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Abstract
Silicic acid components from bioactive glass activate osteoblasts gene for bone generation. Many studies have been reported
on osteoblast compatibility and bone regeneration using composites and hybrids, including silica or siloxane units. We
previously synthesized chitosan−siloxane hybrids via a sol-gel method and observed bone and nerve regeneration. However,
it is not clear the structure of molecules involving silicon atoms that has a more effective role in the cell activity and their
mechanisms of cell activation. In this study, we prepared hybrid materials from chitosan and different types of alkoxysilane,
3-glycidoxypropyltrimethoxysilane (GPTMS), 3-glycidoxypropyldimethoxymethylsilane (GPDMS), and tetraethoxysilane
(TEOS), and investigated the structures of the silicon-containing species dissolved from each hybrid and their effect on the
proliferation of nerve cells. The silicon-containing species in the extraction were mainly 100–600 molecular weight,
indicating they were chitin/chitosan units and monomeric hydrolyzed GPTMS, GPDMS, and TEOS. The nerve cell
proliferation was inhibited by the chitosan–GPTMS and GPDMS hybrid extractions. The silicon-containing species were not
taken up by the cells. The silicon-containing species dissolved from the hybrids were adsorbed to the cells or they inactivated
biomolecules in the culture medium, suppressing cell proliferation.
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Highlights
● The silicon-containing species dissolved from chitosan–siloxane hybrid were corresponding to hydrolyzed GPTMS,

GPDMS, and TEOS with chitosan oligomers.
● Nerve cells did not uptake the silicon-containing species.
● The silicon-containing species derived from Chitosan–GPTMS and –GPDMS hybrids inhibited nerve cell proliferation.
● The silicon-containing species derive the hybrids adsorbed to the cell surface or inactivated biomolecules in the medium.

1 Introduction

Silicon is an essential trace element in the human body and
is especially in connective tissues as well as skin, bone,
tendon, liver, heart, and muscles [1]. Carlisle revealed that
silicon is required for ossification in rats and chicks [2].
Hench et al. reported that the silicate component derived
from bioglass activates the genes of osteoblast cells and
promotes bone regeneration [3, 4] according to the con-
centration of Si(IV). For example, human osteoblast cell
differentiation was promoted when the concentration of
silicic acid eluted from Bioglass® 45S5 was 0.59 mM [3].
When 8.19 mM of silicon was eluted from foamed 57 S
bioactive glass, 50% apoptosis occurred in human osteo-
blast cells [4]. In addition, Shie et al. [5] found that the
4 mM silicon leached from calcium silicate cement
increased MG63 cell proliferation, differentiation, and
mineralization, while 6 mM suppressed proliferation and
differentiation, and increased the number of apoptotic cells.
Orthosilicic acid is believed to be taken up by bone cells
through sodium−bicarbonate ion channels [6], and
mesenchymal stem cells can take up silica nanoparticles
(50–120 nm) by endocytosis [7]. However, there is little
research regarding the effect of silicon on other cells. For
example, human skin fibroblasts have high cell viability
when the concentration of orthosilicic acid derived from
mesoporous silica nanoparticles and soluble silicic acid is
100 µM [8]. Quignard et al. determined that silica nano-
particles (particle size 12–500 nm) at concentrations of
10–50 µg/mL were less likely to be taken up by human
colon cancer cells when the particle size is larger [9].
Bonazza et al. reported that endothelial cell proliferation was
enhanced, and osteoblasts and fibroblasts increased their
expression of collagen Type I in the medium containing
0.5 mM or 1 mM sodium orthosilicic acid [10]. Recently,
our group focused on the effect of the silicon structures on
cells. Shirosaki et al. prepared the chitosan−siloxane hybrids
with 3-glycidoxypropyltrimethoxysilane (GPTMS) and tet-
raethoxysilane (TEOS) [11]. The osteoblastic cell prolifera-
tion was different between the hybrid, even with the same Si
(IV) concentration released into the culture medium, which
suggests that the differences in molecular structure of the
species involving silicon atoms or the molecular weight of
the silicon-containing species dissolved from the hybrids in
the culture medium also affect the behavior.

