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Abstract

We study majority vote ensembles of e-valid conformal predictors (CP). We show that the
prediction set I"7 produced as the majority vote among the prediction sets I of k independent
e-valid CPs is also valid, for some significance level 1; we provide a method to compute € to
achieve a desired 7. We further indicate an error upper bound for an ensemble of correlated
CPs, and derive a value ¢ for which such an ensemble guarantees 1 conservative validity. We
evaluate empirically our findings, and compare them with alternative strategies for combining
CPs’ predictions.
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1 Introduction

Conformal predictors (CP) are wrappers around machine learning (ML) classifiers (here
called nonconformity measures)," equipping them with the validity property: for a test object
x € X with label y € Y, and for a chosen significance level ¢ € [0, 1], a CP predicts a set
I'® C Y of candidate labels (prediction set); such prediction set is e-valid, in that it guarantees
that Pr (y ¢ I'®) = ¢. To evaluate the tightness of a CP’s predictions, an efficiency criterion
(e.g., average size of I'?) is adopted in applications (Vovk et al. 2005, 2016).

Internally, a CP uses the nonconformity measure to perform a randomness test for a test
object x, given a training set of examples (x;, y;)?_,, which outputs a p-value for each
possible label y € Y for the hypothesis: “(x, y) belongs to the same distribution as the
training examples”. The p-value assigned to each candidate label y is then thresholded by &
to decide whether to accept the hypothesis, and thus to include y in the prediction set I'¢.

In ML applications, it is generally a good idea to combine the predictions of many
classifiers (i.e., to form an ensemble). This tends to lead to improvements when the ensem-
ble’s classifiers are either independent or negatively correlated; however, benefits sometimes
exist when classifiers are positively correlated (Kuncheva et al. 2003). In terms of CP, an

I More precisely, a nonconformity measure is a scoring function (e.g, a classifier with probabilistic output).
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ensemble would ideally: (i) maintain the validity property, and (ii) improve the predictions’
efficiency (Toccaceli and Gammerman 2017).

Previous research proposed CP ensembles that work by combining p-values (e.g., Toc-
caceli and Gammerman 2017; Linusson et al. 2017). Of them, only the method by Toccaceli
and Gammerman (2017) guaranteed validity, in the sense that the combined p-values would
produce n-valid prediction sets when thresholded by 7; even so, validity of their method only
held if assuming independence between the ensemble’s CPs.

In this paper, we construct an n-valid CP ensemble by combining the prediction sets of e-
valid CPs via majority vote: we include alabel y € Y in the prediction set I""7 of the ensemble
if y is contained in a majority of the prediction sets I';" of the CPs. The significance level n
of the ensemble depends on the one of the individual CPs, ¢. We determine two strategies for
computing the significance level € required to guarantee an n-valid ensemble: the I-method,
and the C-method. The I-method guarantees exact validity, under the assumption that the
ensemble’s CPs are independent (Sect. 3). The C-method guarantees conservative validity
(i.e., probability of error is at most 1), even when CPs are correlated (Sect. 4).

2 Preliminaries

In an on-line setting, we observe a training sequence of objects and respective labels
(*1, 1)y -+, (xn, yu), and a test object x with label y. We require that examples
(x1, 1), -+, (Xn, Yn), (x, y) are exchangeable, sampled from some distribution over a space
X x Y, with finite Y.

ACP,C4¢ : (X,Y)* x X > P(Y), with nonconformity measure A and significance
level ¢ € [0, 1], is an algorithm taking as input a training set of examples (x;, y;)7_, and a
new objectx € X, and returning a prediction set "¢ C Y of candidate labels for x (Vovk et al.
2005). We describe the CP algorithm into details in “Appendix”. Because the formal part
of this paper is agnostic of the nonconformity measure, we will omit A from our notation,
and refer to a CP simply with C?. In empirical evaluation (Sect. 5), we will specify the
nonconformity measure associated with a CP when required.

The following result holds for a CP.

