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Abstract
Deep learning has recently unleashed the ability for Machine learning (ML) to make unpar-
alleled strides. It did so by confronting and successfully addressing, at least to a certain 
extent, the knowledge bottleneck that paralyzed ML and artificial intelligence for decades. 
The community is currently basking in deep learning’s success, but a question that comes 
to mind is: have all of the issues previously affecting machine learning systems been solved 
by deep learning or do some issues remain for which deep learning is not a bulletproof 
solution? This question in the context of the class imbalance becomes a motivation for this 
paper. Imbalance problem was first recognized almost three decades ago and has remained 
a critical challenge at least for traditional learning approaches. Our goal is to investigate 
whether the tight dependency between class imbalances, concept complexities, dataset size 
and classifier performance, known to exist in traditional learning systems, is alleviated in 
any way in deep learning approaches and to what extent, if any, network depth and regu-
larization can help. To answer these questions we conduct a survey of the recent literature 
focused on deep learning and the class imbalance problem as well as a series of controlled 
experiments on both artificial and real-world domains. This allows us to formulate lessons 
learned about the impact of class imbalance on deep learning models, as well as pose open 
challenges that should be tackled by researchers in this field.

Keywords Deep learning · Class imbalance · Concept complexity

1 Introduction

The purpose of this article is to align the progress made on the deep learning front 
with one of the main questions that has been debated in the traditional machine learn-
ing literature for the past three decades: the class imbalance problem (Fernández et al., 
2018). As is well-known or as new practitioners of machine learning and deep learning 
methods soon discover in their investigations, the class imbalance problem is a very 
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prevalent problem that is hard to address (Branco et al., 2016). In a binary classification 
setting, there is a class imbalance if one class is represented by the majority of instances 
present in the data set and the other one is represented by only a minority of instances. 
Class imbalances extend to and is, in fact, magnified in multi-class, multi-label, multi-
instance learning as well as in regression problems and so forth (Krawczyk, 2016).

Research goal To propose a thorough investigation of the effects of class imbalance 
on deep learning models, understand the interplay between deep learning architectures 
and skewed data, as well as provide insights into how imbalanced data affect deep mod-
els differently from their shallow counterparts.

Motivation The class imbalance problem is prevalent in real-world problems, espe-
cially in the ones tackled by deep learning models. However, so far, research aimed 
at making deep neural networks more robust to class imbalances mostly mimics popu-
lar approaches for shallow models. In other words, there is a lack of holistic work that 
offers an understanding of how class imbalances impact deep learning models, and how 
their performance is tied to various other data-level difficulties present in skewed data. 
It is our belief that one cannot simply transfer the solutions proposed for shallow models 
to deep ones, as that does not take into consideration the unique nature of the prob-
lem. Therefore, there is a need for an in-depth analysis of how deep neural networks are 
impacted by various problems coming from imbalanced data.

Overview This article attempts to answer questions about class imbalances in deep 
learning through both a survey of the literature and a series of controlled experiments. 
At the center of the investigation is the question of whether the response of deep learn-
ing models is similar or different from that of traditional learners, and whether adding 
depth to neural networks helps, hinders, or has no effect on the class imbalance prob-
lem. The work presented in this article expands the work previously reported in (Ghosh 
et al., 2021).

Contributions This manuscript offers the following research contributions:

• Thorough literature survey We present a two-part overview of the most important and 
impactful works dealing with the class imbalance problem in deep learning. In the 
first part we discuss existing works that investigate the impact of class imbalance on 
deep learning architectures. In the second part, we create a taxonomy of existing deep 
approaches that tackle class imbalances and discuss the previously proposed distinct 
groups of mechanisms that offer skew-insensitiveness to deep neural networks.

• Understanding the impact of class imbalance on deep learning models We propose to 
understand whether the impact of class imbalance on deep learning models is similar to 
its impact on their shallow learning counterparts. We extract the factors unique to deep 
architectures that appear to play a significant role in the class imbalance setting.

• Investigating interplay between the depth of neural networks and class imbalance We 
analyze whether there are trends in the relationship between the depth of deep neural 
networks and their robustness to various levels of class imbalance, data scarcity and 
data complexity.

• Examining the role of regularization approaches in learning from imbalanced data 
Finally, we investigate the impact of regularization approaches on the robustness of 
deep models in skewed learning scenarios.

• In-depth experimental study We answer the research questions posed in this manuscript 
based on a thorough and holistic experimental study carried out on artificial and real 
datasets coming from diverse domains.
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Organization The remainder of the article is divided into ten sections. Section 2 reviews the 
literature pertaining to the effect of class imbalances on deep learning systems. Since little 
has been said, so far, on that question, the next six sections seek to answer it more fully in 
the binary classification setting. Section  3 describes the set-up of the controlled experi-
ments. Section 4 describe the analytical framework followed in discussing the results. Sec-
tion 5 describes the main takeaways of our experiments. Section 6 lists some notational 
details useful to keep in mind when reading the next two sections. Sections 7 and 8 dive 
into the actual results and their analysis for Multi-Layer Perceptrons (MLPs) and Convo-
lutional Neural Networks (CNNs), respectively. Section 9 is a second literature review that 
surveys what has been done in deep learning, so far, to handle the class imbalance problem. 
Section 10 lists a series of open challenges for class imbalance in deep learning. Section 11 
concludes the article. An appendix is also included with additional results that would have 
taken too much space in the main body of the article.

2  Literature review I: the effect of class imbalances on deep learning 
systems

2.1  Deep learning background

Deep learning is a branch of machine learning that uses Artificial Neural Networks 
(ANNs), learning algorithms inspired by the human brain, that seek to approximate an 
unknown function that maps input data into a target variable value or class. ANNs are 
composed of a set of weighted interconnected artificial neurons, the basic computational 
unit of ANNs. Each neuron uses an activation function to transform the weighted inputs 
into a single output.

The Multi-Layer Perceptron (MLP) is a fully-connected feedforward neural network that 
contains an input layer, and output layers and at least one hidden layer. We have a fully-
connected network when all connections between the different layers are present and we 
say it is feedforward when the data propagates from the input layer, to each subsequent hid-
den layer until the output layer in a forward pass. MLPs can be shallow or deep depending 
on the number of hidden layers that they contain.

Convolutional Neural Networks (CNNs) are feedforward networks that have similarities 
with the human visual processing system, being highly optimized for processing multidi-
mensional data such as 2d or 3D images. When CNNs where proposed at the end of the 
1980’s, they were not widely used due restrictions in computational hardware that lim-
ited the training of these networks. However, the successful application of a gradient-based 
learning algorithm to CNNs in 1998  (LeCun et  al., 1998) boosted the popularity of this 
solution. A CNN architecture typically includes multiple alternating convolution and pool-
ing layers and fully-connected layers. The outputs of the convolution and pooling layers are 
aggregated into a plane, named a feature map. Each node in a given plane is obtained from 
small regions of the connected planes in the previous layers, where a convolutional layer 
learns to detect multiple features and the pooling layer merges similar features acting as a 
dimensionality reduction (LeCun et al., 2015). After the convolutional and pooling layers 
the output is flattened and the fully-connected layers are applied.

With the growing use of deep learning and its succesful application in the particular case 
of images, several CNNs architectures have become popular. Some well-known examples 
of specific CNN architectures include: LeNet-5  (LeCun et  al., 1998), ResNet-10  (Simon 
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et al., 2016), AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), 
NiN (Lin et al., 2013) or All-CNN (Springenberg et al., 2014).

2.2  Class imbalances and deep learning

Research in deep learning has attracted much attention. However, only few existing works 
seek to understand the relation between the class imbalance and deep learning methods. 
Table 1 summarizes the main publications that explore how the class imbalance problem 
impacts the performance of neural networks. We observe that the majority of works (9 out 
of 14) are focused on image data and thus take into account CNNs. There are 5 publica-
tions that cover the issue using other networks for tabular data and one paper that addresses 
this problem for time series data. Overall, there is an interest in both binary and multiclass 
problems on a diversity of datasets. Multiple works carry out a study for a particular appli-
cation domain that is imbalanced (e.g. anomaly in vehicles data, lesion detection or Plank-
ton data). Few works present a more broad study considering several datasets and multiple 
imbalanced version and/or imbalance ratios. We also observe a growing trend on the explo-
ration of the class imbalance problem when using deep learning.

Table 1  Main publications exploring the impact of the class imbalance problem in the context of neural 
networks

References Architecture Datasets Task

Anand et al. (1993) MLP Synthetic dataset;
speech recognition;
binarized iris

Binary

Murphey et al. (2004) MLP, RBF, ART Data collected from 3 vehicle 
models in an automobile 
assembly plant

Binary

Hensman and Masko (2015) CNN CIFAR-10 (11 versions) Multiclass
Lee et al. (2016) CNN WHOI-Plankton Multiclass
Wang et al. (2016) MLP CIFAR-100;

20 Newsgroups
Binary

Raj et al. (2016) MC-DCNN XING, Earthquake, ECG Binary
Ding et al. (2017) CNN EmotioNet 2017 Binary
Pulgar et al. (2017) CNN Traffic signal dataset Multiclass
Pouyanfar et al. (2018) CNN Images from network cameras Multiclass
Buda et al. (2018) CNN MNIST (81 versions);

CIFAR-10 (16 versions);
ImageNet (3 versions)

Multiclass

Ya-Guan et al. (2020) MLP, CNN HTRU2, MNIST, Seismic-
bumps

Binary and Multiclass

Johnson and Khoshgoftaar 
(2020)

MLP 2 Medicare datasets Binary

Valova et al. (2020) CNN Architecture heritage elements; 
Boats

Multiclass

Bria et al. (2020) CNN Microcalcification;
Microaneurysm

Binary
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Anand et al. (1993) present the first work that investigates the impact of the class imbal-
ance problem in neural networks convergence. The performance of an MLP with one hid-
den layer was evaluated on 3 datasets. The nodes and learning rate were adapted to each 
one of the datasets tested. The authors showed that, in an imbalanced setting, there is a 
critical difference in the lengths of the classes gradient component. The length of minority 
class gradient is much smaller than that of the majority class, which means that the major-
ity class dominates the weight update process of the model. This leads to a fast reduction of 
the majority class error in early iterations while having the opposite effect on the minority 
class, causing a slow convergence phenomenon.

Murphey et  al. (2004) studied the sensitivity to class separability and noise on three 
neural network architectures: MLP, Radial Basis Function (RBF), and Fuzzy Adaptive 
Resonance Theory network (ART). The authors used the data obtained from three different 
vehicle models collected at a test site in an automobile assembly plant. Each network was 
evaluated with hyperparameters determined for each dataset. In this study it was found that 
the performance of the neural networks on imbalanced problems is related to the architec-
ture of the network and the separability of the classes. In particular, both the BP and ART 
achieved a good performance on imbalanced data while the RBF network was not able to 
learn the minority class features in a satisfactory way. The performance on the majority 
class was not affected in any of the network architectures.

Hensman and Masko (2015) analysed the impact of the class imbalance problem in a 
multi-class setting when training a CNN. The network was trained with a balanced and 
multiple imbalanced distributions generated from the CIFAR-10 dataset (Krizhevsky et al., 
2009). The imbalanced distributions generated were as follows: (i) 5 minority and 5 major-
ity classes; (ii) 1 majority and 9 minority classes; (iii) 1 minority and 9 majority classes; 
(iv) a linear step imbalance; (v) an exponential step imbalance; and (vi) 4 majority and 
6 minority classes where similar classes are assigned the same number of examples. For 
all cases, except (iv) and (v), two imbalance ratios were tested. The balanced distribution 
exhibited the best overall performance as well as the best minimum performance across 
all individual classes. A variant of AlexNet (Krizhevsky et al., 2012) with 3 convolutional 
layers and 10 output nodes was used for all tests. This study showed that imbalanced dis-
tributions have a significant impact on the CNN performance. All distributions, with the 
exception of the two imbalanced distributions containing a single minority class and 9 
majority classes, showed a worse overall performance when compared against the balanced 
distribution with statistical significance. The more skewed the distribution, the worse the 
performance impact. The two most affected distribution settings were as follows: (i) one 
majority and 9 minority classes with a higher imbalance ratio; and (ii) the exponential step 
imbalance. In these scenarios, the CNN exhibits a near zero performance for all classes 
except one where it exhibits a high performance which suggests the CNN was repeatedly 
guessing that class. Similar imbalanced distribution settings, containing a less pronounced 
imbalance yielded a better performance. The impact observed in the performance of the 
imbalanced distributions with the same number of majority and minority classes was not 
very strong. Simultaneously, the authors verified that imbalanced distributions with a sin-
gle minority class were not severely affected, which suggests that the overall performance 
is more affected when there is only one majority class present.

Lee et  al. (2016) studied a particularly imbalanced application by using the WHOI-
Plankton (Orenstein et al., 2015) dataset. This dataset contains a total of 103 classes with 
a single majority class. The five largest classes represent 73.2% 10.6%, 3.5%, 1.9% and 
1.3% of the cases. In this difficult scenario, when using a version of the CIFAR-10 network 
as baseline CNN, the performance achieved on the 5 most frequent classes is high, but it 
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severely deteriorates for the smallest classes. This confirms the results that were obtained 
for this dataset by Orenstein et  al. (2015). Moreover, it also corroborates the negative 
impact in the performance associated to the scenario where only one majority class is pre-
sent as described by Hensman and Masko (2015).

Wang et al. (2016) explore the class imbalance problem in the contexts of images and 
text documents, focusing on problems related to the loss function used in MLPs. In their 
experiments, three different imbalance ratios were examined for both contexts. Namely, 
the ratio between the minority and the majority class cases was set to 20%, 10%, and 5%. 
The considered baseline model is an MLP trained with mean squared error (MSE) loss for 
which a performance decrease is observed when the imbalance in the data is more severe. 
These results are verified for both F1-score and AUC measures and on all imbalanced ver-
sions of CIFAR-10 and 20NewsGroup. Wang et al. (2016) show that the MSE loss function 
is not able to capture the minority class errors when the data has a high imbalance because 
it is dominated by the large number of majority class cases, a conclusion similar to what 
was observed by Anand et al. (1993).

In the context of time series data, Raj et al. (2016) studied the use of Multi-Channels 
Deep Convolution Neural Networks (MC-DCNN)  (Zheng et  al., 2014) on highly imbal-
anced domains. The geometric mean (G-Mean) results are highly impacted by the class 
imbalance remaining zero irrespectively of the number of iterations used. The conclusions 
of this study are in accordance with studies using other datasets.

Ding et  al. (2017) tackles the Facial Action Units (FAUs) recognition, a naturally 
imbalanced problem. The FAUs recognition is decomposed into 11 binary classification 
tasks due to the fact that multiple FAUs may be present in a single image. Different CNN 
architectures are evaluated on the EmotioNet 2017 Challenge Track 1 dataset  (Benitez-
Quiroz et  al., 2017). More precisely, the authors tested one CNN network with 6 layers 
and 5 networks with a higher number of layers: 4 ResNet with 10, 18, 34 and 50 layers, 
and a 34-layer non-residual CNN. The authors carried out experiments that focus on the 
depth rather than width of the networks because of the efficiency of deep neural networks 
when compared to shallower ones for representing the complex features associated to facial 
expression recognition (Telgarsky, 2016). The 6-layer CNN produced poor performance on 
the highly imbalanced classes while the remaining network architectures tested showed a 
better performance. The networks with 10 or more layers all display a similar overall per-
formance suggesting that using more than 10 layers is not necessary for this problem. The 
results obtained, when comparing a 6-layer with a 18-layer network, suggest that very deep 
networks exhibit a faster convergence while achieving better accuracy when compared 
against the shallower network. However, the authors suggest that the shallower network 
may continue to converge with the increase of the number of epochs, even though it has a 
low convergence rate.