The basic units of the peripheral nerve are the nerve fiber
and Schwann cells. The peripheral nerve comprises a myelin
sheath and Schwann sheath around the axon extending from
the nerve cell in the spinal cord and spinal nerves [12]. Per-
ipheral nerves may be severed in cases of trauma such as
traffic accidents, disasters, or common surgeries. Although
200,000 nerve regeneration surgeries are performed annually
worldwide, only 25%, 3%, and 10% of them restore motor
function, sensation, and axons to the target organ, respectively
[13]. In addition, the quality of life of patients with peripheral
nerve injuries is diminished [14]. Therefore, nerve repair is
one of the major challenges faced by clinicians [15].
Chitosan-based materials are used as nerve conduits because
of their mechanical property and slow biodegradability.
Basically, the chitosan-based nerve conduits are modified
with other biodegradable polymers to improve the hydro-
philicity and the elasticity, etc. [16–18]. In our laboratory, we
also applied the chitosan–GPTMS hybrids to nerve regen-
eration [19–22]. Chitosan is a biopolymer that is non-toxic,
biocompatible, and biodegradable. The degradation rate,
mechanical properties, and biocompatibility can be modified
by the introduction of the siloxane network. When
chitosan–GPTMS hybrids were introduced into sciatic nerve
defects in rats, the porous hybrid promoted the recovery of
nerve function and improved the recovery rate of sensory and
motor functions more than the solid hybrid [19]. Unfortu-
nately, we have not explained yet why the results are different
between the porous and the solid hybrids. Moreover, the
effect of the dissolved silicon-containing species on the nerve
cells is still unclear. In this study, we focused on why the solid
membranes did not improve the nerve regeneration with
respect to the molecular structures of the silicon-containing
species dissolved from the hybrids in the medium. GPTMS,
TEOS, and 3-glycidoxypropyl dimethoxymethylsilane
(GPDMS) were used to prepare the solid membranes (Fig. 1).

Fig. 1 The structure of alkoxysilane. a TEOS, (b) GPTMS,
(c) GPDMS
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The effect of the molecular structures of the dissolved silicon-
containing species on nerve cells were examined.

2 Experimental section

2.1 Preparation of the chitosan–siloxane hybrid
membranes

Chitosan–siloxane hybrids were prepared according to a
previous report [11]. Chitosan (high molecular weight,
310,000–371,000, DA > 75%, Sigma-Aldrich®, St. Louis,
MO, USA) was dissolved in an aqueous 0.25M acetic acid
(HOAc) solution to yield a concentration of 2.0 mass%
using a planetary centrifuge (ARE-310, Thinky, Tokyo,
Japan) at 2000 rpm (Program: MIX 5min−DEFOAM
3min) ×3, MIX 5min). An appropriate volume of TEOS
(Alfa Aesar, Ward Hill, MA, USA), GPDMS (Shinetsu
Chemical Industry, Tokyo, Japan), and GPTMS (Alfa
Aesar) were hydrolyzed by adding 10mL of a 0.25M
HOAc solution and stirred at room temperature for 6, 5, and
1 h, respectively; the solutions were then added to the chit-
osan solution. The resulting solutions were mixed by a
planetary centrifuge with the same program used for the
chitosan solutions. The solutions were poured into poly-
propylene containers and stood overnight at room tempera-
ture. The solutions were then incubated at 60 °C for gelation
in a sealed container. And then the gels were dried at 60 °C
to yield the hybrid membranes with the lid open. The hybrid
membranes were soaked in a 0.2M sodium hydroxide
aqueous solution to neutralize the remaining acetic acid,
washed with distilled water, and dried at 60 °C for 3 h. Table
1 indicates the starting compositions of the precursor solu-
tions for the hybrid membranes and the sample name. The
hybrid membranes were cut into a circle (diameter 6 mm)
and sterilized by ethylene oxide gas (20% CAPOX, 45 °C,
50% humidity, Steri-Tech Inc., Saitama, Japan).