Theorem 1 [CP validity (Vovk et al. 2005)] Let C® be a CP, for some significance level
e €0, 1]. Let

e = C*(((x1, Y1), .- (Xn, yn)), X)

be the prediction set associated with a test object x with true label y, given n > 0 training
examples (xi, y;). Then C? is e-valid, in that it guarantees:

Pry¢r®)=e

The validity defined in this theorem is an exact validity. There exists an alternative for-
mulation of the CP algorithm, deterministic CP, which gives conservative validity, i.e.,
Pr(y ¢ I'*) < e. While in this paper we do not treat deterministic> CPs, we will later
make use of the notion of conservative validity. We remark that results we obtain here for
CPs hold similarly for deterministic CPs.

Because the validity of a CP is guaranteed, its performances are measured by its efficiency,
which indicates the tightness of its predictions. In experiments, we will use the N criterion,

2 CPs considered in this paper are formally known as smoothed CPs.
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a widely used efficiency criterion that is defined as the average size of the prediction set,
|T"¢] (Vovk et al. 2016).

3 Majority vote CP ensemble

Construct an odd number k of CPs, C7, ..., C{, for some significance level &, whose value
we will specify later, and use them to predict a test object x. From their prediction sets
Ie, ..., 0, with I°f = C7(((x1, y1), - .., (X, yu)), X), we define the majority vote predic-
tion set (i.e., their ensemble prediction) as:

k
“ . k
F”={er|;1<yer,-ﬂ>zM],
=

where I is the indicator function; that is, I"" contains those labels which are contained in a
majority of prediction sets.

We shall now establish the validity of such prediction set, under the assumption that the
CPs are independent.

Theorem 2 (Ensemble of independent CPs is valid) Consider the task of classifying a test
object x with true label y. Let CY, . .., C be k CPs, for some significance value &. We assume
the CPs are independent; i.e., considering their prediction sets I'?, the events {y ¢ I},
i =1,...,k, areindependent. Then a majority vote ensemble produces an n-valid prediction
set I,

Priy¢ I'y=n

with
Lk/2] k
_ k—i1 _ o\
n= Z (l_)g (1—e).
i=0
Proof We derive the value of n analytically. The prediction sets I'{, ..., I'}¥ define a binary
vector g := (g1, ..., g), Where g; is0if y ¢ I'*, 1 otherwise. The independence assumption

on prediction sets means that g; are drawn independently.

We call R the random variable counting the number of 1’es in g. Each g; is a Bernoulli
trial, with Pr (g; = 1) = 1 — . Then R has a Binomial distribution, R ~ B(k, 1 — ¢&).

For y to be included in I'7 we need at least [k/2] successes (i.e., gi = 1), and the
probability that y is not included is given by the CDF of B(k, 1 — ¢):

Lk/2]
Pr(y¢TI")=Pr (R < LSJ) = Z <];>8k_i(1 —e).

i=0
Wesetn:= Pr(y ¢ I'"). O

We will now determine how to compute the significance level ¢ that is required by each
CP to obtain an n-valid ensemble. The following result shows that ¢ is obtained as a root of
a k-th degree polynomial; one can efficiently solve such polynomial via numerical methods
(e.g., using Newton’s method, or by computing the eigenvalues of the companion matrix of
the polynomial). In “Appendix”, we provide a reference implementation.

This method for computing ¢ from 7, provides validity for independent CPs; we will refer
to it as the I-method. In Sect. 4, we will develop the C-method, which guarantees conservative
validity even for ensembles of correlated CPs.
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Fig. 1 Dependence of 1 on ¢ in the case of independent CPs

Proposition 1 [Determine ¢ for a desired n (I-method)] Consider an n-valid majority vote
ensemble of k independent CPs, C{, ..., C{. The significance value & required by each
member of the ensemble to achieve n-validity is determined as the root ¢ € [0, 1] of the
following polynomial:

k
pe)=Y_ ajel -1,
Jj=Ik/2]

whose coefficients have the form:

Lk/2] .
= i (0 )evi =
J: i)\k—j J )

i=k—j

Proof We rewrite Pr (y ¢ ') as a polynomial.

