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Abstract
Older women can develop osteoporosis caused by increasing osteoclast (OC) activity more than by the osteoblast (OB) activ-
ity that leads to bone fractures. Mitochondria can play an important role in energy production, calcium (Ca2+) sequestration 
and signaling, oxidative stress, apoptosis, and metabolism. Mitochondrial produced peptides (MPPs) include Mitochondrial-
derived peptides (MDPs) and OB-activating peptide. MDPs which are secreted by mitochondria, have different roles and 
include humanin, and the novel mitochondrial open reading frame of the 12S rRNA-c, which is utilized to study insulin 
sensitivity. OB-activating peptide have been detected in the stomach, kidneys and ovaries and previously have shown a 
marked effect on elevating the expression of alkaline phosphatase and osteocalcin, which are considered OB differentiation 
markers. Many researchers have studied different mechanisms to induce osteogenesis, such as the Forkhead transcription 
factors of the O-class family, which maintain mature OBs through their antioxidant activities. Another approach involves the 
receptor activator molecules of the nuclear factor-κB ligand/osteoprotegerin (OPG) pathway, which depends on increasing 
the production of OPG to decrease OC activity. More research is needed to investigate the different pathways of MPPs in 
osteogenesis and their relationship to each other in treating various diseases.
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Introduction

Osteoporosis (OP) is a common pathological condition 
characterized by a reduction in bone mass, demineraliza-
tion, and alteration of the bone micro-architecture. OP is 
usually becoming worse with increasing the age and can 
lead to bone fractures, particularly in the wrist, femur, and 
spine. This condition has resulted from the reduction in bone 
mass either by an increase in resorption or by a decrease 
in ossification. During childhood, bone formation exceeds 
resorption. As the aging process occurs, resorption exceeds 
formation.

More than 9 million OP fractures occur per year glob-
ally, representing severe social, economic, public health, and 
clinical problems (Richards et al. 2012). The mortality rate 
due to hip fractures is currently estimated to be ~ 30% in 
the developed countries during the first year after fracture 
and ~ 40% in the second year (Downey et al. 2019). Moreo-
ver, fragility fractures are a leading cause of disability and 
mortality globally (Veronese et al. 2020).

Bone remodeling, which continues throughout the life 
span, is mediated by the activities of osteoclasts (OCs) and 
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osteoblasts (OBs) (Feng and McDonald 2011). During this 
process, the imbalance between formation and resorption of 
bone leads to the loss of bone, which adversely affects bone 
architecture and strength (Song et al. 2015). Recent research 
has referred to the key role of the osteoprotegerin/receptor 
activator molecules of the nuclear factor-κB ligand (OPG/
RANKL) (Pacifico et al. 2018) in the bone-remodeling pro-
cess. At present, OPG/RANKL is considered a pivotal cou-
pling factor between OC and OB. The main function of OPG 
and RANKL, which are produced from OBs and stromal 
cells of the bone marrow, is to prevent OC differentiation 
and, in turn, inhibit bone resorption activity.

An advanced study (Ikeda and Takeshita 2014) has pos-
ited that the complement component 3a (C3a) and colla-
gen triple helix repeat containing 1 (Cthrc1) act as a chan-
nel between OC and OB. C3a is secreted from the mature 
OCs (mOCs) and activates the process of osteoblastogen-
esis. However, Cthrc1 is derived from active mOCs during 
bone resorption and activates OBs’ differentiation. Further 
research has demonstrated the regulating role of different 
novel transcription factors (TCFs) such as nuclear factor I-C 
(Lee et al. 2014), netrin-4 (Enoki et al. 2014), and omentin-1 
(Yin et al. 2017) in differentiation and proliferation of OBs. 
Interestingly, these novel TCFs and regulators can be used 
in the therapeutic approach to OP.

In general, OP’s therapeutic approach is based on the 
inhibition of the occurrence of fragility fractures by stim-
ulating new bone formation or reducing the rate of bone 
resorption. Anti-OP drugs can be used with careful supple-
mentation with Ca2+ or vitamin D to increase their effec-
tiveness in preventing fractures (Delmas et al. 1997; Diab 
and Watts 2014). Therefore, clinicians face the challenge of 
prescribing the best treatment option from those available 
and of choosing the “best drug” for everyone with OP.

OCs and Bone Resorption

Myeloid progenitor cells are the precursors of red blood 
cells, platelets, granulocytes (polymorphonuclear leukocytes 
[PMNs]: neutrophils, eosinophils, and basophils), monocyte-
macrophages, dendritic cells (DCs), and mast cells and oste-
oclasts (Molawi and Sieweke 2013). OCs are multinucleated 
cells formed via fusion of the precursors of hematopoietic 
myeloid in the bone marrow near the bone surface. OCs can 
be identified in sections stained routinely with hematoxylin 
and eosin, as well as in the immunohistochemical sections 
stained for tartrate-resistant acid phosphatase (TRAP). Note 
that normal bone resorption is not related to TRAP expres-
sion, whereas TRAP levels in serum have shown a posi-
tive correlation with the bone resorption levels (Wang et al. 
2019). The differentiation of OC from OC precursor to fully 
activated multinucleated OC depends primarily on RANKL, 
the permissive role of macrophage-colony stimulating factor 

(M-CSF), and a member of the tumor necrosis factor (TNF) 
family (Rachner et al. 2011).

OC precursors are derived in the bone marrow and then 
move into blood circulation via sphingosine-1 phosphate 
(S1P) (Meshcheryakova et al. 2017). S1P is secreted from 
red blood cells by large amounts and moves to the resorp-
tion lacunae of the bone marrow by RANKL (Boyce 2013), 
which is produced from OB and immune cells. Moreover, 
RANKL is produced in bone multicellular units in the bone 
marrow through OB and stromal cells (Sims and Martin 
2015), T-lymphocytes (Boyce 2013), and osteocytes (Xiong 
et al. 2015). After RANKL induces RANK activation, sev-
eral enzymes and key regulatory TCFs are generated to pro-
mote OCs’ proliferation, differentiation, multinucleation, 
activation, and survival (Rachner et al. 2011), resulting in 
the resorption of bone.