2.2 Structural characterization of the hybrid
membranes

Solid-state NMR measurements were performed using an
Agilent DD2 500MHz NMR spectrometer (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA) operating at 11.7
Tesla. A zirconia rotor with a diameter of 3.2 mm was used

with an Agilent HXY T3 MAS probe. The rotor spinning
frequency for magic angle spinning (MAS) was 15 kHz.
1H→ 13C cross-polarization (CP)-MAS NMR experiments
were operated at resonance frequencies of 499.76MHz and
125.66MHz for 1H and 13C, respectively, using a 2.3 μs
pulse length (π/2-pulse angle) for 1H, 500 µs contact time,
and 10 s recycle delays. The signals from 8360 to 25,630
pulses were accumulated for each film, with adamantane
(C10H16) as the external reference (38.52 ppm vs. 0 ppm
TMS). 1H→ 29Si CP-MAS NMR experiments were per-
formed at resonance frequencies of 499.76MHz and
99.28MHz for 1H and 29Si, respectively, using a 3.6 μs
pulse length (π/2-pulse angle) for 1H, 5 ms contact time, and
5 s recycle delays. The signals from 20,230 to 88,005 pulses
were accumulated for each film, with polydimethylsilane
(PDMS) as the external reference (−34.44 ppm vs. 0
ppm TMS).

2.3 Preparation and characterization of the hybrid
membranes extractions

Circle membranes were soaked in 0.1 mL of ultrapure water
per membrane (Life Technologies, Carlsbad, CA, USA) at
37 °C for 1 week. Extractions were filtrated using a syringe
filter (pore size 0.22 µm, TPP, Trasadingen, Schaffhausen,
Switzerland). The amount of Si(IV) released into the
extractions was measured by inductively coupled plasma
emission spectrometry (ICP, ICPS-8000, Shimazu Cor-
poration, Kyoto, Japan). The molecular weight of the spe-
cies released into the extractions was determined by
electron spray ionization time of flight mass spectrometry
(TOF-MS, JMS-T100LP, JEOL, Tokyo, Japan). The
extractions were analyzed in negative mode under the fol-
lowing experimental conditions: the desolvating chamber
and orifice temperatures were 250 °C and 80 °C, respec-
tively; the voltages of the orifices and ion guide RF were
85 V, 25 V, and 1 kV, respectively. Spectra were collected
throughout an m/z range from 0 to 1000.

2.4 Biological assessment

2.4.1 Preparation of medium containing Si(IV) and cell
culture

The extractions were diluted with ultrapure distilled water
(Life Technologies) to 5 µM of silicon concentration and
sterilized using a syringe filter (pore size 0.22 µm, TPP).
Dulbecco’s modified Eagle’s medium (D-MEM) and
sodium hydrogen carbonate were added to the extractions.
RT4-D6P2T rat Schwann cells were cultured in the medium
with 10% fetal bovine serum (FBS), 2 mM L-glutamine,
and 100 U/mL penicillin-streptomycin for 1, 3, and 5 days
for cell proliferation and morphology observations.

Table 1 Starting composition of chitosan–siloxane hybrid (molar ratio)

Chitosan TEOS GPTMS GPDMS HOAc

ChT05 1 0.5 – – 3.5

ChG05 1 – 0.5 – 3.5

ChD05 1 – – 0.5 3.5
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2.4.2 Cell proliferation

MTT assay was used to estimate the cell viability and
proliferation [23]. After culture, the cells were incubated
with 5 mg/mL MTT at 37 °C for 4 h. After incubation, the
culture medium was removed and the formazan salts were
dissolved with dimethyl sulfoxide. The absorbance was
measured at 560 nm.