I 21 ‘
Prygrlm)y=>" (l_)sk—’(l — )

i=0
Lk/2J i
2 (5) ()
i= 0 Jj=0 J
/2] &
2 (G
i=0 j=k—i ]_k+l

k Lk/2]
_ IR YA x|
- 2 ke

Jj=k—1k/2] i=k—j
k k/2] .
=) ¢ (k)( ’ )(—1)/‘—“1‘.
o
j=Mk/2 ik I

In the second step we expanded (1 — €)', in the third step we substituted j with k — i + J,
and in the fourth step we used the fact that:
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i Xb:ﬂij: Xb: iﬂij;

i=0 j=b—i j=b—ai=b—j

finally, we used the equivalence (lij) = (;)
Given the coefficients, ¢ needs to satisfy the constraints: (i) be a solution to p(¢) :=
Pr(y¢ I'y—n=0,andii) ¢ € [0, 1]. m]

We do not give formal proof of the fact that p(¢) has a unique real root in the interval [0, 1];
it will suffice to observe that, for finite k and ¢ € [0, 1], Pr (y ¢ I'®) is strictly increasing
(Fig. 1), and that Pr (y ¢ I'°) = 0and Pr (y ¢ I"') = 1, and thus, for a constant ) € [0, 1],
the polynomial p(e) = Pr (y ¢ ') — n has exactly one real root in [0, 1].

4 Beyond independence

So far, we assumed independence of the ensemble’s CPs. We now discard this assumption,
and reason about the validity of an ensemble of correlated CPs.

4.1 Measure of correlation

Correlation of classifiers depends on: (i) their structure, (ii) their training algorithm and
hyper-parameters, and (iii) the data on which they are trained. Ultimately, such correlation
reflects on the correlation of their predictions. One measure of dependence between two
classifiers is the Q statistic (Yule 1900):

NHNOO _ N01N10
= N11p00 +N01N10 ’

Q

which can be computed on their predictions on a test set, where N '! is the count of objects for
which both gave a correct prediction, N% counts the objects which both misclassified, and
N and N9 are respectively the number of objects for which one was correct, and the other
one was not, and vice versa. Q takes values in [—1, 1], where Q = 0 indicates independence.
The correlation of an ensemble, Q,,, is the average Q statistic among its pairs of classifiers.

There is no optimal measure of correlation between classifiers. For this reason, in experi-
ments, we will use the Q statistic merely as an indication to help interpreting the results. We
compute Q on the output of two CPs as follows: we define an error as I (y ¢ I'¢), and count
the errors of each CP on a test set as required. To make Q,, independent of the significance
level, we compute it for many values of ¢ € [0, 1], and average them. Future work may
explore correlation measures accounting for the size of CPs’ prediction sets.

4.2 Error bounds on correlated ensemble

In a thorough study on correlation and majority vote ensembles, Kuncheva et al. (2003)
showed via synthetic examples that the accuracy resulting when combining k classifiers,
each guaranteeing on a probability of error ¢, is not related to their pairwise correlation in
any trivial sense. Crucially, they showed that independence of classifiers in an ensemble is
not necessarily a desideratum; in fact, a negative correlation is generally to be preferred, but
also a positive correlation can be beneficial.
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Fig.2 Dependence of n on ¢ for the C-method

Kuncheva et al. (2003) also derived upper and lower error bounds for an ensemble of
correlated classifiers, in the following sense. They defined the most favorable distribution on
the classifiers’ outputs (“pattern of success”), as a tendency of either exactly |k/2] + 1 of
them to be correct, or all of them being incorrect. They also defined a counter part of this
distribution, the “pattern of failure”, where classifiers can either be all correct, or exactly
lk/2] correct and |k/2] + 1 incorrect. Intuitively, an ensemble in the pattern of success
makes the best use of each classifier’s individual accuracy; conversely, under the pattern of
failure, it wastes most correct votes. Assuming these are best and worst-case scenarios, they
determined upper and lower bounds on the ensemble’s error.

Because we are interested in proving validity for a CP ensemble, we will focus our attention
on the upper bound of error, which is as follows.