Pulgar et  al. (2017) carried out a set of experiments using the traffic signal data-
set (Stallkamp et al., 2012) to assess the impact of the class imbalance problem on CNNs. 
The 5 most frequent and the 5 least frequent classes were selected among the 43 classes 
of the dataset. Four versions of the dataset were then generated: one balanced and 3 with 
varying imbalance ratio. The imbalanced versions are generated with a ratio between the 
minority class and majority class cases of 1:10, 1:5 and 1:3. The same CNN architecture 
is trained on the four dataset variants. The results show that a global good performance is 
obtained when the classes distribution is balanced. As the imbalance between the classes 
increases, the performance degrades, which confirms what was also observed in other 
research works. The authors suggested that the weights calculation carried out in the last 
fully connected layer may be one of the main aspects affecting the network performance 
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due to a possible bias towards the majority class. Moreover, the weights calculation at the 
filters level in the convolutional layers may also be overly biased to the majority classes 
when a high imbalance is present.

Pouyanfar et al. (2018) used images captured from publicly available network cameras 
to study the influence of the class imbalance in the performance of a CNN. The VGG-
Net  (Simonyan & Zisserman, 2014) used on this highly imbalanced multi-class problem 
produced a poor overall performance and was not able to detect the highly infrequent 
classes. The authors associated the poor performance observed to the need of using large 
datasets in order for the CNNs to be able to accurately update the weights.

Buda et al. (2018) studied the performance of different CNN architectures on 3 image 
datasets (MNIST, CIFAR-10 and ImageNet) of which 100 multi-class imbalanced versions 
are generated. The modern version of LeNet-5 is used for MNIST  (LeCun et  al., 1998), 
All-CNN  (Springenberg et  al., 2014) is used for CIFAR-10 and the ResNet-10  (Simon 
et al., 2016) is used for the ImageNet dataset. The parameters are tuned for each dataset 
and are fixed for all the imbalanced versions generated for a dataset. Two main imbalance 
types were considered: the step imbalance, where all minority classes have the same num-
ber of cases and the same applies to the majority classes, and the linear imbalance, where 
one minority and one majority class are considered and the remaining classes frequency 
is obtained by linearly interpolating them. The main results show that both the imbalance 
ratio and the number of minority classes have a detrimental effect on the classifiers per-
formance. These results confirm the trend previously observed by Hensman and Masko 
(2015) concerning a higher degradation in the performance for tasks with a higher number 
of minority classes.

Ya-Guan et al. (2020) evaluated MLPs on binary classification datasets (HTRU2 Lyon 
et al., 2016 and Seismic-bumps Sikora et al., 2010), and evaluated CNNs on MNIST data-
set from which one balanced and three imbalanced multi-class versions were generated. 
The experiments revealed that on MLPs the error of the majority class decreases as the 
iterations increase, while the minority class error initially increases only decreasing as the 
number of iterations grow. The theoretical analysis carried out confirms that the gradient 
direction of the majority class dominates the training process leading to the slow conver-
gence phenomenon that was previously observed by Anand et al. (1993). Moreover, the ini-
tial increase of the minority class error and its subsequent decrease is associated to changes 
in the gradient direction. In the initial iterations the angle between the global gradient and 
the majority class gradient is small leading to a fast decrease of the majority class error. 
However, the angle between the global gradient and the minority class gradient is above 
90 degrees which results in an increase of the minority class error. After several iterations, 
the minority class error begins to decrease due to: (i) the majority class error becoming 
sufficiently small, and (ii) the angle between the global gradient and the minority class gra-
dient being less than 90 degrees. Besides the theoretical justification, the authors experi-
mentally tested multiple activation functions (Sigmoid and Tanh), cost functions (quadratic 
and cross entropy) and gradient descent algorithms (Batch Gradient Descent (BGD) and 
Momentum Stochastic Gradient Descent (MSGD)), showing that no combination of these 
alternatives is able to effectively reduce the negative impact of imbalanced data on both 
MLPs and CNNs.

The effects of class imbalance were also considered in the context of big data by 
Johnson and Khoshgoftaar (2020). The performance of a 2-layer and a 4-layer MLP was 
observed on two medicare datasets (Herland et al., 2018) representing highly imbalanced 
binary classification tasks. In both datasets, it was found that passing from 2 to 4 layers had 
a negative impact in the performance. This is the first work that investigates how changing 
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the number of layers affects the performance of MLPs in the context of big data. However, 
the exploration was still limited to two options for the number of layers on two datasets.

Valova et  al. (2020) addressed another aspect of training CNNs under a multi-class 
imbalanced scenario by testing the performance impact of using different optimizers. The 
study considers 7 alternative optimizers, the Adam (Kingma & Ba, 2014), Rectified Adam 
(RAdam) (Liu et al., 2019), Yogi (Zaheer et al., 2018), and AdaBound (Luo et al., 2019), 
and also the combination of Adam with 3 different cyclical learning policies (Smith, 2017): 
the triangular Policy, triangular 2 Policy, and Exponential Range Policy, which are evalu-
ated on the architecture heritage elements dataset  (Llamas et  al., 2017). In this dataset, 
there are two majority classes (gorgoyle and column) while the remaining classes are less 
represented. The Yogi optimizer was found to provide the best training and testing results 
on different performance measures while Adam with Exponential Range Policy provides 
the second best results on the testing set. However, these results were obtained on a single 
dataset. The authors also tested Adam (Kingma & Ba, 2014), AdaGrad (Lydia & Francis, 
2019), AdaDelta (Zeiler, 2012) and AdaBound (Luo et al., 2019) on the boats1 dataset hav-
ing reached the conclusion that Adam provides the best performance across all measures 
evaluated.

Bria et  al. (2020) studied deep learning method on the specific imbalanced applica-
tion of lesion detection in medical images. A CNN inspired by the VGGNet architec-
ture (Simonyan & Zisserman, 2014) is used on the Microcalcification and Microaneurysm 
datasets. In this study the strong negative impact of imbalanced on CNNs was also con-
firmed. In effect, when learning the baseline CNN model, where the imbalance was the 
highest, the loss never decreased during the training although multiple attempts have been 
made using different training parameters.

2.3  Concept complexity and deep learning

Imbalance datasets pose an important challenge to deep learning as discussed in the pre-
vious section. However, it is also known that the complexity of the predictive task can 
influence the performance of traditional classifiers [e.g. López et al. (2013), Barella et al. 
(2021)]. In this section we review the relevant works that discuss the relation between con-
cept complexity and deep learning.

Ho and Basu (2002) put forward several data complexity measures that can be clustered 
into 3 main groups: measures of overlap in feature values from different classes; meas-
ures of separability of classes; measures of geometry, topology, and density of manifolds. 
Table 2 shows a summary of the these groups of complexity measures.

A clear relation between these complexity metrics and the classifier performances was 
found by Cano (2013). While these metrics are mainly proximity-based, recent works point 
out to similarities between nearest neighbor and deep learning (Cohen et al., 2018). This 
allows us to argue that usage of such metrics may offer valuable insights into the perfor-
mance of deep learning models. However, neither the class imbalance problem nor deep 
learning methods were taken into account in this study. Santos et  al. (2022) presented 
recently an extensive study on the joint-effect of class imbalance and overlap. This work 
provides a very interesting taxonomy of class overlap measures.

1 https:// www. kaggle. com/ kunal gupta 2616/ boat- types- recog nition.

https://www.kaggle.com/kunalgupta2616/boat-types-recognition
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Recently, Barella et al. (2021) showed that the original data complexity measures are 
not suitable for an imbalanced scenario with real-world data, and thus the authors dis-
couraged their use. As an alternative solution the authors provided simple adaptations 
of the original metrics which were found useful for determining the difficulty faced by 
classification algorithms when dealing with an imbalanced setting. Although this is an 
interesting contribution, these adaptations were only developed and assessed for binary 
classification problems.

Luengo et  al. (2011) took the analysis of the data complexity measures to another 
level in the class imbalance context by using them to evaluate the behavior of different 
pre-processing methods. Rules describing a good or bad behaviour of the pre-processing 
methods are built using measures F1, N4 and L3. However, this study was limited to 
C4.5 and PART algorithms and to 3 measures.

Other works (e.g. López et al. (2013); Dudjak and Martinović (2021)) studied data 
intrinsic characteristics that hinder the learning process when the data is imbalanced. 
López et  al. (2013) analysed 6 characteristics, namely: the presence of small dis-
juncts, the lack of density in the training data, the class overlap, the presence of noisy 
instances, the significance of the borderline examples, and the distribution shift between 
the training and test data. These data intrinsic characteristics are found to pose a strong 
handicap when learning from imbalanced datasets. Although useful and relevant, this 
analysis was carried out with the C4.5 classifier and no deep learning model was eval-
uated. Dudjak and Martinović (2021) ranked these difficulty factors in terms of their 
negative impact on the learning performance. The results suggested that the class imbal-
ance problem impacts the classifiers performance when this problem is combined with 
other data intrinsic characteristic. On the other hand, the negative effects observed for 
datasets containing these intrinsic characteristics are more visible when the class imbal-
ance is also present. The authors carry out an analysis to observe which classifiers are 
can cope well with class separation into sub-concepts. Dudjak and Martinović (2021) 
state that the MLP is one of the algorithms that cannot conceptually handle the presence 
of small disjuncts. For the classifiers that can deal with this, noise is the characteristics 
with the most detrimental effect on the performance, followed by class overlap and class 
imbalance.

The interest in studying the class imbalance problem has grown significantly since the 
rise of deep learning. However, only a few works consider the issue of task complexity 
in this setting. Among these works, several use an intuitive notion of the difficulty of the 
tasks. For instance, Buda et  al. (2018) stated that the three benchmark datasets consid-
ered in the study, together with the corresponding CNN models selected for each one, are 
of increasing complexity. However, no specific complexity measure was calculated. John-
son and Khoshgoftaar (2020) presented datasets as having different complexity, although 
no measure for this complexity was provided. The problem of insufficient class samples 
was also considered in this study being artificially achieved by varying the class size. The 
results revealed a different behaviour for each dataset considered, showing a particular sen-
sitivity to the class imbalance and sample size issues.

Murphey et al. (2004) proposed three methods for measuring the noise level in a dataset 
using its characteristics. The first method measures the noise level through intra- and inter-
class distances; the second method calculates the linear separability of the dataset; and the 
last method measures the number of examples from the opposite class that fall within the 
bounding box of each class. Neural networks performance was shown to greatly depend on 
the classes separability. For high levels of noise, none of the tested networks (MLP, ART 
and RBF) performed well in an imbalanced scenario.
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Raj et al. (2016) proposed a class separability score based on the Silhouette metric and 
showed that both the imbalance ratio and the class separability have a negative impact on 
the performance of multi-channel CNNs in the context of time series data.

Finally, Sáez et al. (2016) proposed to analyze the complexity of each class in multi-
class imbalanced setting by taking into account the instance-level difficulties. An analysis 
of homogeneity of the neighborhood of minority class instances lead to definition of four 
types of minority instances. Their frequency in each minority class allowed to rank them 
according to their complexity and use this information to improve oversampling. This con-
cept was further extended by Sleeman and Krawczyk (2021) onto massive imbalanced data 
sets analyzed on high-performance clusters.

Overall, we observe that the research in this field is still limited, requiring more exten-
sive experiments. We observe that frequently an intuitive notion of complexity is used. 
Moreover, there are studies that look into other data characteristics that my cause an addi-
tional difficulty to the class imbalance problem, This is also an interesting perspective that 
is still not sufficiently explored in the context of deep learning. More extensive experiments 
and the development of ways to determine the complexity of tasks are still necessary.

3  Experiments set up

Motivation The literature review of the previous section suggests that deep learning sys-
tems are not immune to the class imbalance problem. Furthermore, two papers provided 
insights as to the reason for this by observing the size and direction of the gradients associ-
ated with the majority and minority classes. While all the work surveyed concluded that 
class imbalances are harmful, and many looked at various factors including increasing 
class imbalances, increasing the number of minority classes, increasing network depths, 
using different optimizers, and considering class imbalances along with concept complex-
ity, none of them looked systematically at the relationship between class imbalance, con-
cept complexity and scarcity of the data, three factors known to be important in the tradi-
tional learning (e.g., symbolic, statistical) or shallow neural-network context. The purpose 
of this part of the paper is to establish this correspondence in the simplest context, that of 
binary classification, as a first line of inquiry. In addition, the work discussed in the pre-
vious section did not establish the relation between network depth and class imbalances 
as different papers made different observation on this topic: Ding et al. (2017) found that 
depth in CNNs helped a bit (e.g., a 6-layer CNN did not perform as well as a 10-layer one), 
but that beyond a certain point (past 10 layers), depth was helpful in speeding up con-
vergence, but not obtaining better performance. Johnson and Khoshgoftaar (2020), on the 
other hand, found in its experiments that depth hurt the performance of an MLP network. 
Establishing a relationship between class imbalances, complexity, size and network depth 
is also part of our quest.

Experimental goals In more detail, the controlled experiments we set up aim at answer-
ing three research questions: 

RQ1: In traditional learning systems, there is a tight dependency between class imbal-
ances, concept complexities, dataset size and the performance of the classifier. Our lit-
erature review suggests that deep learning systems also suffer from the class imbalance 
problem, but does it do so for the same reasons as traditional learning systems or does 
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deep learning alleviate some of the factors (e.g., concept complexities) at the root of the 
problem?
RQ2: What specific role, if any, does the depth of the network play in the imbalance/ 
complexity/scarcity triangle?
RQ3: Does regularization modify that role?

We answer these questions in the context of two different types of deep learning systems: 
Multi-Layer Perceptrons (MLP) and Convolutional Neuronal Networks (CNN) and two dif-
ferent kinds of domains: Artificially generated and Real2.

Experiments with concept complexity The literature review of the previous section also 
indicates that only few studies were proposed that combine observations regarding the 
complexity of the concept, the class imbalance problem and deep learning. Furthermore, 
the notion of concept complexity used in these studies was usually rather intuitive than for-
mal. In this work, we directly address the relationship between concept complexity, class 
imbalance and deep learning, and we handle the question of measuring concept complexity 
in two ways. First, we use artificial domains that naturally present problems of increasing 
complexity. In the backbone domain used in the MLP experiments, complexity is repre-
sented by the number of separating hyperplanes needed to correctly classify the domain, 
while in the Shapes domain, used in the CNN experiments, the difference in the type of 
shapes used in both classes account for the complexity of the task. Second, we developed 
a procedure to assess domain complexity in the real world domains. Our method consists 
of three steps: (1) T-SNE projection of the domain; (2) Visual pre-selection of candidates 
for different degrees of complexity; (3) Selection through rigorous cross-validation experi-
ments on a subset of the domain.

Experiments with data scarcity Another line of enquiry of our experiments concerns the 
overall size of the training set. In the artificial domains, we experiment with a small size 
where the amount of data available is too scarce; and a large size where the data is suffi-
ciently represented. We did not experiment with this factor in the real domains since data 
scarcity is the default condition.

