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Abstract
We develop the setting of sequential prediction based on shifting experts and on a “smooth”
version of the method of specialized experts. To aggregate expert predictions, we use the
AdaHedge algorithm, which is a version of the Hedge algorithm with adaptive learning rate,
and extend it by the meta-algorithm Fixed Share. Due to this, we combine the advantages of
both algorithms: (1) we use the shifting regret which is a more optimal characteristic of the
algorithm; (2) regret bounds are valid in the case of signed unbounded losses of the experts.
Also, (3) we incorporate in this scheme a “smooth” version of the method of specialized
experts which allows us to make more flexible and accurate predictions. All results are
obtained in the adversarial setting—no assumptions are made about the nature of the data
source. We present results of numerical experiments for short-term forecasting of electricity
consumption based on real data.

Keywords On-line learning · Prediction with expert advice · Unbounded losses · Adaptive
learning rate · Algorithm Hedge · Method of mixing past posteriors · Shifting experts ·
Specialized experts · Confidence level · Short-term prediction of electricity consumption

1 Introduction

We consider sequential prediction in the general framework of decision theoretic online
learning or the Hedge setting by Freund and Schapire (1997), which is a variant of prediction
with expert advice, see e.g. Littlestone and Warmuth (1994), Freund and Schapire (1997),
Vovk (1990, 1998) and Cesa-Bianchi and Lugosi (2006).
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The aggregating algorithm updates the experts weights at the end of each trial using losses
suffered by the experts in the past. In classical setting (Freund and Schapire 1997;Vovk 1990),
the process of an expert i weights updating is based on exponential weighting with a constant
or variable learning rate η:

wi,t+1 = wi,t e−ηli,t

N∑

j=1
w j,t e−ηl j,t

, (1)

where li,t is the loss suffered by the expert i at step t .
The goal of the algorithm is to design weight updates that guarantee that the loss of the

aggregating algorithm is never much larger than the loss of the best expert or the best convex
combination of the losses of the experts.

So, here the best expert or a convex combination of experts serves as a comparator. By a
comparison vector wemean a vector q = (q1, . . . , qN ) such that q1+· · ·+qN = 1 and all its
components are nonnegative. We compare the cumulative loss of the aggregating algorithm

and a convex combination of the losses
T∑

t=1
(q · lt ), where lt = (l1,t , . . . , lN ,t ) is a vector

containing the losses of the experts at time t .
A more challenging goal is to learn well when the comparator q changes over time, i.e. the

algorithm competes with the cumulative sum
T∑

t=1
(qt ·lt ), where comparison vector qt changes

over time. An important special case is when qt are unit vectors, then the sequence of trials is
partitioned into segments. In each segment the loss of the algorithm is compared to the loss of
a particular expert and this expert changes at the beginning of a new segment. The goal of the
aggregation algorithm is to do almost as well as the sum of losses of experts forming the best
partition. Algorithms and bounds for shifting comparators were presented by Herbster and
Warmuth (1998). This method called Fixed Share was generalized by Bousquet andWarmuth
(2002) to the method of Mixing Past Posteriors (MPP) in which arbitrary mixing schemes
are considered. In what follows, MPP mixing schemes will be used in our algorithms.

Most papers in the predictionwith expert advice setting either consider uniformly bounded
losses or assume the existence of a specific loss function (see Vovk 1990; Cesa-Bianchi and
Lugosi 2006). But in some practical applications, this assumption is too restrictive. We allow
losses at any step to be unbounded and signed. The notion of a specific loss function is not
used.

AdaHedge presented by de Rooij et al. (2014) is among a few algorithms that do not have
similar restrictions. This algorithm is a version of the classical Hedge algorithm of Freund
and Schapire (1997) and is a refinement of the Cesa-Bianchi and Lugosi (2006) algorithm.
AdaHedge is completely parameterless and tunes the learning rate η in terms of a direct
measure of past performance.

In de Rooij et al. (2014), an upper bound for regret of this algorithm is presented which
is free from boundness assumptions for losses of the experts:

RT ≤ 2

√

ST
(L∗

T − L−
T )(L+

T − L∗
T )

L+
T − L−

T

ln N +
(
16

3
ln N + 2

)

ST , (2)

where L∗
T is the loss of the best expert, for other notations see Table 1 below.

In the case where losses of the experts are uniformly bounded the upper bound (2) takes
the form O(

√
T ln N ).
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Table 1 Basic notations and definitions

N—number of experts

lt = (l1,t , . . . , lN ,t )—loss vector at step t

pt = (p1,t , . . . , pN ,t )—vector of confidences at step t

l̂t = (l̂1,t , . . . , l̂N ,t )—vector of transformed losses

l−t = min1≤i≤N li,t , l+t = max1≤i≤N li,t—min and max loss

st = l+t − l−t —loss range

qt = (q1,t , . . . , qN ,t )—comparison vector at step t

wμ
t = (w

μ
1,t , . . . , w

μ
N ,t )—experts weights

wt = (w1,t , . . . , wN ,t )—experts posterior weights at step t

w∗
t = (w∗

1,t , . . . , w
∗
N ,t )—the learner prediction, where w∗

i,t = wi,t pi,t
∑N

i=1 wi,t pi,t
for 1 ≤ i ≤ N .

ht = (w∗
i · li )—Hedge loss (dot product of two vectors)

mt = − 1
ηt

N∑

i=1
wi,t e−ηt l̂i,t —mixloss

δt = ht − mt—mixability gap

αt—Fixed Share parameter (we put αt = 1
t )

L−
T =

T∑

t=1
l−t , L+

T =
T∑

t=1
l+t —cumulative minimal and maximal losses

ST = max1≤t≤T st—maximum loss range

HT =
T∑

t=1
ht—algorithm cumulative loss

MT =
T∑

t=1
mt—cumulative mixloss

ΔT = ∑T
t=1 δt—cumulative gap

R(q)
T =

T∑

t=1

N∑

i=1
qi,t pi,t (ht − li,t )— confidence shifting regret

ηt = ln∗ N
Δt−1

—variable learning rate, where ln∗ N = max{1, ln N }
put 0/0 = 0

We emphasize that the versions of Fixed Share andMPP algorithms presented by Herbster
and Warmuth (1998) and Bousquet and Warmuth (2002) use a constant learning rate, while
the AdaHedge uses adaptive learning rate which is tuned on-line.