Theorem 3 [ upper bound (Kuncheva et al. 2003)] In the worst-case scenario (“pattern
of failure”), the error n of an ensemble of odd k possibly correlated classifiers, each one
guaranteeing on error probability €, is:

(1 — o)k — [k/2] 0}
k/2]+1

From this result, we now calculate the value € required to guarantee n conservative validity
for an ensemble of correlated CPs. We call C-method this way of obtaining ¢ from 7.

n:l—max{

Proposition 2 [Determine ¢ for a desired n (C-method)] Let C¥, . .., C,‘f be an ensemble of
odd k CPs, where, for a desired significance level 1), € is determined as:
[k/2]
=N (1

Then the ensemble guarantees n conservative validity on its prediction set I'"! for a new
object with label y, i.e.:
Priy¢I'") <n.

This expression follows from Theorem 3 by performing simple calculations and noticing
that [k/2] — |k/2] = 1 for odd k.

Figure 2 shows the relation between 1 and €. We observe that the ¢ needed to obtain
a certain 7 under this expression is much smaller than the one that was required in the
independent case (Fig. 1). We remark, however, that ¢ as computed here takes into account
the worst-case scenario, and that in practice the empirical error tends to be largely inferior
to n (Sect. 5.3).
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5 Empirical evaluation

We summarize our experiments as follows. Section 5.2 evaluates the validity of the I-method,
for independent (Sect. 5.2) and correlated (Sect. 5.2) CPs; results confirm validity is guaran-
teed for ensembles with little or no correlation. Section 5.3 asserts the conservative validity of
the C-method for correlated CPs. Section 5.4 evaluates efficiency improvements introduced
by a CP ensemble. Finally, Sect. 5.5 compares the validity of the I-method with p-values
combining methods.

5.1 Methodology

Data

We consider the following publicly available datasets.
digits (Pedregosa et al. 2011; Dheeru and Karra Taniskidou 2017)
Labels 10
Features 8 x 8§ BW values
Examples 1797 (455 used for hyper-parameters selection)
Task Classify low resolution black and white images of digits.

cifar-100-coarse (Krizhevsky and Hinton 2009)
Labels 20
Features 32 x 32 RGB values
Examples 60K (10K used for hyper-parameters selection)
Task Classify 32 x 32 color images. We use the “coarse” version of the
data, where the original 100 classes are grouped into 20 super-classes.

On the digits dataset, we verify the validity of I-method and C-method, and compare them
with those suggested by Toccaceli and Gammerman (2017); we evaluate their efficiency on
both digits and cifar-100-coarse.

Nonconformity measures

A CP is defined for a nonconformity measure. We will use the following nonconformity
measures: k-NN, SVM (RBF kernel), decision trees, and random forest, each from the
scikit-learn? implementation; details are in “Appendix”.

For each experiment, we first perform a randomized grid search on a subset of data
to choose good hyper-parameters for each nonconformity measure. Specifically, for k-NN
we select k € {1,51,...,501}; for SVM, we select y € {102,108, ..., 10%} and C €
{10_2, 107 ..., 1010}; for both decision trees and random forest we select the minimum
number of examples to perform a split from {10, 20, ..., 100}; for random forest we also
select the number of estimators from the set {10, ..., 100}. The remaining hyper-parameters
for each method are left to scikit-learn’s default ones.

3 http://scikit-learn.org (Pedregosa et al. 2011).
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Procedure

We compute the predictions of a CP ensemble in an on-line setting, by considering an increas-
ing number of examples n = 5, 6, ..., up to the size of the dataset. For each n, and for a
desired significance level ), we construct an ensemble of k CPs, C7, . . ., Cf, where & is chosen
according to the I-method or the C-method; we train each C; on the previous 1,2, ..., n—1
examples, and use it to make a prediction I';® for the n-th example; finally, we construct the
ensemble’s prediction set "7 for this example by taking a majority vote for each label across
the CPs’ prediction sets Ff, as shown in Sect. 3.

5.2 Validity of the I-method

We evaluate validity of the I-method by counting the errors committed and then plotting them
against the expected error for a given significance level 7.