3.1  Deep multilayer perceptrons

We start by considering the case of MLP networks. We first describe the domains that were 
historically used by the community to answer our questions. We then describe our experi-
mental set-up.

3.1.1  Artificial domains

Preliminaries To create a family of domains appropriate to establish the relationship 
between predictive performance, class imbalance, domain complexity and data scarcity, we 
followed the approach proposed in Japkowicz and Stephen (2002) to generate domains that 
vary according to three dimensions: overall size of the data set (s), structural concept com-
plexity (c), and degree of balance between the classes (b). The family of domains created 
by this approach was shown to reflect some of the main challenges surrounding the class 

2 The code for the experiments can be accessed here: https:// github. com/ cbell inger 27/ deep- imbal ance- 
analy sis.

https://github.com/cbellinger27/deep-imbalance-analysis
https://github.com/cbellinger27/deep-imbalance-analysis
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imbalance problem and was, therefore, deemed relevant to apply in the case of the deep 
learning approaches under consideration in this work.

Domain generation Fifty domains were generated as follows: each domain is uni-dimen-
sional with inputs in the [0, 1] range associated with class 1 (+) or 0 (−). The [0, 1] input 
range is divided into sub-intervals of the same size, each associated with class value 0 or 1. 
Contiguous intervals have opposite class values. The complexity level, c, can take values 
from 1 to 5. Depending on its value, different numbers of sub-intervals are created. An 
example of a backbone model is shown in Fig. 1. The backbone in the figure can be under-
stood as representing a two-class domain where each class is composed of 4 subconcepts 
that are mixed amongst themselves. Hypothetically, for example, the reader can imagine 
that the data located between 0 and .125 represents the subspecies of dogs A which is very 
closely related to the subspecies of wolves A located between .125 and .25, while the loca-
tion between .25 and .375 represents subspecies of dogs B, while the location between .375 
and .5 represents subspecies of wolves B; and so on.

Structural concept complexity The value of c is used to determine the number of sub-
clusters present in the backbone that ranges within [0,1]3. The number of subclusters is cal-
culated as 2c and the width of each of these sub-sections is calculated as 1

2c
 . As illustrated 

in Fig. 1, the distribution of Class 1 ( + ) and Class 0 (−) is determined by assigning them 
regular, alternating sub-intervals. This is done regardless of the size of the training set or 
its degree of imbalance. Once the backbone is generated based on the value of c, actual 
data points are generated within each sub-interval by generating points at random using a 
uniform distribution. The number of points sampled from each interval depends on the size 
of the domain as well as on its degree of imbalance.

Dataset size Our investigation revolves around two dataset sizes, which we will refer to 
as sizes 1 and 5 (or s=1 and s=5), according to Japkowicz and Stephen (2002). In Japkow-
icz and Stephen (2002), prior to considering the balance level, b, the total number of exam-
ples in the size 1 experiments is calculated as 

(
5000

32
× 2

)
 where each sub-interval contains (

5000

32
×2

2c

)
 examples. In the size 5 experiment, the dataset holds a total number of 

(
5000

32
× 25

)
 

examples with 
(

5000

32
×25

2c

)
 instances in each of the sub-intervals.

Fig. 1  Domain backbone of Complexity 3. In this one-dimensional family of domains, the complexity of 
the task increases as the number of alternating sub-concepts of each class increases

3 It is well known from the traditional machine learning literature Prati et al. (2004) that class overlap is 
also a major factor in the study of class imbalances. We considered it in Ghosh et  al. (2021), but after 
observing that its effect was minimal in the case of deep learning, we decided not to include it in this arti-
cle. The effect is naturally present in the real world domains considered, so it has been, implicitly consid-
ered here.



4858 Machine Learning (2024) 113:4845–4901

1 3

Once the basic number of instances per sub-interval is determined, we decrease that 
number for class 0, the minority class, according to the degree of balance, b. Meanwhile, 
the number of instances in the Class 1 sub-intervals representing the majority class remain 
the same as discussed in the previous paragraph. The number of instances belonging to the 

Class 0 sub-intervals is calculated as 
⎛⎜⎜⎝

�
5000
32

×2

2c

�

32

2b

⎞⎟⎟⎠
 for size 1 and 

⎛⎜⎜⎝

�
5000
32

×25

2c

�

32

2b

⎞⎟⎟⎠
 for size 5. The 

expression 
(

32

2b

)
 gives a limit of 5 to the degree of balance in our experiment. When b=5, 

the number of instances in each of the sub-intervals is the same and the data set is perfectly 
balanced. This states that the value of b is inversely proportional to the disparity or the 
degree of imbalance between the classes.

Table 3 shows the result of these calculations for both the large (s = 5) and small (s = 
1) data sets. These are the training numbers used for all the experiments on artificial data 
sets (Backbone and Shapes). The testing numbers are constant for all the results as per 
our balanced testing approach as discussed below. In the real world domains in the Text 
and Image Domains, we used a different formula to compute the number of instances.The 
numbers used in these experiments will be reported with the description of the real world 
domains.

3.1.2  Real domains

Preliminaries To incorporate realistic data in our experiments, we considered two text 
domains to understand how the findings from the artificial domains translate to real-life 
text domains. This is beneficial in understanding whether supplementary steps are required 
to attain reliability in the performance. For these experiments we utilised two different 
datasets: 20NewsGroup (Alhenaki & Hosny, 2019) and Job Classification.4 Special char-
acters, punctuation, and stopwords are removed from each dataset instance. Stemming 
and lemmatization were used to further pre-process the data, as well as the replacement of 
acronyms with their full forms.

Complexity-driven dataset selection Binary problems were selected using a combina-
tion of visual inspection of binary T-SNE plots and cross-validation experiments. The aim 
of the selection was to identify five binary domains with increasing levels of complexity: 

Table 3  Training and Testing Balance levels used in all the artificial datasets (Backbone and Shapes)

Large size Number of training 
instances

Small size Number of training 
instances

Large/
small size

Number of testing 
instances

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

B1 5000 128 B1 156 10 B1 5000 5000
B2 5000 263 B2 156 20 B2 5000 5000
B3 5000 882 B3 156 39 B3 5000 5000
B4 5000 2143 B4 156 78 B4 5000 5000
B5 5000 5000 B5 156 156 B5 5000 5000

4 https:// www. kaggle. com/ adars hsng/ predi cting- job- type- categ ory- by- job- descr iption? select= train. csv.

https://www.kaggle.com/adarshsng/predicting-job-type-category-by-job-description?select=train.csv


4859Machine Learning (2024) 113:4845–4901 

1 3

starting from an easy domain where points appear mostly linearly separable, to a moderate 
domain characterized by the structural concept complexity and overlapping phenomena, to 
more extreme and difficult scenarios that suffer from both issues simultaneously.

In order to select the domains, we sampled 500 posts from each class and exhaustively 
generated plots for all pairwise combinations of classes. After visually pre-selecting the 
most relevant domains in each category, we performed experiments to confirm the com-
plexity of the selected scenarios and ranked them accordingly. In particular, we adopted 
the average G-Mean performance achieved using 2x10-fold stratified cross-validation5 on 
the binary settings with different model architectures (from 1 up to 5 hidden layers) using 
balanced data. The selected domains ordered by increasing level of complexity are shown 
in Figs. 2 and 3.

Fig. 2  T-SNE Plots of Binary 20Newsgroup datasets sorted from the least to the most complex

Fig. 3  T-SNE Plots of Binary Job Classification datasets sorted from the least to the most complex

5 2×10-fold stratified cross-validation is used to ensure stable means and standard deviations in the results.
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3.1.3  Experimental set‑up

Train/test regimen We tested our networks using the balanced testing approach by form-
ing a testing dataset containing 1000 examples in each of the sub-clusters of the pro-
posed backbone, i.e., 1000 instances per class for c = 1; 2000 per class for c =2, etc., up 
to 5000 per class for c = 5. This not only provides an unbiased testing framework, but 
also provides a wide variety of data to test on. This approach, therefore, helps under-
stand the actual potential of the classification models. We report the Balanced Testing 
results in the paper.

Although we calculated our results based on a variety of metrics, we decided to 
report the G-Mean after noticing that other metrics such as the F1-measure and the bal-
anced average all lead to the same conclusions. These results are available upon request. 
We, again, used the balanced testing approach with the same number of minority and 
majority class used for testing.

Table  4 (right) shows the number of training instances used in the 20 Newsgroup 
data sets. The testing numbers are constant for all the results as per our balanced testing 
approach, as discussed previously, and were set to 565 per class in the 20 Newsgroup 
domain. Given the constraints of the real world domains, we didn’t use the formulae, 
for size, defined for the artificial domains. For the Job Classification domain, we could 
not use the same number of instances at each complexity levels as we did in the 20 
Newsgroup domains since, in order to obtain problems of different concept complexity, 
we needed to use different pairs of categories and each category had different numbers 
of instances. As a result, we couldn’t summarize the number of instances used in that 
domain in a single table. Instead, we report these numbers in Fig. 17 in the appendix.

Models and their parameters The experiments are conducted on five different depth 
of MLP to show how the linear effect of increasing the depth of MLPs affects classifi-
cation. Each of the MLP models are termed Model-x where x stands for the number of 
hidden layers and takes a value between 1 and 5. We start from the shallowest model 
(Model-1) and reach up to the deepest model with 5 hidden layers (Model-5). For each 
of the networks, we report the optimal results recorded after experimenting with 2, 4, 
8, and 16 Hidden Units (HU) in each layer. We trained each of the MLP networks for 
300 epochs, with a learning rate of 0.001, using the Adam optimizer. Relu activation 
and uniform weight initialization were utilized as recommended in Glorot and Bengio 
(2010) to reduced the risk of vanishing gradients. We also experimented with three 
different types of regularization approaches: Dropout, Reduce on Plateau and Early 
stopping.

Table 4  Number of training 
instances in the MNIST fashion 
and CIFAR domains (left) and 20 
Newsgroup (right)

CIFAR/MNIST Number of 
Training 
Instances

20 News Group Number of 
Training 
Instances

Class 1 Class 2 Class 1 Class 2

B1 5000 125 B1 565 14
B2 5000 250 B2 565 30
B3 5000 750 B3 565 100
B4 5000 1500 B4 565 242
B5 5000 5000 B5 565 565
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3.2  Convolutional neural networks

We now consider the case of CNN networks. Once again, we first describe an artificial 
domain that was borrowed from the community to answer our questions and we then 
describe our experimental set up.

3.2.1  Artificial domains

Dataset characteristics For our experiments with CNNs, we used a data set proposed by 
El Korchi and Ghanou in 2020. The dataset consists of multi-coloured images of shapes 
with the following characteristics:

• Each image is of size 200 × 200 × 3

• In each image, shapes and backgrounds have solid colours
• In each image, shapes and background colours are random
• In each image, shapes sizes and rotations are random

Figure 15 in the appendix shows the kind of variability found within a class, in this case 
the Square class. Taking this data set as a point of departure, we created five basic classifi-
cation problems with an increasing level of complexity. In this case, the notion of complex-
ity is different from the notion of complexity defined by the backbone model. Specifically, 
the complexity is based on the visual similarity between the shapes (caused by the num-
ber of angles separating two classes in the polygon category of shapes). This is illustrated 
in Fig. 4 where the problem of squares versus stars is the simplest problem, followed by 
the pentagon versus square, hexagon versus pentagon, circle versus nanogon and octagon 
versus heptagon problems, in order of difficulty. As a result, the notion of complexity is 
related to the size of the margin separating the two concepts.

Dataset modifications We modified the original data sets by reducing the size of images 
to 32 × 32 × 3 in order to make our experiments more computationally tractable and we 
added noise to make the data more realistic. Figure 16 in the appendix illustrates the five 
classification problems in modified mode. We artificially sampled the data set to create five 
different balance levels, b. The testing set consists of a balanced data set no matter what the 

Fig. 4  The five degrees of complexity in the Shape Domain
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imbalance level of the data was. The balance levels we created are the same as those used 
in the Backbone domain and were shown in Table 3.

3.2.2  Real domains

We considered two image domains to see how the conclusions drawn from the artificial 
domains’ experiments translate to realistic domains and whether additional considerations 

Fig. 5  T-SNE Plots of Binary MNIST Fashion datasets sorted from the least to the most complex

Fig. 6  T-SNE Plots of Binary CIFAR10 datasets sorted from the least to the most complex
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need to be taken. For these experiments, two benchmark datasets are considered: Fashion-
MNIST6 and CIFAR107.

Once again, we considered 5 balance levels,b = {5, 4, 3, 2, 1} , where b = 5 represents 
the fully balanced level and b = 1 , the most imbalanced one. The exact number of instances 
per class is given in Table 4 and, as for the other domains used in this study, the minority 
classes of all the unbalanced domains were created by randomly undersampling the second 
class (considered the minority class) of each originally balanced binary domain.

Domains As in the case of the Text classification domains and using the exact same pro-
cedure, binary domains were selected using a combination of visual inspection of binary 
T-SNE plots and cross-validation experiments. The selected domains ordered by increasing 
level of complexity are shown in Figs. 5 and 6 .

3.2.3  Experimental set‑up

Train/test regimen We tested the CNNs in the same way as we tested the MLPs, using the 
balanced testing approach. We formed a testing dataset containing 5000 examples of each 
class. As previously discussed, this not only provides an unbiased testing framework, but 
also provides a wide variety of data to test on. This approach, therefore, helps understand 
the actual potential of the classification models. We report the Balanced Testing results in 
the paper. The stratified cross-validated results are available upon request.

As for the MLP experiments, we calculated our results based on a variety of metrics 
and decided to report the G-Mean after noticing that other metrics such as the F1-measure 
and the balanced average all lead to the same conclusions. These results are available upon 
request.

Table 4 (left) shows the number of training instances used in the MNIST-Fashion and 
CIFAR-10 data sets. The testing numbers are constant for all the results as per our balanced 
testing approach, as discussed previously, and were set to 5000 per class for both domains. 
As before, given the constraints of the real world domains, we didn’t use the formulae, for 
size, defined for the artificial domains.

Models and their parameters The model architecture considered in this set of experi-
ments is a CNN with an increasing number of convolutional layers (filters): 1 (8), 2 (8-16), 
3 (8-16-32), 4 (8-16-32-64), 5 (8-16-32-64-64). Two dense layers are featured at the end 
of each model architecture. As in the previous experiments, relu activation and uniform 

Depth = 3

Depth = 4
Depth = 5

Depth = 2
Depth = 1

In
pu

t

C
on

v2
D

8

C
on

v2
D

8 M
ax

P
oo

lin
g

C
on

v2
D

16

C
on

v2
D

16 M
ax

P
oo

lin
g

C
on

v2
D

32

C
on

v2
D

32 M
ax

P
oo

lin
g

C
on

v2
D

32

C
on

v2
D

64

C
on

v2
D

64 M
ax

P
oo

lin
g

C
on

v2
D

64

C
on

v2
D

64

C
on

v2
D

64 M
ax

P
oo

lin
g

C
on

v2
D

64

D
en

se

D
en

se

O
ut

pu
t

Fig. 7  CNN model architecture adopted in experiments with Image datasets, with increasing levels of 
depth. The numbers mentioned with the convolutional layers (Conv2D) denote the number of filters used in 
each layer

6 https:// github. com/ zalan dores earch/ fashi on- mnist.
7 https:// www. cs. toron to. edu/ ~kriz/ cifar. html.

https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/%7ekriz/cifar.html
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weight initialization were utilized in these models (Glorot & Bengio, 2010). A graphical 
representation of the architecture considered is shown in Fig. 7.8

We also experimented with three different types of regularization approaches: Dropout, 
Reduce on Plateau and Early stopping.