The first contribution of this paper is that we present the ConfHedge-1 algorithm which
combines advantages of both these algorithms: (1) we use the shifting regret which is a more
optimal characteristic of the algorithm; (2) regret bounds are valid in the case of signed
unbounded losses of the experts.

The application we will consider below is the sequential short-term (one-hour-ahead)
forecasting of electricity consumption will take place in a variant of the basic problem of
prediction with expert advice called prediction with specialized (or sleeping) experts. At each
round only some of the experts output a prediction while the other ones are inactive. Each
expert is expected to provide accurate forecasts mostly in given external conditions, that can
be known beforehand. For instance, in the case of the prediction of electricity consumption,
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experts can be specialized to a season, temperature, to working days or to public holidays,
etc.

The method of specialized experts was first proposed by Freund et al. (1997) and
further developed by Adamskiy et al. (2012), Chernov and Vovk (2009), Devaine et al.
(2013), Kalnishkan et al. (2015). With this approach, at each step t , a set of specialized
experts Et ⊆ {1, . . . , N } is given. A specialized expert i issues its forecasts not at all steps
t = 1, 2, . . . , but only when i ∈ Et . At any step, the aggregating algorithm uses forecasts of
only “active (non-sleeping)” experts.

The second contribution of this paper is that we have incorporated into ConfHedge-1
a smooth generalization of the method of specialized experts. At each time moment t , we
complement the expert i forecast by a confidence level which is a real number pi,t ∈ [0, 1].

The setting of prediction with experts that report their confidences as a number in the
interval [0, 1] was first studied by Blum and Mansour (2007) and further developed by Cesa-
Bianchi et al. (2007), Gaillard et al. (2011), Gaillard et al. (2014).

In particular, pi,t = 1 means that the expert forecast is used in full, whereas in the case of
pi,t = 0 it is not taken into account at all (the expert sleeps). In cases where 0 < pi,t < 1 the
expert’s forecast is partially taken into account. For example, with a gradual drop in temper-
ature a corresponded specialized expert gradually loses its ability for accurate predictions of
electricity consumption. The dependence of pi,t on values of exogenous parameters can be
predetermined by a specialist in the domain or can be constructed using regression analysis
on historical data.

In Sect. 2, we present the ConfHedge-1 algorithm, which is a loss allocation algorithm
adapted for the case, where the losses of the experts can be signed and unbounded. Also, this
algorithm takes into account the confidence levels of the experts predictions. In Sect. 3.2,
ConfHedge-2 variant of this algorithm is presented for the case when experts make forecasts
and calculate their losses using a convex loss function.

In Theorem 1 we present the upper bounds for the shifting regret of these algorithms.
The proof of this theorem is given in Sect. A. Some details of the proof from de Rooij et al.
(2014) are presented as a supplementary material in Sect. B. All results are obtained in the
adversarial setting and no assumptions are made about the nature of data source.

In Sect. 3.3, the techniques of confidence level selection and experts training are presented.
We also present the results of numerical experiments of the short-term prediction of electricity
consumption with the use of the proposed algorithms.

The approach that sets the confidence levels for expert predictions of electricity consump-
tion is more general than the approach used in the paper Devaine et al. (2013), which uses
“sleeping” experts. In our numerical experiments the aggregating algorithm with soft confi-
dence levels outperforms other versions of aggregating algorithms including ones which use
sleeping experts.

2 Online loss allocation algorithm

In this section we present an algorithm for the optimal online allocation of unbounded signed
losses of the experts. In Sect. 3.2, a variant of this algorithm will be presented for the case
when experts make forecasts and calculate their losses using a convex loss function.

We assume that at each step t , along with the losses li,t of experts, theirs confidence levels
are given—a vector pt = (p1,t , . . . , pN ,t ), where pi,t ∈ [0, 1] for 1 ≤ i ≤ N . We assume
that ‖pt‖1 > 0 for all t .
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We can interpret the number pi,t as the algorithm’s internal probability of following the
expert i prediction. In this case, we define the auxiliary virtual losses of the expert as a random
variable

l̃i,t =
{

li,t with probability pi,t ,

ht with probability 1 − pi,t ,

where ht is the aggregating algorithm loss. Denote l̂i,t = Ept [l̃i,t ] = pi,t li,t + (1 − pi,t )ht

the mathematical expectation of a virtual loss of an expert i with respect to the probability
distribution pi,t = (pi,t , 1 − pi,t ).

At any step t we use cumulative weights wi,t of the experts 1 ≤ i ≤ N which were

computed at the previous step. The algorithm loss is defined as ht =
N∑

i=1
wi,t l̂i,t .

These definitions contain a logical circle—virtual losses are determined through loss of
the algorithm, and the latter is determined through virtual losses. Nevertheless, all these
quantities can be effectively calculated using the fixed-point method proposed by Chernov
and Vovk (2009). We have

ht =
N∑

i=1

wi,t l̂i,t =
N∑

i=1

wi,t (pi,t li,t + (1 − pi,t )ht ) =
N∑

i=1

wi,t pi,t (li,t − ht ) + ht .

Canceling out the identical terms on the left and on the right sides, we obtain expression for
calculating ht :

ht =
∑N

i=1 wi,t pi,t li,t
∑N

i=1 wi,t pi,t
(3)

After the value of ht was calculated by the formula (3), the weights can be calculated as

w
μ
i,t = wi,t e−ηl̂i,t

∑N
s=1 ws,t e−ηl̂s,t

= wi,t e−ηpi,t (li,t −ht )

∑N
s=1 ws,t e−ηps,t (ls,t −ht )

(4)

using the known value ht .1 Also, we compute the mixloss mt = − 1
ηt

N∑

i=1
wi,t e−ηt l̂i,t and the

mixability gap δt = ht − mt , which are used in the construction of the algorithm.
By the method MPP of Bousquet and Warmuth (2002), a mixing scheme is defined by a

vector β t+1 = (β t+1
0 , . . . , β t+1

t ), where
t∑

s=0
β t+1

s = 1 and β t+1
s ≥ 0 for 0 ≤ s ≤ t .

