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Abstract
Polyacrylamide (PAAm)-silica organic-inorganic hybrid membranes for carbon dioxide (CO2) separation were prepared via
in-situ polymerization. Formation of silica and PAAm via sol-gel method and in-situ polymerization was confirmed by IR
spectroscopy. Single gas permeances through the membranes were measured at 298, 373 and 423 K using CO2, He and N2.
The ideal separation factor (the ratio of the permeances) of CO2/N2 through the AAm10 membrane (starting solution
composition; tetraethoxysilane: methyltriethoxysilane: distilled water: hydrochloric acid: ethanol: acrylamide: dimethyl 2,2′-
azobis(isobutyrate)= 0.4: 0.6: 2: 0.01: 20: 1.0: 0.1 in molar ratio) was 25.4 at 298 K. This value was thirty times higher than
the theoretical Knudsen value (CO2/N2= 0.8). Binary gas permeation at 298 K was also investigated using a gas mixture of
50%CO2–50%N2. The ideal separation factor (the ratio of the permeances) of CO2/N2 through the membrane was 24.9. This
value was the same as the ideal separation factor of CO2/N2 calculated from the single gas measurement. Such a high CO2

selectivity in 50%CO2-50%N2 feed gas was also found even at high temperature for this membrane.
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Highlights
● Polyacrylamide-silica organic-inorganic hybrid membranes for carbon dioxide (CO2) separation were prepared via in-situ

polymerization.
● The effects of acrylamide (AAm) content on the gas permeances of CO2, He, N2 through the membranes were

investigated.
● AAm10 membrane (starting solution composition; tetraethoxysilane: methyltriethoxysilane: distilled water: hydrochloric

acid: ethanol: acrylamide: dimethyl 2,2′-azobis(isobutyrate)= 0.4:0.6:2:0.01:20:1.0:0.1 in molar ratio) exhibits the
highest CO2 selectivity, the ideal separation factor (the ratio of the permeances) of CO2/N2 was 25.4 at 298 K.

● AAm10 membrane exhibited high CO2 selectivity at 298 K for 50%CO2-50%N2 feed gas mixture, where the ideal
separation factor (the ratio of the permeances) of CO2/N2 was 24.9.

1 Introduction

Exponentially rising global emissions of greenhouse gases,
especially carbon dioxide (CO2), are the source of global
warming and climate change. A report from the Inter-
governmental Panel on Climate Change (IPCC) states that
atmospheric levels of CO2 will rise to about 450 ppm by the
years 2021~40 and global temperatures will rise by 1.5 °C
[1]. Increased amounts of CO2 are believed to be the main
reasons for increased surface temperatures, which result in
intense heat waves, droughts, temperature changes, sea
level rise, and glacier melting [2]. In recent years, agree-
ments, such as the Paris Agreement and the Kyoto Protocol,
have been signed to regulate and reduce CO2 emissions
around the world. Carbon dioxide Capture, Utilization and
Storage (CCUS) is being developed worldwide to regulate
and reduce CO2 emissions. Membrane separation is draw-
ing attention in the CO2 separation process in CCUS [3].

Compared to traditional adsorption methods, membrane
separation is a low energy process for the physical separa-
tion of CO2 because it does not involve the use of thermal
energy nor the need for phase transition. The application of
CO2 separation membranes ranges from biogas refining [4],
hydrogen production [5], natural gas refining [6, 7], CCUS
[3], and membrane separation has proven cost-efficient and
it has shown excellent environmental results. Existing CO2

separation membranes are the mixed matrix membranes
[8, 9], the metal organic framework membranes [10], the
carbon molecular sieve membranes [11, 12], the zeolite
membranes [13–15], the inorganic membranes [16, 17] and
the polymer membranes [18, 19].