2.4.3 Cell morphology

After culture, the medium was removed, the cells on the
plates were rinsed with PBS (Thermo Fisher Scientific,
Waltham, MA, USA) and fixed by a 4% paraformaldehyde
solution (FUJIFILM Wako Pure Chemical Corporation,
Osaka, Japan). Cells were washed with PBS and covered
with a 0.1% Triton X-100/PBS solution and then washed
twice with a 0.05% Tween® 20/PBS solution (washing
solution). The actin filament was stained with Phalloidin
Alexa Fluor® 488 (LONZA, Basel, Basel-Stadt, Switzer-
land) and the surface was washed twice with the washing
solution. The nuclei were stained by 4′, 6-diamino-2-
phenylindol (DAPI, Invitrogen, Waltham, MA, USA) and
washed twice with the washing solution. The cell
morphologies were observed by an inverted fluorescence
microscope (IX73, filter DAPI: U-FUNA, Phalloidin: U-
FBW, OLYMPUS, Tokyo, Japan) and imaged.

2.4.4 Nerve cell uptake of Si(IV) released from hybrids

The medium was collected after 5 days of culture. The
number of cells were counted and dissolved by 1M nitric
acid for cell lysis. The collected medium and cell lysis were

filtered through a 0.2 µm filter, and their Si(IV) concentra-
tion was measured by ICP spectrometry.

2.5 Statistical analysis

The viability results were analyzed using one-way analysis
of variance (ANOVA) followed by Tukey’s test with a
significance level of p < 0.01.

3 Results and discussion

3.1 Characterization of hybrids and extractions

Figure 2 shows the 13C CP-MAS NMR spectra of the
hybrids before and after soaking in ultrapure water. Chit-
osan matrix signals appeared at 104.0 (C1), 82.6 (C4), 75.6
(C3 and C5), 61.4 (C6), 57.1 (C2), 174.2 (N-acetyl C=O
signal), and 23.9 (N-acetyl-methyl CH3 signal) ppm in all
samples [24, 25]. Cx denote the carbon atoms in Fig. 2b–d.
GPTMS-derived signals appeared at 9.9 (Cf), 23.9 (Ce),
61.4 (Cb), 75.6 (Cc and Cd), and 82.6 (Ca) ppm [24].
GPDMS-derived signals appeared at 0.2 (Cg), 13.5 (Cf),
23.9 (Ce), 61.4 (Cb), 75.6 (Cc and Cd), and 82.6 (Ca) ppm
[25]. The carbon of methoxy and ethoxy groups were not
detected in the spectra of any sample, indicating that the
alkoxy groups were completely hydrolyzed. In addition, the
carbon of the epoxy group of GPTMS and GPDMS was not
detected 42.9 and 49.8 ppm [26] in the spectra of ChG05
and ChD05 (Table 1), which means the epoxy group reacted
to the amino group of chitosan or opened. The peak of C2

changes because of the reaction between the epoxy group
and amino group [27]. The intensities of C2/C1 in the

Fig. 2 a 13C CP-MAS NMR
spectra of the hybrids before and
after soaking in ultrapure water
at 37 °C for 1-week and the
estimated molecular structure of
(b) ChG05, (c) ChD05, and
(d) ChT05
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ChG05 and ChD05 spectra before soaking were 0.52 and
0.46. After soaking, the intensities of C2/C1 in the ChG05
and ChD05 spectra were 0.42 and 0.54, and nearly the same
before and after immersion in water. Therefore, the bonding
between epoxy groups of the alkoxysilane and amino
groups of chitosan did not break and the degradation of the
hybrids in water occurred by hydrolysis of the glycosidic
bond.