Osteocytes are the most abundant cell type in bone, which 
act as matrix-forming OBs to form bone surfaces. Normally 
when OBs complete the matrix-forming task, most undergo 
apoptosis (Blair et al. 2017), some become embedded within 
osteoid (the uncalcified matrix), and the remaining stay on 
the bone surface. When osteoid mineralization begins, the 
embedded OBs remains “trapped” and form osteocytes 
that are released in the following remodeling cycle. These 
sequenced events allow osteocytes to detect areas of dam-
aged bone that need removal (Dallas et al. 2013).

OCs can produce the secreted form of RANKL; this oste-
ocyte-derived RANKL is needed for the normal remodeling 
process of bone in adults (Xiong et al. 2015). Moreover, 
M-CSF stimulates OC activities and provides them a long 
survival (lifespan = ∼30 days) within the resorption lacu-
nae. Interestingly, humans and transgenic mice with a loss 
of RANKL, RANK, or M-CSF have a deficiency in mOCs 
(Nagy and Penninger 2015) and then develop OP (Boyce 
2013) due to failure to clear the mineralized matrix from 
the medulla of the vertebrae and the long bones during the 
embryonic life. The osteoporotic bones are more fragile 
compared with normal bones; their sclerotic picture (Teti 
and Econs 2017) is due to the nature of being composed of 
weaker woven rather than of strong lamellar bone.

OPG is a natural RANKL antagonist (Schieferdecker 
et al. 2014) and is characterized by its jellyfish-like shape 
and adhesion molecules such as integrins. OCs adhere to 
the bone surface to form a sealing zone and provide a highly 
acidic enriched microenvironment (Rachner et al. 2011).

OBs and Bone Formation

OBs, the bone-forming cells, are cuboidal cells that are 
embedded along the surface of the bone, representing 
4%–6% of the total number of resident bone cells (Capulli 
et al. 2014). OBs, which originate from mesenchymal stem 
cells, secrete both Type I collagen (constituting 90% of the 
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protein in bone) and bone morphogenetic proteins (BMPs) 
that form the initial osteoid bone (Henry and Bordoni 2020). 
These BMPs contain Ca2+-binding proteins such as oste-
onectin (ON) and osteocalcin (OCN), thrombospondins, 
multi-adhesive glycoproteins such as bone sialoproteins 
(BSP-1 [osteopontin; OPN] and BSP-2), alkaline phos-
phatase (ALP), and different proteoglycans. Serum levels 
of OCN and ALP can be used as a marker for OB activity 
(Szulc and Bauer 2013).

Bone formation rate can estimate a thorough evaluation 
of the speed and effectiveness of cell precursors from their 
differentiation to mature OBs (mOBs) (Rachner et al. 2011). 
These processes are stimulated by intermittent pulses of 
parathyroid hormone (PTH) and vitamin D (Rachner et al. 
2011). OB differentiation requires the expression of spe-
cific genes in programmed events such as members of the 
Wingless (Wnt) pathways, BMPs (Houschyar et al. 2019), 
distal-less homeobox 5 (Dlx5), runt-related TCF 2 (Runx2), 
and osterix (Osx) (Capulli et al. 2014). Moreover, Runx2 
plays a pivotal role in the upregulation of OB-related genes, 
such as ColIA1, ALP, BSP, BGLAP, and OCN (Fakhry et al. 
2013).

The establishment of Runx2 and ColIA1 expression dur-
ing OB differentiation begins the proliferating phase during 
which OB progenitors stimulate ALP activity and act as pre-
OBs (Capulli et al. 2014). Following this, pre-OBs mature to 
OBs, becoming large and cuboidal, and begin to secret 
BMPs such as OCN, BSP I/II, and collagen Type I (Capulli 
et al. 2014). Recent investigations have stated that fibroblast 
growth factor (FGF), microRNAs, and connexin 43 have 
a major role in OB differentiation (Buo and Stains 2014). 
Mice with a deletion of FGF-2 showed reduced bone mass 
and an abundance of adipocytes within the bone marrow 
(Gupta et al. 2010). Moreover, microRNAs can contribute 
to gene expression and differentiation of OBs (Hassan et al. 
2012). Several miRNAs have been found to limit osteoblast 
differentiation, which is important for bone remodeling reg-
ulation. This physiological regulation elicited by miRNAs 
could be crucial for balancing the processes of bone pro-
duction and resorption (Vimalraj and Selvamurugan 2013). 
The expression of miR-206, for example, is correlated to 
osteoblast differentiation. However, Runx2, a bone-specific 
transcription factor, controls the expression of numerous 
genes and is necessary for osteoblast development. On the 
other hands, there are miRNAs that control osteoblast dif-
ferentiation in a positive way, for example, by suppressing 
ERB1 (TOB1) and sclerostin (SOST), miR-218 has been 
found to help osteoblasts differentiate into the final stage of 
generating mineralized tissue (Li et al. 2009). Furthermore, 
one study (Flenniken et al. 2005) has stated that mutation in 
the connexin 43 encoding gene impairs OB differentiation.