4  Analytical framework

As previously discussed, this paper has two goals: first, to review the literature devoted 
to class imbalances and deep learning and second, to answer the three research questions 
(RQ1, RQ2 and RQ3) presented at the beginning of Section 3. In this part of the paper, we 
are concerned with the second goal.

Structure of the answers We now reiterate the three research questions and explain how 
we set out to answer them through our experiments.

❒ RQ1 asks: In traditional learning systems, there is a tight dependency between class 
imbalances, concept complexities, dataset size and the performance of the classifier. Our 
literature review suggests that deep learning systems also suffer from the class imbalance 
problem, but does it do so for the same reasons as traditional learning systems or does 
deep learning alleviate some of the factors (e.g., concept complexities) at the root of the 
problem? 

We structure our answer in the context of the findings that were made in the traditional 
learning case. In more detail, Japkowicz and Stephen (2002) makes four important obser-
vations regarding the dependency between class imbalance, sample size and concept com-
plexity. It does so mostly in the context of decision trees, but expands the analysis to shal-
low MLPs and SVMs as well. The main observations reported in Japkowicz and Stephen 
(2002) study are: 

1. Linearly separable domains are not sensitive to class imbalance.
2. In non-linearly separable domains, as the class imbalance increases, so does the amount 

of misclassification.
3. The class imbalance problem is exacerbated by the problem’s complexity.
4. The class imbalance problem is exacerbated by data scarcity.

In our result analysis, we will assess which of these observations still hold in the deep 
learning context for both MLP and CNN; and whether the observations hold in both artifi-
cial and natural data sets. Section 6 will discuss the case of MLP, while Sect. 7 will move 
to the case of CNN. Once RQ1 is answered, we move on to RQ2.

❒ RQ2 asks What role does the depth of the network play in the imbalance/complexity/
scarcity triangle? We answer this question by adding depth considerations to our previous 
observations. In particular, we show the results obtained at all depths considered in order 
to gauge its effect.

❒ RQ3 asks Does regularization modify that role? We answer the question by adding 
three regularization techniques: Dropout, Reduce on Plateau and Early stopping and show-
ing which combinations improve the results most and by how much.

8 We consider that the depth of the CNN is represented by its total number of trainable layers as shown in 
Fig. 7.
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Tools used in our answers We answer the questions with the help of barplots and heat-
maps. The barplots show the G-Means obtained by the deep networks under scrutiny on 
the different domains. The first sets of barplots in each section display the results in terms 
of class imbalances, concept complexity and data set size. These are used to answer RQ1. 
The second set of barplots throws the additional question of network depth into the equa-
tion in order to answer RQ2. For readability, the body of the paper shows only one such set 
of barplots. The other three are shown in the appendix for each of MLP and CNNs (i.e., 
6 additional sets of barplots altogether). The subsequent heatmaps summarize the opti-
mal network configuration, in terms of depth, and shows which regularization techniques 
improved the results further, as per RQ3. A discussion based on resulting barplots dis-
played in the appendix discusses the size of the improvement in each case.

Organization of our answers Section 8 summarizes the main takeaways of our experi-
ments without showing the actual results or discussing any detail in depth. We thought it 
prudent to provide such a section, given that we conducted many experiments and obtained 
a number of intricate results, which we felt could detract from the main issues which we 
believe can help the field move forward. Sections 6 and 7 dive into the details left out from 
Sect. 8 by showing the results obtained by our experiments and conducting their analyses 
in the context of MLP, in the case of Sect. 6 and CNN, in the case of Sect. 7.

5  Notational details

Prior to turning to the more detailed results, we remind the reader about our notations. The 
reader can turn back to this description when reading the results of the next two sections:

• b, the balance level, is used to designate the level of balance in the data set. b = 5 corre-
sponds to perfect balance, while b = 1 corresponds to the highest degree of imbalance.

• c, the degree of complexity, is used to indicate how complex a domain is. c = 1 repre-
sents the simplest domain while c = 5 represents the most complex domain of a series 
of domains.

• s, the sample size, indicates whether we are using a large domain for our experiments (s 
= 5) or a small one, in which the data is rather scarce (s = 1).

• d, the depth of the network, corresponds to the number of layers used in the system. d = 
1 corresponds to the shallowest setting, while d =5 corresponds to the deepest.

6  Results in the multi layer perceptron case

Overview We now discuss the results obtained with MLP in detail. We first discuss the 
dependency between class imbalances, concept complexity and sample size; we then test 
whether the depth of the networks used makes a difference; and we conclude with an anal-
ysis of the role of regularization on the results.

Summary of main observations Conducted experiments showed that deep MLP models 
are as much affected by class imbalance than their shallow counterparts. Furthermore, for a 
number of analyzed learning difficulties we can observe that increasing the depth of these 
models is beneficial to their robustness and predictive power. Finally, we have not observed 
any significant gains from employing regularization approaches under class imbalance.
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6.1  Answering RQ1: what is the dependency between class imbalance, concept 
complexity, sample size and deep learning?

The results obtained by MLP networks are shown in Fig.  8 for the backbone models 
and the text domains. We discuss to what extent each of the four observations made in 
Japkowicz and Stephen (2002) translate to the deep MLP setting. It is important to note 
at the outset that Japkowicz and Stephen (2002) had reported that while shallow MLP 
networks (depth d = 1) showed the same trends as C5 decision trees, the MLP results 
showed more variance and, generally speaking, MLPs suffered from the class imbalance 
problem less than Decision Trees. We consider each of the observations from Japkowicz 
and Stephen (2002) in turn and pit them against the graphs of Fig. 8.

➮ Observation 1 In traditional learning approaches, linearly separable domains are 
not sensitive to class imbalance

Backbone domains In deep MLPs, we observe the same trend on the backbone 
domains for both data set sizes. A very slight decrease in G-Mean can be observed as 
the class imbalance increases, but it is very slight and is comparable to what happened 
in the original study.

Text domains It is not clear that this question can be clearly considered in the text 
domains since as shown in the T-SNE plots of Figs. 2 and 3, the least complex domains 

Fig. 8  G-Mean results of applying deep MLP models under optimal depth conditions. Top Left: Large 
Backbone problem (s=5); Top Right: Small Backbone problem (s=1). Bottom Left: 20 Newsgroup problem 
Bottom Right: Job application problem. (Low complexity: level 1; High complexity: level 5. High imbal-
ance: level 1; Low imbalance: level 5.)
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do not appear to be linearly separable in the 2-dimensional projections. In the results 
obtained on both the 20 Newsgroup and Job Description problems, shown in the bottom 
row of Fig. 8, we see that as the balance level decreases so does the performance on the 
simplest domain of complexity c = 1. While the drop in performance is constant as the 
balance decreases, a large negative step is seen in both domains at balance level b = 2.

➮ Observation 2 In traditional learning approaches, as the class imbalance increases, 
so does the amount of misclassification

Backbone domains In deep MLPs, on the backbone domains, the same trend is observed, 
starting at balance level b = 3 down to b = 1, for large data sets, and b = 4 down to b = 1 
for small data sets.

Text domains The same trend is observed in the text domains. While there is a continu-
ous decrease in performance with respect to the increase in class imbalance, the impact of 
class imbalances becomes generally significant (for all concept complexities) at balance 
level b = 3 for the 20 Newsgroup problem and b = 2 for the Job Classification problem.

➮ Observation 3 In traditional learning approaches, the class imbalance problem is 
exacerbated by the problem’s complexity

Backbone domains In deep MLPs, the same trend is observed in both the large and 
smaller data sets. In the larger data set (s = 5), this trend is seen particularly well for prob-
lem complexity c = 5, starting at balance level b = 3 down to b = 1, but even for complexi-
ties c = 3 and 4, at balance levels b = 2 and b = 1 for the large data set. In the small data 
set, the exacerbation of the problem is seen as early as for balance level b = 4 for complex-
ity c = 5. It is very clear at class balances b = 1 and 2 for complexities c = 2, 3, 4 and 5.

Text domains This trend is also observed in both text domains, as shown in the bottom 
left graphs of Fig. 8. For example, following two sets of bars, say the dark blue bar repre-
senting concept complexity 2 and the green bar representing concept complexity 5 at all 
degrees of imbalance, we see that the drop in performance as the class balance decreases 
is larger for the green bar than it is for the dark blue one, except from balance levels b = 
2 to b = 1, where the problem has become so difficult for the most complex domain, that 
there is less change in performance, whereas the simpler concept still has “room" to drop 
performance.

➮ Observation 4 In traditional learning approaches, the class imbalance problem is 
exacerbated by data scarcity9

Backbone domains In deep MLPs, the trend is a bit different as the results degrade due 
to dataset size starting at class balance b = 4 and concept complexity c = 2.

Text domains This trend was not tested in the text domain as we did not have access to a 
large data set.

❒ RQ1 for MLP answered All in all, this analysis concludes that deep MLP behave 
pretty much in the same way as their traditional learning counterparts, with regard to the 
class imbalance problem.

9 This was particularly true in the case of Decision trees though it was generally not the case for shallow 
MLPs.
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6.2  Answering RQ2: how does the depth of the networks affect the imbalance/
complexity/performance triangle?

In the previous section, we explored the effect of domain characteristics on the perfor-
mance of DL models without taking their depth into consideration. Indeed, the results we 
reported were obtained at different depths since our experiments consisted of training net-
works of different depths (1 to 5) on all domains and selecting the best results for each 
domain, a-posteriori. In this section, we explore whether there is any evidence, from the 
optimal depths selected in these experiments, that could allow us to link the depth of a 

Fig. 9  The effect of depth on class imbalance levels, complexity in large datasets in the Backbone domain. 
Plots by increasing imbalance level (leftmost: least imbalanced; rightmost: most imbalanced). Each cluster 
of five bars represent a complexity level, going from low to high complexity. Within each cluster, each bar 
represents a depth level going from deeper on top to shallower at the bottom of the cluster
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network to its aptitude at dealing with class imbalances or other complex domain charac-
teristics. This was achieved by considering all the depths considered in each setting.

Backbone domains From Fig.  9, it is clear that depth plays a role in the question of 
concept complexity even when considering a large dataset size and no class imbalances. 
Indeed, in the top left plot of Fig. 9 (s = 5 and b = 5), we can see that at concept complex-
ity c = 1, all network depths obtain the same perfect performance, at concept complexity 
c = 2, depths d = 5, 4, and 3 obtain the same perfect performance, depth d = 2 obtains 
a slightly lower performance and depth d = 1 obtains a significantly lower one. At con-
cept complexity c = 3, going from depth d = 5 to depth d = 1 causes a linear decrease in 
performance. A decrease in performance is still noticeable at concept complexity c = 4, 
although all the performances are lower and the differences are smaller. Finally for concept 
complexity 5, the depth does not seem to play much of a role as the performance is low, 
hovering around .5 and .6. Considering the equivalent situation of no class imbalances in 
the small dataset size setting—the top left plot of Fig. 18 in the appendix— we notice a 
similar pattern for complexity level c = 1, good performance for depths d = 5 and 4 in the 
case of complexity c = 2 and a drop in performance for depth d = 3 (which is unstable, 
as suggested by the size of the standard deviation bars), depths 2 and 1 (which are stable 
but display low performance, just below .6). In all other cases, depth has little effect as the 
problems appear too difficult for the networks to handle satisfactory.

Turning now to the question of class imbalances, we see that there again, the layer of 
difficulty added by the class imbalance problem show the advantage of adding depth to 
the networks. In the large dataset case (Fig. 9), considering concept complexity c = 3, for 
example, we see that at class balance level b = 4, Depth d = 5, 4 and 3 relate to perfor-
mance approximately in the same way as it did for class balance level b = 5, but Depths 
d = 2 and 1 show a decrease in performance and stability not seen at class balance level 
5. That trend is even more pronounced at balance level b = 3, where depth d = 1 leads to 
a performance of 0, and further deterioration follows at class balance levels b = 2 and 1. 
Similar and even more pronounced types of deterioration can be seen in the case of the 
small dataset (Fig. 18 in the appendix). The observations made for concept complexity c = 
3 also apply to various degrees to different concept complexity levels.

Fig. 10  Optimal Depth and Regularization settings for MLP experiments for large data set size (s = 5, left) 
and small dataset size (s = 1, right)



4870 Machine Learning (2024) 113:4845–4901

1 3

Text domains The results obtained on the text domains are displayed in Figs. 19 and 20 
in the appendix. We notice two effects that depth can have on performance in certain cases 
(in many other cases, depth does not play a major role on the performance of the multilayer 
perceptrons on the 20 Newsgroup and Job Classification problems).

The first noticeable effect is that there are situations where a low depth of d = 1 is detri-
mental to the performance of the network. This happens, most noticeable, at balance levels 
b = 1, 2, concept complexity c = 1 and depth d = 1 and balance level b =2, concept com-
plexity c = 2 and depth d = 1.

The second noticeable effect is that there are situations where a high depth of d = 5 is 
detrimental to the performance of the network. This happens, most noticeably, at balance 
levels b = 5, 4, 3 and 2, concept complexity c = 5 and depth d = 5 and to a lesser extent at 
balance levels b = 5 and 4, concept complexity c = 3 and depth d = 5.10

❒ RQ2 for MLP answered Altogether, this suggests that increasing the depth of the 
MLP is helpful in difficult domains afflicted by concept complexity, data scarcity, and class 
imbalance. However, as shown in the figures, it is clear that depth alone is not sufficient to 
deal with class imbalances and other domain difficulties. This is clear from the number of 
low bars or blank regions in the graphs of Figs. 9 in the main body of the paper and 18 in 
the appendix.

6.3  Answering RQ3: does regularization modify the equation?

The current guidance on DL is to also use regularization techniques. This is what we did 
in this section to see whether such techniques offer any novel insights. Figure 10 shows the 
optimal settings reported in this section for MLP on the Backbone domain.

Backbone domain Comparing the results obtained with and without regularization (See 
Figs. 24 and 25 in the appendix for sizes 5 and 1 with regularization, respectively), we see 
that the improvement is often negligible. For s = 5, on the large version of the backbone 
domain, we found that the only non negligible improvement brought upon by regulariza-
tion (Early Stopping alone in this case) was an improvement in G-Mean of about .05 for 
concept complexity c = 5, balanced level b = 5 and depth d = 5. For s = 1, the small ver-
sion of the backbone domain, there were 6 cases where a non-negligible improvement of .1 
or .2 in G-mean was observed. However, in all these cases, regularization brought the per-
formance from 0 to .1 or .2, meaning that the results remained non-competitive despite the 
improvement. In one case, (b = 4, c = 4, d = 2), the .1 improvement was a bit more mean-
ingful, however, as the performance was brought to around .7. In two other cases where 
the results were already close to 1 prior to regularization, the improvement was negligible. 
In the small size domain, the type of regularization used were diverse combinations of the 
three types considered.

Image domain The regularization experiments were not conducted in the text domains 
given the little advantage they displayed in the Backbone domain.

❒ RQ3 for MLP answered Altogether, while regularization seems able to help improve 
the performance on some domains, these improvements remain rather limited and do not 
have much practical significance in the context of concept complexity, class imbalance and 
data scarcity.