Furthermore, a large variety of organic-inorganic hybrid
membranes for gas separation have been reported, such as
organic-inorganic hybrid membranes prepared from hydroxyl-
terminated polyether and 3-isocyanatopropyltriethoxysilane
for CO2 separation [20], organic-inorganic hybrid silica
membranes with controlled silica network size for hydrogen
(H2) separation [21], polyetheramine–polyhedral oligomeric
silsesquioxane organic-inorganic hybrid membranes for
CO2 separation [22], silica and novel functionalized silica-
based cellulose acetate hybrid membranes for nitrogen

(N2) separation [23], a hydrostable mesoporous γ-Al2O3

membrane modified with Si–C–H organic-inorganic hybrid
derived from polycarbosilane for H2 separation [24],
reduced graphene oxide/organosilica hybrid membrane for
H2 and CO2 separation [25]. For silica-polyacrylamide
(PAAm) hybrids, in literature, mesoporous hybrid silica-
PAAm aerogels and xerogels were prepared by sol-gel
method [26]. PAAm-based hydrogels containing 3-(tri-
methoxysilyl)propyl methacrylate and/or tetraethoxysilane
were synthesized by means of frontal polymerization using
ammonium persulfate as initiator, N,N′-methylene bisacry-
lamide as crosslinking agent and dimethyl sulfoxide as
solvent [27], and silica/PAAm nanocomposite as a steel
anticorrosive layer was prepared using dispersion radical
polymerization technique [28]. Silica-PAAm nanocompo-
site films for moisture separation were prepared by radical
polymerization using acrylamide, bis-acrylamide, aqueous
dispersion of spherical silica nanoparticles [29]. Organic/
inorganic hybrid composed of modified PAAm grafted
silica supported Pd nanoparticles for a catalyst was prepared
by reversible addition-fragmentation chain transfer poly-
merization [30], and highly hydrophilic organic/inorganic
composite hydrogels based on PAAm and silica were pre-
pared by in-situ polymerization using acrylamide and
sodium silicate in aqueous solution [31]. The reported
PAAm-silica hybrids and composites have been applied to
mesoporous aerogel, xerogel, hydrogel, anticorrosive layer,
films for moisture separation and catalysts.

However, there are no reports on the preparation of
PAAm-silica organic-inorganic hybrid membranes for CO2

separation and the investigation of CO2 permeation and
separation properties.

In this study, we report PAAm-silica organic-inorganic
hybrid membranes for CO2 separation prepared by in-situ
polymerization.

Amine compounds are well-known for CO2 absorption
ability and they have been used in CO2 absorption solution
of CO2 separation and recovery apparatus. In addition,
amino functional group is also known as a functional group
with CO2 affinity. It has thus been used as CO2 carrier in a
facilitated CO2 transport membrane [32]. However, it is
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difficult to control the CO2 affinity and to fix a large amount
of it in the membrane due to low solubility of polymer in
the coating solution. We propose sol-gel method and in-situ
polymerization using silicon alkoxide and acrylamide
monomer to solve these problems. PAAm is synthesized by
in-situ polymerization during sol-gel reaction of silicon
alkoxide, and is fixed in the silica network. To use in-situ
polymerization, it can introduce a large amount of PAAm in
the hybrid membrane because of higher solubility of
monomer in the coating solution than polymer. Based on
this concept, we have prepared a novel organic-inorganic
hybrid membrane for CO2 separation.

2 Experimental

PAAm-SiO2 organic-inorganic hybrid membranes for CO2

separation were prepared via in-situ polymerization. Sols
were composed of tetraethoxysilane (TEOS, Kanto
Chemical Co., Inc.), methyltriethoxysilane (MeTEOS, Shin-
Etsu Chemical Co., Ltd.), distilled water (H2O), hydro-
chloric acid (HCl, Kanto Chemical Co., Inc.), ethanol
(EtOH, Kanto Chemical Co., Inc.), acrylamide (AAm,
Tokyo Chemical Industry Co., Ltd.) and dimethyl 2,2′-
azobis(isobutyrate) (V-601, FUJIFILM Wako Pure Chemi-
cal Corporation) as radical polymerization initiator. Table 1
shows the starting solution composition of the prepared
membranes and sample names. Commercially available
reagent grade chemicals were used. AAm was added to a
mixture of EtOH, H2O and HCl at room temperature. After
stirring for 30 min, TEOS was introduced into the mixture
and the resulting mixture was stirred for 1 h. Then MeTEOS
was added to the mixture and stirring for 1 h. Afterwards,
V-601 was added to the mixture and it was stirred for
another 1 h at room temperature to obtain a homogeneous
sol. The prepared sol was clear and homogeneous.