The production of the bone matrix from OBs takes place 
in two steps: (1) organic matrix deposition, wherein the OBs 

produce collagen proteins (predominantly Type I collagen), 
non-collagen proteins (BSP II, OCN, OPN, and ON), and 
proteoglycan (decorin and biglycan); and (2) mineraliza-
tion, which occurs through the fibrillar and vesicular phases 
(Yoshiko et al. 2007). The vesicular phase is characterized 
by the release of matrix vesicles from the domain of OBs’ 
apical membrane to the newly formed bone matrix (Bot-
tini et al. 2018), whereas the fibrillar phase is characterized 
by over aggregation of phosphate and Ca2+ ions within the 
matrix vesicles, resulting in rupture (Hasegawa et al. 2017).

In contrast, bone formation can be repressed by supple-
menting exogenous glucocorticoids or being less activated 
in some elderly individuals. Moreover, OBs can produce 
several non-collagenous proteins, such as ON, OPN, OCN, 
and an extracellular matrix containing Type-1 collagen at the 
resorption lacunae sites (Rachner et al. 2011).

Common Mechanisms in the Possible OP 
Treatment

FoxO, Oxidative Stress, and Aging

Both aging and estrogen deficiency up-regulates the genera-
tion of reactive oxygen species (ROS) (Manolagas 2008). 
Continuous generation of ROS during metabolism can result 
in lipid peroxidation, with subsequent DNA and protein 
damage. Moreover, a low concentration of ROS can act as 
signaling molecules for the differentiation and proliferation 
of cells (Giorgio et al. 2007). Research has shown the rela-
tionship between ROS generation and age- or gonadectomy-
associated bone loss (Almeida et al. 2010). Furthermore, in 
murine models, osteoporotic features were related to prema-
ture aging and oxidative damage (Tyner et al. 2002).

Likewise, antioxidants can attenuate osteoclastogenesis, 
apoptosis of osteocytes and OBs, and gonadectomy-related 
bone loss (Almeida et al. 2010). In general, cells exhibit 
several defense mechanisms against ROS, among them the 
mechanism associated with the Forkhead TCFs of the O 
class (FoxO) family of TCFs (including four members in 
mammals: FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX, 
and FoxO6) (Tzivion et al. 2011). Where, FoxO1, -3, and -4 
have been expressed in adults and developing tissues, FoxO6 
is specific to the developing brain. Akt-mediated phospho-
rylation can play a role in the prevention of FoxO-mediated 
transcription (Lin et al. 2020).

In contrast, ROS can activate FoxO transcription via pro-
motion of FoxO post-translational modifications, including 
phosphorylation of the amino-acid residues remaining after 
Akt phosphorylated acetylation and ubiquitylation (Calnan 
and Brunet 2008). This fact suggests the FoxO major protec-
tive role against ROS. The FoxO defense mechanism could 
be exerted via regulation of the transcription of antioxidant 
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enzymes such as catalase and MnSOD, in addition to the 
regulation of genes contributing to DNA repair and the cell 
cycle (Salih and Brunet 2008).

Interestingly, a recent study on mice with combined dele-
tion of FoxO1, -3, and -4 or deletion of FoxO3 has demon-
strated the antioxidant activity of FoxO through its indis-
pensable role in the survival of hematopoietic stem cell and 
erythropoiesis due to the attenuation of ROS (Marinkovic 
et al. 2007). Moreover, ß-catenin, a factor essential for the 
differentiation of OB (Saidak et al. 2015), is required for 
ROS-activated FoxO (Ma et al. 2020). In a trial conducted 
on the OB cell line, ROS stimulated β-catenin − FoxO asso-
ciation and activation of FoxO-induced transcription instead 
of β-catenin/T-cell specific TCF-induced transcription and 
differentiation of OB (Almeida et al. 2010) (Fig. 1).

Moreover, FoxO can inactivate the transcription of 
PPARγ, which acts as a strong inactivator for osteoblas-
togenesis (Ma et al. 2020). In general, these findings strongly 
suggest the role of FoxO physiologic maintenance of mOBs 
through its antioxidant activities. Furthermore, FoxO can 
regulate the production of new OBs via modulation of their 
differentiation or proliferation by modulating β-catenin or 
PPARγ.

Calcium‑Sensing Receptor (CaSR) and Bone 
Homeostasis

Bone remodeling, a physiological process important for 
skeletal integrity maintenance and Ca2+ homeostasis, occurs 

within BMUs and is controlled by OBs that produce the 
extracellular matrix and OCs that resorbs old bone (Owen 
and Reilly 2018). Within the BMU, the extracellular Ca2+ 
([Ca2+]e) should be organized around 0.5–1.5 mm dur-
ing bone production and mineralization of the extracellu-
lar matrix (Lin et al. 2020) and increased up to 2 mm or 
more during bone resorption (Berger et al. 2001). Several 
in vitro studies have stated that OBs respond to alteration in 
(Ca2+)e (Dvorak and Riccardi 2004). Increased concentra-
tions of (Ca2+)e can affect many differentiation stages of 
OBs and enhance their maturation, proliferation, cell chemo-
taxis, gene expression, and mineralization of the extracel-
lular matrix (Tang et al. 2019); therefore, (Ca2+)e can control 
the remodeling process.

