (70%) overlap in the identity of the class top-K FE.

6 � Discussion

In this section, we discuss insights based on our experiments, future research directions, 
and the broader impact of our work.

6.1 � General observations on CNNs

In the 1990s, Olshausen and Field (Olshausen & Field, 1997) hypothesized that mammals 
use a sparse coding with an over-complete basis set for object recognition purposes. In 
their model, the initial layer of the visual cortex (V1), uses linear basis functions to identify 
shape primitives (e.g., lines, edges, etc.). In their view, V1 contains an over-abundance (an 
over-complete set) of these linear basis functions; however, the visual stream only uses a 
tiny fraction of them (a sparse coding) to identify individual object classes.

Their work can be analogized to CNNs. A CNN uses linear basis functions (kernels with 
learnable, parameterized weights) that are rotated over an image to identify class features 

Table 10   Frobenius norm of 
train, test TP & FP

This table shows that the training set magnitudes of the top-K latent 
features (FE) learned by a CNN are closely aligned for test true posi-
tives (TP), and further apart for FPs (larger Frobenius norm distance). 
This implies that a CNN is not able to generalize from the train to the 
test set when magnitudes of the learned latent features differ from train 
to test

Description C-ent Focal LDAM SVHN CelebA

TP 2.36 1.73 4.01 4.67 0.64
FP 12.42 9.00 21.16 17.58 2.75



4806	 Machine Learning (2024) 113:4785–4810

1 3

and spatially frequent patterns. In this work, we have shown that some CNNs, whether 
trained with balanced or imbalanced data, only rely on a small percentage of the output of 
their kernels (i.e., the feature maps or feature embeddings) to arrive at an instance or class 
decision. Thus, in some ways, a CNN uses an over-complete basis set (a large number of 
linear kernels that each generate their own feature map or feature embedding); however, it 
only relies on a sparse set of these basis functions (the top-K) to classify an object.

6.2 � Insights on learning with imbalanced data

•	 Importance of balanced training sets. CNNs trained with cross-entropy loss in a super-
vised manner are heavily reliant on carefully balanced training sets to achieve high 
accuracy. This is consistent with, and confirms, other research (Bauder et  al., 2018; 
Weiss & Provost, 2001; Estabrooks et al., 2004).

•	 Statistically frequent patterns required for recognition. Recent research by Huber et al. 
(2021) has shown that the human visual system’s robustness to image distortions is 
largely in place at an early age. In other words, whether a human is shown a limited 
number of versions of a truck or more examples as their experience increases with age, 
they can identify many varieties and transformations of an object as a truck. DiCarlo 
et al. (2012) hypothesize that robustness and invariance are the key computational foun-
dation of any object recognition system. Biological visual systems appear to learn class 
identity preserving features irrespective of changes in location, pose, scale, illumina-
tion variability or clutter. In contrast, our experiments have shown that a CNN displays 
markedly different class accuracy when it is trained with a balanced dataset with many 
class instances versus an imbalanced dataset with only a few instances. For example, 
with CIFAR-10, training a CNN on a balanced dataset with 5000 truck examples versus 
an imbalanced dataset with only 50 examples causes classifier accuracy on this class 
to plummet by over 30 points (62% vs. 94%). In addition, a model trained with no data 
augmentations versus a model trained with only limited augmentations results in a 5 
percentage point change in BAC for a balanced CIFAR-10 dataset (87.11% vs. 92.65% 
BAC). In other words, the ability of the model to generalize from the training to the test 
set can be affected by training set data imbalance and augmentation. Thus, it appears 
that a CNN has learned high frequency patterns that occur in a sufficiently large number 
of training instances. Because the model has learned statistically frequent patterns in 
data, it requires a diverse set of examples to find a sufficient number, and range, of latent 
feature magnitudes, to generalize from the training to the test set. When a minority class 
is characterized by a low number of latent features in a lower response range in a test set, 
the model struggles to generalize to more diverse latent features in the test set.

•	 Role of feature magnitude in class imbalance. The magnitude or response that a CNN 
assigns to a feature has a large impact on CNN classification performance on imbal-
anced data. CNNs trained on cross-entropy loss appear to assign high magnitudes to 
a narrow range of minority features and lower magnitudes to a larger number (more 
diverse) set of majority features. This causes a disconnect during inference if the model 
is presented with minority class latent features (FE) that span a lower range during test 
than training, even if the features have the same identity. This observation confirms the 
brittleness of CNN latent embedding learning, which has been demonstrated in adver-
sarial learning research (Ilyas et al., 2019; Wang et al., 2020).

•	 Minority class latent feature diversity. This paper postulates that an under-appreciated 
issue in imbalanced image learning lies in greater diversity for minority class latent 



4807Machine Learning (2024) 113:4785–4810	

1 3

features. Imbalanced learning solutions that only target class number re-balancing, 
classifier retraining, increasing the cost of minority examples, or increasing the mar-
gin on class decision boundaries and that neglect the importance of FE may plateau at 
some point.

•	 Test set false positives link to network memorization? A CNN trained on cross-entropy 
or a cost-sensitive variant has difficulty generalizing if the magnitude of its top-K latent 
features in the training set do not match the test set. Effectively, a CNN memorizes 
training latent features in the form of model parameters, and if the response range of 
the features produced by these parameters and the input differs in the test set, then the 
model produces false positives.

6.3 � Future research

Based on our study of the role of latent features when learning with imbalanced data, there 
are several potential future research directions. First, we only briefly touched on the role of 
data augmentation in a model’s ability to generalize with respect to minority classes. In the 
deep learning context, Shen et al. (2022) explored the impact of data augmentation on fea-
ture learning. In the imbalanced learning context, a possible future research direction may 
be to investigate the impact of data augmentation techniques, such as SMOTE (Chawla 
et al., 2002), on latent feature diversity when learning with imbalanced data.

Second, an interesting future research direction may be to visualize the latent fea-
tures learned by different datasets and CNN architectures. For example, the latent fea-
tures relating to certain classes may overlap. These features can be compared, which may 
facilitate the discovery of methods that enable a model to better disentangle latent class 
representations.

Third, our experiments involved 3 image datasets, with different levels of imbalance. 
There is a risk of noise or variability in the results due to random sampling. We have 
attempted to control this risk by applying our analysis across three splits of the datasets. As 
discussed above, our analysis of the BAC of one split against the mean BAC of the 3 splits 
suggested a sufficient degree of stability in the results. However, assessing more datasets 
with multiple cross-validation runs in future work could further solidify these results.

7 � Conclusion

CNNs are increasingly being deployed on real-world data, which is naturally skewed. 
Training CNNs on imbalanced image data remains an open challenge. In this paper, we 
take steps toward demystifying a neural network’s decision process for under-represented 
classes. By better understanding the role that a model’s latent features play in its deci-
sion process, we aim to further research that improves a CNN’s ability to generalize with 
respect to minority classes.
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