Figure 3 shows the 29Si CP-MAS NMR spectra
demonstrating the change of the methoxysilane or ethox-
ysilane groups of GPTMS, GPDMS, and TEOS in the

hybrids before and after soaking in ultrapure water. The
profiles were deconvoluted into some component peaks due
to T0, T1, T2, and T3 siloxane units in ChG05, D0, D1, and
D2 in ChD05, and Q2, Q3, and Q4 in ChT05 [28–30]. T0, T1,
T2, and T3 denoted R–Si (–OCH3, OH)3, R–Si(–OSi)
(OCH3, OH)2, R–Si(–OSi)2 (OCH3, OH), and R−Si(–OSi)3
(R is the organic skeleton derived from GPTMS), D0, D1,
and D2 denote R−Si(–OCH3, OH)2 (–CH3), R−Si(–OSi)
(OCH3, OH) (–CH3), and R−Si(–OSi)2 (–CH3) (R is the
organic skeleton derived from GPDMS), and Q2, Q3, and Q4

denote Si(–OSi)2 (OH)2, Si(–OSi)3 (OH), Si(–OSi)4,
respectively.

Tables 2 and 3 show the chemical shift (δ), full width at
half-maximum (FWHM), relative peak area (%) of each
unit, and the number of Si–O–Si bridging bonds per Si atom
(Nbo/Si). Nbo/Si was derived by condensation of the Si–OH
or Si–OCH3 groups at the silane end of a GPTMS or
GPDMS molecule. and it was calculated by Eqs. 1 and 2
according to a simple valence theory [28].

Nbo

Si
¼ fraction of T1

� ��1þ fraction of T2
� �� 2þ fraction of T3

� �

ð1Þ

Nbo

Si
¼ fraction of D1

� �� 1þ fraction of D2
� �� 2 ð2Þ

The Nbo/Si of both ChG05 and ChD05 decreased from
1.67 to 1.49, and from 1.31 to 1.05 during soaking,
respectively, which indicates the siloxane bonds were
hydrolyzed in water. In the case of ChT05, Q4, Q3, and Q2

Fig. 3 29Si CP-MAS NMR spectra of the hybrids before and after
soaking in ultrapure water at 37 °C for 1 week

Table 2 29Si chemical shift (δ (ppm)), full width at half maximum (FWHM (ppm)), and relative area (I (%)) for T unit derived from the 29Si CP-
MAS NMR spectra of ChG05

T0 T1 T2 T3 Nbo/Si

δa FWHMb Ic δa FWHMb Ic δa FWHMb Ic δa FWHMb Ic

ChG05 −39.58 3.2 13.9 −48.35 3.4 25.8 −57.42 5.7 39.5 −66.16 5.2 20.83 1.67

ChG05_soaked −39.40 2.5 12.0 −48.76 4.5 30.8 −58.02 6.6 50.4 −65.49 1.1 5.87 1.49

aEstimated error of chemical shifts < ±0.05 ppm
bEstimated error of FWHM< ±0.1 ppm
cEstimated error of relative peak area < ±0.5%

Table 3 29Si Chemical shift (δ
(ppm)), full width at half
maximum (FWHM (ppm)), and
relative area (I (%)) for D unit
derived from the 29Si CP-MAS
NMR spectra of ChD05

D0 D1 D2 Nbo/Si

δa FWHMb Ic δa FWHMb Ic δa FWHMb Ic

ChD05 −4.22 4.7 15.0 −12.81 5.3 38.8 −21.32 4.7 46.2 1.31

ChD05_soaked −3.58 4.2 25.5 −12.08 4.6 43.9 −20.46 5.3 30.6 1.05

aEstimated error of chemical shifts < ±0.04 ppm
bEstimated error of FWHM< ±0.1 ppm
cEstimated error of relative peak area < ±0.3%
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were detected before soaking in water and Q2 was not
detected after soaking. The silicon-containing species
derived from ChT05 was eluted by the hydrolysis of the
Si–O–Si bonding.