The intermediate layer was prepared by dip coating
using a commercial silica colloid, Snowtex O (particle size
of 10–20 nm, Nissan Chemical Industries., Ltd). The
compositions of silica colloid sols for dip-coating were
Snowtex O: EtOH= 1:10 (Sol A) and 1:15 (Sol B) in mass
ratio. Porous alumina tubes (Iwao Jiki Kogyo Co., Ltd.)
with a mean pore diameter of 0.1 μm, an outer diameter of
12 mm, an inner diameter of 9 mm and a length of 5 cm
were used as the supports. The supports were dipped in the
sol, before being withdrawn at a rate of 1 mm/s, and then
dried at room temperature. The dip coating process was
repeated twice, and then the membranes were heated to
873 K at a rate of 2 K/min, and maintained at the maximum
temperature for 2 h, before being cooled down to room
temperature at the rate of 2 K/min. These coating and
heating procedures were repeated twice (Sol A at first and
then Sol B) following the same protocol.

The membranes prepared by this process were then used
as a support for the preparation of organic-inorganic hybrid
membranes for CO2 separation. The supports were dipped
in the sol as shown in Table 1, and withdrawn at a rate of
1 mm/s, and then dried at 338 K for 1 h. After repeating the
dip coating procedure twice, the membranes were heated at
423 K for 2 h in the air with a heating and cooling rate of
0.5 K/min. These dip coating and heating procedures were
repeated twice in a similar manner to obtain the membranes.

After drying at 373 K in a vacuum oven, single gas
permeance through the membranes were measured at
298 K (room temperature) 373 K and 423 K using CO2, He
and N2 with the same procedure as described previously
[33]. One end of the tubular membrane was sealed, and the
other was connected to a Pyrex glass tube with epoxy resin.
The membrane modules were supported in a gas flow cell.
Pressure differences of the gases through the membranes
were kept at 1 atm (1.013 × 105Pa) and the permeance
measured using a mass flow meter (SEF-E40, HORIBA
STEC, Co., Ltd.). The permeances were measured in the
order of N2, He, and CO2 at constant temperature. The
permeance measurements were done first at 298 K, then at
373 K and 423 K, and finally at 298 K, confirming mem-
brane damage and reproducibility of the permeances. The
final measurement at 298 K showed that the permeance
was about the same as the permeance at the first 298 K, and
this indicates that the high temperature measurement (at
423 K) did not damage the membrane. The single gas
permeance was tested on three membranes and all error
bars represent the average error of the three membranes
prepared under the same conditions. The permeance was
calculated by the flow rate, the membrane area, the pres-
sure difference (1 GPU= 3.35 × 10−10 mol•m−2•s−1•Pa−1).
The ideal separation factor of CO2/N2 was calculated using
the ratio of the CO2 permeance to N2 permeance.

To evaluate the CO2 separation characteristics of the
membrane, binary gas separation of the membrane was
measured at 298 K using a gas mixture of 50%CO2-50%N2

as feed gas. The experimental apparatus was the same as
described previously [33]. A membrane module prepared
using the same procedure as described above was supported
in a gas flow cell into which a gas mixture of 50%CO2-50%

Table 1 Sample name and starting solution composition

Sample Starting solution composition (molar ratio)

TEOS MeTEOS H2O HCl EtOH AAm V-601

AAm05 0.4 0.6 2 0.01 20 0.5 0.05

AAm10 1.0 0.10

AAm15 1.5 0.15

AAm20 2.0 0.20
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N2 was applied. The pressure of the feed gas was kept at
2 atm (2.026 × 105Pa). The gas compositions of the feed
and the permeate gas were analyzed by gas chromatograph
(GC-8A, Shimadzu Corporation) in combination with a
thermal conductivity detector equipped with a column of
Sunpak-A (column temperature of 333 K). The ideal
separation factor of CO2/N2 was calculated from mole
fraction of CO2 in the feed and the permeate gas using the
following equation [34].