Inwhat follows the vectorwμ
t = (w

μ
1,t , . . . , w

μ
N ,t ) presents the normalized expertsweights

at step t . The corresponding posterior probability distributionwt+1 = (w1,t+1, . . . , wN ,t+1)

for step t + 1 is defined as a convex combination wt+1 =
t∑

s=0
β t+1

s w
μ
s with weights β t+1

s ,

0 ≤ s ≤ t , where wμ
s = (w

μ
1,s, . . . , w

μ
N ,s).

The vector β t+1 defines the weights by which the past distributions of experts are mixed.
It can be re-set at each step t .

The ConfHedge-1 algorithm for mixing the posteriori distributions of experts is given
below. Unlike standard exponential mixing algorithms, this algorithm uses not only the
current accumulated weights of experts, but also mixes these weights and all the weights
accumulated in past steps.

1 In the simple Hedge we put wi,t+1 = w
μ
i,t . Some other mixing schemes will be given below.
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ConfHedge-1

Put wi,1 = w
μ
i,0 = 1

N for i = 1, . . . , N , Δ0 = 0, η1 = ∞.
FOR t = 1, . . . , T
Receive confidence levels pt = (p1,t , . . . , pN ,t ) of the experts 1 ≤ i ≤ N , where ‖pt ‖1 > 0.
Predict with the distribution w∗

t = (w∗
1,t , . . . , w

∗
N ,t ), where w∗

i,t = wi,t pi,t
∑N

i=1 wi,t pi,t
for 1 ≤ i ≤ N .

Receive a vector lt = (l1,t , . . . , lN ,t ) containing the losses of the experts.
Compute the loss ht = (lt · w∗

t ) of the algorithm.
Update the weights and the learning parameter in three stages:
Loss Update

Define w
μ
i,t = wi,t e−ηt pi,t (l

i
t −ht )

N∑

s=1
ws,t e−ηt ps,t (ls,t −ht )

for 1 ≤ i ≤ N .

Mixing Update
Choose a mixing scheme βt+1 = (βt+1

0 , . . . , βt+1
t ) and define future weights of the experts

wi,t+1 =
t∑

s=0
βt+1

s w
μ
i,s for 1 ≤ i ≤ N .

Learning Parameter Update
Define mixloss mt = − 1

ηt
ln

∑N
i=1 wi,t e−ηt (pi,t li,t +(1−pi,t )ht ). Let δt = ht − mt and Δt = Δt−1 + δt .

Define the learning rate ηt+1 = ln∗ N/Δt for use at the next step t + 1.
ENDFOR

We have mt ≤ ht by convexity of the exponent, then δt ≥ 0 and Δt ≤ Δt+1 for all t .
We will use the following mixing schemes by Bousquet and Warmuth (2002):

Example 1 Aversion of Fixed Share byHerbster andWarmuth (1998) (see also Cesa-Bianchi
and Lugosi 2006; Vovk 1999) with a variable learning rate is defined by the following
mixing scheme. Let a sequence 1 ≥ α1 ≥ α2 ≥ · · · > 0 of parameters be given. Define
β t+1

t = 1− αt+1 and β t+1
0 = αt+1 (β t+1

s = 0 for 0 < s < t). The corresponding prediction
for step t + 1 is defined

wi,t+1 = αt+1

N
+ (1 − αt+1)w

μ
i,t

for all 1 ≤ i ≤ N . In what follows we put αt = 1/t for all t .

Example 2 Uniform Past by Bousquet and Warmuth (2002) with a variable learning rate. Put
β t+1

t = 1 − αt+1 and β t+1
s = αt+1

t for 0 ≤ s < t . The corresponding prediction for step
t + 1 is defined

wi,t+1 = αt+1

t−1∑

s=0

w
μ
i,s

t
+ (1 − αt+1)w

μ
i,t

for all i and t .

Bousquet and Warmuth (2002) considered the notion of shifting regret with respect to a

sequence q1,q2, . . . ,qT of comparison vectors: RT = HT −
T∑

t=1
(qt · lt ).2

2 The notion of regret with respect to a comparison vector was first defined by Kivinen and Warmuth (1999).
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In the presence of confidence values, we consider the corresponding confidence shifting
regret R(q)

T = HT − L(q)

T , where

L(q)

T =
T∑

t=1

(qt · l̂t ) =
T∑

t=1

N∑

i=1

qi,t l̂i,t =
T∑

t=1

N∑

i=1

qi,t (pi,t li,t + (1 − pi,t )ht ),

where l̂t = (l̂1,t , . . . , l̂N ,t ) and qt = (q1,t , . . . , qN ,t ) is a comparison vector at step t .
By definition this regret can be represented as

R(q)

T =
T∑

t=1

N∑

i=1

qi,t pi,t (ht − li,t ).

If pi,t = 1 for all i and t then R(q)

T = RT .

The quantity L(q)
T depends on ht . To avoid this dependence, we will consider its lower

and upper bounds: L(q−)

T ≤ L(q)

T ≤ L(q+)

T , where

L(q−)
T =

T∑

t=1

N∑

i=1

qi,t (pi,t li,t + (1 − pi,t )l
−
t ),

L(q+)
T =

T∑

t=1

N∑

i=1

qi,t (pi,t li,t + (1 − pi,t )l
+
t ). (5)

Assume that the losses of the experts are bounded, for example, li,t ∈ [0, 1] for all i and

t . Using the techniques of Sect. A for ηt ∼
√

ln∗ N
t , we can prove that

R(q)
T = O

(
(k + 1)

(
ln T

√
T + √

T ln∗ N
))

. (6)

where k is the number of switches of comparison vectors qt on the time interval 1 ≤ t ≤ T .3

Our goal is to obtain a similar bound in the absence of boundness assumptions for the
expert losses. Let the mixing scheme of Example 1 be used.

The following theorem presents the upper bounds for the confidence shifting regret in the
case where no assumptions are made about boundness of the losses of the experts.

Theorem 1 For any T and for any sequence q1, . . . ,qT of comparison vectors,

R(q)

T ≤ 1

2
γk,T

√
√
√
√

T∑

t=1

s2t ln
∗ N + γk,T

(
2

3
ln∗ N + 1

)

ST , (7)

R(q)

T ≤ γk,T

√
√
√
√ST

(L+
T − L(q−)

T )(L(q+)

T − L−
T )

L+
T − L−

T

ln∗ N

+ γk,T

((

γk,T + 2

3

)

ln∗ N + 1

)

ST , (8)

where γk,T = (k + 2)(ln T + 1) and k is the number of switches of the comparison vectors
on the time interval 1 ≤ t ≤ T .