The CaSR is a G protein-coupled receptor that responds 
to fluctuation in (Ca2+)e (Young et al. 2015). The CaSR has 
an important physiological role in kidney cells and the para-
thyroid gland, regulating the excretion of Ca2+ and secretion 
of PTH (Kallay 2018). Several trials on mice with deletion 
of the full-length CaSR gene have confirmed the role of the 
kidney and parathyroid CaSRs in the homeostasis of Ca2+ 
(Hendy and Canaff 2016). Recent studies have provided 
strong proof that CaSR is expressed in mOCs, OC precur-
sors, OBs (Dvorak et al. 2004), and OB lineage (Dvorak 
et al. 2004), and it also contributes to OB survival and dif-
ferentiation and to promoting bone formation and minerali-
zation (Dvorak-Ewell et al. 2011). Moreover, CaSR plays 
a pivotal role in osteoclastogenesis; however, high Ca2+ 
concentrations prevent OC stimulation, resulting in their 

Fig. 1   Role of FoxO in osteo-
progenitor cells. Reactive oxy-
gen species (ROS) stimulates 
FoxO-mediated transcription 
and binding to β-catenin, which 
convert the limited β-catenin 
from TCF to FoxO-mediated 
transcription, resulting in 
osteoblastogenesis. However, 
FoxO1 enhances the transcrip-
tion of runt-related transcription 
factor2 (Runx2) or alkaline 
phosphatase (ALP), leading to 
increased osteoblastogenesis
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apoptosis (Sharan et al. 2008). In general, this evidence 
has suggested the role of CaSR in skeletal homeostasis via 
sensing alterations of Ca2+ in the skeletal microenvironment 
(Al‐Dujaili et al. 2016) (Fig. 2).

OPG/RANKL System and Bone

The OPG/RANKL system consists of three components: a 
ligand, RANKL, a cellular receptor; RANK, a soluble decoy 
receptor; and OPG. RANKL binding to RANK is required 
to differentiate OC precursors to mature cells, for the sur-
vival of OCs, and for the activation of mOCs to initiate bone 
resorption (Park et al. 2017). OPG, produced by the OBs 
and marrow stromal cells, binds to RANKL, blocking its 
biological activity by preventing its association with RANK. 
As a result, OPG inhibits RANKL-induced bone resorption 
(Infante et al. 2019).

Osteocytes and accessory bone marrow cells produce 
RANKL; this production attracts OC precursors from the 
bloodstream side toward the resorption lacunae (Arai et al. 
2012). Moreover, other TCFs such as PU.1 and microph-
thalmia-induced TCF (Kawakami and Fisher 2017), Wnt5a 
(Maeda et al. 2012), IL-34 (Chen et al. 2011), and TNF 
(Boyce 2013) induce the expression of RANK by OC 
precursors.

OPG is also produced from the bone marrow accessory 
cells; its primary function is to limit OC formation with 
subsequent bone destruction. The concentration of OPG can 
determine the bone resorption level (Boyce 2013). Interest-
ingly, the U.S. Food and Drug Administration has approved 
the human monoclonal antibody to RANKL to treat various 
osteolytic disorders such as OP and multiple myeloma (Cos-
man 2018).

In contrast, RANK is produced from bone marrow 
immune cells and an increased number of cell types such as 

Fig. 2   Role of calcium-sensing 
receptor (CaSR) and parathy-
roid hormone (PTH) on bone, 
kidneys, and intestines in 
response to the decreased con-
centration of extracellular fluid 
calcium ion
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dendritic cells, which are stimulated by RANKL produced 
from mammary gland cells and T-cells (Nagy and Penninger 
2015). Moreover, RANK is produced from human prostate 
and breast cancers (Nagy and Penninger 2015), and it is 
thought that RANKL/RANK are responsible for the metas-
tasis of breast cancer to the bones (Sobacchi et al. 2013). In 
humans, the RANK encoding gene (TNFRSF11A) mutation 
is related to juvenile Paget’s disease and familial expansile 
osteolysis with an increased risk of fractures (Coudert et al. 
2015).

Vital Functions of Mitochondria

Mitochondria have been considered the cell’s powerhouse 
because they produce most of the cellular ATP. The Krebs 
cycle happens within the mitochondria, causing an elec-
trochemical gradient utilized in ATP production (Salway 
2004). Furthermore, mitochondria have a vital role in apop-
tosis, oxidative stress, and Ca2+ signaling and sequestration 
(Drago et al. 2011).

Mitochondria are pivotal in the intrinsic apoptotic path-
way, which is stimulated by the cellular damage of some 
cells and relayed on the mitochondria (Kantari and Walczak 
2011). Furthermore, apoptosis is activated directly by many 
nucleus-encoded mitochondrial proteins when they are sent 
out from the mitochondria into the nucleus or cytosol. More-
over, mitochondria are the biggest dynamo of free radicals 
in cells (Balaban et al. 2005).

In cells, the primary source of oxidative stress is free 
radicals, which can damage and oxidize DNA, lipids, and 
proteins. In addition to the physiological role of some free 
radicals, elevated oxidative stress can be accompanied by 
various diseases, although an advantageous influence of tem-
porary oxidative stress has been found (Ristow and Zarse 
2010; Ristow et al. 2009).

Mitochondria have a comprehensive organization for sim-
plifying the transport of Ca2+ through their inner membrane, 
which has an important role in hormone metabolism, ATP 
production, and cytoplasmic Ca2+ signaling. Derestriction 
of the mitochondrial Ca2+ homeostasis can deactivate the 
function of intra-mitochondrial enzymes and cause cell 
mortality. Mitochondrial Ca2+ release and uptake vary from 
other membrane-bound organelles in that this Ca2+ release 
utilizes gated channels and H+/Ca2+ or Na+ exchangers, and 
Ca2+ uptake is not conditional on ATP (Drago et al. 2011).

Mitochondria has a pivotal role in the keeping of osteo-
clast activity (Zhang et al. 2018). The ATP supply from the 
mitochondria are important for osteoclast maturation and 
differentiation (Aoki et al. 2020). ATP molecules are gener-
ated mainly by mitochondria but they produce ROS as well 
as an access product of ATP generation, which are damag-
ing to cells (Liemburg-Apers et al. 2015). The activation 

of osteoclasts is by the interaction of RANKL with RANK 
receptor which is expressed on osteoclast precursors. This 
operation also produces oxidative stress through ROS (Lee 
et al. 2005). Oxidative stress might enhance the osteoclast 
differentiation ROS (Lee et al. 2005), extra cumulation of 
intracellular ROS enhances cell death by oxidation of intra-
cellular DNA, lipids, and proteins (Liemburg-Apers et al. 
2015), and in the late stages of osteoclast maturation, some 
results revealed a significant lowering in mitochondrial 
membrane potential differentiation (Aoki et al. 2020).