α ¼ yA
1� yA

� 1� xA �Φ 1� xAð Þ
xA �ΦyA

ð1Þ

Φ ¼ γ þ θ � γθ ð2Þ

γ ¼ Pl

Ph
ð3Þ

θ ¼ Fp

Ff
ð4Þ

where, xA denotes the mole fraction of CO2 in feed gas, yA
represents the mole fraction of CO2 in permeate gas, Φ is
the operating factor, γ the operating pressure ratio, θ denotes
the cut, Pl represents the downstream pressure, Ph denotes
upstream pressure, Fp represents flux of permeate, Ff is the
flux of the feed.

3 Results and discussion

Single gas permeance for CO2, He, N2 through the mem-
branes were measured at 298 K (room temperature) for AAm
content are shown in Fig. 1. Since the errors of the per-
meances were not so large, the prepared membranes were
considered homogeneous. The CO2, He and N2 permeance
of AAm10 membrane was the lowest value. The N2 per-
meance of the membranes decreased to AAm10 and then
increased as the content of AAm increased. This is probably
because PAAm was well dispersed in the silica network of
AAm10 allowing it to develop a homogeneous dense
structure without aggregation of PAAm and silica. There-
fore, the lowest N2 permeance was observed. The fact that
N2 adsorption was not observed in the N2 adsorption mea-
surement at 77 K is considered to be one of the evidences
that AAm10 membrane has a dense structure. The N2 per-
meance increase of AAm15 and AAm20 membrane thought
to be due to defects in the membranes caused by aggregation
of PAAm and silica. The defects were so small in size that
they cannot be detected by SEM observation. It is difficult to
specify the defects. The defects are expected to molecular
spaces (like free volumes or pores) caused by imperfection
of organic-inorganic hybridization (aggregates of PAAm or
silica). For AAm10 membrane, the ideal separation factor of

CO2/N2 was 25.4, and the CO2 permeance was 6.0 GPU
(2.0 × 10−9 mol•m•m−2•s−1•Pa−1). Table 2 shows gas per-
meation data of a porous alumina tube and a porous alumina
tube with intermediate layer (support). The CO2 permeance
through a porous alumina tube and through a porous alu-
mina tube with intermediate layer (support) were 87,000
GPU (2.9 × 10−5 mol•m•m−2•s−1•Pa−1) and 2100 GPU
(7.2 × 10−7 mol•m•m−2•s−1•Pa−1), respectively. By intro-
ducing the intermediate layer, the CO2 permeance was
reduced to ~1/40, and it can be seen that the intermediate
layer has the resistance of gas permeance. From the ideal
separation factor of CO2/N2 and He/N2, the gas permeation
through the support was predominantly governed by
Knudsen flow. In addition, the CO2 permeance through
AAm10 membrane was ~350 times lower than that of the
support, indicating that the resistance of gas permeance is
very high. This higher resistance of gas permeation is con-
sidered to be due to a dense structure of AAm10 membrane
and the apparent thickness of the membrane thickened by

Fig. 1 Change in the permeances of CO2, He, N2 through the mem-
branes at 298 K on AAm content

Table 2 Gas permeation data of porous alumina tube and porous
alumina tube with intermediate layer

Sample Permeance (mol•m−2•s−1•Pa−1) Ideal
separation factor

N2 He CO2 He/N2 CO2/N2

Porous
alumina tube

2.0 × 10−5 3.0 × 10−5 2.9 × 10−5 1.5 1.4

Porous alumina
tube with
intermediate
layer (support)