10 For confirmation, we ran a separate experiment with 10 layers on the 20 Newsgroup domain and saw 
even greater deterioration of the results.
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7  Results in the convolutional neural networks case

Overview We now discuss the results obtained with CNN in detail. We first discuss the 
dependency between class imbalances, concept complexity and sample size; we then test 
whether the depth of the networks used makes a difference; and we conclude with an anal-
ysis of the role of regularization on the results.

Summary of main observations Our observations for CNNs differ from ones for deep 
MLPs. While class imbalance still negatively affects CNNs, the impact of this learning dif-
ficulty is smaller than for deep MLPs. However, data size (or data sparsity) is always a big 
challenge for CNNs. Increasing CNNs’ depth does not lead to gains in robustness or pre-
dictive power, an observation dramatically different from previously reported study (Ding 
et al., 2017). Finally, regularization techniques once again did not have a significant impact 
on the robustness to class imbalance.

7.1  Answering RQ1: What is the dependency between class imbalance, concept 
complexity, sample size and deep learning?

The results obtained by the CNNs are shown in Fig. 11 for the shape and image domains. 
Here again, we discuss to what extent each of the four observations made in Japkowicz and 
Stephen (2002) translate to the deep CNN settings.

Fig. 11  G-Mean results of applying deep CNN Models to the Artificial Shape domains. (Top Left: Large 
Data Sets; Top Right: Small Data Sets; Bottom Left: MNIST-Fashion; Bottom Right: Cifar-10; Low com-
plexity: level 1; High complexity: level 5; High imbalance: level 1; Low imbalance: level 5.)
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➮ Observation 1 In traditional learning approaches, linearly separable domains are 
not sensitive to class imbalance

Shape domains While, in the shape data set, we cannot truly distinguish between lin-
early and nonlinearly separable domains given the nature of the complexity introduced in 
the shape data set, we can distinguish between easier and more complex problems with 
regard to the size of the separation margin. We observe that in the simplest kind of shape 
problem, that of complexity level c = 1 (star versus square), the only one that can be truly 
be handled by the CNN, the class imbalance problem is harmful. Indeed, we observe a 
decrease in performance, as the balance level decreases, from about .95 to below .8 for the 
large data set size (s = 5) and from about .7 to .55 for the small data set size (s = 1). There-
fore, the least complex domain is not spared from the class imbalance problem.

Image domains In the MNIST Fashion data set, the imbalance level does not affect the 
performance of the CNN on the two simplest domains (c = 1 and 2). In the CIFAR-10 
domains, on the other hand, even on the simplest domains, a small decrease in performance 
from about .95 to below .8 is observed as the balance level drops from b = 5 to b = 1.

➮ Observation 2 In traditional learning approaches, as the class imbalance increases, 
so does the amount of misclassification

Shape domains In deep CNN, the same trend is observed for concept complexity c = 1 
and to a very small extent, concept complexity c = 2. It is not observed in any of the other 
concept levels because the problems are just too difficult to be solved by our CNN and the 
low performance hovering around .6 is relatively constant for all class imbalance levels.

Image domains In MNIST-Fashion, the same trend is encountered, but only on the more 
complex domains, starting at concept complexity c = 3. The decrease in performance, 
however, is very slight. For example, for concept complexity c = 5, the performance drops 
from about .9 to slightly below .8. In CIFAR-10, the trend is encountered for all concept 
complexity levels. The drop is actually more pronounced in simple domains than in more 
complex ones. Indeed, for concept complexity c = 1, performance drops from about .95 at 
balance level b = 5 down to about .82 at balance level b = 1. Yet it drops from about .75 at 
balance level b = 5 to about .65 at balance level b = 1 for concept complexity c = 5.

➮ Observation 3 In traditional learning approaches, the class imbalance problem is 
exacerbated by the problem’s complexity

Shape domains In deep CNN, it is not clear that this trend is observed. In the shape 
domains, the class imbalance problem is visible in concept complexity c = 1, for both data 
set sizes, as previously observed. It is very slightly present for concept complexity c = 2 
in the large data set setting, and is not present at all for any other concept complexity level 
and data set size. So, it cannot be said, based on this data set that the class imbalance prob-
lem is exacerbated by the problem’s complexity. On the contrary, it becomes less and less 
pronounced, but we suspect that that is due to the low performance attained by CNN on 
these more complex domains.

Image domains On the MNIST Fashion data, concept complexity has an impact on the 
effect of the class imbalance problem. Indeed, at concept complexity c = 1 and c = 2, the 
networks are not affected by class imbalance. They are slightly affected at concept com-
plexity c = 3, and more so at concept complexity c = 4 and 5. Overall, however, the nega-
tive effect is relatively slight since the largest effect recorded is at concept complexities c 
= 4 and 5, where the performance goes from about .9 at balance level b = 5 to a bit below 
.8 at balance level b = 1. In the CIFAR-10 domain, the degree of concept complexity does 
not aggravate the loss of performance caused by class imbalance much since the rate of 
decrease in performance appears to be more or less the same for all concept complexity 
level as the class imbalance increases, and as mentioned earlier, the decrease may be larger 
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for the case of concept complexity c = 1 than it is for concept complexity c = 5, so in fact 
class imbalance may affect the least complex domains more than the more complex ones 
on this domain.

➮ Observation 4 In traditional learning approaches, the class imbalance problem is 
exacerbated by data scarcity

Shape domains This trend is also observed on the shape data set. To begin with, the 
performance of the CNN is lower by about .2 in the smaller data set size (s = 1) than in the 
larger one (s = 5). The decrease in performance also seems steeper with respect to a drop 
in class balance in the case of the smaller data set than in the case of the larger one. This is 

Fig. 12  The effect of depth on class imbalance levels, complexity in large datasets in the Shapes domain. 
Least imbalance: level 5 (leftmost); Most imbalance: level 1 (rightmost). Each cluster of five bars represent 
a complexity level, going from low to high complexity. Within each cluster, each bar represents a depth 
level going from deeper on top to shallower at the bottom of the cluster
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shown both by the height of the bars and the degree of uncertainty displayed by the stand-
ard deviation line which is quite wide at balance levels b = 1 and 2 in the case of the small 
data set size.

Image domains This trend was not tested in the image domain.
❒ RQ1 for CNN answered All in all, this analysis concludes that CNN do not behave 

in exactly the same way as their MLP counterparts. While they are affected by the class 
imbalance problem, they are less so than MLP, and concept complexity, at least concept 
complexity related to the size of the separating margin, does not appear to be as significant 
a factor as it is in the MLP case. That being said, the type of complexity considered in the 
MLP case is closely related to the question of data set size and small disjuncts and since 
CNN are very sensitive to data set size as well, there may be a closer connection between 
the two types of networks than our analysis may suggest.

7.2  Answering RQ2: how does the depth of the networks affect the imbalance/
complexity/performance triangle?

Shape domains Figure 12 suggests that the depth of CNN has mostly no effect on their per-
formance no matter what complexity level or degree of balance in the large data set of size 
s = 5, except for the fact that at balance level b = 1, the performance as a relation to depth 
becomes unstable. In other words, the deeper the network, the less stable, in such cases. 
The same is true for the data set of size s = 1, as shown in Fig. 21 in the appendix, except 
for the fact that the instability starts as early as at balance level b = 3.

Image domains Figures 22 and 23 in the appendix show a significant decrease in perfor-
mance in the MNIST-Fashion and CIFAR-10 domains when the CNN are very deep such 
as depth d = 5, and sometimes d = 4 or 3, in certain cases. This suggests that the networks 
may be overfitting the data, or that, perhaps, their capacity is too large and they have been 
undertrained. The reason for this observation needs to be investigated further.

❒ RQ2 for CNN answered Depth does not seem to play as important a role in the case 
of CNN than in MLP networks, where depth was not sufficient to handle class imbalances, 
but was shown to help in some cases. In the case of CNNs, depth does not help with either 
class imbalances, concept complexity or data scarcity. In fact, our experiments show that 
too deep a network may, in fact, be harmful.

Fig. 13  Optimal Depth and Regularization settings for CNN experiments on Shapes Data Sets for large data 
set size (s = 5, left) and small dataset size (s = 1, right)
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7.3  Answering RQ3: Does regularization modify the equation?

Shape domain Comparing the results obtained with and without regularization (see 
Figs. 26 and 27 in the appendix for sizes 5 and 1 with regularization, respectively), we see 
that the improvement is often negligible. For s = 5, on the shape domain, we found that in 
all six cases where regulation helped, the improvement in G-Mean was negligible (around 
.01 or .02). For s = 1, regularization methods were invoked in almost every case. Figure 13 
displays the optimal depth and regularization on the Shapes datasets for small and large 
dataset size. However, as in previous instances, the improvement they brought upon was 
often negligible or very small and not terribly significant. For example, in the cases of b = 
1 or 3 and c = 4, the G-Mean went from around .5 to close to .6.

Image domain The regularization experiments were not conducted in the image domains 
given the little advantage they displayed in the Shape domain.

❒ RQ3 for CNN answered Similarly as in the case of MLP, applying regularization 
methods for CNN offer highly limited improvements remain and do not have much practi-
cal significance in the context of concept complexity, class imbalance and data scarcity.

8  Lessons learned from experimental investigations

The purpose of our experiments was to observe the combined effect of class imbalances 
and other domain characteristics on deep learning domains, in order to better understand 
the roots of the problem and subsequently find robust solutions that address the problem in 
a deep rather than superficial manner. The results shown and analyzed in detail in the pre-
vious two sections are summarized here in terms of their main takeaways.

Lessons learned for MLPs Firstly we present a list of our main observations pertaining 
behavior of MLP models:

• Deep MLP models, like their shallow counterparts and other traditional classifiers, are 
deeply affected by concept complexity, class imbalances and data size (sparsity). That 
is shown in both artificial and practical data sets.

• There are some conditions of imbalances and other complexities where a depth of 1 
and sometimes even 2 is not sufficient for MLP to handle the problem. In these cases, 
increasing their depth is useful. The effect of such increases when called for, however, 
tends to plateau after a sufficient depth is found, and in certain cases, the performance, 
actually decreases, with too large a depth. This last observation is on par with the 
results obtained by Johnson and Khoshgoftaar (2020) on specific data sets and may 
help explain the effect they noticed. Altogether, our results lead us to conclude that 
depth should not be discarded: it can have a beneficial (as well as a detrimental) effect 
on the class imbalance problem for MLPs, but this effect is limited to certain situations 
and the increase in depth may, in fact, become a hindrance.

• Regularization techniques such as Dropout, Reduce on Plateau and Early stopping typi-
cally do not have a significant effect on class imbalances, concept complexity and data 
size (sparsity). They sometimes help raise performance slightly above zero, but that 
improvement is of little practical value. In rare cases, they help slightly with more prac-
tically relevant results.
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Lessons learned for CNNs Interestingly, our observations for CNN models differ from the 
MLP ones:

• We begin with a general observation independent of the class imbalance problem: 
CNN are not that appropriate for the raw shape domains. While they can adequately 
distinguish between a star and a square, they are unable to distinguish between different 
types of polygons. This suggests that CNN may not work well on domains where the 
separating margin is very small. On the other hand, CNN are much better suited to the 
MNIST-Fashion and CIFAR-10 tasks.

• Class imbalances have a negative effect on the performance of CNN, though that effect 
seems smaller than it is in the MLP.

• It is not always clear that the negative effect caused by class imbalances is more pro-
nounced in complex domains than in less complex ones.

• Data size affects CNN’s’ performance quite significantly and independently of class 
imbalances.

• Increasing the Depth of CNN does not have any effect on their performance, except 
for a sharp decrease in performance, in certain instances of very large depth. This is 
a bit different from what was reported in Ding et al. (2017) who found that increasing 
the depth from 6 to 10 helped improve performance but didn’t help, with performance, 
when increased beyond 10. This may be because the domains in Ding et  al. (2017) 
were more complex than the problems considered here. That may also explain why an 
increase in depth caused a decrease in performance in our experiments while it didn’t in 
Ding et al. (2017). This decrease in performance with depth, by the way, is consistent 
with the results obtained with MLP.

• Regularization techniques such as Dropout, Reduce on Plateau and Early stopping typi-
cally do not have any kind of significant effect on class imbalances, concept complexity 
and data size.

9  Literature review II: addressing the class imbalance problem in deep 
learning systems

The results of our experiments generally confirm the findings of the literature discussed in 
Sect. 2 and provide a discussion of the detailed situations where class imbalances are more 
or less harmful and how depth and regularization affect these findings. All in all, it is clear 
that the class imbalance problem has not been erased by deep Learning and that solutions 
need to be found to counteract them. The purpose of this section is to present some of the 
solutions that have been proposed to date to address the problem. The review of these solu-
tions will provide a better understanding of the state-of-the-art solutions for tackling the 
imbalance problem in the context of deep learning. Moreover, this section will help us to 
better understand the open issues and challenges in this domain which will be presented 
and discussed in Sect. 10.

Overview A large volume of solutions has been proposed for tackling the class imbal-
ance problem. These solutions can be categorized into pre-processing approaches, special 
purpose algorithms or post-processing approaches (Branco et al., 2016; Krawczyk, 2016). 
In the particular context of deep learning, the class imbalance problem only recently 
started to be addressed and several approaches on the three possible categories have been 
proposed and tested. However, important requirements must be considered when applying 
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previously developed approaches due to the fact that many of deep learning methods inves-
tigated are developed specifically for dealing with images instead of tabular data. This is 
the case when applying more sophisticated pre-processing (resampling) approaches that 
generate new synthetic cases through the interpolation of two cases. These solutions need 
to be applicable to raw images and ideally should preserve the images characteristics. This 
means that the methods used for generating new synthetic examples should be able obtain 
meaningful, high-quality images that can be visually inspected and that can improve the 
discriminative power of deep learning (Dablain et al., 2022).

Taxonomy of deep learning solutions to class imbalance The main approaches for 
tackling class imbalance that have been proposed and tested with deep learning methods 
are summarized in Fig. 14. The post-processing approaches act only on the predictions, 
while the pre-processing approaches are applied on the training stage and the special 
purpose algorithms are connected to the learning stage.

Review of existing approaches Changing the decision threshold using prior class 
probabilities is a pure post-processing approach that was used in deep learning with 
images. Buda et  al. (2018) explored this approach which showed performance advan-
tages when compared against the baseline models. This approach can be easily imple-
mented and allows to obtain adjusted predictions without retraining the model. In 
effect, thresholding helps to determine a threshold on the network outputs that reduces 
the probability of misclassifying minority class cases. Buda et  al. (2018) also tested 
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Fig. 14  Three main categories of approaches proposed and tested for tackling the class imbalance problem 
when using deep learning methods. Main categories of approaches on the left, followed by subcategories 
and some examples on the right
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a hybrid variant integrating both pre-processing and post-processing approaches that 
combines random under-sampling or random over-sampling with a threshold adjustment 
of the predictions. Overall, thresholding applied jointly with over-sampling exhibited 
good results in the experiments carried out. Johnson and Khoshgoftaar (2021) explored 
two thresholding approaches with MLPs: the optimal threshold, which uses validation/
training data to determine the threshold that maximizes the geometric mean; and the 
prior threshold, which sets the threshold to the prior probability of the minority class. 
The statistical test results showed that there is no difference between both approaches. 
These approaches are better than the default threshold of 0.5 that only displays good 
performance in fairly balanced scenarios.