The theories of bone loss with age pathogenesis are 
elevating endogenous glucocorticoids secretion (Chiodini 
et al. 2007; O’brien et al. 2004) and lowering of sex hor-
mones levels (Aitken et al. 1972; Baran et al. 1978; Fink 
et al. 2006; Lindsay et al. 1976). Intracellular alterations 
which develop with age such as, accumulating mitochondrial 
DNA (mtDNA) mutations, has a marked role in the declin-
ing BMD levels due to failure of bone homeostasis. The 
only DNA polymerase detected in mitochondria is mtDNA 
polymerase gamma (Polg) which is responsible for repair 
and replication and of mtDNA inside all cell types (Hance 
et al. 2005). Another proof for mitochondrial dysfunction as 
a possible player in osteoporosis pathogenesis is revealed in 
mice with a mitochondrial transcription factor A (TFAM) 
knockout specific to osteoclasts, the result is elevated resorp-
tion in comparison to normal osteoclasts (Miyazaki et al. 
2012). The knockdown of superoxide dismutase (Sod2), an 
enzyme which prevents mitochondrial oxidative stress, make 
osteoporosis (Kobayashi et al. 2015). During aging process, 
the accumulation of somatic mtDNA mutations is in post 
mitotic and mitotic tissue, and somatic stem cell precursors 
(Taylor and Turnbull 2005). An investigation has revealed 
that the accumulation of mitochondrial defects in osteoclast 
at a hurried rate in PolgAmut/mut mice more than aged wild 
mice (Dobson et al. 2020).

During osteoblastogenesis, intracellular ATP content 
and oxygen consumption rate are markedly upregulated 
suggesting inclusion of mitochondria in lineage specifica-
tion of MSCs (Shares et al. 2018). For more details about 
the mechanisms of modulation of osteogenic differentia-
tion of MSCs by mitochondrial bioenergetics, researchers 
have detected the enhancement of canonical Wnt/β-catenin 
pathway which is a main organizer of bone formation by 
mitochondria (Scholtysek et al. 2013; Shares et al. 2018). 
For protection against endogenous ROS accumulation, 
MSCs differentiate to activate a highly efficient antioxidant 
defense system (Chen et al. 2008). In the mitochondria of 
MSCs, there is manganese superoxide dismutase (MnSOD 
or SOD2) which is the main antioxidant defense system. In 
MSCs, the MnSOD knockdown leads to impaired osteogenic 
differentiation (Gao et al. 2018), and it was reported osteo-
porosis in mice have mesenchymal conditional deficiency of 
MnSOD (Treiber et al. 2011).
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At the ultrastructural level, the mitochondria morpho-
logical change is the main feature of osteogenic differentia-
tion, which are characterized by mitochondrial elongation 
and enlargement, activation-related network formation and 
volume elevation (Forni et al. 2016; Palomäki et al. 2013; 
Shum et al. 2016). It was reported the increasing of Mito-
filin through MSC-mediated osteoblastogenesis (Lv et al. 
2018). In MSCs, investigations have suggested the enhance-
ment of mitochondrial biogenesis during osteoblastogenesis 
with elevated protein subunits of the respiratory enzymes, 
increased mtDNA copy number, and upregulated crucial 
genes like TFAM (An et al. 2010; Chen et al. 2008). Further-
more, enhancement of MSCs osteoblastogenesis by TFAM 
overexpression, while MSC osteogenesis has been inhibited 
by treatment with mitochondrial biogenesis suppressor such 
as, zidovudine (An et al. 2010). Moreover, the abundance of 
β-catenin has been upregulated by elevated mitochondrial 
biogenesis, so, enhancing of Wnt-mediated osteogenic dif-
ferentiation of MSCs (An et al. 2010). Further investigations 
are required to reveal the possible inclusion of mitochondrial 
mitophagy and fission to increase the knowledge about the 
mitochondrial organizing mechanisms related to MSC-medi-
ated osteoblastogenesis.

In HSC-derived osteoclastogenesis, the mitochondrial 
significance has been gradually increased. Mature osteo-
clasts have many mitochondria and powerful mitochondrial 
respiratory activity at the end of osteoclast differentiation 
(Baba et al. 2018; Nishikawa et al. 2015; Zeng et al. 2015). 
Moreover, deletion of mitochondrial complex I subunit 
Ndufs4 leading to mitochondrial respiration dysfunction 
which inhibits osteoclastogenesis resulting in osteopetro-
sis (Jin et al. 2014). Suppression of mTOR signaling by 
genetic deletion of mTOR or Torin1 markedly inhibits oste-
oclastogenesis, indicating that mTOR signaling enhances 
the osteoclasts formation (Indo et al. 2013). Furthermore, 
AMPK activation blocks osteoclastogenesis, suggesting a 
negative role of AMPK in formation of osteoclast (Indo et al. 
2013). Further studies are needed to determine the participa-
tion of mitochondria in downstream signaling of AMPK and 
mTOR in osteoclastogenesis.

Mitochondria share in lineage specification and stem 
cell pluripotency based on signaling and metabolic mod-
ulations (Shadel and Horvath 2015). This organization is 
significant and prominent in the skeletal system of HSCs 
and MSCs, which has a pivotal role the homeostatic main-
tenance, development, and regenerative repair of bone (Hsu 
et al. 2016; Snoeck 2017). Therefore, the therapeutic han-
dlings of mitochondria are studied to oppose bone patholo-
gies and aging and to assist in bone healing (Coleman et al. 
2018; Lv et al. 2018). Some key matters still to be studied in 
related to general identifications of disease-associated and 
health-associated and mitochondria-targeted intervention in 
translational investigations are highly required. Interestingly, 

nanoparticles designed for mitochondria-targeted drug deliv-
ery systems, gene editing technologies for mitochondria 
containing mitochondrially targeted zinc-finger nucleases 
(mtZFN) and mitochondrial-targeted transcription acti-
vator-like effector nucleases (mitoTALEN) have supplied 
high therapeutic trends (Bacman et al. 2018; Gammage et al. 
2018; Wongrakpanich et al. 2014).