Independent CPs

We first consider the case of independent or low correlated CPs, where the I-method for
determining ¢ for a desired 1 guarantees exact validity.

In Sect. 4, we indicated the possible reasons of correlation between classifiers. An elegant
way for obtaining k classifiers with low inter-correlation is to train each on a separate subset
of features. For example, to achieve this on the digits dataset, we divide its 64 features
into k = 5 sets of approximately 13 features each, and then we train each CP on one of
them. A similar technique was used by Kuncheva and Whitaker (2003). To further reduce
the correlation, we select a different nonconformity measure for each CP in the ensemble.

We refer to an ensemble with the nonconformity measures of its CPs. We evaluate the
following ensembles, two of which with k& = 3 components, one with k = 5 components.
Each CP is trained on a separate subset of features.

Ensemble Nonconformity measures Qav
DT+LR+SVM Decision tree, logistic regression, SVM —0.11
k-NN+LR+SVM k-NN, logistic regression, SVM 0.06
DT+LR+SVM+k-NN+RF Decision tree, logistic regression, SVM, 0.13

k-NN, random forest

In this table, Q,, is the Q statistic correlation measure, averaged among an ensemble’s
CPs and for many values of ¢ as shown in Sect. 4.1; Q,, takes values between —1 and +1,
where 0 indicates independence. We remark that an ensemble with negative correlation can
reduce the expected error 1, while correlation close to 0 will guarantee an error close to 1.

All the ensembles have a low correlation; specifically, DT+LR+SVM has negative depen-
dence, while the others present a slightly higher Q. Notably, the ensemble with the highest
correlation is also the largest; this may suggest that, as the size of an ensemble increases, its
classifiers are more likely correlated.

We compute the cumulative empirical error of each ensemble on the digits dataset
in an on-line setting, for many values of n; here, the significance level ¢ of the individual
CPs is determined using the I-method. Figure 3 indicates that the cumulative error of all
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Fig.3 Empirical validity of the I-method for CP ensembles under low correlation conditions, on the digits
dataset
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Fig.4 Cumulative error of two ensembles on the digi ts dataset. Validity of I-method is significantly violated
when the ensemble’s CPs are strongly correlated (right)

ensembles is close to nn, which means validity is achieved. We notice, however, that the error
of DT+LR+SVM+k-NN+RF is often higher than 7, probably due to its larger correlation.

Correlated CPs

We now evaluate the validity of the I-method for CP ensembles with higher correlation. To
this end, we train each CP on the full set of features. We remark that, in this case, the I-method
is not expected to guarantee validity.

For this experiment, we consider two ensembles: DT+LR+SVM, k-NN+LR+SVM. Under
these conditions, the correlation Q,, of DT+LR+SVMis 0.12, and 0.25 for k-NN+LR+SVM;
while the former maintained a correlation close to 0 with respect to our previous experiment,
the correlation of the latter increased notably.

Figure 4 reports the error of the ensembles on the digits dataset. Here, validity is
obtained for the first ensemble, while it is violated by the second one; this is not surprising,
given what we observed in terms of their correlation.

5.3 Validity of the C-method

We verify the conservative validity (i.e., error is always smaller or equal to 1) of the C-method
for an ensemble of correlated CPs.
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Fig. 5 Empirical conservative validity of the C-method for ensembles of correlated CPs, on the digits
dataset

We consider the two ensembles used in the previous experiment, but this time we compute
& from 1 using the C-method. Results in Fig. 5 indicate that conservative validity is satisfied.
We also notice that the empirical error is much smaller than the chosen significance level ;
indeed, n is now an upper bound, which will only be reached in practice under unlucky (and
unlikely) circumstances (Sect. 4.2).

5.4 Efficiency

We measure an ensemble’ efficiency as the average size of its prediction sets (Sect. 2). We
evaluate on the digits dataset all the ensembles considered so far. We also assess the
following ensemble on the cifar-100-coarse dataset: k-NN+RF+DT, composed of k-
NN, random forest, and decision tree.* Ensembles’ correlation Qap 1s: 0.12 (DT+LR+SVM),
0.25 (k-NN+LR+SVM), 0.49 (k-NN+RF+DT).