8.5 × 10−7 2.1 × 10−6 7.2 × 10−7 2.5 0.9
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penetration of the sol (precursor solution) into the pores of
the support. The CO2/N2 selectivity of AAm10 membrane is
~30 times the theoretical Knudsen value (CO2/N2= 0.8) and
2.5 times higher than the reported hybrid poly-
dimethylsiloxane membranes [35]. However, the CO2 per-
meance is ~4.5 times lower than that of the reported hybrid
membrane (27.7 GPU) [35]. This high selectivity for CO2 is
thought to be due to the affinity of amino functional group
for CO2 in PAAm. The CO2 permeance through AAm10
membrane was higher than that of He and N2 as shown in
Fig. 1. It is thus concluded that AAm10 membrane have a
strong affinity for CO2, which preferentially permeated
through the membrane by the facilitated transport or
solution-diffusion mechanisms.

Recently, Hasegawa et al. reported high-silica CHA-type
zeolite membrane for CO2 separation. The CO2/N2

selectivity of the membrane was ~10, and the CO2 per-
meance through the membrane was ~1500 GPU (~5 × 10−7

mol m−2 s−1 Pa−1) at 303 K on single gas measurement
[14]. For polymer membranes, the CO2/N2 selectivity and
the CO2 permeance of poly[bis(2-(2-methoxyethoxy)
ethoxy) phosphazene] membrane was 62.5 and 2.5 GPU
(8.4 × 10−10 mol m−2 s−1 Pa−1), respectively [36, 37]. And
those of cardo polymer (polyamide) membrane was 37 and
0.25 GPU (8.5 × 10−11 mol m−2 s−1 Pa−1) [38]. Compared
to AAm10 membrane, zeolite membrane exhibits high CO2

permeance and low CO2/N2 selectivity due to exitance of
the pores, and polymer membranes achieve high selectivity
and low permeance due to dense (non-porous) membrane.
Although AAm10 membrane was dense membrane, it
showed relatively high selectivity and high CO2 permeance.

The structures of the membranes were investigated by a
Fourier transform infrared spectrometer (FT/IR-4100,
JASCO Corporation). Figure 2 indicates IR spectra of
AAm10 (with the best CO2 selectivity), PAAm and AAm,
from 4000 to 400 cm−1. IR spectrum of AAm10 showed the
characteristic bands related to Si-O-Si bond (~1220 and
~1080 cm−1) and CH3-Si (~1300 cm

−1), which confirm the
sol-gel reaction of TEOS and MeTEOS [39]. Other char-
acteristic bands originating from PAAm were also observed
in AAm10. PAAm had two absorption bands at around
1700–1600 cm−1, which correspond to the C=O stretching
and NH2 bending vibration [40]. The band at ~1660 cm−1 is
due to the stretching band of C=O. Compared to that of Am,
these bands in AAm10 and PAAm were shifted to lower
wavenumbers indicating the existence of hydrogen bonding
between C=O and Si-OH or NH2 of PAAm [41]. Only AAm
indicated other absorption bands from 2800 to 1900 cm−1.
The absorption at ~1920 cm−1 is due to overtone band of
H2C=C bending vibration, at ~2430 cm−1 corresponds to
combination bands of NH2 bending vibration and HRC=C
bending vibrations, at ~2780 cm−1 is related to combination
bands of C=C stretching vibration and NH2 bending

vibration and at ~2800 cm−1 is due to C-H stretching
vibration [42]. Therefore, in AAm10, almost all parts of
AAm were thought to exist as polymerized PAAm via in-situ
polymerization. From the results, it was suggested that
AAm10 had silica network and PAAm structure had formed
from the sol-gel reaction and the in-situ polymerization.

SEM photograph of the outer surface (coating side) mor-
phology of (a) the support (a porous alumina tube with the
intermediate layer) and (b) the AAm10 membrane is shown in
Fig. 3. The support surface was covered by the hybrid layer
and no cracks were observed. However, there was little dif-
ference in surface morphology between (a) the support and (b)
the AAm10 membrane. This suggests that the interface
between the membrane and the support may be vague due to
the membrane precursor solution penetration into the pores of
the support. And the result supports the conclusion that the gas
permeance through this membrane exhibited the lowest value.