3 Does this bound is tight is an open question. Some lower bounds formixloss (for the logarithmic loss function
with the learning rate η = 1) were obtained by Adamskiy et al. (2012). They show an information-theoretic
lower bound for mixloss that must hold for any algorithm, and which is tight for Fixed Share.
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The bound (7) is an analogue for the shifting experts of the bound from Cesa-Bianchi et al.
(2007) and the bound (8) is an analogue of the bound (16) of Theorem 8 from de Rooij et al.
(2014). Proof of Theorem 1 is given in Sects. A and B.

A disadvantage of the bounds (8) and (9) below is in the presence of a term that depends
quadratically on the number k of switches. Whether such a dependence is necessary is an
open question. However, this term does not depend on the loss of the algorithm, it has only a
slowly growing multiplicative factor O(ln2 T ). Corollary 1 below shows that in some special
cases this dependence can be eliminated.

The bound (8) of Theorem 1 can be simplified in the different ways:

Corollary 1 For any T and for any sequence q1, . . . ,qT of comparison vectors,

R(q)

T ≤ γk,T

√

ST (L(q+)

T − L−
T ) ln∗ N + γk,T

((

γk,T + 2

3

)

ln∗ N + 1

)

ST , (9)

R(q)

T ≤ γk,T

√

ST (L+
T − L(q−)

T ) ln∗ N + γk,T

(
2

3
ln∗ N + 1

)

ST , (10)

R(q)

T ≤ γk,T

√
ST (L+

T − L−
T ) ln∗ N + γk,T

(
2

3
ln∗ N + 1

)

ST . (11)

The bound (10) linearly depends on the number of switches (for the proof see Sect. B).
The bound (11) follows from (10). If the losses of the experts are uniformly bounded then
the bound (11) is of the same order as the bound (6).

An important special case of Theorem 1 is when the comparison vectors qt = eit

are unit vectors and pi,t ∈ {0, 1}, i.e., the specialists case is considered for composite

experts i1, . . . , iT . Then the confidence shifting regret equals R(q)
T =

T∑

t :pit ,t =1
(ht − lit ,t )

and the corresponding differences in the right-hand side of inequality (8) are L+
T − L(q−)

T =
T∑

t :pit ,t =1
(l+t − lit ,t ) +

T∑

t :pit ,t =0
st and L(q+)

T − L−
T =

T∑

t :pit ,t =1
(lit ,t − l−t ) +

T∑

t :pit ,t =0
st .

The bound (10) is important if the algorithm is to be used for a scenario in which we are
provided with a sequence of gain vectors gt rather than losses: we can transform these gains
into losses using lt = −gt , and then run the algorithm. Assume that pi,t = 1 for all i and
t . The bound then implies that we incur small regret with respect to a composite expert if it
has very small cumulative gain relative to the minimum gain (see also de Rooij et al. 2014).

The similar bounds for the mixing scheme of Example 2 also can be obtained, where
γk,T = (2k + 3) ln T + (k + 2) (see Sect. A).

3 Numerical experiments

Section 3.1 presents the results of applying ConfHedge-1 to synthetic data. In Sect. 3.3 the
results of the short-term prediction of electricity consumption are presented. We use in these
experiments the ConfHedge-2 algorithm which is a variant the previous algorithm adapted
for the case, where experts present the numerical forecasts. The scheme of this algorithm is
given in Sect. 3.2.
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Fig. 1 Results of the experiment on the synthetic data. Left subfigure (a) shows the mean values of one-step
experts losses (lines 1, 2, and 3). Right subfigure (b) shows cumulative losses of individual experts (thin lines
1, 2 and 3), AdaHedge and ConfHedge-1 cumulative losses (thick lines 4 and 5)

3.1 Unbounded signed losses

The first experiment was performed on synthetic data, where one-step losses of experts
are signed, unbounded and perturbed by N (0, 1) additive noise. Confidence levels of all
experts are always equal to one. Figure 1a shows mean values of these one-step expert
losses. Figure 1b shows cumulative losses of three individual experts and cumulative losses
of AdaHedge and ConfHedge-1. These experiments show that ConfHedge-1 is non-inferior
to AdaHedge, and, after some time, even outperforms it.

3.2 Aggregation of expert forecasts

In this section we suppose that the losses of the experts are computed using a convex in γ

loss function λ(ω, γ ), where ω is an outcome and γ is a forecast. Outcomes can belong to
an arbitrary set, forecasts form a linear space.4

Let at any step t the experts forecasts ct = (c1t , . . . , cN ,t ) and their confidence levels
pt = (p1,t , . . . , pN ,t ) are given. Here pi,t ∈ [0, 1] for all 1 ≤ i ≤ N . Define the auxiliary
virtual experts forecasts

c̃i,t =
{

ci,t with probability pi,t ,

γt with probability 1 − pi,t ,

where γt is a forecast of the aggregating algorithm. Then the mathematical expectation of
any expert i forecast is equal to ĉi,t = Epi,t [c̃i,t ] = pi,t ci,t + (1 − pi,t )γt .

4 In our experiments, the absolute loss function λ(ω, γ ) = |ω−γ |was used, whereω and γ are real numbers.
In practical applications, we can also use its biased variant λ(ω, γ ) = μ1|ω − γ |− + μ2|ω − γ |+, where
|r |− = −min{0, r} and |r |+ = max{0, r}. The positive numbers μ1 and μ2 provide a balance of losses
between the deviations of the forecasts γ and outcomes ω in the positive and negative directions.
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Define the aggregating algorithm forecast

γt =
N∑

i=1

wi,t ĉi,t . (12)

In order to get rid of the logical circle in these definitions, we use the fixed point method
by Chernov and Vovk (2009). We have

γt =
N∑

i=1

wi,t ĉi,t =
N∑

i=1

wi,t (pi,t ci,t + (1 − pi,t )γt ) =
N∑

i=1

wi,t pi,t (ci,t − γt ) + γt .

Cancel the same terms on the left and on the right sides and obtain

γt =
∑N

i=1 pi,twi,t ci,t
∑N

i=1 pi,twi,t
. (13)

The further calculations are given in the scheme of ConfHedge-2 below.