As previously mentioned, pre-processing approaches have some restrictions when the 
predictive task involves images. The majority of the works that have explored over-/under-
sampling approaches used CNNs as the base architecture and restricted their evaluation 
to the following: random under-sampling the majority class, random over-sampling of the 
minority class by adding replicas, flips, shifts, rotations, shear or changing the brightness 
(e.g. Hensman and Masko (2015); Buda et al. (2018); Pouyanfar et al. (2018); Johnson and 
Khoshgoftaar (2020)). Overall, the experiments indicate that over-sampling approaches 
have a better performance when compared to under-sampling (Buda et al., 2018; Johnson 
& Khoshgoftaar, 2020). Recently, DeepSMOTE was proposed as a strategy that integrates 
the SMOTE algorithm with deep learning methods  (Dablain et  al., 2022). This method 
overcomes the difficulties of data generation enabling its application in tabular and image 
domains. In order to generate new synthetic examples GANs have been a popular over-
sampling alternative for image datasets  (Sampath et  al., 2021). Multiple GAN architec-
tures such as, WGAN-GP  (Bhatia & Dahyot, 2019), CGAN  (Nazari & Branco, 2021) 
or BAGAN (Mariani et  al., 2018), have been explored to achieve the generation of syn-
thetic data. The majority of the works using GANs for synthetic data generation in class 
imbalance scenarios are focused on image generation and use medical image datasets. 
Variational autoencoders (VAEs) (Kingma & Welling, 2013) and Wasserstein autoencod-
ers (WAEs)  (Tolstikhin et  al., 2017) have also been used as methods for synthetic cases 
generation.

Hybrid approaches that combine pre-processing and special purpose algorithms have 
also been tested. For instance, a dynamic sampling technique that combines under and 
over-sampling methods with transfer learning was proposed by (Pouyanfar et  al., 2018). 
Lee et al. (2016) pre-trains a CNN with class normalized data obtained by applying ran-
dom under-sampling. Then, the CNN is fine-tuned (retrained) using the original training 
data. Murphey et al. (2004) carries out experiments with snowball training (Wang & Jean, 
1993). This technique starts by training a neural network exclusively with the minority 
class examples. Then, the network capability to recognize the majority class examples is 
increased by using a dynamic training set that contains all minority class examples and an 
increasing number of majority class examples. Buda et al. (2018) uses a two-phase learn-
ing method that starts by training the network on a balanced data and then the output layers 
are fine-tuned.

A promising hybrid approach concerns the use of batch adjustments. These include 
applying a balancing strategy in the batches which can be achieved, for instance, through 
oversampling or prioritized sampling. Mullick et al. (2019) discusses the fact that apply-
ing SMOTE in the context of deep learning may not be appropriate due to the fact that 
deep learning carries out an end-to-end process that integrates both deep feature extraction 
and classification. This makes it difficult to incorporate oversampling techniques which 
are usually applied after the feature extraction process. Moreover, frequently the datasets 
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are very large to load and pre-process. This motivates the application of resampling at the 
batch level in deep learning to balance the training distribution. Dong et al. (2017) propose 
a batch-wise incremental hard mining of hard-positives and hard-negatives that considers 
exclusively the minority attribute classes. This approach is supported by a Class Rectifica-
tion Loss (CRL) regularising algorithm. CRL is designed to improve the minority class 
learning in each batch with batch-balance updated deep features. Bellinger et  al. (2021) 
propose ReMix, a training technique that combines batch resampling, instance mixing and 
soft-labels to improve the performance on imbalanced datasets. ReMix uses a prioritized 
mixing strategy for efficiently balancing the classes in each training batch while increasing 
the minority class space. Several regularization approaches specifically designed for imbal-
anced deep learning have been proposed. Examples of such solutions include the Major 
Feature Weakening  (Ye et  al., 2021) and Remix  (Chou et  al., 2020). The Major Feature 
Weakening method is a new learning strategy that seeks to equalize the training progress 
across the different classes of the problem. The key idea of this method is to mix features 
of the majority class with those from other data in a mini-batch which weakens these fea-
tures, and thus prevents the neural network from fitting them first.

Ren et al. (2018) propose a method that also works on the batch level, where the gradi-
ent direction is used to learn and assign weights to the training cases. The work of Sellami 
and Hwang (2019) presents a dynamic batch-weighted loss function for heartbeat classifi-
cation. In this solution the loss weights change in a dynamic way as the distribution of the 
classes in each batch changes. Other solutions involving the notion of batch adjustments 
have been proposed more recently [e.g. Hu et al. (2021), Peng et al. (2021)].

Cross Entropy (CE) loss is the loss function most frequently used loss function for deep 
learning. However, this loss assumes that the training dataset is balanced and thus is not 
the ideal setting when tackling the class imbalance problem through deep learning. Sev-
eral alternative loss functions have been proposed to deal with this issue. For instance, the 
WCE is a variant of the CE loss that assigns a higher weight to samples from the minority 
class and a lower weight to majority class samples. Wang et al. (2016) proposed two new 
loss functions, the Mean False Error (MFE) and the Mean Squared False Error (MSFE), 
that have a higher sensitivity to minority class errors. The focal loss proposed by Ross 
and Dollár (2017) is another loss function that aims at changes the CE loss for reducing 
the impact on the loss of easy to learn examples. The CE loss is thus multiplied by a new 
factor while the class weight used in WCE is also kept to allow the loss to not focus on 
hard to learn majority class samples. Other loss functions have been presented to address 
other aspects. For instance, the Label-Distribution-Aware Margin loss (LDAM) (Cao et al., 
2019) was proposed for encouraging larger margins on minority classes and the Parameter 
Free-loss (PF-loss) proposed by Du et al. (2021) tackles the issue of parameter tuning by 
removing them from the equation. In the PF-loss, no hyperparameters exist and the loss 
dynamically adapts to give more attention to the minority class. The PF-loss presents mul-
tiple advantages including a reduced training time, a focus on the minority classes instead 
of the outliers, and an increased accuracy due to its adaptation to different classes distri-
butions. Transfer learning is an alternative special purpose method that begins with pre-
training the network on a dataset different from the one targeted in the predictive task, and 
then fine-tunes the network on the task dataset (Pouyanfar et al., 2018).

Cost-sensitive is a know method for dealing with the class imbalance problem. In the 
context of deep learning, several approaches have been put forward for embedding cost-
sensitive learning. For instance, Wang et  al. (2018) modified the CE loss function used 
by an MLP by integrating a pre-defined cost matrix. This will force the to focus on the 
minority class in order to minimize the misclassification cost. The minimization of a new 
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cost-sensitive localized generalization error-based objective function (C-LGEM) is pro-
posed by Ng et al. (2021). The C-LGEM function is used in the neural network training to 
achieve a better balance between the errors of the majority and minority classes. Specific 
cost-sensitive solutions were proposed for deep learning in certain imbalanced tasks. Fuqua 
and Razzaghi (2020) and Geng and Luo (2018) present examples of such methods devel-
oped for convolutional neural networks targeting the chart pattern recognition problem and 
time series classification, respectively. The CoSen CNN proposed by Khan et  al. (2017) 
follows a different approach that allows learning the cost matrix and the network weight 
parameters simultaneously. This solution has the advantage of not requiring the end-user to 
define the cost matrix, a time-consuming and costly task.

A two-stage learning approach was proposed for deep imbalanced learning by Kang 
et  al. (2019). The authors found that pre-processing strategies are relevant when jointly 
learning representation and classifiers in imbalanced domains. However, decoupling the 
representation learning and classifier learning has advantages. The authors found that class 
imbalance might not be a problem for representation learning with high-quality representa-
tions being obtained through the simplest instance-balanced sampling. Given the strong 
representation, state-of-the-art results are obtained through re-balancing the classifier. This 
research gave rise to other works that developed deep ensembles which focus on the decou-
pling of the representation and classifier (Zhou et al., 2020; Wang et al., 2020a). An exam-
ple of such solutions is the Bilateral-Branch Network (BBN) (Zhou et al., 2020). The BBN 
model uses two branches that tackle the representation learning and classifier learning 
simultaneously and separately. A cumulative learning strategy is also embedded to allow 
to first learn the universal patterns giving attention to the tail data later on and in a gradual 
fashion.

10  Open challenges for class imbalance in deep learning

Research in this field is still in its initial steps, and several challenges remain open when 
handling class imbalance through deep learning methods. Below we list and discuss most 
vital challenges and future directions for this domain: 

1. More efficient instance generation for oversampling There is only a limited number of 
approaches for generating synthetic instances and standard interpolation methods for 
synthetic data generation are not generally applicable to image data. Moreover, in the 
deep learning context it is typically not possible to load the entire dataset which repre-
sents an added challenge; thus, resampling strategies may be applied in mini-batches, 
which brings limitations in terms of the quality of the cases generated and the complex-
ity of applying the strategies. In effect, auxiliary computations necessary for synthetic 
data generation, such as calculating nearest neighbors in each mini-batch, may result in 
a slower training which may have severe consequences for large problems.

2. Oversampling beyond images There is a need for a holistic oversampling approaches, 
capable of working with various modalities of data. While there exist highly effective 
oversampling solutions, like DeepSMOTE (Dablain et al., 2022) or GAMO (Mullick 
et al., 2019), they are mainly dedicated to image representations. Solutions for other 
data modalities exist. However, a general solution suitable for any type of data is still 
missing. One can envision a more general approach capable of generating of artificial 
instances of any type of complex representations, such as sounds, text, videos, etc.
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3. Rigorous and standardized test bed evaluations Many resampling approaches are based 
on GANs (or other generative models), which still lack standardized approaches for 
evaluation of their quality. The imbalance problem is thus an added challenge. Impor-
tantly, we need to understand what is the relationship between the visual quality of 
generated images and their actual impact on the class imbalance problem. Furthermore, 
we need rigorous and reproducible evaluation measures for their capability of generat-
ing information-rich and out-of-training-distribution instances that would truly enrich 
minority classes.

4. Analysis of the imbalanced deep learning toolbox Theoretical and empirical comparisons 
of cost-sensitive learning and resampling in the traditional class imbalance literature, 
such as Drumnond and Holte (2003); Weiss et al. (2007); Seiffert et al. (2008a, 2008b); 
Wallace et al. (2011), have served to advance our understanding of when, where, and 
why these methods might work. Deep learning, however, presents challenges and oppor-
tunities that did not exist at the time of these studies. As a result, it still remains unclear 
which imbalanced learning tools should be used in deep learning. A thorough under-
standing of the relationships between the solutions for the imbalance problem and their 
impact in a deep learning context is still lacking. Deep generative methods, for example, 
have the potential to generate more realistic synthetic samples to represent the minority 
class Mullick et al. (2019); Wang et al. (2020b). On the other hand, it has been argued 
that in large data regimes, the benefit of adding new samples to imbalanced classes is 
diminished Cui et al. (2019). Re-weighting has demonstrated some promise as it can 
easily be applied on a per-class or per-sample basis. However, doing so may negatively 
impact optimization Huang et al. (2016, 2019a). In these cases, a class imbalanced loss 
function maybe helpful Cao et al. (2019); Cui et al. (2019); Li et al. (2019); Lin et al. 
(2017). A comprehensive analyses of the tools for imbalanced deep learning, such as 
those undertaken in the traditional setting, will be of great benefit to guide researchers 
and practitioners as deep learning continues to expand into real-world applications.

5. Mapping between domain complexity characteristics and deep learners’ effectiveness 
As observed in the literature review presented in this paper, the relationship between the 
domain complexity and its impact in deep learning systems is still not well understood. 
An initial step to address this issue would be to provide a more formal and systematic 
definition of different complexity characteristics which could then be analysed and 
connected to the effectiveness of different deep learning systems. Some studies already 
address this problem when observing the relation between class overlap its impact 
on the performance of deep learning methods (Ghosh et al., 2021). However, a more 
thorough and complete understanding of the relationship between multiple complexity 
characteristics of the tasks and their impact in deep learning models is still needed. 
This challenge is also presented by Santos et al. (2022), for the particular case of class 
overlap, where the need to develop a well-established formulation and measurement of 
class overlap in the context of real world problems is put forward.

6. XAI for class imbalance So far there is almost no research on Explainable Artificial 
Intelligence (XAI) approaches tailored to class imbalance. Such models would allow us 
to gain a deeper insight into the nature of class imbalance in deep learning, allowing for 
understanding what type of information impacts in what way both the feature extraction 
and classification. This would be especially useful for building trust with the medical 
and health science communities that deal with a plethora of imbalanced problems, but 
display scepticism towards many skew-insensitive techniques, especially based on arti-
ficially generated instances.



4882 Machine Learning (2024) 113:4845–4901

1 3

7. Class imbalance in continual and lifelong learning Continual and lifelong learning are 
rapidly developing domains of deep learning, focusing on creating adaptive models. 
They hold a lot of similarities to data stream mining domain, as they all deal with 
continually arriving new information and could be seen as two sides of the same coin 
(Korycki & Krawczyk, 2021). Class imbalance poses unique challenges in such a setup, 
as deep learning models must be capable of overcoming catastrophic forgetting and 
emerging imbalance ratio that may come with incremental tasks or classes. Additionally, 
in such setting there will be another bias towards the most recent task or class, leading 
to models being skewed on multiple fronts. The most challenging scenario would arise 
with addition of concept drift (Guzy et al., 2021), where previously seen classes may 
evolve and the imbalance ratio among classes will change over time.

8. Deep learning from imbalanced time series Learning from imbalanced time series is 
a very challenging task, as the imbalance may appear either as the number of training 
instances, or as rare occurrence of specific events or characteristic in the series (Kraw-
czyk, 2016). Despite massive success of deep learning methods for classifying and 
forecasting time series, there are but few methods dedicated to handling skewed prob-
lems (Huang et al., 2019b). There is a need for creating deep oversampling approaches 
capable of generating not only life-like time series, but also their specific segments. 
Furthermore, forecasting methods must be enhanced with skew-insensitive mechanisms 
in order to allow for unbiased predictions, as well as understanding what specific char-
acteristics of time series pose a challenge to deep models.

11  Conclusion

The purpose of this paper was to seek a better understanding of the state of the art in deep 
learning in relation to the Class Imbalance problem. It considered the matter from two 
standpoints.

Summary of the literature review First, it proposed a detailed literature review of the 
work that has been done on the topic. It particularly looked at two sub-areas of research: 
the effect of class imbalances on deep learning; and the way in which the class imbalance 
problem has been addressed to date in deep learning systems. From this review we confirm 
that deep learning methods are affected by the class imbalance, and we provide evidence of 
the difficulties these methods face. We verified that assessing the predictive task complex-
ity is difficulty and has not been sufficiently explored. Regarding the strategies for handling 
class imbalance in deep learning we observe that several attempts have been made in the 
three categories of approaches. However, these methods still present important limitations 
including: limited number of solutions; difficulty in applying standard interpolation meth-
ods to image data; restriction of the application of resampling methods to mini-batches; 
and other computational efficiency issues associated to standard resampling approaches.