Figure 4 indicates the permeances of CO2, He and N2

through the AAm10 membrane at 298, 373 and 423 K. The
CO2 and He permeances were 10−9 to 10−8, and the N2

permeances through the membrane were 10−11 to 10−9

mol•m−2•s−1•Pa−1. The permeances through the membrane
almost increased with the increase in temperature. N2 per-
meance increased dramatically (almost 10 times) from
298 K to 373 K, but showed approximately the same value
at 423 K. These permeances were reproducible. The reason
of this behavior is not clear at this time. However, the N2

permeance is thought to be governed by solution-diffusion
mechanism [43], and the diffusion coefficient of N2 in the
membrane were high and the solubility coefficient of N2

were low due to the high temperature. Only He permeance
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Fig. 2 IR spectra of the AAm10, AAm and PAAm
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at 423 K was decreased due to lower solubility for He at
high temperature. It was thus concluded that CO2 permea-
tion in this case is predominantly governed by facilitated
transport mechanism (with fixed carriers) [44] and the
permeation of other gases (He and N2) is governed by
solution-diffusion mechanism [43]. The AAm10 membrane
are thought to be homogenously dispersed with amino
functional group (-NH2) of PAAm. The membrane thus has
a dense structure with -NH2 (PAAm), in which the facili-
tated transport mechanism (with fixed carriers) operates.
Therefore, the CO2 permeances through the membrane are
higher than the N2 permeances.

Binary gas separation of AAm10 membrane was mea-
sured at 298 K using a gas mixture of 50%CO2-50%N2 as

feed gas to confirm the CO2 separation property. Time
dependence of the CO2, N2 mole fraction in the permeate
gas is shown in Fig. 5. The N2 mol fraction in the permeate
gas was low (~0.04) during measuring time. In contrast,
CO2 mol fraction in the permeate gas was high (~0.96) and
nearly constant for the duration of the experiment up to 5 h,
implying that the activity of -NH2 as CO2 carriers is stable
in this membrane. One of the main disadvantages of the
polymeric membrane is plasticization when being used in
high-pressure and high concentration of CO2 as feed gas
[45]. However, the prepared membrane (AAm10) exhibited
high CO2 selectivity even at a pressure as high as 2 atm and
at a feed gas CO2 concentration as high as 100%, which
may be due to its mechanical toughness of the organic-
inorganic hybrid structure. The ideal separation factor of
CO2/N2 was calculated from mole fraction of CO2 in the
feed gas and the permeate gas. CO2 in the gas mixture
(50%) was concentrated to more than 95% by using
AAm10 membrane at 298 K. The ideal separation factor of
CO2/N2 through the membrane was 24.9. This value was
almost the same as the CO2/N2 selectivity factor calculated
from the single gas measurement (CO2/N2= 25.4). From
this result, the AAm10 membrane also indicated high CO2

selectivity in binary gas separation.

4 Conclusion

The PAAm-silica organic-inorganic hybrid membranes for
CO2 separation were prepared by in-situ polymerization.
The CO2, He and N2 permeances through the hybrid

Fig. 4 The permeances of CO2, He and N2 through the AAm10
membrane at 298, 373 and 423 K

Fig. 3 SEM photograph of the outer surface (coating side) morphology
of (a) the support and (b) the AAm10 membrane
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membranes were evaluated as the function of acrylamide
(AAm) content. The ideal separation factor of CO2/N2 for
AAm10 (starting solution composition; TEOS: MeTEOS:
H2O:HCl:EtOH: AAm: V-601= 0.4:0.6:2:0.01:20:1.0:0.1
in molar ratio) membrane was the highest value (CO2/
N2= 25.4). This membrane presents CO2-selectivity even at
relatively high temperature as well as at 298 K for a gas
mixture of 50%CO2-50%CO2 (the ideal separation factor of
CO2/N2= 24.9 at 298 K).
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