ConfHedge-2

Define wi,1 = w
μ
i,0 = 1

N for i = 1, . . . , N , Δ0 = 0, η1 = ∞.
FOR t = 1, . . . , T
Receive the expert forecasts ct = (c1,t , . . . , cN ,t ) and and their confidence levels pt = (p1,t , . . . , pN ,t ).

Compute the aggregating algorithm forecast γt =
∑N

i=1 pi,t wi,t ci,t
∑N

i=1 pi,t wi,t
.

Receive an outcome ωt and compute the experts losses lt = (l1,t , . . . , lN ,t ), where li,t = λ(ωt , ci,t ),
1 ≤ i ≤ N , and the algorithm loss at = λ(ωt , γt ).
Update experts weights and learning parameter in three stages:
Loss Update
Define

w
μ
i,t = wi,t e−ηt pi,t (li,t −at )

N∑

s=1
ws,t e−ηt ps,t (ls,t −at )

for 1 ≤ i ≤ N .

Mixing Update
Choose a mixing scheme βt+1 = (βt+1

0 , . . . , βt+1
t ) and define future experts weights

wi,t+1 =
t∑

s=0
βt+1

s w
μ
i,s for 1 ≤ i ≤ N .

Learning Parameter Update
Compute the mixloss
mt = − 1

ηt
ln

∑N
i=1 wi,t e−ηt (pi,t li,t )+(1−pi,t )at ).

Define δt = ht − mt , where ht = ∑N
i=1 wi,t (pi,t li,t + (1 − pi,t )at ), define also Δt = Δt−1 + δt .

After that set ηt+1 = ln∗ N/Δt future value of the learning parameter.
ENDFOR

Let AT = ∑T
t=1 at be the loss of ConfHedge-2. We keep the notation HT = ∑T

t=1 ht

and L(q)

T = ∑T
t=1(qt · l̂t ). Theorem 1 also holds for these quantities. Hence, using the same

notation as in the Sect. 2, we obtain a bound (16) and HT − L(q)

T ≤ γk,T ΔT .

Since by convexity of the loss function at = λ(ωt , γt ) = λ(ωt ,
∑N

i=1 wi,t ĉi,t ) ≤
∑N

i=1 wi,t l̂i,t = ht for all t , we have AT ≤ HT .
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Fig. 2 Averaged curves of the daily electrical loads for each of the four seasons of 2004–2005. The color band
around each curve represents standard error of the mean. The solid lines show the average level of electricity
usage for working days, and the dashed lines show the same estimates for the weekend days of the same season

The confidence shifting regret of ConfHedge-2 is equal to

R(q)

T = AT − L(q)

T =
T∑

t=1

N∑

i=1

qi,t pi,t (at − li,t ).

The upper bounds (8) of this regret are given by Theorem 1 and by Corollary 1.

3.3 The electrical loads forecasting

The second group of numerical experiments were performed with the contest data of the
GefCom2012 competition conducted on the Kaggle platform (Hong et al. 2014). The main
objective of this competitionwas to predict the daily course of hourly electrical loads (demand
values for electricity) in 20 regions according to temperature records at 11 meteorological
stations. Databases are available at http://www.kaggle.com/datasets. The basic data were
provided in the form of the table “temperature-history“ with archive records of temperature
monitoring at 11 meteorological stations and the table “load-history“ with hourly electri-
cal load data recorded at 20 power distribution stations of the region for the period from
01.01.2004 to 30.06.2008. The additional calendar information (seasons, days of the week,
and working days vs. holidays) could be also used.

As an illustration of how the proposed expert aggregation methods perform, a simpli-
fied particular task was designed, namely, electrical load forecasting in one of the power
distribution networks (Zone5) one hour ahead based on historical data and current calen-
dar parameters. To account for temperature changes, the temperature measurements of only
one meteorological station (Station9) were used; these data provided the best electrical load
forecasts in the selected network on the training part of the sample.

Figure 2 shows the averaged curves of the daily electrical loads for each of the four seasons
of 2004–2005 in the selected network. We see that the course of the averaged curves clearly
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Fig. 3 Confidence function construction for the expert January×Working days×Night

depends on the time of day, and also varies from season to season. In addition, theworking day
and weekend day patterns demonstrate distinct differences in the level of electricity usage.
Based on this figure, a simple scheme of forming an ensemble of experts, i.e., specialized
algorithms that can only process strictly defined data, was chosen; the scheme includes the
following categories: four times of day (night, morning, day, evening); working days and
weekend days (two categories); four seasons (winter, spring, summer, fall), all this giving
4 × 2 × 4 = 32 specialized experts (Stepwise Linear Regression). We also use extra four
experts, each of which is focused on one of the seasons of the year, and one nonsleeping
expert (Random Forest algorithm). Thus, we used a total of 37 experts.

At each moment of time, the confidence function of a given expert is calculated as a
product of the confidence functions for each of its specializations. For example, Fig. 3 shows
the stages of constructing the confidence function for the expert focused on night forecasting
(0–6 a.m.) on the working days of January. Thus synthesized confidence functions are used
to form individual training samples for each expert at the stage of training and to aggregate
expert forecasts at the stage of testing.

To ensure a more smooth switch between experts, the membership functions pi,t were
formed as trapezoids, where the function takes the value 1 on the plateau corresponding to
the selected calendar interval, and varies linearly from 1 to 0 on the slopes. The slope width
depends on the user defined parameter.

At the stage of training, the following steps are taken for each algorithm (expert): (1)
For all elements of the training sample, a confidence level is calculated, assuming its values
are close to 1, if the sample is to be considered by the expert, or close to 0, if the object is
beyond its specialization. Based on the confidence level, an individual training subsample is
formed for each algorithm from the full training sample. (2) Based on this individual training
subsample, a forecasting model is constructed.
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Fig. 4 a The evolution of differences of cumulative losses L1
T − L3

T and L2
T − L3

T : 1 – anytime nonsleeping
expert (Random Forest algorithm), 2 – ConfHedge-2 using “sleeping experts” model, 3 – ConfHedge-2 using
smooth confidence levels. b The mean cumulative losses (MAE) of Random Forest (1) and of two schemes
of expert mixing (2 and 3)

To compare the scheme of “smooth mixing“ with the scheme of “sleeping experts“, the
experiments on expert decision aggregation were performed in two stages. First, only the
scheme of mixing the sleeping and awake experts was used, i.e., the confidence level took
only two values (0 or 1), and then the mixing algorithm from Section 2 of this work was used.