Summary of the controlled experiments Second, the article ran a number of controlled 
experiments on both artificial and real domains, using MLP and CNN of various depths in 
order to establish some basic and systematic understanding of how deep learning responds 
to Class Imbalances. The idea was to create the same kind of basic understanding as that 
available for traditional learning systems. It was found that the deep MLP were affected by 
the class imbalance problem and the associated issues of concept complexity and data scar-
city, in ways very similar to the way in which traditional learning systems are. While depth 
helped lessen the problem in certain cases, regularization did not help much. This suggests 
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that, like in the traditional learning setting, novel solutions need to be proposed. The deep 
CNN were affected by the class imbalance problem, but somewhat less so. On the other 
hand, data scarcity seemed to have a much greater negative impact on them. Once again, 
neither depth nor regularization were sufficient to combat the problems and novel solutions 
are needed.

Proposed future work This study suggests a number of future avenues to explore. 
First, it would be interesting to generate new domains presenting different kinds of 
concept complexities and to run experiments on a greater variety of real domains. This 
can be done using the measure of complexity previously proposed for class imbalances 
and complexity such as Barella et  al. (2021). Although this study has taken steps to 
reduce the risk of vanishing gradients, the problem cannot be fully eliminated in deep 
learning. An important next step is to undertake a detailed study of the relationship 
between class imbalance and the vanishing gradient problem. It would also be interest-
ing to expand our work to multiclass classification problems to confirm and explain 
in more detail the results of the different studies that have been conducted on this cat-
egory of problems. Second, an important family of deep learner we omitted from this 
study is the Generative Adversarial Network. It would be useful to extend the study to 
include such networks. Of course, another avenue is to use the insights gained by this 
study to create new approaches to deal with the class imbalance problem.

Fig. 15  Variability of the square 
class

Fig. 16  Illustration of the modified Shape images
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Appendix

We now present additional figures and plots that provide more details on the results 
discussed in this paper.

Fig. 17  Number of training instances in the Job Classification domain
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A Detailed illustration of the shapes domain

Figure 15 shows the variability found in the squares class. As shown in the figure, the 
images may differ in terms of background color, square size, position and orientation. 
While this is illustrated in the case of squares, the same is true for all the other shapes 
considered in this domain. Figure 16 shows the results of the shape images after they 
have been modified as discussed in the paper (Fig. 17).

B Instance numbers used in the job classification domain

We now present the number of instances used in all settings of the job classification data 
set. These numbers vary from concept complexity to concept complexity and could not be 
summarized in a table like the other domains.

At each complexity level the testing set is made of the majority number of instances for 
each class. For example, the testing set for complexity level 1 is 829 instances of class 1 
and 829 instances of class 2; for complexity level 2, it is 1,163 and 1,163; and so on.

C Experimental setup

For each of the MLP networks, we report the optimal results recorded after running them 
with 2, 4, 8, and 16 hidden units in each layer. The number of hidden layers in the network 
is increased from 1 to 5. We trained each of the MLP networks for 300 iterations, with a 
learning rate of 0.001, and using the Adam optimizer. Relu activation and uniform weight 
initialization were utilized as recommended in Glorot and Bengio (2010) to reduced the 
risk of vanishing gradients. We also experimented with three different types of regulariza-
tion approaches: Dropout, Reduce on Plateau and Early stopping.

We evaluated the CNN networks, with an increasing number of convolutional layers 
(filters): 1 (8), 2 (8-16), 3 (8-16-32), 4 (8-16-32-64), 5 (8-16-32-64-64). Two dense layers 
are featured at the end of each model architecture. Relu activation and uniform weight ini-
tialization were used in these models (Glorot & Bengio, 2010). We also experimented with 
three different types of regularization approaches: Dropout, Reduce on Plateau and Early 
stopping.

D Additional results on depth for multi layer perceptrons

This part of the appendix provides additional results pertaining to the effect of Depth on 
Multi-Layer Perceptrons in the cases of class imbalances, concept complexity and data 
scarcity. These results were not included in the main body of the paper to improve the pres-
entation of the results. However, we felt that it was important to include them for the inter-
ested reader. Figure 18 shows the results obtained on all depths for the Backbone Domain 
of small size (s = 1). Figures 19 and 20 show the results obtained on all depths on the text 
domains, namely, 20 Newsgroups and Job Classification. These results are discussed in the 
body of the paper.
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E Additional results on depth for convolutional neural networks

This part of the appendix provides additional results pertaining to the effect of Depth on Con-
volutional Neural Networks in the cases of class imbalances, concept complexity and data 
scarcity. These results were not included in the main body of the paper to improve the pres-
entation of the results. However, we felt that it was important to include them for the inter-
ested reader. Figure 21 shows the results obtained on all depths for the Backbone Domain of 
small size (s = 1). Figures 22 and 23 show the results obtained on the image domains, namely 
MNIST-Fashion and CIFAR-10. These results are discussed in the main body of the paper.

Fig. 18  The effect of depth on class imbalance levels, complexity in small datasets in the Backbone 
Domain. Least imbalance: level 5 (leftmost); Most imbalance: level 1 (rightmost). Each cluster of five bars 
represent a complexity level, going from low to high complexity. Within each cluster, each bar represents a 
depth level going from deeper on top to shallower at the bottom of the cluster
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F Additional results for regularization on multi layer perceptrons

This part of the appendix provides additional results pertaining to the effect of Regulariza-
tion on Multi Layer Perceptrons in the cases of class imbalances, concept complexity and 
data scarcity. These results were not included in the main body of the paper to improve the 
presentation of the results. However, we felt that it was important to include them for the 
interested reader. Figure 24 shows the results obtained on all depths for the large Backbone 

Fig. 19  The effect of depth on class imbalance levels, complexity in small datasets in the newsgroup 
domain. Least imbalance: level 5 (leftmost); Most imbalance: level 1 (rightmost). Each cluster of five bars 
represent a complexity level, going from low to high complexity. Within each cluster, each bar represents a 
depth level going from deeper on top to shallower at the bottom of the cluster
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Fig. 20  The effect of depth on class imbalance levels, complexity in the Job Classification domain. Least 
imbalance: level 5 (leftmost); Most imbalance: level 1 (rightmost). Each cluster of five bars represent a 
complexity level, going from low to high complexity. Within each cluster, each bar represents a depth level 
going from deeper on top to shallower at the bottom of the cluster
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Fig. 21  The effect of depth on class imbalance levels, complexity in small datasets in the Shapes domain. 
Least imbalance: level 5 (leftmost); Most imbalance: level 1 (rightmost). Each cluster of five bars represent 
a complexity level, going from low to high complexity. Within each cluster, each bar represents a depth 
level going from deeper on top to shallower at the bottom of the cluster
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Fig. 22  The effect of depth on class imbalance levels, complexity in MNIST Fashion datasets. Least imbal-
ance: level 5 (leftmost); Most imbalance: level 1 (rightmost). Each cluster of five bars represent a complex-
ity level, going from low to high complexity. Within each cluster, each bar represents a depth level going 
from deeper on top to shallower at the bottom of the cluster
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Fig. 23  The effect of depth on class imbalance levels, complexity in CIFAR-10 datasets. Least imbalance: 
level 5 (leftmost); Most imbalance: level 1 (rightmost). Each cluster of five bars represent a complexity 
level, going from low to high complexity. Within each cluster, each bar represents a depth level going from 
deeper on top to shallower at the bottom of the cluster
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Fig. 24  The effect of regularization on the backbone experiments. Size = 5. Least imbalance: level 5 (left-
most); Most imbalance: level 1 (rightmost). Each cluster of five bars represent a complexity level, going 
from low to high complexity. Within each cluster, each bar represents a depth level going from deeper on 
top to shallower at the bottom of the cluster
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Fig. 25  The effect of Regularization on the backbone experiments. Size =1. Least imbalance: level 5 (left-
most); Most imbalance: level 1 (rightmost). Each cluster of five bars represent a complexity level, going 
from low to high complexity. Within each cluster, each bar represents a depth level going from deeper on 
top to shallower at the bottom of the cluster
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Fig. 26  The effect of Regularization on the Shape domain. Size = 5. Least imbalance: level 5 (leftmost); 
Most imbalance: level 1 (rightmost). Each cluster of five bars represent a complexity level, going from low 
to high complexity. Within each cluster, each bar represents a depth level going from deeper on top to shal-
lower at the bottom of the cluster
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Fig. 27  The effect of Regularization on the Shape domain. Size = 1. Least imbalance: level 5 (leftmost); 
Most imbalance: level 1 (rightmost). Each cluster of five bars represent a complexity level, going from low 
to high complexity. Within each cluster, each bar represents a depth level going from deeper on top to shal-
lower at the bottom of the cluster
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Domain (size s = 5) while Fig. 25 shows the results obtained on all depths for the small 
Backbone Domain (size s = 1) These results are discussed in the main body of the paper.

G Additional results for regularization on convolutional neural 
networks

This part of the appendix provides additional results pertaining to the effect of Regulari-
zation on Convolutional Neural Networks in the cases of class imbalances, concept com-
plexity and data scarcity. These results were not included in the main body of the paper to 
improve the presentation of the results. However, we felt that it was important to include 
them for the interested reader. Figure 26 shows the results obtained on all depths for the 
large Shape Domain (size s = 5) while Fig. 27 shows the results obtained on all depths for 
the small Shape Domain (size s = 1). These results are discussed in the main body of the 
paper.

Acknowledgements We would like to thank Julia Chen and Becca Jeffries for their contributions on the 
shape and text classification experiments.

Author contributions All authors contributed to the study conception and design. Material preparation, data 
collection and analysis were performed by Kushankur Ghosh, Colin Bellinger, Roberto Corizzo and Paula 
Branco. The first draft of the manuscript was written by Nathalie Japkowicz, edited by Bartosz Krawczyk 
and all authors commented on previous versions of the manuscript. All authors read and approved the final 
manuscript.

Funding The authors did not receive support from any organization for the submitted work.

Data availibility The results on other performance metrics as well as stratified cross-validated results, 
that were not included in the manuscript, are available upon request. The code for the experiments can be 
accessed here: https:// github. com/ cbell inger 27/ deep- imbal ance- analy sis.

Declarations 

Conflicts of interest The authors have no relevant financial or non-financial interests to disclose.

Consent to participate Not applicable.

Consent for publication Not applicable.

Ethics approval Not applicable.

References

Alhenaki, L., & Hosny, M. (2019). A genetic-frog leaping algorithm for large dataset document clustering. 
In 2019 IEEE/ACS 16th international conference on computer systems and applications (AICCSA), 
IEEE, pp 1–4.

Anand, R., Mehrotra, K. G., Mohan, C. K., & Ranka, S. (1993). An improved algorithm for neural network 
classification of imbalanced training sets. IEEE Transactions on Neural Networks, 4(6), 962–969.

Barella, V. H., Garcia, L. P., de Souto, M. C., Lorena, A. C., & de Carvalho, A. C. (2021). Assessing the 
data complexity of imbalanced datasets. Information Sciences, 553, 83–109.

https://github.com/cbellinger27/deep-imbalance-analysis


4897Machine Learning (2024) 113:4845–4901 

1 3

Bellinger, C., Corizzo, R., & Japkowicz, N. (2021). Calibrated resampling for imbalanced and long-tails in 
deep learning. In International conference on discovery science, Springer, pp. 242–252.

Benitez-Quiroz, C. F., Srinivasan, R., Feng, Q., Wang, Y., & Martinez, A. M. (2017). Emotionet chal-
lenge: Recognition of facial expressions of emotion in the wild. arXiv preprint arXiv: 1703. 01210

Bhatia, S., & Dahyot, R. (2019). Using wgan for improving imbalanced classification performance. In 
CEUR Workshop Proceedings, CEUR, 2563, 365–375.

Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A survey of predictive modeling on imbalanced domains. 
ACM Computing Surveys (CSUR), 49(2), 1–50.

Bria, A., Marrocco, C., & Tortorella, F. (2020). Addressing class imbalance in deep learning for small 
lesion detection on medical images. Computers in Biology and Medicine, 120, 103735.

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in 
convolutional neural networks. Neural Networks, 106, 249–259.

Cano, J. R. (2013). Analysis of data complexity measures for classification. Expert Systems with Appli-
cations, 40(12), 4820–4831.

Cao, K., Wei, C., Gaidon, A., Arechiga, N., & Ma, T. (2019). Learning imbalanced datasets with label-
distribution-aware margin loss. In Advances in neural information processing systems, 32.

Chou, H. P., Chang, S. C., Pan, J. Y., Wei, W., & Juan, D. C. (2020). Remix: Rebalanced mixup. In 
European conference on computer vision, Springer, pp. 95–110.

Cohen, G., Sapiro, G., & Giryes, R. (2018). DNN or k-NN: That is the generalize vs. memorize question. 
arXiv preprint arXiv: 1805. 06822.

Cui, Y., Jia, M., Lin, T. Y., Song, Y., & Belongie, S. (2019). Class-balanced loss based on effective 
number of samples. In Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, pp 9268–9277.

Dablain, D., Krawczyk, B., & Chawla, N. V. (2022). DeepSMOTE: Fusing deep learning and SMOTE 
for imbalanced data. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15. 
https:// doi. org/ 10. 1109/ TNNLS. 2021. 31365 03.

Ding, W., Huang, D. Y., Chen, Z., Yu, X., & Lin, W. (2017). Facial action recognition using very deep 
networks for highly imbalanced class distribution. In 2017 Asia-Pacific signal and information 
processing association annual summit and conference (APSIPA ASC), IEEE, pp. 1368–1372.

Dong, Q., Gong, S., & Zhu, X. (2017). Class rectification hard mining for imbalanced deep learning. In 
Proceedings of the IEEE international conference on computer vision, pp. 1851–1860.

Drumnond, C., & Holte, R. (2003). Class imbalance and cost sensitivity: Why undersampling beats 
oversampling. In ICML-KDD 2003 workshop: Learning from imbalanced datasets, vol. 3.

Du, J., Zhou, Y., Liu, P., Vong, C. M., & Wang, T. (2021). Parameter-free loss for class-imbalanced deep 
learning in image classification. IEEE Transactions on Neural Networks and Learning Systems.

Dudjak, M., & Martinović, G. (2021). An empirical study of data intrinsic characteristics that make 
learning from imbalanced data difficult. Expert Systems with Applications, p. 115297.

El  Korchi, A., & Ghanou, Y. (2020). 2D geometric shapes dataset—for machine learning and pattern 
recognition. Data in Brief, 32.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from 
imbalanced data sets. Springer. https:// doi. org/ 10. 1007/ 978-3- 319- 98074-4.

Fuqua, D., & Razzaghi, T. (2020). A cost-sensitive convolution neural network learning for control chart 
pattern recognition. Expert Systems with Applications, 150, 113275.

Geng, Y., & Luo, X. (2018). Cost-sensitive convolution based neural networks for imbalanced time-
series classification. arXiv preprint arXiv: 1801. 04396.

Ghosh, K., Bellinger, C., Corizzo, R., Krawczyk, B., & Japkowicz, N. (2021). On the combined effect 
of class imbalance and concept complexity in deep learning. In Proceedings of the IEEE big data 
conference, pp. 4859–4868.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international conference on artificial intelligence and sta-
tistics, JMLR Workshop and Conference Proceedings, pp. 249–256.

Guzy, F., Wozniak, M., & Krawczyk, B. (2021). Evaluating and explaining generative adversarial net-
works for continual learning under concept drift. In 2021 International conference on data mining, 
ICDM 2021 - workshops, Auckland, New Zealand

Hensman, P., & Masko, D. (2015). The impact of imbalanced training data for convolutional neural net-
works. KTH Royal Institute of Technology: Degree Project in Computer Science.