Results are shown in Table 1. We observe that the I-method tends to produce more efficient
predictions than its member CPs; in particular, the k-NN+LR+SVM outperforms each of its
CPs. The price one has to pay, in this case, is that validity is slightly violated because of the
correlation.

The C-method produces wider predictions than the I-method, and the efficiency of its
ensembles only outperforms the worst efficient of their CPs. However, this method achieves
an empirical error that is much lower than the significance level 7.

5.5 Validity comparison with Fisher’s and Stouffer’s p-values combining

Balasubramanian et al. (2015) and Toccaceli and Gammerman (2017) independently pro-
posed ensembles by combining CPs’ p-values with Fisher’s and Stouffer’s methods, both of
which are valid for independent ensembles.

We compare experimentally the deviation from validity of these methods with the /-
method, for ensembles of correlated CPs; under these circumstances, all these methods’
validity should be violated. We consider ensembles trained as in Sect. 5.2, on the digits
dataset, for a significance level n = 0.1.

4 Because of the computational cost of CP, on the cifar-100-coarse dataset we used Inductive CP, an
approximation of CP that was shown to guarantee validity in practice.
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Table 1 Efficiency of individual CPs and respective ensembles using /-method and C-method
digits dataset
DT+LR+SVM k-NN+LR+SVM
n DT k-NN LR SVM I-method C-method I-method C-method
0.01 7.97 1.95 2.73 9.88 4.80 (0.01) 8.51 (0.00) 1.75 (0.02) 3.61 (0.00)
0.05 5.42 1.42 1.66 9.46 3.20 (0.06) 6.41 (0.00) 1.28 (0.08) 2.10 (0.01)
0.1 3.75 1.22 1.25 8.65 2.63 (0.12) 4.35(0.02) 1.10 (0.14) 1.68 (0.03)
cifar-100-coarse dataset
k-NN+RF+DT
n k-NN RF DT I-method C-method
0.01 19.17 18.59 19.73 17.66 (0.03) 19.63 (0.00)
0.05 17.40 16.29 18.66 14.99 (0.09) 18.57 (0.01)
0.1 15.46 14.26 17.30 12.92 (0.14) 17.37 (0.03)

Lower values mean less uncertain predictions. Empirical error of the ensembles is in parentheses; the error of
individual CPs is n

180 DT + LR + SVM 250 k-NN + LR + SVM 250 DT + LR + SVM + k-NN + RF
160 I-method I-method I-method
o | e, [ G w [ e
. - . = e _
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Fig.6 Comparison of the I-method with Fisher’s and Stouffer’s p-values combining methods on the digits
dataset for ensembles of correlated CPs

Figure 6 indicates no clear winner: each method is closer to validity in some experi-
ments, but it fails in others. Similarly, the average prediction set size of all methods is close
to 1 for the last two ensembles; however, for DT+LR+SVM, the I-method is less efficient
(average |I""| = 2.63) than Fisher’s and Stouffer’s methods (attaining respectively 1.34 and
1.69).

6 Conclusions and future work

There exist two strategies for forming CP ensembles: (i) combining p-values and thresh-
olding them for a desired significance level 1 (Toccaceli and Gammerman 2017;
Linusson et al. 2017), or (ii) taking a vote (e.g., majority) on e-valid prediction sets,
where ¢ depends on a desired significance level 7. This paper considered the
latter, and derived exact validity guarantees for majority vote ensembles of independent CPs
(I-method), and conservative validity for ensembles of correlated CPs (C-method). We pre-
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viously used the technique of adapting & to combine prediction sets and obtain n-validity in
the context of Hidden Markov Models (Cherubin and Nouretdinov 2016).

The greatest theoretical advantage of majority vote ensembles is that they ease proving
guarantees for correlated CPs (e.g., see C-method), and, in general, they inherit properties
from the vast literature on majority vote classification. Proving similar results for p-values
combining methods is a much harder task; e.g., Linusson et al. (2017) could not prove validity
for arbitrary nonconformity measures, and the validity guarantees achieved in the work by
Balasubramanian et al. (2015), Toccaceli and Gammerman (2017) only held for independent
CPs.