The evolution of differences of cumulative losses L1
T − L3

T and L2
T − L3

T , where L1
T

is the cumulative loss of anytime nonsleeping Random Forest algorithm and L2
T , L3

T are
cumulative losses of two schemes of mixing (“sleeping experts‘ and “smooth mixing“), are
shown in Fig. 4a.

The mean cumulative losses (Mean Absolute Error – MAE) 1
T L1

T of Random Forest
algorithm and of two schemes of expert mixing: 1

T L2
T and 1

T L3
T , are shown in Fig. 4b.5

In this experiment, the “smooth mixing“ algorithm outperforms the aggregating algorithm
using “sleeping experts“ and both these algorithms outperform the anytime Random Forest
forecasting algorithm.

4 Conclusion

In this paper we extend the AdaHedge algorithm by de Rooij et al. (2014) for a case of
shifting experts and for a smooth version of the method of specialized experts, where at any

5 The absolute loss function was used in these experiments.
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time moment each expert’s forecast is provided with a confidence level which is a number
between 0 and 1.

To aggregate experts predictions, we use methods of shifting experts and the algorithm
AdaHedge with an adaptive learning rate. Due to this, we combine the advantages of both
algorithms.We use the shifting regret which is a more optimal characteristic of the algorithm,
and we do not impose restrictions on the expert losses. Also, we incorporate in this scheme
a smooth version of the method of specialized experts by Blum and Mansour (2007), which
allows us to make more flexible and accurate predictions.

We obtained the new upper bounds for the regret of our algorithms, which generalize
similar upper bounds for the case of specialized experts.

A disadvantage of Theorem1 and ofCorollary 1 is in asymmetry of the bounds (9) and (10)
– first of them has a term that depends quadratically on the number k of switches. Whether
such a dependence is necessary is an open question.

All results are obtained in the adversarial setting, no assumptions are made about the
nature of data source.

We present the results of numerical experiments on short-term forecasting of electricity
consumption based on a real data. In these experiments, the “smooth mixing“ algorithm
outperforms the aggregating algorithm with “sleeping experts“ and both these algorithms
outperform the anytime Random Forest forecasting algorithm.

Acknowledgements This paper is an extended version of the conference paper V’yugin (2017). This work
was supported by Russian Science Foundation, project 14-50-00150.

A Main lemma

For analysis of the mixing schemes, following Bousquet and Warmuth (2002), we use the
notion of relative entropy

D(p‖q) =
n∑

i=1

pi ln
pi

qi
,

where n is an arbitrary positive integer number, p = (p1, . . . , pn), q = (q1, . . . , qn) are
elements of the n-dimensional simplex of all probability distributions on a set of cardinality
n. Put 0 ln 0 = 0.

Consider some properties of the relative entropy. The inequalities p > q, p ≥ q, p ≥ 0
for vectors will be understood componentwise; here 0 is the vector with zeros components.

Lemma 1 Bousquet and Warmuth 2002 For each p,q,w such that q,w > 0,

– D(p‖q) ≤ D(p‖w) + ln

(
n∑

i=1
pi

wi
qi

)

.

– If q ≥ rw for some real number r > 0 then D(p‖q) ≤ D(p‖w) + ln 1
r . In particular,

for p = w we have D(w‖q) ≤ ln 1
r for each q ≥ rw.

– Let p be a probability vector, q =
t∑

i=0
βiwi , where wi > 0 for 0 ≤ i ≤ t , β =

(β0, . . . , βt ),
∑t

i=0 βi = 1, and β > 0. Then D(p‖q) ≤ D(p‖wi ) + ln 1
βi

for each i . In

particular, if p = q then D

(

wi‖
n∑

i=0
βiwi

)

≤ ln 1
βi

for all i .
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Proof From concavity of the logarithm, we have

D(p‖q) − D(p‖w) =
n∑

i=1

pi ln
wi

qi
≤ ln

(
n∑

i=1

pi
wi

qi

)

. (14)

If q ≥ rw then
n∑

i=1
pi

wi
qi

≤
n∑

i=1
pi

wi
rwi

= 1
r . ��

The notion of mixloss mt = − 1
ηt

N∑

i=1
wi,t e−ηt li,t and its cumulative variant MT =

T∑

t=1
mt

are used in Hedge analisys.6 By definition mt ≤ ht for all t .

Lemma 2 (Bousquet and Warmuth 2002) For any comparison vector qt ,

mt −
N∑

i=1

qi,t l̂i,t = 1

ηt

(
D(qt‖wt ) − D(qt‖wμ

t )
)
. (15)

Proof By (14),

mt −
N∑

i=1

qi,t l̂i,t = 1

ηt

N∑

i=1

qi,t

⎛

⎝ln e−ηt l̂i,t − ln
N∑

j=1

w j,t e
−ηt l̂ j,t

⎞

⎠

= 1

ηt

N∑

i=1

qi,t ln
e−ηt l̂i,t

N∑

j=1
w j,t e−ηt l̂ j,t

= 1

ηt

N∑

i=1

qi,t ln
w

μ
i,t

wi,t
= 1

ηt

(
D(qt‖wt ) − D(qt‖wμ

t )
)
.

��
The following lemma presents a bound for the confidence regret in terms of cumulative

mixability gap.

Lemma 3 Let αt = 1
t for all t and the mixing scheme from Example 1 was used. Then for

any T , for any sequence of losses of the experts, and for any sequence of comparison vectors
qt given on-line with no more than k switches on the time interval 1 ≤ t ≤ T ,

HT − L(q)

T ≤ (k + 2)(ln T + 1)ΔT . (16)

Proof We apply Lemmas 1 and 2 for mixing schemes of Example 1 (Fixed Share).
Let a sequence lt = (l1,t , . . . , lN ,t ) of losses of the experts and a sequence of comparison

vectorsqt = (q1,t , . . . , qN ,t ) be given on-line for t = 1, 2, . . . . Assume that T be an arbitrary
and the comparison vector qt changes k times for 1 ≤ t ≤ T .