Figure 4 shows the ESI TOF-MS spectra of extractions
from Ch (a), ChG05 (b), ChD05 (c), and ChT05 (d), and the
aqueous solution of D-glucosamine (e) and N-acetyl-D-
glucosamine (f). The structures estimated from the MS
spectra are shown in Fig. 5. ESI TOF-MS is excellent for
detecting molecules smaller than 550 Da, but not for
molecules larger than 4000 Da [31]. The molecular weights
of the species in the extractions were 100–400, regardless of
the hybrids. The peaks at m/z 168.99 and 212.98 are cor-
responding to one glucosamine unit and one acetyl gluco-
samine unit by hydrolysis of chitosan chains. The peak at m/
z 175.05 was detected in ChG05 and ChD05 extractions and
the peaks at m/z 69.00 and 96.99 were detected in ChT05.
These species were attributed to the monomeric compound
from the hydrolyzed alkoxysilane. In addition, oligomers of
hydrolyzed alkoxysilane were detected in each extraction.
The peaks at m/z 399.23 and 399.22 in ChG05 and ChD05
were dimers of hydrolyzed GPTMS or GPDMS, and the
peak at m/z 335.01 was a tetramer of orthosilicate. In the
spectrum of ChG05, a peak at m/z 373.24 was detected and

assigned to one unit of chitosan bound to hydrolyzed
GPTMS, which suggests that most of the released species
were one unit of chitosan or chitin with a monomeric
compound from hydrolyzed GPTMS by hydrolysis of the
glycosidic bond of chitosan chains. However, 29Si CP-MAS
NMR showed that the T0 unit was in ChG05; the only
monomeric compound derived from GPTMS was also
eluted in the extraction of ChG05. The associated peaks
were a chitosan-mono-like compound in the TOF-MS
spectra of ChD05 and ChT05, suggesting that the amino
group of the chitosan interacts with the hydrolyzed GPDMS
and TEOS without strong bonding.

3.2 Cell proliferation and morphology with the
silicon-containing species

Figure 6 shows the cell proliferation of RT4 nerve cells
cultured in the medium with each extraction or normal
medium. From 1 day to 3 days, the cell viability and pro-
liferation were the same for all groups, which means the
dissolved silicon-containing species in the medium do not
affect the cell adhesion to early cell division. From 3 days to
5 days, the cell proliferation was suppressed by ChG05 and
ChD05, while ChT05 did not suppress proliferation.

Fig. 4 ESI TOF-MS spectra of
the extraction and solution.
a Ch, (b) ChG05, (c) ChD05,
(d) ChT05, (e) D-glucosamine,
and (f) N-acetyl-D-glucosamine
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Figures 7, 8, and 9 show RT4 cell morphologies at 1, 3, and
5 days culture, respectively. All RT4 nerve cells showed
nearly the same morphologies with pseudopodia at 1 day
and 3 days. After 5 days of culture, the RT4 cells showed a
spindle-like shape in all cultures. In case of the osteoblast
cell, the proliferation and differentiation were suppressed
when the Si(IV) concentration in the medium was
6–8.19 mM [4, 5]. Compared with osteoblast cells, the
proliferation of nerve cells was extremely inhibited at lower
Si(IV) concentration, indicating that the effect of silicon
depends on the cell type. Alternatively, chitosan oligomers
with a polymerization degree of less than seven promote the
proliferation of Schwann cells [32].

In this study, chitosan-derived molecules were detected
in all extractions using TOF-MS; however, the proliferation

was not improved. Chitosan-derived molecules were
monomers; therefore, they did not impact the nerve cell
proliferation. Both ChG05 and ChD05 inhibited nerve cell
proliferation. The extraction of ChT05 contained the
monomer of orthosilicic acid; however, the ChG05 and
ChD05 extraction mainly contained monomeric species
with organic chains of GPTMS or GPDMS, and chitosan.
The organic chains bonded to silicon atoms impact only the
proliferation of nerve cells. Figures 10 and 11 show the
amount of intracellular Si(IV) and the Si(IV) concentration
in the supernatant medium at 5 days culture, respectively.
The amount of intracellular Si(IV) of ChD05 and ChT05
was the same as the control, with ChG05 having the least.
In the case of ChG05, the Si(IV) concentration did not
change from the initial concentration. Alternatively, in the

Fig. 5 Structure and the
molecular weight of the
dissolved product of (a, c)
ChG05, (b, d) ChD05, and (e)
ChT05 estimated from TOF-MS
spectrum
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case of ChD05 and ChT05, the Si(IV) concentration slightly
decreased.