Short Anabolic Peptides Used in OP 
Treatment

Osteoporosis is an age-related skeletal condition that causes 
bone fragility and an increased frequency of fractures, both 
of which are associated with high expenses and significant 
morbidity and mortality. The majority of osteoporosis drugs 
work by lowering osteoclastic activity and hence lowering 
bone resorption. The focus has recently shifted to bone-
anabolic agents. Such substances can boost bone mass and 
strength, potentially reversing structural damage. Because 
of their high target binding specificity, which translates to 
powerful activity with few side effects, short peptides are 
an important alternative for the development of novel bone-
anabolic drugs (Fig. 3).

OB‑Activating Peptide (OBAP)

OBAP, a new 24-amino-acid peptide (Fig. 4) that forms a 
tight hairpin structure, with one leg being an alpha helix, 
has no Cys, so it is not forming disulfide bonds. OBAP has 
only five hydrophobic amino acids that are dispersed (Fig. 1) 
and induces an increase in many OB differentiation mark-
ers, such as OCN and ALP, as reported by Fukushima et al. 
(2010) in Sprague–Dawley rats. Furthermore, the recovery 
rate against OP caused by gastrectomy was markedly ele-
vated by OBAP supplementation (Fukushima et al. 2010). 
The sequence of amino acids of OBAP encodes the C-termi-
nal side domain of NADH dehydrogenase (ubiquinone) fla-
voprotein 3 (Ndufv3) transcript variant 2, which is localized 
at the mitochondrial membrane and has been indicated to 
be a preprotein of OBAP (de Coo et al. 1997; Kitahara et al. 
1996; Pilkington and Walker 1989; Runswick et al. 1989).

The function of Ndufv3 is unknown, but OBAP has been 
found to be efficient in curing OP stimulated by gastrectomy. 
Therefore, OBAP is considered a strong candidate against 
OP (Fukushima et al. 2010). OBAP has been found to be 
distributed in the parietal cells of the rat stomach (Norel-
din et al. 2016). OP is stimulated by gastrectomy in young 
females and males or ovariectomy in adult females (Anders-
son et al. 2002). A lack of estrogen explains the influence of 
ovariectomy. However, the mechanism by which gastroec-
tomy stimulates OP is still unknown.
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Parietal cells have been found to secrete estrogen, which 
has a pivotal role in OP (Ueyama et  al. 2002). Gastrin 
induces parietal cells to secret hydrochloric acid (Kidd 
et al. 2007), and OP happens in mice defective in the gastrin 
receptor due to the negative influence on acid secreted by 
the parietal cells (Schinke et al. 2009). One study has men-
tioned that gastrin stimulates a hypocalcemic agent from the 
rat stomach, creating the possibility that it might be OBAP 
(Persson et al. 1989). Fukushima et al. (2010) have reported 
that OBAP was efficient against OP in a gastroectomized 
model. Moreover, OBAP is secreted by the parietal cells 
(Noreldin et al. 2016). Therefore, parietal cells can have a 
vital role in maintaining a normal level of Ca2+ balance in 
the blood, which might be a cause for OP from gastrectomy.

OBAP is localized at the distal convoluted tubule (DCT) 
and connecting tubule (CT) (Noreldin et al. 2018); calbindin 
28 kDa transports Ca2+ actively in these sites (Bindels et al. 
1991) under the effects of parathyroid and calcitonin hor-
mones (Hemmingsen 2000). This finding suggests the role 
of OBAP in Ca2+ transportation. Therefore, OBAP can be a 
sharing factor in the passage of Ca2+ into the cells of the CT 
and DCT, where active Ca2+ reabsorption occurs through 
the transcellular route.

The CaSR is highly expressed in the basolateral mem-
brane and apical surface of the Henle loop (HL) and DCT 

of the nephrons (Graca et al. 2016) (Fig. 5) and in the kid-
ney organizes (Ca2+)e concentrations and regulates Ca2+ 
reabsorption (Vezzoli et al. 2009). Moreover, increased 
(Ca2+)e levels stimulate the CaSR of the DCT, which 
induce (calcitonin and gastrin) and decrease secretion 
(parathyroid and insulin hormones) (Riccardi 1999). Fur-
thermore, CaSR is expressed in the mOB precursors and 
OBs (Dvorak et al. 2004) and is required to improve bone 
mineralization and formation (Chattopadhyay et al. 2004). 
Fukushima et al. (2010) have mentioned OBAP’s stimu-
lation and elevation in OB differentiation, and we have 
detected the distribution of OBAP in the HL and DCT 
overlapping areas where CaSR previously has been shown 
to be expressed (Graca et al. 2016), indicating a possible 
direct role of OBAP in Ca2+ regulation.

The ovarian interstitial endocrine cells (IC) revealed 
the highest distribution of OBAP, followed by the oocytes 
of mature Graafian follicles (MGF) and the mature cor-
pus luteum. There was a powerful negative correlation 
between OBAP and aromatase. Strong positive correla-
tions with receptor activator of nuclear factor-κB (except 
IC), 3β-hydroxysteroid dehydrogenase (except MGF), and 
calmodulin (except MGF and IC) were detected. Moreo-
ver, OBAP revealed a partial positive correlation between 
estrogen receptor and progesterone receptor in the corpus 

Fig. 3   Short anabolic peptides 
(humanin, osteoblast activating 
peptide (OBAP), and Mito-
chondrial open reading frame 
of the 12S rRNA-c (MOTS-c)) 
are secreted by mitochondria 
and have great effects on bone 
metabolism

Fig. 4   OBAP is composed of 24 amino acids
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luteum and with IC and calbindin in the MGF (Noreldin 
et al. 2021).