We let 1 < t1 < t2 < . . . tk be the subsequence of indices in the sequence of comparators
q1, . . . ,qT , where shifting occurs: qt j = qt j −1 and qt = qt−1 for all other steps, where

6 Mixloss is a very useful intermediate concept, cumulative variant of which is less or equal to the cumulative
loss of the best expert (up to a small term) and, on the other hand, the cumulative mixloss is close to the
cumulative loss of the aggregating algorithm. For the logarithmic loss function, the mixloss coincides with the
loss of the Vovk aggregating algorithm (see Adamskiy et al. 2012; Cesa-Bianchi and Lugosi 2006; de Rooij
et al. 2014).
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t > 1. Define also t0 = 1 and tk+1 = T + 1. We apply Lemma 2 for the distribution β t+1

from Example 1. Recall that wi,1 = w
μ
i,0 = 1

N for i = 1, . . . , N .
Summing (15) on time interval where qt = qt−1 for t j + 1 ≤ t ≤ t j+1 − 1, we obtain

t j+1−1∑

t=t j +1

(

mt −
N∑

i=1

qi,t l̂i,t

)

=
t j+1−1∑

t=t j +1

1

ηt

(
D(qt‖wt ) − D(qt‖wμ

t )
)

=
t j+1−1∑

t=t j +1

(
1

ηt−1
D(qt‖wt ) − 1

ηt
D(qt‖wμ

t )

)

+
t j+1−1∑

t=t j +1

(
1

ηt
− 1

ηt−1

)

D(qt‖wt ) (17)

≤
t j+1−1∑

t=t j +1

(
1

ηt−1
D(qt‖wt ) − 1

ηt
D(qt‖wμ

t )

)

+
t j+1−1∑

t=t j +1

1

ln∗ N
δt−1

(

ln N + ln
1

αt

)

(18)

≤
t j+1−1∑

t=t j +1

(
1

ηt−1
D(qt‖wμ

t−1) − 1

ηt
D(qt‖wμ

t )

)

+
t j+1−1∑

t=t j +1

1

ηt−1
ln

1

1 − αt
+

t j+1−1∑

t=t j +1

(
1

ln∗ N
ln

1

αt
+ 1

)

δt−1 (19)

≤ 1

ηt j

D(qt j ‖wμ
t j
) − 1

ηt j+1−1
D(qt j ‖wμ

t j+1−1)

+
t j+1−1∑

t=t j +1

1

ηt
ln

1

1 − αt
+

t j+1−1∑

t=t j +1

δt−1 ln
1

αt
+

t j+1−1∑

t=t j +1

δt−1. (20)

In transition from (17) to (18), the inequality wi,t ≥ αt
N was used, then

D(qt‖wt ) =
N∑

i=1

qi,t ln
qi,t

wi,t
≤

N∑

i=1

qi,t ln qi,t −
N∑

i=1

qi,t ln
αt

N
≤ ln N + ln

1

αt
. (21)

In transition from (18) to (19), we use the inequality (14), where s = t − 1,

D(qt‖wt ) ≤ D(qt‖wμ
t−1) + ln

1

1 − αt
.

In transition from (19) to (20) the entropy terms within the sections telescope and only for
the beginning and the end of each section a positive and a negative entropy term remains,
respectively. We also roughen the inequality (19) after division by ln∗ N .

For the beginnings of the k sections t = t1, . . . , tk define s = 0, β
t j
0 = αt j in the inequality

(14), then

mt j −
N∑

i=1

qi,t j l̂i,t j ≤ 1

ηt j

D(qt j ‖wμ
0 ) − 1

ηt j

D(qt j ‖wμ
t j
) + 1

ηt j

ln
1

αt j

. (22)
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Summing all these inequalities and canceling out the corresponding terms, we obtain

T∑

t=1

mt −
N∑

i=1

qi,t l̂i,t ≤
k∑

j=1

(
1

ηt j

D(qt j ‖wμ
0 ) − 1

ηt j+1−1
D(qt j ‖wμ

t j+1−1)

)

(23)

+
T∑

t=2

1

ηt
ln

1

1 − αt
+

T∑

t=2

δt−1 ln
1

αt
+

T∑

t=2

δt−1 +
k∑

j=1

Δt j −1 ln
1

αt j

(24)

≤ ((k + 2) ln T + k + 1)ΔT . (25)

In transition from (23) to (24) we use the inequality D(q‖wμ
T ) ≥ 0 for all q and equality

D(q‖wμ
0 ) = ln N . Then

k∑

j=1

1
ηt j

D(qt j ‖wμ
0 ) ≤ kΔT . For αt = 1

t we use the inequality

T∑

t=2

1

ηt
ln

1

1 − αt
≤ 1

ηT
ln T ≤ ΔT −1 ln T ≤ ΔT ln T .

Since HT = MT + ΔT , the bound (25) implies (16). ��
We will finish the proof of Theorem 1 at the end of Sect. B.
The corresponding bounds for mixing scheme of Example 2 can be obtained in a similar

way. Since by definition wi,t ≥ αt
N t for each t , the inequality (21) is changed to D(qt‖wt ) ≤

ln N + ln T + ln 1
αt
. Also, the last term of the inequality (22) is replaced by 1

ηt j
ln 1

tαt j
. As a

result, we obtain γk,T = (2k + 3) ln T + (k + 2).

In the case of bounded losses: li,t ∈ [0, 1], set in (17) – (25)αt = 1
t and obtain MT −L(q)

T ≤
1
ηT

((k + 2) ln T + (k + 1) ln N ). Using the Hoeffding inequality ht ≤ mt + ηt
8 , where

ηt ∼
√

ln∗ N
t , we obtain (6).

B Technical bounds

The derivation of the upper bound for ΔT is similar to that given in de Rooij et al. (2014),
except that the losses of experts are replaced by l̂i,t = Epi,t [l̃i,t ].

Let vt = E j∼wt [(l̂ j,t − E j∼wt [l̂ j,t ])2] =
N∑

j=1
w j,t (l̂ j,t − ht )

2 and VT =
T∑

t=1
vt .

Lemma 4 The quantity δt satisfies the inequality

δt ≤ est ηt − 1 − stηt

ηt s2t
vt . (26)

Proof The inequality (26) will be proved using Bernstein inequality (see Lemmas 3-5
from Cesa-Bianchi and Lugosi 2006). Let X ∈ [0, 1] be a random variable and V ar [X ]
be its variance. Then for any η > 0, we have ln E[e−η(X−E[X ])] ≤ V ar [X ](eη − η − 1).