Orthosilicate was taken up by osteoblast cells via
sodium–bicarbonate ion channels (0.3 nm), promoting cell
differentiation [6]. Obata et al. [33] reported that the Si(IV)
component released from siloxane-doped calcium carbonate
was not taken up by osteoblast cells at a concentration of 50
ppm. Alternatively, they reported that the Si(IV) component
eluted from Bioglass® 45S5 was taken up by osteoblast cells
at a concentration of 50 ppm. The species dissolved from

our hybrids are similar to those from the siloxane-doped
calcium carbonate and were not taken up by the nerve cells.
In addition, Shie et al. observed the taken up of Si(IV)
components in osteoblast cells by pinocytosis to form
intracellular vacuoles [5]. In our results, changes in the
amount of the intracellular Si(IV) and vacuoles were not
observed in the fluorescence images, suggesting that the
silicon-containing species were not taken up by the cells.
The concentration of Si(IV) in the supernatant medium after
incubation was nearly unchanged in ChG05, slightly
decreasing in ChD05 and ChT05 from the initial con-
centration. Therefore, the silicon-containing species adsorb
or desorb to the cell surface or the components such as
proteins in the culture medium. Figure 12 concludes our
assessment of the results. In the case of ChT05, the silicon-
containing species were monomers or oligomers derived
from TEOS and adsorbed to the cell surface; however, they
did not affect cell proliferation. The silicon-containing
species dissolved from ChD05 also adsorbed to the cell
surface, but inhibited the cell proliferation. The species
dissolved from ChG05 did not adsorb to the cell surface, but
inhibited the cell proliferation. Therefore, the species dis-
solved from ChG05 inactivate the components for cell
growth in the culture medium or disturb the ion exchange
near the ion channel because the intracellular Si(IV)
decreases. The inactivation of components is also possible
for ChD05, indicating that the organic chains bonded to
silicon atoms are involved in the adsorption to components
for nerve cell growth.

Fig. 7 Fluorescent image of RT4
cells cultured in the control,
ChG05, ChD05, and ChT05
medium at 1 day

Fig. 6 Cell proliferation in the medium with different extractions. *p <
0.01
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4 Conclusions

Chitosan- and chitin-derived degradation products were
observed in all extracts and they were not involved in the
inhibition of nerve cell proliferation. The 100–400 species
dissolved from the hybrids in the extracts of ChG05 and
ChD05 include monomeric silicon-containing species
derived from GPTMS and GPDMS, which inhibited the

cell proliferation. The silicon-containing species dissolved
from ChT05 adsorbed to the cell surface, but did not affect
cell proliferation. The silicon-containing species dissolved
from ChD05 also adsorbed to the cell surface, but inhibited
the cell proliferation. The species dissolved from ChG05
did not adsorb to the cell surface, but inhibited the cell
proliferation. Therefore, the species dissolved from ChG05
inactivate the components for cell growth in the culture

Fig. 8 Fluorescent image of RT4
cells cultured in the control,
ChG05, ChD05, and ChT05
medium at 3 days

Fig. 9 Fluorescent image of RT4
cells cultured in the control,
ChG05, ChD05, and ChT05
medium at 5 days
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medium or disturb the ion exchange near the ion channel
because of the results of the intercellular Si(IV) decrease.
The organic chains bonded to silicon atoms are involved in
the adsorption of components for nerve cell growth.
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