OBAP could have other advantages as well. More stud-
ies of the OBAP receptor types localized at the OB and the 
distribution of OBAP receptors in all organs are necessary 
to understand further the different mechanisms of OBAP, 
which can help determine new applications and roles.

Humanin

The first discovered MDP, humanin (HN), found by Hashi-
moto et al. (2001), is interesting. HN was revealed by screen-
ing protective proteins against amyloid-β, which is a poten-
tial cause of Alzheimer’s disease, and recently has been 
shown to have both the capability to connect IGF binding 
protein 3 (IGFBP3) and an anti-apoptotic influence (Ikonen 
et al. 2003), and its analogs can influence metabolism, such 

as lowering visceral fat and body weight gain and elevat-
ing glucose-induced insulin release (Gong et al. 2015; Kim 
et al. 2017).

HN is a small amino-acid peptide (NH2-Met-Ala-Pro-
Arg-Gly-Phe-Ser-Cys-Leu-Leu-Leu-Leu-Thr-Ser-Glu-
Ile-Asp-Leu-Pro-Val-Lys-Arg-Arg-Ala-COOH) (Fig.  6) 
encoded from a 75- bp ORF sequence within the 1567 bp 
cDNA, which yields either a 21- or 24-amino-acid polypep-
tide depending on the location of the translation machin-
ery (Gong et al. 2014). HN’s biological activities can act 
as a signal peptide and do not require a signal peptide for 
secretion (Yamagishi et al. 2003). HN is the first novel pep-
tide detected within the mitochondrial genome since 1981 
(Anderson et al. 1981).

HN relieved renal microvascular remodeling, apoptosis, 
and inflammation in the early stage of kidney disease in 
hypercholesterolemic mice. This peptide can act as a new 

Fig. 5   Parietal cells in the stom-
ach and distal convoluted tubule 
in the kidneys secret osteoblast 
activating peptide (OBAP), 
which increases osteocalcin 
and alkaline phosphatase and 
decreases osteoporosis

Fig. 6   Humanin is composed of 24 amino acids
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treatment to attenuate kidney damage at the beginning of 
atherosclerosis (Zhang et al. 2012).

Kang et  al. (2019) have shown that HN suppresses 
RANKL-stimulated OC formation and decreases the 
expression of the genes included in osteoclastogenesis, 
involving OC-associated receptor, nuclear factor of acti-
vated T-cells cytoplasmic 1, TRAP, and cathepsin K. Fur-
thermore, HN elevated the levels of phosphorylated adeno-
sine 5’-monophosphate (AMP)-activated protein kinase 
(AMPK); compound C, an AMPK inhibitor, recovered 
HN-stimulated OC differentiation. In addition, Kang et al. 
(2019) have determined that HN markedly lowers the levels 
of RANKL-stimulated ROS in BMMs. Therefore, in osteo-
clastogenesis, HN acts as a suppressor of bone disorders 
by AMPK activation. An association among life span, HN 
levels, and growth hormone/IGF-1 (GH/IGF axis) has been 
detected utilizing different mouse models having mutations 
in the GH/IGF axis (Gong et al. 2014).

HN is distributed within all stages of maturation in the 
rat testis (Moretti et al. 2010) and interacts with insulin-like 
growth factor 1 (IGF-1) to stimulate DNA synthesis that 
reflects on the steroidogenesis and enhanced Leydig cells’ 
survival in culture. This result suggests HN’s role as a novel 
testicular anti-apoptotic factor (Colon et al. 2006).

HN has neuroprotective influences; it is located in many 
tissues having an elevated metabolic rate, and its expression 
lowers with age. In physiological conditions of the brain, HN 
has been detected in the glial cells. Zárate et al. (2019) have 
mentioned that surgical menopause stimulates hippocampal 
mitochondrial dysfunction that imitates an aging phenotype. 
Humanin expression was lower in the hippocampus of ova-
riectomized rats and its immunoreactivity colocalized with 
astroglial markers. Moreover, ovarian hormones increased 
HN’s intracellular content in the astrocytes. Therefore, the 
relationship between ovarian hormones and HN can provide 
cues for understanding its role in the aging process.

Many studies have accepted the positive influences of 
HN in various domains. Thummasorn et al. have affirmed 
that HN therapy can treat ischemia–reperfusion injury and 
indicated that this might be because of a reduction in ROS 

generation (Thummasorn et al. 2016). Two other articles 
have revealed the significance of HN in neurocognition by 
revealing that it can avert diazepam-induced memory dys-
function and acts as an anxiolytic agent (Murakami et al. 
2017). Gidlund et al. (2016) have detected elevated muscle 
HN levels during strength training as compared with aerobic 
exercise (Nordic walking) and control, but circulating levels 
were not influenced, concluding that this change could be 
because of HN’s role in glucose metabolism. Recently, for 
the first time, von Walden et al. (2021) discovered that acute 
endurance exercise (EE) significantly increased circulation 
levels of HN but not resistance exercise (RE); nonetheless, 
MOTS-C levels showed a trend to rise after EE. These find-
ings suggest that whereas plasma MDP levels are unrelated 
to fitness, acute EE is. In addition, the findings of Woodhead 
et al. (2020) revealed that humanin is an exercise-sensitive 
mitochondrial peptide, that acute exercise-induced huma-
nin responses in muscle are non-transcriptionally controlled, 
and that this may partially explain the observed increase 
in plasma concentrations. As the first MDP detected, HN 
has been the most inclusively studied, and both functional 
and structural features have been revealed. Its function as an 
anti-apoptotic peptide has been thoroughly studied, but its 
function in cognition is still being investigated.