Consider a random variable which takes the values l̂ j,t with probabilities w j,t , where

j = 1, . . . , N . Let us transform it so that its values belong to the segment [0, 1]: X j
t = l̂ j,t −l̂−t

st
.

Then the Bernstein inequality can be written as follows:

ln E j∼wt

[

e
−η

(
X j

t −E X j
t

)]

≤ V ar j∼wt [X j
t ] (eη − 1 − η

)
(27)
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for each η > 0. We rewrite this inequality in more detail for η = stηt .
First, we simplify the left-hand side of the inequality (27)

ln E j∼wt

[

e
−η

(
X j

t −E Xt

)]

= ln

⎛

⎜
⎝

N∑

j=1

w j,t e
−st ηt

(
l̂ j,t −l−t

st
−

N∑

i=1
wi,t

l̂i,t −l−t
st

)⎞

⎟
⎠

= ln

⎛

⎜
⎜
⎜
⎝

N∑

j=1
w j,t e−ηt l̂ j,t

e
−ηt

N∑

j=1
w j,t l̂ j,t

⎞

⎟
⎟
⎟
⎠

= ln
N∑

j=1

w j,t e
−ηt l̂ j,t + ηt

N∑

j=1

w j,t l̂ j,t = ηt (ht − mt ) = ηtδt .

Then the inequality (27) can be written in the form ηtδt ≤ 1
s2t

vt (est ηt − 1 − stηt ) , from

which we obtain the required inequality (26). ��

The inequality (26) can be presented in the form

δt ≤ g(stηt )

st
vt , where g(x) = ex − x − 1

x
. (28)

Lemma 5 (ΔT )2 ≤ (ln∗ N )VT + ( 2
3 ln

∗ N + 1
)

ST ΔT .

Proof We have

(ΔT )2 =
T∑

t=1

(
(Δt )

2 − (Δt−1)
2) =

T∑

t=1

(
(Δt−1 + δt )

2 − (Δt−1)
2)

≤
T∑

t=1

(
2δtΔt−1 + δ2t

) =
T∑

t=1

(
2δt

ηt
ln∗ N + δ2t

)

≤
T∑

t=1

(
2δt

ηt
ln∗ N + stδt

)

≤ 2 ln∗ N
T∑

t=1

δt

ηt
+ ST ΔT . (29)

The bound for δt
ηt

is obtained using (28): 1
2vt ≥ δt st

2g(st ηt )
= δt

ηt
− stϕ(stηt )δt , where ϕ(x) =

ex − 1
2 x2−x−1

xex −x2−x
. It is not difficult to prove that ϕ(x) ≤ 1/3.

Then, summing the inequality δt
ηt

≤ 1
3 stδt + 1

2vt , and combining it with the inequality
(29) we obtain the needed inequality. ��

Now, we obtain the bounds for VT . From definition vt ≤ (l+t − ht )(ht − l−t ) ≤ s2t
4 .

To obtain (8), we will use the following lemma.

Lemma 6 If L(q)

T ≤ HT then VT ≤ ST
(L+

T −L(q)
T )(L(q)

T −L−
T )

L+
T −L−

T
+ γk,T ST ΔT .
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Proof The following inequality holds true

VT =
T∑

t=1

vt ≤
T∑

t=1

(l+t − ht )(ht − l−t ) ≤ ST

T∑

t=1

(l+t − ht )(ht − l−t )

st

= ST T
T∑

t=1

1

T

(l+t − ht )(ht − l−t )

st
≤ ST

(L+
T − HT )(HT − L−

T )

L+
T − L−

T

. (30)

The inequality (30) is obtained by applying the Jensen inequality to a concave function
B(x, y, z) = (z − y)(y − x)/(z − x) on the set x ≤ y ≤ z (see for detail de Rooij et al.
2014). ��

Recall that HT ≤ L(q)

T + γk,T ΔT . Then, assuming L(q)

T ≤ HT , we have

VT ≤ ST
(L+

T − L(q)

T )(L(q)

T + γk,T ΔT − L−
T )

L+
T − L−

T

≤ ST
(L+

T − L(q)
T )(L(q)

T − L−
T )

L+
T − L−

T

+ γk,T ST ΔT . (31)

Denote

QT = (L+
T − L(q)

T )(L(q)

T − L−
T )

L+
T − L−

T

.

By the inequality (31) and Lemma 5

Δ2
T ≤ (ST QT + γk,T ST ΔT ) ln∗ N +

(
2

3
ln∗ N + 1

)

ST ΔT

= ST QT ln∗ N +
(

γk,T ln∗ N + 2

3
ln∗ N + 1

)

ST ΔT . (32)

We have the inequalityΔ2
T ≤ a+bΔT , where a = ST QT ln∗ N , b = (γk,T ln∗ N + 2

3 ln
∗ N +

1)ST .
Solving this inequalitywith respect toΔT , we obtain:ΔT ≤ 1

2b+ 1
2

√
b2 + 4a ≤ √

a+b =
√

ST QT ln∗ N + ((
γk,T + 2

3

)
ln∗ N + 1

)
ST .

If HT ≤ L(q)

T then R(q)

T ≤ 0 and the inequality (8) is automatically executed. Otherwise,
by Lemma 3,

R(q)

T ≤ γk,T ΔT ≤ γk,T

√
ST QT ln∗ N + γk,T

((

γk,T + 2

3

)

ln∗ N + 1

)

ST .

We obtain the inequality (8) using the lower and the upper bounds (5) for L(q)

T .

To obtain (7), it is sufficient to use the inequality VT ≤ 1
4

T∑

t=1
s2t and a derivation similar

to (32). This completes the proof of Theorem 1.
To prove the inequality (10) of Corollary 1 we simplify the inequality (30) as

VT ≤ ST (L+
T − HT ) ≤ ST (L+

T − L(q)
T ) if L(q)

T ≤ HT . Finally, R(q)

T ≤ γk,T ΔT ≤
γk,T

√

ST (L+
T − L(q−)

T ) ln∗ N + γk,T
( 2
3 ln

∗ N + 1
)

ST for all T .
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