Conveniently, p-values combining methods output a p-value as intermediate value,
which is more informative than the output of a majority vote ensemble (i.e., a predic-
tion set). We remark, however, that if an application needs predictions associated with
a confidence measure, one can use a majority vote ensemble for prediction, and com-
bine the p-values using p-values combining methods, with minor impact on computational
costs.

In computational terms, the time complexity of combining the predictions of an ensemble
of k CPs for N test objects is O (kLN), where L = |Y|, for both majority vote and p-values
combining methods; this is negligible with respect to the complexity of generating the CP
predictions. Majority vote, however, has simpler operations to execute for each step, so it
will generally be faster than combining p-values using Fisher’s or Stouffer’s methods. On
the other hand, if one wanted to generate prediction sets for many significance levels 1 from
a majority vote ensemble, they would have to re-combine predictions; this is not needed for
p-values combining methods.

We showed that the C-method, whilst guaranteeing conservative validity, tends to attain
a much smaller error than 7; on the other hand, the I-method achieved better efficiency, with
minor effects on the validity. Future work may compromise between the I-method and the
C-method to balance their advantages (e.g., by averaging ¢ obtained by the two methods);
while this approach would not generally give formal guarantees, it may be able to reach the
desired balance in practice.

Kuncheva et al. (2003) elaborated on how 1 and ¢ depend on the correlation Q in the
best and worst-case scenarios. However, they also showed that, in general, there is no precise
relationship between an ensemble’s probability of error  and its correlation. An interesting
line of research is to investigate further the dependency between these variables; in particular,
correlation measures for CPs could exploit further information from their prediction sets (e.g.,
average size), which may give heuristics for adapting € to Q.
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Appendix A: Conformal prediction

A CP C4* accepts training examples (x;, yi)7_, and a new object x, and predicts a set of
candidate labels I'* C Y for x. Let z; = (x;, yi),i = 1, ..., n. A CP with nonconformity
measure A : (X, Y)* x (X,Y) — Rso works as follows.

Function C4¢ (x, (z1,....21)):
Initialize I"¢ to the empty set
for y € Y do

Set temporarily z,4+1 = (x, J)
fori=1,...,n+1do
| o < AGi. @1 2ngk) \ 20)
end
<3 Uni(0,1)
Py < #{i‘ai>0‘n+l}n":f{i|ai:0’n+l}
if Py > € then
| Add§to ¢
end
end
return "¢

We used nonconformity measures based on the following algorithms: k-NN, SVM, deci-
sion trees, and random forest. We constructed nonconformity measures from them using the
margin error as follows (Johansson et al. 2013; Linusson 2015). Let f : X — [0, 115, with
L = |Y|, be a classifier trained on examples (x;, y;)?_; by using one of the learning algo-
rithms above; the classifier outputs, for a test object x, a confidence vector ¢ = f(x), where
¢; € [0, 1] is the confidence value for label y. Then, for an example (x, y), we compute a
nbnconformity score as follows: 1/2 — (cy—maxy, »y cy,)/2.

Appendix B: Code of the I-method

Unoptimized Python 2.7 reference implementation of the I-method.

import numpy as np
from math import floor, ceil, factorial

def imethod(k, eta):
k2c = int(ceil(k/2.0))
k2f int (floor(k/2.0))
# n choose k.
choose = lambda n, k: factorial(n) / (factorial(k)xfactorial (n—k))
# Determine the coefficients of the polynomial.
coefs = []

for j in range(k2c, k+1):
c =20
for i in range(k—j, k2f+1):
c += choose(k, i) * choose(i, k—j) * (—1)*k*k(j—k+1i)
coefs.append(c)
# Set remaining coefficients to 0, and the first to —eta.
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coefs = [—eta] + [0]*x(k — len(coefs)) + coefs
# Find root in the interval [0,1]

for root in np.roots(coefs[::—1]):
if root.imag != 0:
continue

if 0 <= root <= 1:
return root.real
raise Exception("No root was found")
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