MOTS‑c

The detection of a short open reading frame (sORF) in the 
mitochondrial DNA (mtDNA) that encodes a signaling pep-
tide, HN, indicates the possible existence of further sORFs 
in the mtDNA (Lee et al. 2015). Another sORF within the 
mitochondrial 12S rRNA encoding a 16-amino-acid pep-
tide (NH2-Met-Arg-Trp-Gln-Glu-Met-Gly-Tyr-Ile-Phe-Tyr-
Pro-Arg-Lys-Leu-Arg-COOH) (Fig. 7) nominated MOTS-c 
(mitochondrial open reading frame of the 12S rRNA-c) has 
been discovered (Lee et al. 2016).

Moreover, MOTS-c has been shown to enhance glucose 
metabolism via the skeletal muscle and has important func-
tions in organizing obesity and diabetes, representing a 
novel mitochondrial-signaling mechanism to regulate the 

Fig. 7   Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) is composed of 16 amino acids
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metabolism between and within cells (Kim et al. 2017; Lee 
et al. 2016). MOTS-c organizes both metabolic homeosta-
sis and insulin sensitivity via AMPK, stimulates AMPK in 
HEK293 cells, and elevates 5-aminoimidazole-4-carboxa-
mide ribonucleotide levels. Lowering this AMPK stimula-
tion by siRNA or chemical compounds cancels the induced 
glucose-stimulated glycolytic response. In vivo MOTS-c 
injection markedly elevated insulin-stimulated glucose-
discarding rate and glucose disposal in clamp studies and 
a glucose tolerance test. Furthermore, MOTS‐c prohibits 
insulin resistance and high-fat diet (HFD)-stimulated obe-
sity in CD-1 mice and prohibited HFD-stimulated obesity 
independent of caloric intake in C57BL/6 J mice (Lee et al. 
2016).

More investigations on whether MDPs modify mito-
chondrial uncoupling will provide a greater understanding 
of the reasons for this elevation in oxygen-consuming rate. 
Because mitochondrial oxygen consuming is linked to ATP 
production, the elevation in energy production and its TCA 
cycle metabolites can improve mitochondrial metabolism. 
The circulating levels of MOTS-c decline with age, similar 
to HN (Lee et al. 2016), suggesting that they are possible 
aging organizers. As these peptides are derived from the 
mitochondrial genome, they are included in metabolism 
and apoptosis; however, there is some overlapping function. 
Clearly, each MDP also has a unique signaling signature 
resulting in an individual response. For instance, Kumagai 
et al. (2021) proposed that MOTS-c could be a possible 

therapeutic for insulin resistance-induced skeletal muscular 
atrophy as well as other muscle wasting phenotypes such 
as sarcopenia by lowering myostatin expression. MOTS-c 
impact on myostatin expression is mediated by the CK2-
PTEN-mTORC2-AKT-FOXO1 pathways. However, (Kong 
et al. 2021) found that MOTS-c alleviated the development 
of hyperglycemia and reduced islet-infiltrating immune cells 
by modulating TCR/mTOR complex 1 (mTORC1) signal-
ing. Future investigations are needed to determine these 
signaling pathways.

MOTS-c significantly suppressed RANKL-stimulated 
OC differentiation (Ming et al. 2016). Moreover, MOTS-
c can suppress OP via the AMPK-dependent suppression 
of osteoclastogenesis (Ming et al. 2016). Yan et al. (2019) 
have studied the influences of MOTS-c on bone metabo-
lism and immune cells, revealing in an ultra-high molecular 
weight polyethylene (UHMWPE) particle-stimulated oste-
olysis mouse model that MOTS-c treated inflammation and 
bone erosion. MOTS-c elevated the OPG/RANKL ratio in 
osteocytes, resulting in the suppression of osteoclastogenesis 
(Fig. 8). In primary bone marrow macrophages (BMMs), 
MOTS-c alleviated NF-κB and STAT1 phosphorylation 
stimulated by UHMWPE particles. Enhancing ROS pro-
duction or suppressing peroxisome proliferator-activated 
receptor γ (PPARγ) coactivator-1α (PGC-1α) by AMPK 
repression prevented these anti-inflammatory influences. 
Therefore, MOTS-c can suppress osteoclastogenesis by 
organizing osteocyte OPG/RANKL secretion and inhibit 

Fig. 8   The receptor activator 
of nuclear factor-kB ligand 
(RANKL) stimulates osteoclast 
differentiation pathways
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inflammation by limiting the STAT1 and NF-κB pathways. 
Furthermore, MOTS-c influences on NF-κB activation are 
dependent on the AMPK − PGC-1α − ROS axis, indicating 
its possible use for osteolysis. To understand the funda-
mental mechanism for the impact of MOTS-c on STAT1, 
Yan et al. (2019) studied the expression of its upstream pro-
teins, IFN-γ and JAK1, in macrophages. MOTS-c treatment 
resulted in a drop in JAK1 levels, as well as a considerable 
downregulation of IFN- mRNA and protein levels, implying 
that STAT1 suppression is linked to the effects of MOTS-c 
on IFN- and JAK1(Fig. 8).

Conclusion

OP remains a challenge for older adults in developed coun-
tries. MPPs such as HN, MOTS-c, and OBAP can enhance 
OB activity and build and remodel bones. These peptides 
hold promise for novel therapeutic candidates for OP treat-
ment. More investigations are needed to understand their 
mechanisms of action in OP and value for the treatment of 
other bone-related diseases.
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