Herland, M., Khoshgoftaar, T. M., & Bauder, R. A. (2018). Big data fraud detection using multiple 
medicare data sources. Journal of Big Data, 5(1), 1–21.

http://arxiv.org/abs/1703.01210
http://arxiv.org/abs/1805.06822
https://doi.org/10.1109/TNNLS.2021.3136503
https://doi.org/10.1007/978-3-319-98074-4
http://arxiv.org/abs/1801.04396


4898 Machine Learning (2024) 113:4845–4901

1 3

Ho, T. K., & Basu, M. (2002). Complexity measures of supervised classification problems. IEEE Trans. 
Pattern Anal. Mach. Intell., 24(3), 289–300.

Hu, J., Zhang, H., Liu, Y., Sutcliffe, R., & Feng, J. (2021). Bbw: a batch balance wrapper for training 
deep neural networks on extremely imbalanced datasets with few minority samples. Applied Intel-
ligence, pp. 1–16.

Huang, C., Li, Y., Loy, C. C., & Tang, X. (2016). Learning deep representation for imbalanced classi-
fication. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 
5375–5384.

Huang, C., Li, Y., Loy, C. C., & Tang, X. (2019). Deep imbalanced learning for face recognition and 
attribute prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(11), 
2781–2794.

Huang, C., Wu, X., Zhang, X., Lin, S., & Chawla, N. V. (2019b). Deep prototypical networks for imbal-
anced time series classification under data scarcity. In Proceedings of the 28th ACM international 
conference on information and knowledge management, CIKM 2019, Beijing, China, November 
3–7, 2019, ACM, pp. 2141–2144.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data 
Analysis, 6(5), 429–449.

Johnson, J. M., & Khoshgoftaar, T. M. (2020). The effects of data sampling with deep learning and 
highly imbalanced big data. Information Systems Frontiers, 22(5), 1113–1131.

Johnson, J. M., & Khoshgoftaar, T. M. (2021). Thresholding strategies for deep learning with highly 
imbalanced big data. In Deep learning applications, vol. 2, Springer, pp. 199–227.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., & Kalantidis, Y. (2019). Decoupling rep-
resentation and classifier for long-tailed recognition. arXiv preprint arXiv: 1910. 09217.

Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., & Togneri, R. (2017). Cost-sensitive learning of 
deep feature representations from imbalanced data. IEEE Transactions on Neural Networks and 
Learning Systems, 29(8), 3573–3587.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412. 
6980.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv: 1312. 6114.
Korycki, L., & Krawczyk, B. (2021). Class-incremental experience replay for continual learning under 

concept drift. In IEEE conference on computer vision and pattern recognition workshops, CVPR 
workshops 2021, virtual, June 19–25, 2021, Computer Vision Foundation/IEEE, pp. 3649–3658.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress 
in Artificial Intelligence, 5(4), 221–232.

Krizhevsky, A., & Hinton, G., et al. (2009) Learning multiple layers of features from tiny images.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional 

neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document 

recognition. Proceedings of the IEEE, 86(11), 2278–2324.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Lee, H., Park, M., & Kim, J. (2016). Plankton classification on imbalanced large scale database via 

convolutional neural networks with transfer learning. In 2016 IEEE international conference on 
image processing (ICIP), IEEE, pp. 3713–3717.

Li, B., Liu, Y., & Wang, X. (2019). Gradient harmonized single-stage detector. Proceedings of the AAAI 
conference on artificial intelligence, 33, 8577–8584.

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv: 1312. 4400.
Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In 

Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2019). On the variance of the adaptive 

learning rate and beyond. arXiv preprint arXiv: 1908. 03265.
Llamas, J., Lerones, P. M., Medina, R., Zalama, E., Gómez-García-Bermejo, J. (2017). Classification of 

architectural heritage images using deep learning techniques. Applied Sciences, 7(10):992.
López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with 

imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Infor-
mation sciences, 250, 113–141.

Luengo, J., Fernández, A., García, S., & Herrera, F. (2011). Addressing data complexity for imbalanced 
data sets: Analysis of smote-based oversampling and evolutionary undersampling. Soft Comput-
ing, 15(10), 1909–1936.

http://arxiv.org/abs/1910.09217
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1908.03265


4899Machine Learning (2024) 113:4845–4901 

1 3

Luo, L., Xiong, Y., Liu, Y., & Sun, X. (2019). Adaptive gradient methods with dynamic bound of learn-
ing rate. arXiv preprint arXiv: 1902. 09843.

Lydia, A., & Francis, S. (2019). Adagrad: An optimizer for stochastic gradient descent. International 
Journal of Computer and Information Sciences, 6(5).

Lyon, R. J., Stappers, B., Cooper, S., Brooke, J. M., & Knowles, J. D. (2016). Fifty years of pulsar candidate 
selection: From simple filters to a new principled real-time classification approach. Monthly Notices 
of the Royal Astronomical Society, 459(1), 1104–1123.

Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., & Malossi, C. (2018). Bagan: Data augmentation with 
balancing gan. arXiv preprint arXiv: 1803. 09655.

Mullick, S. S., Datta, S., & Das, S. (2019). Generative adversarial minority oversampling. In 2019 IEEE/
CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27–
November 2, 2019, IEEE, pp. 1695–1704.

Murphey, Y. L., Guo, H., & Feldkamp, L. A. (2004). Neural learning from unbalanced data. Applied Intel-
ligence, 21(2), 117–128.

Nazari, E., & Branco, P. (2021). On oversampling via generative adversarial networks under different data 
difficulty factors. In Third international workshop on learning with imbalanced domains: Theory and 
applications, pp. 76–89.

Ng, W. W., Liu, Z., Zhang, J., & Pedrycz, W. (2021). Maximizing minority accuracy for imbalanced pattern 
classification problems using cost-sensitive localized generalization error model. Applied Soft Com-
puting, 104, 107178.

Orenstein, E. C., Beijbom, O., Peacock, E. E., & Sosik, H. M. (2015). Whoi-plankton-a large scale fine 
grained visual recognition benchmark dataset for plankton classification. arXiv preprint arXiv: 1510. 
00745.

Peng, D., Gu, T., Hu, X., & Liu, C. (2021). Addressing the multi-label imbalance for neural networks: An 
approach based on stratified mini-batches. Neurocomputing, 435, 91–102.

Pouyanfar, S., Tao, Y., Mohan, A., Tian, H., Kaseb, A. S., Gauen, K., Dailey, R., Aghajanzadeh, S., Lu, Y. 
H., & Chen, S. C., et al. (2018). Dynamic sampling in convolutional neural networks for imbalanced 
data classification. In 2018 IEEE conference on multimedia information processing and retrieval 
(MIPR), IEEE, pp. 112–117.

Prati, R. C., Batista, G. E., & Monard, M. C. (2004). Class imbalances versus class overlapping: An analysis 
of a learning system behavior. In Mexican international conference on artificial intelligence, Springer, 
pp. 312–321.

Pulgar, F. J., Rivera, A. J., Charte, F., & del Jesus, M. J. (2017). On the impact of imbalanced data in con-
volutional neural networks performance. In International conference on hybrid artificial intelligence 
systems, Springer, pp. 220–232.

Raj, V., Magg, S., & Wermter, S. (2016). Towards effective classification of imbalanced data with con-
volutional neural networks. In IAPR workshop on artificial neural networks in pattern recognition, 
Springer, pp. 150–162.

Ren, M., Zeng, W., Yang, B., & Urtasun, R. (2018). Learning to reweight examples for robust deep learning. 
In International conference on machine learning, pp. 4334–4343.

Ross, T. Y., & Dollár, G. (2017). Focal loss for dense object detection. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 2980–2988.

Sáez, J. A., Krawczyk, B., & Wozniak, M. (2016). Analyzing the oversampling of different classes and types 
of examples in multi-class imbalanced datasets. Pattern Recognition, 57, 164–178.

Sampath, V., Maurtua, I., Martín, J. J. A., & Gutierrez, A. (2021). A survey on generative adversarial net-
works for imbalance problems in computer vision tasks. Journal of Big Data, 8(1), 1–59.

Santos, M. S., Abreu, P. H., Japkowicz, N., Fernández, A., Soares, C., Wilk, S., & Santos, J. (2022). On the 
joint-effect of class imbalance and overlap: A critical review. Artificial Intelligence Review, pp. 1–69.

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2008a). A comparative study of data 
sampling and cost sensitive learning. In 2008 IEEE international conference on data mining work-
shops, IEEE, pp. 46–52.

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2008b). Resampling or reweighting: A 
comparison of boosting implementations. In 2008 20th IEEE international conference on tools with 
artificial intelligence, IEEE, 1:445–451.

Sellami, A., & Hwang, H. (2019). A robust deep convolutional neural network with batch-weighted loss for 
heartbeat classification. Expert Systems with Applications, 122, 75–84.

Sikora, M., et al. (2010). Application of rule induction algorithms for analysis of data collected by seismic 
hazard monitoring systems in coal mines. Archives of Mining Sciences, 55(1), 91–114.

http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1803.09655
http://arxiv.org/abs/1510.00745
http://arxiv.org/abs/1510.00745


4900 Machine Learning (2024) 113:4845–4901

1 3

Simon, M., Rodner, E., & Denzler, J. (2016). Imagenet pre-trained models with batch normalization. arXiv 
preprint arXiv: 1612. 01452.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv: 1409. 1556.

Sleeman, W. C., & Krawczyk, B. (2021). Multi-class imbalanced big data classification on spark. Knowl-
edge-Based Systems, 212, 106598. https:// doi. org/ 10. 1016/j. knosys. 2020. 106598

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on 
applications of computer vision (WACV), IEEE, pp. 464–472.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all con-
volutional net. arXiv preprint arXiv: 1412. 6806.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer: Benchmarking machine 
learning algorithms for traffic sign recognition. Neural Networks, 32, 323–332.

Telgarsky, M. (2016). Benefits of depth in neural networks. In Conference on learning theory, pp. 
1517–1539.

Tolstikhin, I., Bousquet, O., Gelly, S., & Schoelkopf, B. (2017). Wasserstein auto-encoders. arXiv preprint 
arXiv: 1711. 01558.

Valova, I., Harris, C., Mai, T., & Gueorguieva, N. (2020). Optimization of convolutional neural networks for 
imbalanced set classification. Procedia Computer Science, 176, 660–669.

Wallace, B. C., Small, K., Brodley, C. E., & Trikalinos, T. A. (2011). Class imbalance, redux. In 2011 IEEE 
11th international conference on data mining, IEEE, pp. 754–763.

Wang, H., Cui, Z., Chen, Y., Avidan, M., Abdallah, A. B., & Kronzer, A. (2018). Predicting hospital read-
mission via cost-sensitive deep learning. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, 15(6), 1968–1978.

Wang, J., & Jean, J. (1993). Resolving multifont character confusion with neural networks. Pattern Recogni-
tion, 26(1), 175–187.

Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. (2016). Training deep neural networks on 
imbalanced data sets. In 2016 international joint conference on neural networks (IJCNN), IEEE, pp. 
4368–4374.

Wang, X., Lian, L., Miao, Z., Liu, Z., & Yu, S.X. (2020a). Long-tailed recognition by routing diverse distri-
bution-aware experts. arXiv preprint arXiv: 2010. 01809.

Wang, X., Lyu, Y., & Jing, L. (2020b). Deep generative model for robust imbalance classification. In 2020 
IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, 
June 13–19, 2020, IEEE, pp. 14112–14121.

Weiss, G. M., McCarthy, K., Zabar, B. (2007). Cost-sensitive learning vs. sampling: Which is best for han-
dling unbalanced classes with unequal error costs? Dmin, 7(35–41):24.

Ya-Guan, Q., Jun, M., Xi-Min, Z., Jun, P., Wu-Jie, Z., Shu-Hui, W., Ben-Sheng, Y., & Jing-Sheng, L. 
(2020). Emsgd: An improved learning algorithm of neural networks with imbalanced data. IEEE 
Access, 8, 64086–64098.

Ye, H. J., Zhan, D. C., & Chao, W. L. (2021). Procrustean training for imbalanced deep learning. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 92–102.

Zaheer, M., Reddi, S., Sachan, D., Kale, S., & Kumar, S. (2018). Adaptive methods for nonconvex optimiza-
tion. Advances in neural information processing systems, 31.

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv preprint arXiv: 1212. 5701.
Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014). Time series classification using multi-channels 

deep convolutional neural networks. In International conference on web-age information manage-
ment, Springer, pp. 298–310.

Zhou, B., Cui, Q., Wei, X. S., & Chen, Z. M. (2020). BBN: Bilateral-branch network with cumulative learn-
ing for long-tailed visual recognition. In Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition, pp. 9719–9728.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

http://arxiv.org/abs/1612.01452
http://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.knosys.2020.106598
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1711.01558
http://arxiv.org/abs/2010.01809
http://arxiv.org/abs/1212.5701


4901Machine Learning (2024) 113:4845–4901 

1 3

Authors and Affiliations

Kushankur Ghosh1 · Colin Bellinger2 · Roberto Corizzo3 · Paula Branco4  · 
Bartosz Krawczyk5 · Nathalie Japkowicz3

 Kushankur Ghosh 
 kushanku@ualberta.ca

 Colin Bellinger 
 Colin.Bellinger@nrc-cnrc.gc.ca

 Roberto Corizzo 
 rcorizzo@american.edu

 Bartosz Krawczyk 
 bkrawczyk@vcu.edu

 Nathalie Japkowicz 
 japkowic@american.edu

1 Department of Computing Science, University of Alberta, Edmonton, Canada
2 National Research Council of Canada, Ottawa, Canada
3 Department of Computer Science, American University, Washington, DC, USA
4 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
5 Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA

http://orcid.org/0000-0002-9917-3694

	The class imbalance problem in deep learning
	Abstract
	1 Introduction
	2 Literature review I: the effect of class imbalances on deep learning systems
	2.1 Deep learning background
	2.2 Class imbalances and deep learning
	2.3 Concept complexity and deep learning

	3 Experiments set up
	3.1 Deep multilayer perceptrons
	3.1.1 Artificial domains
	3.1.2 Real domains
	3.1.3 Experimental set-up

	3.2 Convolutional neural networks
	3.2.1 Artificial domains
	3.2.2 Real domains
	3.2.3 Experimental set-up


	4 Analytical framework
	5 Notational details
	6 Results in the multi layer perceptron case
	6.1 Answering RQ1: what is the dependency between class imbalance, concept complexity, sample size and deep learning?
	6.2 Answering RQ2: how does the depth of the networks affect the imbalancecomplexityperformance triangle?
	6.3 Answering RQ3: does regularization modify the equation?

	7 Results in the convolutional neural networks case
	7.1 Answering RQ1: What is the dependency between class imbalance, concept complexity, sample size and deep learning?
	7.2 Answering RQ2: how does the depth of the networks affect the imbalancecomplexityperformance triangle?
	7.3 Answering RQ3: Does regularization modify the equation?

	8 Lessons learned from experimental investigations
	9 Literature review II: addressing the class imbalance problem in deep learning systems
	10 Open challenges for class imbalance in deep learning
	11 Conclusion
	Appendix
	A Detailed illustration of the shapes domain
	B Instance numbers used in the job classification domain
	C Experimental setup
	D Additional results on depth for multi layer perceptrons
	E Additional results on depth for convolutional neural networks
	F Additional results for regularization on multi layer perceptrons
	G Additional results for regularization on convolutional neural networks
	Acknowledgements 
	References




